1
|
Guo R, Zeng Y, Lin L, Hu D, Lu C, Conroy S, Zhang S, Zeng C, Luo H, Jiang Z, Zhang X, Tu X, Yan K. CO 2-Assisted Controllable Synthesis of PdNi Nanoalloys for Highly Selective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural. Angew Chem Int Ed Engl 2025; 64:e202418234. [PMID: 39434675 PMCID: PMC11796329 DOI: 10.1002/anie.202418234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
The selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bishydroxymethyltetrahydrofuran (BHMTHF), a vital fuel precursor and solvent, is crucial for biomass refining. Herein, we report highly selective and stable PdNi nanoalloy catalysts for this deep hydrogenation process. A CO2-assisted green method was developed for the controllable synthesis of various bimetallic and monometallic catalysts. The PdNi/SBA-15 catalysts with various Pd/Ni ratios exhibited a volcano-like trend between BHMTHF yield and Pd/Ni ratio. Among all catalysts tested, Pd2Ni1/SBA-15 achieved the best performance, converting 99.0 % of HMF to BHMTHF with 96.0 % selectivity, surpassing previously reported catalysts. Additionally, the Pd2Ni1/SBA-15 catalyst maintained excellent stability even after five recycling runs. Catalyst characterizations (e. g., HAADF-STEM) and density functional theory (DFT) calculations confirmed the successful formation of the alloy structure with electron transfer between Ni and Pd, which accounts for the remarkable performance and stability of the catalyst. This work paves the way for developing highly selective and stable alloy catalysts for biomass valorization.
Collapse
Affiliation(s)
- Ruichao Guo
- School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhou510275China
- School of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Yongjian Zeng
- School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhou510275China
| | - Lu Lin
- School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhou510275China
| | - Di Hu
- School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhou510275China
| | - Chunqiang Lu
- Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolL69 3GJUK
| | - Stuart Conroy
- Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowG1 1XJUK
| | - Suyu Zhang
- School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhou510275China
| | - Chen Zeng
- School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhou510275China
| | - Huixia Luo
- School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhou510275China
| | - Zhiwei Jiang
- School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhou510275China
| | - Xiaolei Zhang
- Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowG1 1XJUK
| | - Xin Tu
- Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolL69 3GJUK
| | - Kai Yan
- School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhou510275China
| |
Collapse
|
2
|
Zhang Z, Lin S, Zhang Y, Chen L, Gao D, Tian C, Chen J, Meng Q. Macrocycle-based self-assembled amphiphiles for co-delivery of therapeutic combinations to tumor. Colloids Surf B Biointerfaces 2025; 246:114383. [PMID: 39551035 DOI: 10.1016/j.colsurfb.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
For tumor treatment, the efficiency of single chemotherapeutic agent is generally limited and the traditional combination chemotherapies frequently result in the aggravation of side effects. Herein, an amphiphilic pillararene-based self-assembled nanoparticle (APSN) composed of hydrazide-pillar[5]arene (HP5A-6C) that achieve effective co-delivery of therapeutic combinations was reported. Through integrating multitudinous macrocyclic cavities into a single nanoparticle, the APSN could co-load two antitumor drugs, cisplatin (CP) and nitrogen mustard (NM) via host-guest interactions. A serious of safety tests preliminary demonstrated that blank carrier APSN had good biocompatibility. Cytotoxicity assay verified that co-delivery system CP+NM@APSN could exert a synergistic antitumor effect at the cellular level. In vivo studies demonstrated that CP+NM@APSN could not only improve chemotherapeutic outcomes in tumor-bearing model mouse but also alleviate two medications-related side effects. These favorable findings were attributed to the formation of ternary supramolecular assembly that benefited from an enhanced permeability and retention effect. © 2024 Elsevier Science. All rights reserved.
Collapse
Affiliation(s)
- Ziliang Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Shujie Lin
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Yahan Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Longming Chen
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Di Gao
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Chengyang Tian
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Junyi Chen
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Qingbin Meng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| |
Collapse
|
3
|
Mandal D, Sarkar A, Behera KC, Ravikanth M. pH-responsive supramolecular switch of a rationally designed dipyrroethene-based chromophore. Chem Sci 2025; 16:1772-1782. [PMID: 39720128 PMCID: PMC11664251 DOI: 10.1039/d4sc07016j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Herein, we present a strategy to access a novel class of pH-responsive, dual-state emissive (DSE), highly fluorescent pyrrole-based chromophores via diformylation of dipyrroethenes (DPE) followed by condensation with various aniline derivatives. The DPE-based chromophores exhibit a large Stokes shift and maintain good fluorescence quantum yields. Remarkably, these chromophores demonstrate reversible colourimetric changes and a fluorometric 'on-off-on' switch in response to pH variations. Various spectroscopic techniques, optical microscopy, X-ray crystallography, and computational studies revealed that the synthesized molecules adopt a two-dimensional conformation due to the presence of strong π⋯π stacking and hydrogen bonding interactions, allowing them to function as flexible molecular hosts. Under acidic conditions, selective protonation of imine bonds and subsequent complexation with the counter anion enhance the host-guest interactions, resulting in a stable three-dimensional supramolecular structure. Notably, the reversibility of these molecules under basic conditions showcases the robustness and potential applications of these chromophores in various fields, ranging from the design of finely tuned pH-responsive degradable polymers to self-healing materials, as well as sensing and molecular devices.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai-400076 India
| | - Abani Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai-400076 India
| | - Kanhu Charan Behera
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai-400076 India
| | | |
Collapse
|
4
|
Wang S, Han Y, Su M, Wang H, Chen Y, Huang B, Bai Q, Wang M. Mediated self-assembled gold nanoclusters with mesoporous silica particles to boost fluorescence for enhanced on-site monitoring of organophosphate pesticides. Food Chem 2025; 463:141120. [PMID: 39244995 DOI: 10.1016/j.foodchem.2024.141120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Accurate detection of organophosphate pesticides (OPs) is paramount for ensuring food safety. Dendritic mesoporous silica sphere was employed to confine gold nanoclusters (AuNCs@dmSiO2) to ameliorate fluorescent property of AuNCs. A AuNCs@dmSiO2-based fluorescent method was developed for OPs sensing. Identification of Cu2+ by AuNCs quenched AuNCs@dmSiO2 fluorescence. Interaction between Cu2+ and generated thiocholine in catalysis of acetylcholinesterase (AChE) caused fluorescence enhancement. OPs, an inhibitor of AChE, suppressed thiocholine production to cause fluorescence quenching. Based on fluorescent variation, a fluorescent method was proposed for OPs by selecting paraoxon as a model within range of 0.05-25.0 ng/mL with a limit of detection (LOD) of 0.032 ng/mL. Besides, a portable test swab was prepared for on-site monitoring OP paraoxon with a smartphone-based 3D-printing portable device with a LOD of 0.65 ng/mL. This work is highlighted by the inspiration of designing highly fluorescent AuNCs, and the provision of a viable avenue for OPs-related food analysis.
Collapse
Affiliation(s)
- Shun Wang
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Yaqing Han
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Mengdi Su
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Hao Wang
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Yuze Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Baoling Huang
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Qian Bai
- Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Mengke Wang
- College of Medical Engineering, Jining Medical University, Jining 272067, China.
| |
Collapse
|
5
|
Lee S, Song G, Jeong KS. Stimuli-Responsive Molecular Duplexes Displaying Duplex-to-Duplex Switching. Angew Chem Int Ed Engl 2024; 63:e202410884. [PMID: 38937392 DOI: 10.1002/anie.202410884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Synthetic duplexes with high stabilities have promising potential for mimicking biomolecular functions and developing supramolecular smart materials. Herein, we describe the synthesis and stimuli-responsive properties of molecular duplexes derived from indolocarbazole-pyridine (I-P) oligomers. These duplexes adopt nonclassical helical structures, stabilized by I-P hydrogen-bonding pairs in anhydrous chlorinated solvents. Notably, the longest duplex 62 (11-mer)2 displays remarkable stability, forming twenty hydrogen bonds; its exchange energy barrier was determined to be ΔG≠=22.0 kcal ⋅ mol-1 at 75 °C in anhydrous (CDCl2)2. Upon the addition of water, a hydrated duplex 62 (11-mer)2⊃10H2O was formed, with one water molecule inserted between each I-P hydrogen-bonding pair. The Hill coefficient (n) for this process is 6.1, demonstrating extremely positive cooperativity. Conversely, the hydrated duplex 62 (11-mer)2⊃10H2O was completely converted into the original anhydrous duplex 62 (11-mer)2 when the temperature was increased. Interconversion between these two distinct duplexes can be repeatedly carried out by varying the temperature. Furthermore, reversible switching between hetero-duplexes and homo-duplexes was also demonstrated by controlling the temperature, with concomitant changes in the characteristic emission signals.
Collapse
Affiliation(s)
- Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Li M, Tang Q, Wan H, Zhu G, Yin D, Lei L, Li S. Functional inorganic nanoparticles in cancer: Biomarker detection, imaging, and therapy. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cancer poses a major global public health challenge. Developing more effective early diagnosis methods and efficient treatment techniques is crucial to enhance early detection sensitivity and treatment outcomes. Nanomaterials offer sensitive, accurate, rapid, and straightforward approaches for cancer detection, diagnosis, and treatment. Inorganic nanoparticles are widely used in medicine because of their high stability, large specific surface area, unique surface properties, and unique quantum size effects. Functional inorganic nanoparticles involve modifying inorganic nanoparticles to enhance their physical properties, enrichment capabilities, and drug-loading efficiency and to minimize toxicity. This Review provides an overview of various types of inorganic nanoparticles and their functionalization characteristics. We then discuss the progress of functional inorganic nanoparticles in cancer biomarker detection and imaging. Furthermore, we discuss the application of functional inorganic nanoparticles in radiotherapy, chemotherapy, gene therapy, immunotherapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and combination therapy, highlighting their characteristics and advantages. Finally, the toxicity and potential challenges of functional inorganic nanoparticles are analyzed. The purpose of this Review is to explore the application of functional inorganic nanoparticles in diagnosing and treating cancers, while also presenting a new avenue for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Hua Wan
- Department of Otorhinolaryngology Head and Neck Surgery 2 , 331 Hospital of Zhuzhou, Zhuzhou 412002, Hunan,
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Danhui Yin
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 3 , Hangzhou 310015, Zhejiang,
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| |
Collapse
|
7
|
Lu X, Zhu Y, Deng X, Kong F, Xi C, Luo Q, Zhu X. Development of a Supermolecular Radionuclide-Drug Conjugate System for Integrated Radiotheranostics for Non-small Cell Lung Cancer. J Med Chem 2024; 67:11152-11167. [PMID: 38896797 DOI: 10.1021/acs.jmedchem.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Radionuclide-drug conjugates (RDCs) designed from small molecule or nanoplatform shows complementary characteristics. We constructed a new RDC system with integrated merits of small molecule and nanoplatform-based RDCs. Erlotinib was labeled with 131I to construct the bulk of RDC (131I-ER). Floxuridine was mixed with 131I-ER to develop a hydrogen bond-driving supermolecular RDC system (131I-ER-Fu NPs). The carrier-free 131I-ER-Fu NPs supermolecule not only demonstrated integrated merits of small molecule and nanoplatform-based RDC, including clear structure definition, stable quality control, prolonged circulation lifetime, enhanced tumor specificity and retention, and rapidly nontarget clearance, but also exhibited low biological toxicity and stronger antitumor effects. In vivo imaging also revealed its application for tumor localization of nonsmall cell lung cancer (NSCLC) and screening of patients suitable for epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy. We considered that 131I-ER-Fu NPs showed potentials as an integrated platform for the radiotheranostics of NSCLC.
Collapse
Affiliation(s)
- Xinmiao Lu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Yunyun Zhu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Xiaohui Deng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Kong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuang Xi
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
9
|
Xu T, Wang L, Fan L, Ren H, Zhang Q, Wang J. Composite Microparticles from Microfluidics for Chemo-/Photothermal Therapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38594624 DOI: 10.1021/acsami.4c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Hydrogel microcarrier-based drug delivery systems are of great value in the combination therapy of tumors. Current research directions concentrate on the development of more economic, convenient, and effective combined therapeutic platforms. Herein, we developed novel adhesive composite microparticles (MPPMD) with combined chemo- and photothermal therapy ability via microfluidic electrospray technology for local hepatocellular carcinoma treatment. These composite microparticles consisted of doxorubicin (DOX)-loaded and polydopamine-wrapped mesoporous silicon and alginate. Benefiting from such a strategy of hierarchical structure drug loading, DOX could be gradually released from the system, effectively avoiding the direct toxicity of chemotherapeutics to the body. Additionally, the designed microparticles could not only effectively treat tumors by releasing the chemotherapy drug DOX but also show excellent photothermal properties under the irradiation of near-infrared light, achieving combined chemo- and photothermal treatment effects. Based on these advantages, the MPPMD could remarkably eliminate tumor cells in vitro and enormously restrict tumor development in vivo. These results illustrate that such composite microparticles are ideal combination treatment platforms, possessing promising expectations for cancer therapy.
Collapse
Affiliation(s)
- Tianyuan Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Li Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
10
|
Li X, Shen M, Yang J, Liu L, Yang YW. Pillararene-Based Stimuli-Responsive Supramolecular Delivery Systems for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313317. [PMID: 38206943 DOI: 10.1002/adma.202313317] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Cancer poses a significant challenge to global public health, seriously threatening human health and life. Although various therapeutic strategies, such as chemotherapy (CT), radiotherapy, phototherapy, and starvation therapy, are applied to cancer treatment, their limited therapeutic effect, severe side effects, and unsatisfactory drug release behavior need to be carefully considered. Thus, there is an urgent need to develop efficient drug delivery strategies for improving cancer treatment efficacy and realizing on-demand drug delivery. Notably, pillararenes, as an emerging class of supramolecular macrocycles, possess unique properties of highly tunable structures, superior host-guest chemistry, facile modification, and good biocompatibility, which are widely used in cancer therapy to achieve controllable drug release and reduce the toxic side effects on normal tissues under various internal/external stimuli conditions. This review summarizes the recent advance of stimuli-responsive supramolecular delivery systems (SDSs) based on pillararenes for tumor therapy from the perspectives of different assembly methods and hybrid materials, including molecular-scale SDSs, supramolecular nano self-assembly delivery systems, and nanohybrid SDSs. Moreover, the prospects and critical challenges of stimuli-responsive SDSs based on pillararenes for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Meili Shen
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| | - Jie Yang
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Linlin Liu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| | - Ying-Wei Yang
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| |
Collapse
|
11
|
Ramezanian S, Moghaddas J, Roghani-Mamaqani H, Rezamand A. Dual pH- and temperature-responsive poly(dimethylaminoethyl methacrylate)-coated mesoporous silica nanoparticles as a smart drug delivery system. Sci Rep 2023; 13:20194. [PMID: 37980442 PMCID: PMC10657431 DOI: 10.1038/s41598-023-47026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
A robust drug delivery system was created by grafting poly(dimethylaminoethyl methacrylate) (PDMAEMA) onto silica nanoparticles with two different lengths using an in situ atom transfer radical polymerization, resulting in the formation of a pH- and temperature-sensitive shell. The high molecular weight PDMAEMA demonstrated effective controlled drug release, and prevented drug release in healthy cells. Drug release occurred through polymer shell protonation at pH 5. The critical temperature of 41 °C facilitated rapid solvation of the shell polymers in the blood, preventing tissue accumulation and reducing toxicity compared to systems with lower critical solution temperatures. Field-emission scanning electron microscopy analysis and nitrogen adsorption/desorption analysis showed that the nanoparticles have a fine network, mesoporous structure, and a mean size of around 17 nm that show their excellent capacity for loading drugs. Fourier-transform infrared spectroscopy showed that all the modification steps and polymerization were successfully implemented. Thermogravimetric analysis showed PDMAEMA chains with two different lengths grafted onto the nanoparticles. Transmission electron microscopy analysis also showed grafted polymer chains on the hybrid nanoparticles. The release profile of model cancer drugs (doxorubicin and methotrexate) varied with pH and temperature, with high molecular weight PDMAEMA shells effectively preventing drug release at neutral pH. In vitro analysis using the HeLa cell line showed minimal toxicity in blank samples and significant release profile in acidic environment.
Collapse
Affiliation(s)
- Sina Ramezanian
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Transport Phenomena Research Center, Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335/1996, Tabriz, Iran
| | - Jafarsadegh Moghaddas
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
- Transport Phenomena Research Center, Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335/1996, Tabriz, Iran.
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Azim Rezamand
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pediatrics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Lou XY, Zhang S, Wang Y, Yang YW. Smart organic materials based on macrocycle hosts. Chem Soc Rev 2023; 52:6644-6663. [PMID: 37661759 DOI: 10.1039/d3cs00506b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Innovative design of smart organic materials is of great importance for the advancement of modern technology. Macrocycle hosts, possessing cyclic skeletons, intrinsic cavities, and specific guest binding properties, have demonstrated pronounced potential for the elaborate fabrication of a variety of functional organic materials with smart stimuli-responsive characteristics. In this tutorial review, we outline the current development of smart organic materials based on macrocycle hosts as key building blocks, focusing on the design principles and functional mechanisms of the tailored systems. Three main types of macrocycle-based smart organic materials are exemplified as follows according to the distinct forms of construction patterns: (1) supramolecular polymeric materials and nanoassemblies; (2) adaptive molecular crystals; (3) smart porous organic materials. The responsive performances of macrocycle-containing smart materials in versatile aspects, including mechanically adaptive polymers, soft optoelectronic devices, data encryption, drug delivery systems, artificial transmembrane channels, crystalline-state gas adsorption/separation, and fluorescence sensing, are illustrated by discussing the representative studies as paradigms, where the roles of macrocycles in these systems are highlighted. We also provide in the conclusion part the perspectives and remaining challenges in this burgeoning field.
Collapse
Affiliation(s)
- Xin-Yue Lou
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Siyuan Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
13
|
Xu W, Chen Y, Yang R, Fu Y, Zhuang W, Wang Y, Liu Y, Zhang H. "Reaction"-Like Shaping of Self-Delivery Supramolecular Nanodrugs in the Nanoprecipitation Process. ACS NANO 2023; 17:18227-18239. [PMID: 37668306 DOI: 10.1021/acsnano.3c05229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Nanoprecipitation, which is achieved through the diffusion and precipitation of drug molecules in blended solvent and antisolvent phases, is a classic route for constructing nanodrugs (NDs) and previously directed by diffusion-controlled theory. However, the diffusion-controlled mechanism is out of date in the recent preparation of self-delivery supramolecular NDs (SDSNDs), characterized by the construction of drug nanoparticles through supramolecular interactions in the absence of carriers and surfactants. Herein, a "reaction"-like complement, contributed from supramolecular interactions, is proposed for the preparation of naphthoquinone SDSNDs. Different from the diffusion-controlled process, the formation rate of SDSNDs via the "reaction"-like process is almost constant and highly dependent on the supramolecular interaction-determined Gibbs free energy of molecular binding. Thus, the formation rate and drug availability of SDSNDs are greatly improved by engineering the supramolecular interactions, which facilitates the preparation of SDSNDs with expected sizes, components, and therapeutic functions. As a deep understanding of supramolecular-interaction-involved nanoprecipitation, the current "reaction"-like protocol not only provides a theoretical supplement for classic nanoprecipitation but also highlights the potential of nanoprecipitation in shaping self-assembled, coassembled, and metal-ion-associated SDSNDs.
Collapse
Affiliation(s)
- Wenzhe Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ruixu Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yiying Fu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wanxin Zhuang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yonggang Wang
- Department of Cardiovascular Centre, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
14
|
Saha P, Rafe MR. Cyclodextrin: A prospective nanocarrier for the delivery of antibacterial agents against bacteria that are resistant to antibiotics. Heliyon 2023; 9:e19287. [PMID: 37662769 PMCID: PMC10472013 DOI: 10.1016/j.heliyon.2023.e19287] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Supramolecular chemistry introduces us to the macrocyclic host cyclodextrin, which has a hydrophobic cavity. The hydrophobic cavity has a higher affinity for hydrophobic guest molecules and forms host-guest complexation with non-covalent interaction. Three significant cyclodextrin kinds are α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. The most often utilized is β-cyclodextrin (β-CD). An effective weapon against bacteria that are resistant to antibiotics is cyclodextrin. Several different kinds of cyclodextrin nanocarriers (β-CD, HP-β-CD, Meth-β-CD, cationic CD, sugar-grafted CD) are utilized to enhance the solubility, stability, dissolution, absorption, bioavailability, and permeability of the antibiotics. Cyclodextrin also improves the effectiveness of antibiotics, antimicrobial peptides, metallic nanoparticles, and photodynamic therapy (PDT). Again, cyclodextrin nanocarriers offer slow-release properties for sustained-release formulations where steady-state plasma antibiotic concentration is needed for an extended time. A novel strategy to combat bacterial resistance is a stimulus (pH, ROS)-responsive antibiotics released from cyclodextrin carrier. Once again, cyclodextrin traps autoinducer (AI), a crucial part of bacterial quorum sensing, and reduces virulence factors, including biofilm formation. Cyclodextrin helps to minimize MIC in particular bacterial strains, keep antibiotic concentrations above MIC in the infection site and minimize the possibility of antibiotic and biofilm resistance. Sessile bacteria trapped in biofilms are more resistant to antibiotic therapy than bacteria in a planktonic form. Cyclodextrin also involves delivering antibiotics to biofilm and resistant bacteria to combat bacterial resistance.
Collapse
Affiliation(s)
- Pranoy Saha
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Rajdoula Rafe
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
15
|
Akbar Heidari A, Mahdavi H. Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. CHEM REC 2023:e202300189. [PMID: 37642266 DOI: 10.1002/tcr.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties. Thin-film composite (TFC) and nanocomposite (TFN) membranes are two different classes of membranes that have been recently utilized for this purpose. TFC and TFN membranes are made up of similar layers, and the difference is the use of various nanoparticles in TFN membranes, which are classified into two types of porous and nonporous ones, for enhancing the permeate flux. This study aims to review recent advances in TFC and TFN membranes fabricated for organic solvent nanofiltration (OSN) applications. Here, we will first study the materials used to fabricate the support layer, not only the membranes which are not stable in organic solvents and require to be cross-linked, but also those which are inherently stable in harsh media and do not need any cross-linking step, and all of their advantages and disadvantages. Then, we will study the effects of fabricating different interlayers on the performance of the membranes, and the mechanisms of introducing an interlayer in the regulation of the PA structure. At the final step, we will study the type of monomers utilized for the fabrication of the active layer, the effect of surfactants in reducing the tension between the monomers and the membrane surface, and the type of nanoparticles used in the active layer of TFN membranes and their effects in enhancing the membrane separation performance.
Collapse
Affiliation(s)
- Ali Akbar Heidari
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| |
Collapse
|
16
|
Wu Y, Tang M, Wang Z, Shi L, Xiong Z, Chen Z, Sessler JL, Huang F. Pillararene incorporated metal-organic frameworks for supramolecular recognition and selective separation. Nat Commun 2023; 14:4927. [PMID: 37582786 PMCID: PMC10427641 DOI: 10.1038/s41467-023-40594-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Crystalline frameworks containing incorporated flexible macrocycle units can afford new opportunities in molecular recognition and selective separation. However, such functionalized frameworks are difficult to prepare and challenging to characterize due to the flexible nature of macrocycles, which limits the development of macrocycle-based crystalline frameworks. Herein, we report the design and synthesis of a set of metal-organic frameworks (MOFs) containing pillar[5]arene units. The pillar[5]arene units were uniformly embedded in the periodic frameworks. Single crystal X-ray diffraction analysis revealed an interpenetrated network that appears to hinder the rotation of the pillar[5]arene repeating units in the frameworks, and it therefore resulted in the successful determination of the precise pillar[5]arene host structure in a MOF crystal. These MOFs can recognize paraquat and 1,2,4,5-tetracyanobenzene in solution and selectively remove trace pyridine from toluene with relative ease. The work presented here represents a critical step towards the synthesis of macrocycle-incorporated crystalline frameworks with well-defined structures and functional utility.
Collapse
Affiliation(s)
- Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Meiqi Tang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zeju Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhangyi Xiong
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China.
| |
Collapse
|
17
|
Zhao K, Zeng L, Zhao J, Yang P, Nie J, Chang Y. Supra-herbicide based on sunlight-opened macrocycle gate with reduced toxicity. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Aryl- and Superaryl-Extended Calix[4]pyrroles: From Syntheses to Potential Applications. Top Curr Chem (Cham) 2023; 381:7. [PMID: 36607442 DOI: 10.1007/s41061-022-00419-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/10/2022] [Indexed: 01/07/2023]
Abstract
The incorporation of aryl substituents at the meso-positions of calix[4]pyrrole (C4P) scaffolds produces aryl-extended (AE) and super-aryl-extended (SAE) calix[4]pyrroles. The cone conformation of the all-α isomers of "multi-wall" AE-C4Ps and SAE-C4Ps displays deep aromatic clefts or cavities. In particular, "four-wall" receptors feature an aromatic polar cavity closed at one end with four convergent pyrrole rings and fully open at the opposite end. This makes AE- and SAE-C4P scaffolds effective receptors for the molecular recognition of negatively charged ions and neutral guest molecules with donor-acceptor and hydrogen bonding motifs. In addition, adequately functionalized all-α isomers of multi wall AE- and SAE-C4P scaffolds self-assemble into uni-molecular and supra-molecular aggregates displaying capsular and cage-like structures. The self-assembly process requires the presence of template ions or molecules that lock the C4P cone conformation and complementing the inner polar functions and volumes of their cavities. We envisioned performing an in-depth revision of AE- and SAE-C4P scaffolds owing to their importance in different domains such as supramolecular chemistry, biology, material sciences and pharmaceutical chemistry. Herewith, besides the synthetic details on the elaboration of their structures, we also draw attention to their diverse applications. The organization of this review is mainly based on the number of "walls" present in the AE-C4P derivatives and their structural modifications. The sections are further divided based on the C4P functions and applications. The authors are convinced that this review will be of interest to researchers working in the general area of supramolecular chemistry as well as those involved in the study of the binding properties and applications of C4P derivatives.
Collapse
|
19
|
Siddiqui B, Rehman AU, Haq IU, Al-Dossary AA, Elaissari A, Ahmed N. Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. Int J Pharm X 2022; 4:100116. [PMID: 35509288 PMCID: PMC9058968 DOI: 10.1016/j.ijpx.2022.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Rapid progress in developing multifunctional nanocarriers for drug delivery has been observed in recent years. Inorganic mesoporous silica nanocarriers (MSNs), emerged as an ideal candidate for gene/drug delivery with distinctive morphological features. These ordered carriers of porous nature have gained unique attention due to their distinctive features. Moreover, transformation can be made to these nanocarriers in terms of pores size, pores volume, and particle size by altering specific parameters during synthesis. These ordered porous materials have earned special attention as a drug carrier for treating multiple diseases. Herein, we highlight the strategies employed in synthesizing and functionalizing these versatile nanocarriers. In addition, the various factors that influence their sizes and morphological features were also discussed. The article also summarizes the recent advancements and strategies for drug and gene delivery by rendering smarter MSNs by incorporating functional groups on their surfaces. Averting off-target effects through various capping strategies is a massive milestone for the induction of stimuli-responsive nanocarriers that brings out a great revolution in the biomedical field. MSNs serve as an ideal candidate for gene/drug delivery with unique and excellent attributes. MSNs surface can be functionalized using specific materials to impart unique structural features. Functionalization of MSNs with stimuli-responsive molecules can act as gatekeepers by responding to the desired stimulus after uncapping. These capping agents act as vital targeting agents in developing MSNs being employed in various biomedical applications.
Collapse
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Amal A Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| |
Collapse
|
20
|
Ghani U, Hina K, Iqbal M, Irshad MK, Aslam I, Saeed R, Ibrahim M. Kinetic and isotherms modeling of methyl orange and chromium (VI) onto hexagonal ZnO microstructures as a membrane for environmental remediation of wastewater. CHEMOSPHERE 2022; 309:136681. [PMID: 36195126 DOI: 10.1016/j.chemosphere.2022.136681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Globally, contamination of water by dyes and heavy metals (HMs) is a serious environmental and public health problem due to their carcinogenic and mutagenic nature. It is incumbent to treat innocuously before discharge. It is the first time, hexagonal zinc oxide (ZnO) microstructure are being employeed as a membrane in the simultaneous removal of methyl orange (MO) and chromium (Cr (VI)) from the aqueous solution. The surface chemistry of hexagonal ZnO was characterized for morphology, surface functional groups, crystalline nature, and elemental composition by scanning electron microscope (SEM), Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). Adsorption capacity and removal efficiency was determined by the laboratory batch adsorption experiments, while nonlinear, linear kinetics and isotherm models were fitted to experimental data to investigate the adsorption process. The results exhibited that the maximum adsorption capacity (qmax) of hexagonal ZnO from the Langmuir isotherm model was 80.39 mg g-1 and 84.10 mg g-1 for MO and Cr (VI) respectively. According to the modeling findings, linear langmuir fitted to the experimental data with R2 0.967 and 0.971 for both MO and Cr (VI) which indicates monolayer physical adsorption of both pollutants has taken place. Whereas, kinetic study showed nonlinear pseudo-second order with R2 0.989 and 0.986 for MO and Cr (VI) model best fitted with the experimental data. The values of thermodynamics parameters Gibbs free energy change ΔG°, heat of enthalpy ΔH° and, heat of entropy ΔS° indicate that spontaneous, endothermic, and irreversible adsorption reactions occurred. Overall, it is concluded from our observations that hexagonal ZnO has the potential to be used as an eco-friendly, cost-effective adsorbent for simultaneous remaoval of both MO and Cr (VI) from water. Findings of the current investigation provide valuable insights for the development of an inexpensive, effective and sustainable filtration method for the treatment of MO and Cr (VI) synergistically.
Collapse
Affiliation(s)
- Usman Ghani
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan
| | - Kiran Hina
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Meenal Iqbal
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Imran Aslam
- Department of Basic Sciences and Humanities, University of Engineering and Technology, Lahore, NWL Campus, Pakistan
| | - Rashid Saeed
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
21
|
Shah IU, Jadhav SA, Belekar VM, Patil PS. Smart polymer grafted silica based drug delivery systems. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ishika U. Shah
- School of Nanoscience and Technology Shivaji University Kolhapur Maharashtra India
| | | | - Vedika M. Belekar
- School of Nanoscience and Technology Shivaji University Kolhapur Maharashtra India
| | - Pramod S. Patil
- School of Nanoscience and Technology Shivaji University Kolhapur Maharashtra India
- Department of Physics Shivaji University Kolhapur Maharashtra India
| |
Collapse
|
22
|
Barravecchia L, Blanco-Gómez A, Neira I, Skackauskaite R, Vila A, Rey-Rico A, Peinador C, García MD. "Vermellogens" and the Development of CB[8]-Based Supramolecular Switches Using pH-Responsive and Non-Toxic Viologen Analogues. J Am Chem Soc 2022; 144:19127-19136. [PMID: 36206443 DOI: 10.1021/jacs.2c08575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present herein the "vermellogens", a new class of pH-responsive viologen analogues, which replace the direct linking between para-substituted pyridinium moieties within those by a hydrazone functional group. A series of such compounds have been efficiently synthesized in aqueous media by hydrazone exchange reactions, displaying a marked pH-responsivity. Furthermore, the parent N,N'-dimethylated "vermellogen": the "red thread", an analogue of the herbicide paraquat and used herein as a representative model of the series, showed anion-recognition abilities, non-reversible electrochemical behavior, and non-toxicity of the modified bis-pyridinium core. The host-guest chemistry for the "red thread" with the CB[7,8] macrocyclic receptors has been extensively studied experimentally and by dispersion corrected density functional theory methods, showing a parallel behavior to that previously described for the herbicide but, crucially, swapping the well-known redox reactive capabilities of the viologen-based inclusion complexes by acid-base supramolecular responsiveness.
Collapse
Affiliation(s)
- Liliana Barravecchia
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Arturo Blanco-Gómez
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Iago Neira
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Raminta Skackauskaite
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Alejandro Vila
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Ana Rey-Rico
- Gene & Cell Therapy Research Group (G-CEL), Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071A Coruña, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Marcos D García
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| |
Collapse
|
23
|
Yu LD, Tong YJ, Li N, Yang Y, Ye P, Ouyang G, Zhu F. Calix[6]arene functionalized lanthanide metal-organic frameworks with boosted performance in identifying an anti-epidemic pharmaceutical. Chem Commun (Camb) 2022; 58:11697-11700. [PMID: 36177962 DOI: 10.1039/d2cc03564b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel composite was fabricated by hybridizing terbium 1,3,5-benzenetricarboxylic MOF (TB-MOF) with Cx[6]. The obtained composite TB-Cx[6] possessed long-term stability and dispersion stability and was used for on-site analysis of the anti-COVID-19 disinfection product Prednis via a combing remote sampling technique.
Collapse
Affiliation(s)
- Lu-Dan Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuan-Jun Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yating Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Pengfei Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China. .,Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, China.,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou, 510070, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
24
|
Hu WH, Zhou K, Liu L, Wu HC. Construction of a pH-Mediated Single-Molecule Switch with a Nanopore-DNA Complex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201650. [PMID: 35723176 DOI: 10.1002/smll.202201650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Indexed: 06/15/2023]
Abstract
A molecular switch is one of the simplest examples of artificial molecular machines. Even so, the development of molecular switches is still at its very early stage. Currently, building single-molecule switches mostly rely on the molecular junction technique, but many of their performance characteristics are device-dependent. Here, a pH-mediated single-molecule switch based on the combination of an α-hemolysin (αHL) nanopore and a hexacyclen-modified DNA strand is developed. The single-stranded DNA is suspended inside an αHL through biotin-streptavidin linkage and the hexacyclen-modified nucleobase interacts with amino acid residues at positions 111, 113, and 147 to cause current oscillations. Distinct current transitions are observed when pH is tuned back and forth in the range of 3.0-7.4, with a typical "up" level when pH > 6.5 and a "down" level when pH < 4.5. This nanopore-DNA complex possesses membrane-bound advantages and may find applications in single-cell studies where pH could be readily tuned to control ON-OFF functions.
Collapse
Affiliation(s)
- Wei-Hu Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Lou XY, Zhang G, Song N, Yang YW. Supramolecular materials based on AIEgens for photo-assisted therapy. Biomaterials 2022; 286:121595. [DOI: 10.1016/j.biomaterials.2022.121595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022]
|
26
|
Li Y, Zhu B, Han W, Tang W, Duan X. A bright chemiluminescence conjugated polymer-mesoporous silica nanoprobe for imaging of colonic tumors in vivo. Analyst 2022; 147:2060-2067. [PMID: 35437532 DOI: 10.1039/d2an00294a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypochlorite acid (ClO-) is one of the major reactive oxygen species (ROS) in colon cancer, providing an effective target for colonic tumor in vivo imaging. For detection of ClO- and tumor imaging, poly[(9,9-di(2-ethylhexyl)-9H-fluorene-2,7-vinylene)-co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (PFV-co-MEHPV, namely CP1) was encapsulated in mesoporous silica nanoparticles (MSNs) that were pre-modified with polyphenylenevinylene (PPV) via in situ polymerization to construct bright PPV@MSN-CP1 nanoparticles. The synthesized nanoparticles were size-stable and not cytotoxic as confirmed by FE-TEM, FE-SEM, and MTT assay. Hypochlorite oxidizes the vinylidene bond of CP1 through π2-π2 cycloaddition to form PPV-dioxetane intermediates to generate photons. The CL quantum yield of PPV@MSN-CP1 was 16.7 times higher than that of Pluronic F-127 wrapped CP1. CL nanoparticles PPV@MSN-CP1 have good selectivity for hypochlorite detection among biological oxidants (mainly ROS). The linear range and the LOD of PPV@MSN@CP1 for ClO- detection are 4-90 and 1.02 μM, respectively. Subsequently, we further coated PPV@MSN@CP1 with folic acid for tumor targeting by phospholipid wrapping. PPV@MSN-CP1@FA was successfully applied for in vivo imaging of endogenously produced ClO- of tumor tissue in living animals.
Collapse
Affiliation(s)
- Yukun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Beibei Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Wanying Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| |
Collapse
|
27
|
Metal–Organic Frameworks-Mediated Assembly of Gold Nanoclusters for Sensing Applications. JOURNAL OF ANALYSIS AND TESTING 2022; 6:163-177. [PMID: 35572781 PMCID: PMC9076503 DOI: 10.1007/s41664-022-00224-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
|
28
|
Gao F, Yu X, Liu L, Chen J, Lv Y, Zhao T, Ji J, Yao J, Wu W, Yang C. Chiroptical switching of molecular universal joint triggered by complexation/release of a cation: A stepwise synergistic complexation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Sun G, Zuo M, Xu Z, Wang K, Wang L, Hu XY. Orthogonal Design of Supramolecular Prodrug Vesicles via Water-Soluble Pillar[5]arene and Betulinic Acid Derivative for Dual Chemotherapy. ACS APPLIED BIO MATERIALS 2022; 5:3320-3328. [PMID: 35486958 DOI: 10.1021/acsabm.2c00318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular prodrug vesicles with efficient property for dual chemotherapy have been successfully constructed based on the orthogonal self-assembly between a water-soluble pillar[5]arene host (WP5) and a betulinic acid guest (BA-D) as well as doxorubicin (DOX). Under the acidic microenvironment of cancer cells, both the encapsulated anticancer drug DOX and prodrug BA-D can be effectively released from DOX-loaded WP5⊃BA-D prodrug vesicles for combinational chemotherapy. Furthermore, bioexperiments indicate that DOX-loaded prodrug vesicles can obviously enhance the anticancer efficiency based on the cooperative effect of DOX and BA-D, while remarkably reducing the systematic toxicity in tumor-mice, displaying great potential applications in combinational chemotherapy for cancer treatments.
Collapse
Affiliation(s)
- Guangping Sun
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Zuqiang Xu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
30
|
Smart Nanocarrier Based on Poly(oligo(ethylene glycol) methyl ether acrylate) Terminated pH-Responsive Polymer Brushes Grafted Mesoporous Silica Nanoparticles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A platform technology based on inorganic/organic nanoparticles for carrying drugs could be of enormous potential benefit in treating cancer. Surface modification of the nanoparticles with pH-responsive and biocompatible polymers can improve the selectivity and targeting toward the tumor cells. Polyethylene glycol (PEG) and its derivatives being present on the surface could enhance the ability to tailor nanomaterial hydrophilicity and to resist the adhesion of proteins and/or cells. Herein, we report a new nanoplatform based on mesoporous silica nanoparticles (MSNs) conjugated with poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) brushes as a candidate for stimuli-responsive intracellular drug delivery system. Alkyl bromide functional initiators (end-functionalized PDEAEMA brushes) were derivatized to amine, followed by the reaction with ethylene sulfide and poly(oligo(ethylene glycol) methyl ether acrylate (POEGMEA). Using X-ray photoelectron spectroscopy (XPS) to examine the attachment of POEGMEA, it was found that the POEGMEA molecules in the outer surface of PDEAEMA brushes have been successfully reacted with thiol groups, as indicated by the increase in the peak intensity of the C–O group at 286.5 eV. Brush-modified silica hybrids have an average diameter of ca. 250 nm, as estimated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Rhodamine B dye was loaded into the brush-modified silica hybrids nanoparticles with loading capacity of ca. 74%. The accumulated dye released from brush-modified particles in acidic media was approximately 60%, whereas the dye amount release in basic media was less than 15% after 10 h exposure time. Alamar Blue assay was used to assess the cytotoxicity of MSNs–PDEAEMA, MSNs–PDEAEMA–SH, and MSNs–PDEAEMA–POEGMEA. The results show that all three nanosystems were non-toxic to hMSC with an increase in cell proliferation for MSNs–PDEAEMA–POEGMEA at 50 µg/mL after both 24 and 48 h of incubation.
Collapse
|
31
|
Ni W, Zhang L, Zhang H, Zhang C, Jiang K, Cao X. Hierarchical MOF-on-MOF Architecture for pH/GSH-Controlled Drug Delivery and Fe-Based Chemodynamic Therapy. Inorg Chem 2022; 61:3281-3287. [PMID: 35138838 DOI: 10.1021/acs.inorgchem.1c03855] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotherapy is still an important and effective clinical treatment for cancer. However, individual drugs hardly achieve precise controlled release and targeted therapy, thus resulting in unavoidable side effects. Fortunately, the emergence of drug carriers is expected to solve the above problems. In this work, the MOF-on-MOF strategy was adopted to encapsulate DOX into double-layer NH2-MIL-88B to fabricate a core-shell-structured DOX@NH2-MIL-88B-On-NH2-MIL-88B (DMM) and then realize the pH and GSH dual-responsive controlled DOX release. Because of the core-shell structure, the drug-loading capacity of DMM reached 14.4 wt %, which was nearly twice that of DOX@NH2-MIL-88B (DM), and the controlled release performance of DMM was also improved at the same time, greatly improving the kinetics equilibrium time of DOX from 2 h (DM) to 16 h (DMM) at pH 5.0. Moreover, we found that DMM also possessed peroxidase-like catalytic activity under acidic conditions, which could catalyze H2O2 to produce •OH, exhibiting the potential chemodynamical treatment of cancer. Cell experiments showed that DMM had a significant inhibitory effect against 4T1 cancer cells, and the survival rate of 4T1 cells was less than 20% at 100 ppm.
Collapse
Affiliation(s)
- Weishu Ni
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ling Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Hengrui Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chenghui Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ke Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Xianying Cao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Engineering Technology Research Center for Elderly Health Management in Hainan Province, Haikou 571126, China
| |
Collapse
|
32
|
Strategy for Conjugating Oligopeptides to Mesoporous Silica Nanoparticles Using Diazirine-Based Heterobifunctional Linkers. NANOMATERIALS 2022; 12:nano12040608. [PMID: 35214937 PMCID: PMC8880541 DOI: 10.3390/nano12040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
Successful strategies for the attachment of oligopeptides to mesoporous silica with pores large enough to load biomolecules should utilize the high surface area of pores to provide an accessible, protective environment. A two-step oligopeptide functionalization strategy is examined here using diazirine-based heterobifunctional linkers. Mesoporous silica nanoparticles (MSNPs) with average pore diameter of ~8 nm and surface area of ~730 m2/g were synthesized and amine-functionalized. Tetrapeptides Gly-Gly-Gly-Gly (GGGG) and Arg-Ser-Ser-Val (RSSV), and a peptide comprised of four copies of RSSV (4RSSV), were covalently attached via their N-terminus to the amine groups on the particle surface by a heterobifunctional linker, sulfo-succinimidyl 6-(4,4′-azipentanamido)hexanoate (sulfo-NHS-LC-diazirine, or SNLD). SNLD consists of an amine-reactive NHS ester group and UV-activable diazirine group, providing precise control over the sequence of attachment steps. Attachment efficiency of RSSV was measured using fluorescein isothiocyanate (FITC)-tagged RSSV (RSSV-FITC). TGA analysis shows similar efficiency (0.29, 0.31 and 0.26 mol peptide/mol amine, respectively) for 4G, RSSV and 4RSSV, suggesting a generalizable method of peptide conjugation. The technique developed here for the conjugation of peptides to MSNPs provides for their attachment in pores and can be translated to selective peptide-based separation and concentration of therapeutics from aqueous process and waste streams.
Collapse
|
33
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
34
|
Somsri S, Kuwamura N, Kojima T, Yoshinari N, Rujiwatra A, Konno T. Inclusion of cyclodextrins in a metallosupramolecular framework via structural transformations. CrystEngComm 2022. [DOI: 10.1039/d1ce01416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inclusion of α-cyclodextrin and both α- and γ-cyclodextrins in a multilayer framework composed of d-penicillaminato AuI3CoIII2 complex anions and aqua sodium(i) cations via solvent-mediated structural transformations are reported.
Collapse
Affiliation(s)
- Supattra Somsri
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tatsuhiro Kojima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Apinpus Rujiwatra
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 502000, Thailand
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
35
|
Cortón P, Wang H, Neira I, Blanco-Gómez A, Pazos E, Peinador C, Li H, García MD. “The red cage”: implementation of pH-responsiveness within a macrobicyclic pyridinium-based molecular host. Org Chem Front 2022. [DOI: 10.1039/d1qo01331a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The “red cage”, a new pyridinium-based macrobicyclic host, has been found to complex model aromatic substrates in aqueous media in a pH-responsive fashion.
Collapse
Affiliation(s)
- Pablo Cortón
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Hongye Wang
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Iago Neira
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Arturo Blanco-Gómez
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Elena Pazos
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Marcos D. García
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| |
Collapse
|
36
|
Peng S, Zhang F, Huang B, Wang J, Zhang L. Mesoporous Silica Nanoprodrug Encapsulated with Near-Infrared Absorption Dye for Photothermal Therapy Combined with Chemotherapy. ACS APPLIED BIO MATERIALS 2021; 4:8225-8235. [PMID: 35005934 DOI: 10.1021/acsabm.1c00751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Based on the tumor microenvironment with weak acidic characteristics, a nano-drug delivery system that achieves controlled release of drugs through the pH response has been a popular strategy to improve the effectiveness of tumor therapy and reduce toxic side effects, and combining photothermal therapy (PTT) on this basis can help improve the antitumor effect. In this study, mesoporous silica nanoparticles (MSNs) were surface-modified with polymer poly(PEGMA-co-HEMA) via surface-initiated atom transfer radical polymerization, and a multifunctional nanoplatform MSN@poly(PEGMA-co-HEMA-g-doxorubicin (DOX)/indocyanine green (ICG) was designed for effective photothermal/chemotherapy combination therapy. The anticancer drug DOX was anchored to the polymer on the surface of MSN by reversible covalent bond cis-aconitic anhydride with a drug loading of 10%. Meanwhile, the small-molecule dye was loaded into the pores of MSN, and PTT mediated by near-infrared (NIR) radiation could further kill cancer cells. Under low-pH stimulation, the cis-aconitic anhydride bond breaks and DOX is released, with a 65% increase in cumulative drug release over 50 h compared to that at pH 7.4 (normal physiological environment). The high temperature induced by photothermal conversion accelerated the reversible covalent bond breakage, and the cumulative drug release at pH 5.0 for 3 h at elevated temperature up to 50 °C increased by 24.3% compared with that under normal physiological conditions (T = 37 °C), demonstrating that increasing the temperature can reduce the time required to reach blood drug concentration. In vitro cytotoxicity results revealed that the prodrug delivery system showed stronger cytotoxicity under NIR light irradiation compared with free DOX, with more than 90% of tumor cells killed after 48 h. Therefore, MSN@poly(PEGMA-co-HEMA-g-DOX)/ICG enhanced the synergistic effect of chemotherapy through photothermal action and accelerated reversible chemical bond cleavage, which has great potential in the combined therapy of cancer.
Collapse
Affiliation(s)
- Shiyuan Peng
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Baihao Huang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lijuan Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
37
|
Li MH, Lou XY, Yang YW. Pillararene-based molecular-scale porous materials. Chem Commun (Camb) 2021; 57:13429-13447. [PMID: 34842248 DOI: 10.1039/d1cc06105d] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review discusses the design and syntheses of molecular-scale pillar[n]arene-based porous materials with promising applications and summarises the development of using pillar[n]arenes as the building blocks of porous materials. From the perspective of "role of participation" in the syntheses of molecular-scale pillar[n]arene-based porous materials, the content can be divided into pillar[n]arenes serving as supramolecular nanovalves on surfaces and as ligands for metal-organic frameworks and covalent organic polymers. By integrating pillararenes, which possess rigid pillar-like structures, electron-rich cavities and desirable host-guest properties, with porous polymers of large surface areas and abundant active sites, applications of the resulting materials in drug release platforms, molecular recognition, sensing, detection, gas adsorption, removal of water pollution, organic photovoltaic materials and heterogeneous catalysis can be realised simultaneously and efficiently. Finally, in the conclusions and perspectives part, we put forward the challenges and viewpoints of the current research on pillar[n]arene-based porous materials. We hope this article can provide a timely and valuable reference for researchers interested in synthetic macrocycles and porous materials.
Collapse
Affiliation(s)
- Meng-Hao Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xin-Yue Lou
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
38
|
Sonnleitner D, Sommer C, Scheibel T, Lang G. Approaches to inhibit biofilm formation applying natural and artificial silk-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112458. [PMID: 34857315 DOI: 10.1016/j.msec.2021.112458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The discovery of penicillin started a new era of health care since it allowed the effective treatment of formerly deadly infections. As a drawback, its overuse led to a growing number of multi-drug resistant pathogens. Challenging this arising threat, material research focuses on the development of microbe-killing or microbe repellent agents implementing such functions directly into materials. Due to their biocompatibility, non-immunogenicity and mechanical strength, silk-based materials are attractive candidates for applications in the biomedical field. Furthermore, it has been observed that silks display high persistency in their natural environment giving reason to suspect that they might be attractive candidates to prevent microbial infestation. The current review describes the process of biofilm formation on medical devices and the most common strategies to prevent it, divided into effects of surface topography, material modification and integrated additives. In this context, recent state of the art developments in the field of natural and artificial silk-based materials with microbe-repellant or antimicrobial properties are addressed. These silk properties are controversially discussed and conclusions are drawn as to which parameters will be decisive for the successful design of new bio-functional materials based on the blueprint of silk proteins.
Collapse
Affiliation(s)
- David Sonnleitner
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Christoph Sommer
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Gregor Lang
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany.
| |
Collapse
|
39
|
Collaborative fabrication of poly(L-proline)s with well-defined mesopores and hydrophobicity: Synergistic effect of mesoporous confinement and hydrophobic micro-environment on organic transformations. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Tethering smartness to the metal containing polymers - recent trends in the stimuli-responsive metal containing polymers. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Seco A, Yu S, Tron A, McClenaghan ND, Pina F, Jorge Parola A, Basílio N. Light- and pH-regulated Water-soluble Pseudorotaxanes Comprising a Cucurbit[7]uril and a Flavylium-based Axle. Chemistry 2021; 27:16512-16522. [PMID: 34632666 DOI: 10.1002/chem.202102343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/25/2022]
Abstract
A linear double pyridinium-terminated thread comprising a central chalcone moiety is shown to provide two independent binding sites with similar affinity for cucurbit[7]uril (CB7) macrocycles in water as judged from NMR, UV-Visible and fluorescence spectroscopies. Association results in [2] and [3]pseudorotaxanes, which are both pH and photosensitive. Switching from the neutral chalcone to the cationic flavylium form upon irradiation at 365 nm under acidic conditions provided an enhanced CB7 association (K1:1 increases from 1.2×105 M-1 to 1.5×108 M-1 ), limiting spontaneous on-thread cucurbituril shuttling. This co-conformational change in the [2]pseudorotaxane is reversible in the dark with kobs =4.1×10-4 s-1 . Threading the flavylium moiety into CB7 leads to a dramatic increase in the fluorescence quantum yield, from 0.29 in the free axle to 0.97 in the [2]pseudorotaxane and 1.0 in the [3]pseudorotaxane.
Collapse
Affiliation(s)
- André Seco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT-NOVA, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Shilin Yu
- Institut des Sciences Moléculaires, CNRS UMR 5255, University of Bordeaux, 33405, Talence, France
| | - Arnaud Tron
- Institut des Sciences Moléculaires, CNRS UMR 5255, University of Bordeaux, 33405, Talence, France
| | - Nathan D McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255, University of Bordeaux, 33405, Talence, France
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT-NOVA, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - A Jorge Parola
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT-NOVA, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT-NOVA, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| |
Collapse
|
42
|
Chen J, Zhang Y, Zhao L, Zhang Y, Chen L, Ma M, Du X, Meng Z, Li C, Meng Q. Supramolecular Drug Delivery System from Macrocycle-Based Self-Assembled Amphiphiles for Effective Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53564-53573. [PMID: 34726381 DOI: 10.1021/acsami.1c14385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Intelligent drug delivery systems (DDSs) that can improve therapeutic outcomes of antitumor agents and decrease their side effects are urgently needed to satisfy special requirements of treatment of malignant tumors in clinics. Here, the fabrication of supramolecular self-assembled amphiphiles based on the host-guest recognition between a cationic water-soluble pillar[6]arene (WP6A) host and a sodium decanesulfonate guest (G) is reported. The chemotherapeutic agent doxorubicin hydrochloride (DOX) can be encapsulated into the formed vesicle (G/WP6A) to construct supramolecular DDS (DOX@G/WP6A). WP6A affords strong affinities to G to avoid undesirable off-target leakage during delivery. Nanoscaled DOX@G/WP6A is capable of preferentially accumulating in tumor tissue via enhanced permeability and retention (EPR) effect. After internalization by tumor cells, the abundant adenosine triphosphate (ATP) binds competitively with WP6A to trigger the disintegration of self-assembled vesicles with the ensuing release of DOX. In vitro and in vivo research confirmed that DOX@G/WP6A is not only able to promote antitumor efficacy but also reduce DOX-related systemic toxicity. The above favorable findings are ascribed to the formation of ternary self-assembly, which profits from the combination of the factors of the EPR effect and the ATP-triggered release.
Collapse
Affiliation(s)
- Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Yadan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Liang Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Chunju Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| |
Collapse
|
43
|
Liu J, Ji F, Xia Z, Zhang C, Zhao C, Li Y, Zhou X, Huang D, Chen W, Jiang F. Multifunctional Nanoaggregates Composed of Active CPUL1 and a Triphenylphosphine Derivative for Mitochondria-Targeted Drug Delivery and Cell Imaging. ChemMedChem 2021; 17:e202100632. [PMID: 34750966 DOI: 10.1002/cmdc.202100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Indexed: 12/19/2022]
Abstract
We report that active substance (CPUL1) and triphenylphosphine (TPP) derivative could self-assemble into multifunctional nanoaggregates (CPUL1-TPP NAs) through electrostatic and π-π stacking interactions. CPUL1 was wrapped tightly inside the nanoparticles as well as CPUL1 and TPP derivative self-assembled into stable and compact nanoparticles in water. The positive surface charge of CPUL1-TPP NAs made them much easier to be endocytosed to enter cytoplasm, accumulate in the mitochondria and induce cell apoptosis based on their mitochondria targeting ability, fluorescence property and fast cell uptake characteristic, which showed better antitumor efficacy on HUH7 hepatoma cells in vitro than that of free CPUL1.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Fei Ji
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhuolu Xia
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Chunhua Zhang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanfei Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Jiang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
44
|
Wu Y, Chen F, Huang N, Li J, Wu C, Tan B, Liu Y, Li L, Yang C, Shao D, Liao J. Near-infrared light-responsive hybrid hydrogels for the synergistic chemo-photothermal therapy of oral cancer. NANOSCALE 2021; 13:17168-17182. [PMID: 34636386 DOI: 10.1039/d1nr04625j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Light-stimulus-responsive therapies have been recognized as a promising strategy for the efficient and safe treatment of oral squamous cell carcinoma (OSCC). Hydrogels have emerged as a promising multifunctional platform combining localized drug delivery and sustained drug release with multimodal properties for combined OSCC therapy. However, inaccurate drug release and limited light-absorption efficiency have hindered their on-demand chemo-photothermal applications. To tackle these problems, an injectable and near-infrared (NIR) light-responsive hybrid system was developed by incorporating light-responsive mesoporous silica nanoparticles (MSNs) as doxorubicin (DOX) carriers into the IR820/methylcellulose hydrogel networks for chemophotothermal therapy. Under NIR radiation, the incorporated IR820, a new green cyanine dye, was excited to induce photothermal effects against tumor cells. Meanwhile, MSNs achieved self-degradation-controlled DOX release via the cleavage of diselenide bonds induced by reactive oxygen species. Through the combination of chemotherapy and phototherapy, a long-lasting synergistic anti-tumor effect was achieved in vitro and in vivo with less toxicity. These findings demonstrate the potential of light-responsive hydrogels as a multifunctional platform for accurate synergistic chemophotothermal treatment of OSCC.
Collapse
Affiliation(s)
- Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Fangman Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China.
| | - Nengwen Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jinjin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China.
| | - Dan Shao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
45
|
Martínez-Edo G, Xue EY, Ha SYY, Pontón I, González-Delgado JA, Borrós S, Torres T, Ng DKP, Sánchez-García D. Nanoparticles for Triple Drug Release for Combined Chemo- and Photodynamic Therapy. Chemistry 2021; 27:14610-14618. [PMID: 34460988 DOI: 10.1002/chem.202101842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 12/13/2022]
Abstract
A pH-responsive drug delivery system (DDS) based on mesoporous silica nanoparticles (MSNs) has been prepared for the delivery of three anticancer drugs with different modes of action. The novelty of this system is its ability to combine synergistic chemotherapy and photodynamic therapy. A photoactive conjugate of a phthalocyanine (Pc) and a topoisomerase I inhibitor (topo-I), namely camptothecin (CPT), linked by a poly(ethylene glycol) (PEG) chain has been synthesized and then loaded into the mesopores of MSNs. Doxorubicin (DOX), which is a topoisomerase II inhibitor (topo-II), has also been covalently anchored to the outer surface of the MSNs through a dihydrazide PEG linker. In the acidic environment of tumor cells, selective release of the three drugs takes place. In vitro studies have demonstrated the endocytosis of the system into HeLa and HepG2 cells, and the subsequent release of the three drugs into the cytoplasm and nucleus. Furthermore, the cytotoxic effect of DOX, CPT and Pc has been assessed in vitro before and upon light irradiation.
Collapse
Affiliation(s)
- Gabriel Martínez-Edo
- Grup d'Enginyera de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, China
| | - Summer Y Y Ha
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, China
| | - Iris Pontón
- Grup d'Enginyera de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - José Antonio González-Delgado
- Department of Organic Chemistry and Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente 7 Cantoblanco, 28049, Madrid, Spain
| | - Salvador Borrós
- Grup d'Enginyera de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Tomás Torres
- Department of Organic Chemistry and Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente 7 Cantoblanco, 28049, Madrid, Spain.,IMDEA-Nanociencia, c/ Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, China
| | - David Sánchez-García
- Grup d'Enginyera de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| |
Collapse
|
46
|
Choi G, Fitriasari EI, Park C. Electro-Mechanochemical Gating of a Metal-Phenolic Nanocage for Controlled Guest-Release Self-Powered Patches and Injectable Gels. ACS NANO 2021; 15:14580-14586. [PMID: 34499481 DOI: 10.1021/acsnano.1c04276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent advances have led to the development of intelligent drug-delivery systems such as microchips, micropumps, and soft devices with sensors; however, the facile preparation of transdermal and implantable systems modulable to various stimuli remains elusive. In addition, the use of a battery limits their wearable and implantable applications. Therefore, to overcome these disadvantages, we herein suggest a facile strategy to prepare electro-mechanochemically responsive soft gel composites with molecular gatekeeper-based nanocontainers. We found that a metal-phenolic coordination network can act as an efficient self-healable and adaptive gatekeeper in response to electrical and mechanical stimuli owing to the reversible dynamic bonds and adhesiveness to the silica surface. The porous channels of mesoporous silica nanoparticles are filled with guest molecules, and the exterior is wrapped with metal-tannic acid (TA) networks. Owing to the robustness of metal-phenolic network, the guest molecules are efficiently entrapped in the channels but released by electrical and ultrasound input. Voltage-dependent changes in the guest release rate provide control over the dosage on demand. The combination of hydrogel matrixes with the responsive nanocapsules enables the construction of a series of adaptive gel composites capable of successive guest release in response to electrical, ultrasound, electromechanical, and triboelectric stimuli. The Korsmeyer-Peppas model revealed that the release mechanism is non-Fickian, which indicates the presence of boundaries around the guest-loading channels (n = 0.739, R2 = 0.9574 when 2 V is applied). This study realized efficient platforms for active-type drug-delivery applications based on transdermal patches and implantable gels with remotely controllable release characteristics.
Collapse
Affiliation(s)
- Gyeonghyeon Choi
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Eprillia Intan Fitriasari
- Department of Industrial Chemistry, Pukyong National University, 365, Sinseon Ro, Nam-Gu, Busan 48547 Republic of Korea
| | - Chiyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-gun, Daegu 42988, Republic of Korea
| |
Collapse
|
47
|
Liu J, Yang HL, Sun XW, Zhang YM, Yao H, Wei TB, Lin Q. A simple pillar[5]arene assembled multi-functional material with ultrasensitive sensing, self-healing, conductivity and host-guest stimuli-responsive properties. SOFT MATTER 2021; 17:8308-8313. [PMID: 34550160 DOI: 10.1039/d1sm01001h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multi-functional materials have received wide attention due to their potential applications in various fields; therefore, developing a simple and easy strategy for the preparation of multi-functional materials is an interesting issue. In this work, a novel supramolecular gel, TP-QG, has been successfully constructed via the assembly of a simple methoxyl-pillar[5]arene host (TP) and a tripodal (tri-pyridine-4-yl)-amido-benzene guest (Q). Interestingly, TP-QG could act as a multi-functional material and showed strong fluorescence, good self-healing, host-guest stimuli-responsiveness and conductive properties. Due to these properties, TP-QG shows a fascinating application prospect. For instance, TP-QG could exhibit ultrasensitive fluorescence response for Fe3+ and F- in water via the fluorescence "ON-OFF-ON" pathway; the lowest detection limit (LOD) of TP-QG for Fe3+ was 2.32 × 10-10 M and the LOD of TP-QG-Fe for F- was 4.30 × 10-8 M. These properties permit TP-QG to act as not only a Fe3+ and F- sensor, but also an "ON-OFF-ON" fluorescence display material and an efficient logic gate. Meanwhile, the xerogel of TP-QG could remove Fe3+ from water, and the adsorption ratio was 98.68%; the xerogel of TP-QG-Fe could also remove F- from water; the removal ratio was about 87.92%. This work provides a feasible way to construct multi-functional smart materials by host-guest assembly.
Collapse
Affiliation(s)
- Juan Liu
- College of Chemical Engineering, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University (Northwest University for Nationalities), Lanzhou, 730070, China.
| | - Hai-Long Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Xiao-Wen Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
48
|
Wang WM, Dai D, Wu JR, Wang CY, Wang Y, Yang YW. Recyclable Supramolecular Assembly-Induced Emission System for Selective Detection and Efficient Removal of Mercury(II). Chemistry 2021; 27:11879-11887. [PMID: 34043289 DOI: 10.1002/chem.202101437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 02/06/2023]
Abstract
An efficient strategy for simultaneously detecting and removing Hg2+ from water is vital to address mercury pollution. Herein a supramolecular assembly G⊂H with photoluminescent properties is facilely constructed through the self-assembly of a functional pillar[5]arene bearing two N,N-dimethyldithiocarbamoyl binding sites (H) and an AIE-active tetraphenylethene derivative (G). Remarkably, the fluorescence of G⊂H can be exclusively quenched by Hg2+ among the 30 cations due to the formation of non-luminous ground state complex and only L-cysteine can restore fluorescence in the common 20 amino acids. Meanwhile, the probe G⊂H has a considerable thermal and pH stability, a good anti-interference property from various cations, and a satisfactory sensitivity. More importantly, G⊂H exhibits a prominent capability of Hg2+ removal with rapid capture rate (within 1 h) and excellent adsorption efficiency (98 %), as well as a highly efficient recyclability without losing any adsorption activity.
Collapse
Affiliation(s)
- Wei-Ming Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
49
|
Aytan E, Aytan TA, Kahraman MV. Phosphorus Ester Containing Mesoporous Silica as Novel High‐Effective Flame Retardant in Polyurethane and Polyester Coatings. ChemistrySelect 2021. [DOI: 10.1002/slct.202100708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Emre Aytan
- Marmara University Department of Chemistry 34722 Istanbul Turkey
- Kimteks Poliüretan Sanayi ve Ticaret A.Ş. 34415 Istanbul Turkey
| | | | | |
Collapse
|
50
|
Yan H, Dong J, Huang X, Du X. Protein-Gated Upconversion Nanoparticle-Embedded Mesoporous Silica Nanovehicles via Diselenide Linkages for Drug Release Tracking in Real Time and Tumor Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29070-29082. [PMID: 34101411 DOI: 10.1021/acsami.1c04447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two novel stimuli-responsive drug delivery systems (DDSs) were successfully created from bovine serum albumin- or myoglobin-gated upconversion nanoparticle-embedded mesoporous silica nanovehicles (UCNP@mSiO2) via diselenide (Se-Se)-containing linkages. More importantly, multiple roles of each scaffold of the nanovehicles were achieved. The controlled release of the encapsulated drug doxorubicin (DOX) within the mesopores was activated by triple stimuli (acidic pH, glutathione, or H2O2) of tumor microenvironments, owing to the conformation/surface charge changes in proteins or the reductive/oxidative cleavages of the Se-Se bonds. Upon release of DOX, the Förster resonance energy transfer between the UCNP cores and encapsulated DOX was eliminated, resulting in an increase in ratiometric upconversion luminescence for DOX release tracking in real time. The two protein-gated DDSs showed some differences in the drug release performances, relevant to structures and properties of the protein nanogates. The introduction of the Se-Se linkages not only increased the versatility of reductive/oxidative cleavages but also showed less cytotoxicity to all cell lines. The DOX-loaded protein-gated nanovehicles showed the inhibitory effect on tumor growth in tumor-bearing mice and negligible damage/toxicity to the normal tissues. The constructed nanovehicles in a spatiotemporally controlled manner have fascinating prospects in targeted drug delivery for cancer chemotherapy.
Collapse
Affiliation(s)
- Hua Yan
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, Zhejiang Province 318000, People's Republic of China
| | - Jiangtao Dong
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xuan Huang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|