1
|
Giurranna E, Nencini F, Bettiol A, Borghi S, Argento FR, Emmi G, Silvestri E, Taddei N, Fiorillo C, Becatti M. Dietary Antioxidants and Natural Compounds in Preventing Thrombosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:11457. [PMID: 39519009 PMCID: PMC11546393 DOI: 10.3390/ijms252111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Reactive oxygen species (ROS) contribute to endothelial dysfunction, platelet activation, and coagulation abnormalities, promoting thrombus formation. Given the growing interest in non-pharmacological approaches to modulate oxidative stress, we examine the potential of various dietary interventions and antioxidant supplementation in reducing oxidative damage and preventing thrombotic events. Key dietary patterns, such as the Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and ketogenic diets, as well as antioxidant-rich supplements like curcumin, selenium, and polyphenols, demonstrate promising effects in improving oxidative stress markers, lipid profiles, and inflammatory responses. This review highlights recent advances in the field, drawing from in vitro, ex vivo, and clinical studies, and underscores the importance of integrating dietary strategies into preventive and therapeutic approaches for managing thrombosis and cardiovascular health. Further research is needed to better understand long-term effects and personalize these interventions for optimizing patient outcomes.
Collapse
Affiliation(s)
- Elvira Giurranna
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Francesca Nencini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Alessandra Bettiol
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Giacomo Emmi
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy;
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| |
Collapse
|
2
|
Tinkov AA, Skalny AV, Domingo JL, Samarghandian S, Kirichuk AA, Aschner M. A review of the epidemiological and laboratory evidence of the role of aluminum exposure in pathogenesis of cardiovascular diseases. ENVIRONMENTAL RESEARCH 2024; 242:117740. [PMID: 38007081 DOI: 10.1016/j.envres.2023.117740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
The objective of the present study was to review the epidemiological and laboratory evidence on the role of aluminum (Al) exposure in the pathogenesis of cardiovascular diseases. Epidemiological data demonstrated an increased incidence of cardiovascular diseases (CVD), including hypertension and atherosclerosis in occupationally exposed subjects and hemodialysis patients. In addition, Al body burden was found to be elevated in patients with coronary heart disease, hypertension, and dyslipidemia. Laboratory studies demonstrated that Al exposure induced significant ultrastructural damage in the heart, resulting in electrocardiogram alterations in association with cardiomyocyte necrosis and apoptosis, inflammation, oxidative stress, inflammation, and mitochondrial dysfunction. In agreement with the epidemiological findings, laboratory data demonstrated dyslipidemia upon Al exposure, resulting from impaired hepatic lipid catabolism, as well as promotion of low-density lipoprotein oxidation. Al was also shown to inhibit paraoxonase 1 activity and to induce endothelial dysfunction and adhesion molecule expression, further promoting atherogenesis. The role of Al in hypertension was shown to be mediated by up-regulation of NADPH-oxidase, inhibition of nitric oxide bioavailability, and stimulation of renin-angiotensin-aldosterone system. It has been also demonstrated that Al exposure targets cerebral vasculature, which may be considered a link between Al exposure and cerebrovascular diseases. Findings from other tissues lend support that ferroptosis, pyroptosis, endoplasmic reticulum stress, and modulation of gut microbiome and metabolome are involved in the development of CVD upon Al exposure. A better understanding of the role of the cardiovascular system as a target for Al toxicity will be useful for risk assessment and the development of treatment and prevention strategies.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia; Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, 4320, Reus, Catalonia, Spain
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, 9319774446, Iran
| | - Anatoly A Kirichuk
- Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
3
|
Wang B, Wang X, Yu L, Liu W, Song J, Fan L, Zhou M, Yang M, Ma J, Cheng M, Qiu W, Liang R, Wang D, Guo Y, Chen W. Acrylamide exposure increases cardiovascular risk of general adult population probably by inducing oxidative stress, inflammation, and TGF-β1: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2022; 164:107261. [PMID: 35486963 DOI: 10.1016/j.envint.2022.107261] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Acrylamide (ACR) exposure and consequent health hazards are alarming public health issues that attract worldwide concern. The World Health Organization urges more researches into health hazards from ACR exposure. However, whether and how ACR exposure increases cardiovascular risk remain unclear, and we sought to address these issues in this prospective cohort study conducted on 3024 general adults with 3-year follow-up (N = 871 at follow-up). Individual urinary ACR metabolites (N-Acetyl-S-(2-carbamoylethyl)-L-cysteine [AAMA] and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine [GAMA]) as credible biomarkers of ACR exposure were detected to assess their cross-sectional and longitudinal relationships with 10-year cardiovascular disease (CVD) risk, a well measure of overall cardiovascular risk. Besides, biomarkers of oxidative stress (urinary 8-hydroxy-deoxyguanosine [8-OHdG] and 8-iso-prostaglandin-F2α [8-iso-PGF2α]) and inflammation (circulating mean platelet volume [MPV] and plasma C-reactive protein [CRP]) as well as plasma transforming growth factor-β1 (TGF-β1) were measured to assess their mediating/mechanistic roles in the relationships of ACR metabolites with 10-year CVD risk. We found AAMA, GAMA, and ΣUAAM (AAMA + GAMA) were cross-sectionally and longitudinally related to increased 10-year CVD risk with odds ratios (95% confidence intervals [CIs]) of 1.32 (1.04, 1.70), 1.81 (1.36, 2.40), and 1.40 (1.07, 1.82), respectively, and risk ratios (95% CIs) of 1.99 (1.10, 3.60), 2.48 (1.27, 4.86), and 2.13 (1.15, 3.94), respectively. Furthermore, 8-OHdG, 8-iso-PGF2α, MPV, CRP, and TGF-β1 were found to significantly mediate 8.06-48.92% of the ACR metabolites-associated 10-year CVD risk increment. In summary, daily ACR exposure of general adults was cross-sectionally and longitudinally associated with increased cardiovascular risk, which was partly mediated by oxidative stress, inflammation, and TGF-β1, suggesting for the first time that ACR exposure may well increase cardiovascular risk of general adult population partly by mechanisms of inducing oxidative stress, inflammation, and TGF-β1. Our findings have important public health implications that provide potent epidemiological evidence and vital mechanistic insight into cardiovascular risk increment from ACR exposure.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430019, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanjun Guo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Zhang Y, Huan J, Gao D, Xu S, Han X, Song J, Wang L, Zhang H, Niu Q, Lu X. Blood pressure mediated the effects of cognitive function impairment related to aluminum exposure in Chinese aluminum smelting workers. Neurotoxicology 2022; 91:269-281. [PMID: 35654245 DOI: 10.1016/j.neuro.2022.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The aim of this study is to investigate the effects that the Al on blood pressure and the effect of hypertension in aluminum-induced cognitive impairment in electrolytic aluminum worker. METHODS The study was conducted 392 male aluminum electrolytic workers in an aluminum plant of China. The concentration of alumina dust in the air of the electrolytic aluminum workshop is 1.07mg/m3-2.13mg/m3. According to the Permissible concentration-Time Weighted Average of alumina dust is 4mg/ m3, which does not exceed the standard. The blood pressure of the workers was measured. The plasma aluminum concentration of workers was determined by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Cognitive functions were measured using MMSE (Mini-Mental State Examination), VFT (Verbal Fluency Test), ATIME (Average Reaction Time), FOM (Fuld Object Memory Evaluation), DST (Digit Span Test), CDT (Clock Drawing Test) scales. Modified Poisson regression was used to analyze the risk of hypertension and cognitive impairment with different plasma aluminum concentrations. Generalized linear regression model was used to analyze the relationship between aluminum and cognitive function, blood pressure and cognitive function. Causal Mediation Analysis was used to analyze the mediation effect of blood press in aluminum-induced cognitive impairment. RESULTS Plasma aluminum appeared to be a risk factor for hypertension (PR (prevalence ratio) = 1.630, 95%-CI (confidence interval): 1.103 to 2.407), systolic blood pressure (PR = 1.578, 95%-CI: 1.038 to 2.399) and diastolic blood pressure (PR = 1.842, 95%-CI: 1.153 to 2.944). And plasma aluminum increased by e-fold, the scores of MMSE and VFT decreased by 0.630 and 2.231 units respectively and the time of ATIME increased by 0.029 units. In addition, generalized linear regression model showed that blood press was negatively correlated with the scores of MMSE and VFT. Finally, causal Mediation Analysis showed that hypertension was a part of the mediating factors of aluminum-induced decline in MMSE score, and the mediating effects was 16.300% (7.100%, 33.200%). In addition, hypertension was a part of the mediating factors of aluminum-induced decline in VFT score, and the mediating effects was 9.400% (2.600%, 29.000%) CONCLUSION: Occupational aluminum exposure increases the risk of hypertension and cognitive impairment. And hypertension may be a mediating factor of cognitive impairment caused by aluminum exposure.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; Center for Disease Control and Prevention, Linfen, Shanxi, China
| | - Jiaping Huan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Dan Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shimeng Xu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Huifang Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Liang J, Xu C, Liu Q, Weng Z, Zhang X, Xu J, Gu A. Total cholesterol: a potential mediator of the association between exposure to acrylamide and hypertension risk in adolescent females. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38425-38434. [PMID: 35079972 DOI: 10.1007/s11356-021-18342-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Acrylamide (AA) exposure is associated with a range of adverse health effects. However, whether AA exposure is related to hypertension in adolescents remains unclear. The associations of blood hemoglobin biomarkers of AA (HbAA) and its metabolite glycidamide (HbGA) with hypertension risk, diastolic blood pressure (DBP), and systolic blood pressure (SBP) were evaluated by multivariate logistic regression and linear regression. We identified a potential positive association between blood HbGA and hypertension risk in adolescent females (OR 1.81, 95% CI 1.00-3.30; P for trend = 0.022); however, there was no correlation in the non-linear model (P = 0.831). In the sex-stratified linear models, blood HbGA level had a strong positive association with SBP in adolescent females (beta 0.84, 95% CI 0.13-1.55, P = 0.020). Mechanistically, a one-unit increase in blood HbGA (ln transformed) was associated with a 2.83 mg/dL increase in total cholesterol (TC) among females in the fully adjusted model. Mediation analysis showed that TC mediated 24.15% of the association between blood HbGA level and the prevalence of hypertension in females. The present results provide epidemiological evidence that exposure to AA, mainly its metabolite glycidamide, is positively associated with the prevalence of hypertension or increased SBP in adolescent females.
Collapse
Affiliation(s)
- Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Al-Asmari KM, Altayb HN, Al-Attar AM, Qahl SH, Al-Thobaiti SA, Abu Zeid IM. Arabica coffee and olive oils mitigate malathion-induced nephrotoxicity in rat: In silico, immunohistochemical and biochemical evaluation. Saudi J Biol Sci 2022; 29:103307. [PMID: 35602869 PMCID: PMC9120970 DOI: 10.1016/j.sjbs.2022.103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
|
7
|
Chuang PH, Tsai KF, Wang IK, Huang YC, Huang LM, Liu SH, Weng CH, Huang WH, Hsu CW, Lee WC, Yen TH. Blood Aluminum Levels in Patients with Hemodialysis and Peritoneal Dialysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3885. [PMID: 35409569 PMCID: PMC8997989 DOI: 10.3390/ijerph19073885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Background. This retrospective observational study attempted to examine the prevalence of abnormal blood aluminum levels in dialysis patients, and to explore the association of pathogenic factors, such as demographic, clinical, laboratory as well as the use of phosphate binding drugs, drugs for secondary hyperparathyroidism and erythropoiesis-stimulating drugs with the blood aluminum levels. Methods. The study included 1175 patients (874 hemodialysis and 301 peritoneal dialysis), recruited from Chang Gung Memorial Hospital in November 2020. Patients were stratified into two groups by their blood aluminum levels, as normal (<2 µg/dL, n = 1150) or abnormal (≥2 µg/dL, n = 25). Results. The patients aged 60.4 ± 13.2 years and were dialyzed for 8.6 ± 8.1 years. The average blood aluminum level was 1.0 ± 0.4 µg/dL. Patients with abnormal blood aluminum levels received more sevelamer than patients with normal blood aluminum level (p = 0.014). Patients with abnormal blood aluminum levels had higher platelet count (p = 0.001), triglyceride (p < 0.001) and total iron binding capacity (p = 0.003) than patients with normal blood aluminum levels. Moreover, the cardiothoracic ratio was higher in patients with abnormal blood aluminum levels than patients with normal blood aluminum levels (p = 0.003). Conclusions. The prevalence of abnormal blood aluminum levels was low at 2.2%. Nevertheless, the linking of cardiothoracic ratio of more than 0.5 as well as elevated blood platelet count and triglyceride level with blood aluminum levels are interesting, and warranted more researches in this area.
Collapse
Affiliation(s)
- Po-Hsun Chuang
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (P.-H.C.); (L.-M.H.); (S.-H.L.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-F.T.); (Y.-C.H.); (W.-C.L.)
| | - Kai-Fan Tsai
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-F.T.); (Y.-C.H.); (W.-C.L.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - I-Kuan Wang
- Department of Nephrology, China Medical University Hospital, Taichung 404, Taiwan;
- College of Medicine, China Medical University, Taichung 406, Taiwan
| | - Ya-Ching Huang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-F.T.); (Y.-C.H.); (W.-C.L.)
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Lan-Mei Huang
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (P.-H.C.); (L.-M.H.); (S.-H.L.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
| | - Shou-Hsuan Liu
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (P.-H.C.); (L.-M.H.); (S.-H.L.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-F.T.); (Y.-C.H.); (W.-C.L.)
| | - Cheng-Hao Weng
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (P.-H.C.); (L.-M.H.); (S.-H.L.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-F.T.); (Y.-C.H.); (W.-C.L.)
| | - Wen-Hung Huang
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (P.-H.C.); (L.-M.H.); (S.-H.L.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-F.T.); (Y.-C.H.); (W.-C.L.)
| | - Ching-Wei Hsu
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (P.-H.C.); (L.-M.H.); (S.-H.L.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-F.T.); (Y.-C.H.); (W.-C.L.)
| | - Wen-Chin Lee
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-F.T.); (Y.-C.H.); (W.-C.L.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (P.-H.C.); (L.-M.H.); (S.-H.L.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-F.T.); (Y.-C.H.); (W.-C.L.)
| |
Collapse
|
8
|
Zhou L, He M, Li X, Lin E, Wang Y, Wei H, Wei X. Molecular Mechanism of Aluminum-Induced Oxidative Damage and Apoptosis in Rat Cardiomyocytes. Biol Trace Elem Res 2022; 200:308-317. [PMID: 33634365 DOI: 10.1007/s12011-021-02646-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Aluminum exposure can mediate either acute toxicity or chronic toxicity. Aluminum exerts toxic effects on the cardiovascular system, but there are few studies on its related mechanisms. In this study, we investigated the molecular mechanism of aluminum-induced oxidative damage and apoptosis in rat cardiomyocytes. Thirty-two male Wistar rats were randomly divided into four groups, including the control group (GC), low-dose group of aluminum exposure (GL), medium-dose group (GM), and high-dose group (GH), with eight rats in each group. The GL, GM, and GH groups were given 5, 10, and 20 mg/(kg·d) of AlCl3 solution by intraperitoneal injection, and the GC group received intraperitoneal injection of the same volume of normal saline (2 ml/rat/day), 5 times a week for 28 days. At the end of the experiment, the levels of aluminum, malondialdehyde (MDA), plasma lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase isoenzyme (CKMB), and alpha-hydroxybutyrate dehydrogenase (HBDH) were measured. The pathological changes of myocardium were observed by H&E staining. The apoptosis of cardiomyocytes was detected by TUNEL staining, and the expression of apoptosis-related proteins was determined by western blot. The results showed that the levels of CKMB and HBDH in the GM and GH groups were significantly higher than those in the GC group (P < 0.05). The content of aluminum in the myocardium and serum of the aluminum exposure groups was significantly higher than that of the GC group (P < 0.05). The level of MDA in the GM and GH groups was significantly higher than that in the GC group (P < 0.05). The pathological results showed that vacuolated and hypertrophied cardiomyocytes were found in aluminum exposure groups, especially in the GM and GH groups. The TUNEL staining showed that the apoptosis rate of the aluminum exposure groups was considerably higher than that of the GC group (P < 0.05). Western blot showed that the expression of Bcl-2, an anti-apoptotic protein, in cardiomyocytes of aluminum exposure groups was lower than that of the GC group (P < 0.05), while the levels of Bax and caspase-3 in the cardiomyocytes of the GM and GH groups were higher than those of the GC group (P < 0.05). The experimental results showed that aluminum could accumulate in myocardial tissues and cause damage to cardiomyocytes. It could induce oxidative stress damage by increasing the content of MDA in cardiomyocytes and trigger cardiomyocyte apoptosis by activating the pro-apoptotic proteins caspase-3 and Bax and reducing the anti-apoptotic protein Bcl-2.
Collapse
Affiliation(s)
- LiuFang Zhou
- Department of Cardiovascular Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China
| | - Mingjie He
- Department of Endocrinology, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China
| | - XiaoLan Li
- Department of Rehabilitation Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China
| | - Erbing Lin
- Department of General Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Chengxiang Road, Baise, 98, China
| | - YingChuan Wang
- Department of General Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Chengxiang Road, Baise, 98, China
| | - Hua Wei
- Department of General Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Chengxiang Road, Baise, 98, China
| | - Xi Wei
- Department of Health Supervision Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Zhongshan No 2 Road, Baise, 18, China.
| |
Collapse
|
9
|
Mehmood A, Usman M, Patil P, Zhao L, Wang C. A review on management of cardiovascular diseases by olive polyphenols. Food Sci Nutr 2020; 8:4639-4655. [PMID: 32994927 PMCID: PMC7500788 DOI: 10.1002/fsn3.1668] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Noncommunicable diseases have increasingly grown the cause of morbidities and mortalities worldwide. Among them, cardiovascular diseases (CVDs) continue to be the major contributor to deaths. CVDs are common in the urban community population due to the substandard living conditions, which have a significant impact on the healthcare system, and over 23 million human beings are anticipated to suffer from the CVDs before 2030. At the moment, CVD physicians are immediately advancing both primary and secondary prevention modalities in high-risk populations. The cornerstone of CVD prevention is a healthy lifestyle that is more cost-effective than the treatments after disease onset. In fact, in the present scenario, comprehensive research conducted on food plant components is potentially efficacious in reducing some highly prevalent CVD risk factors, such as hypercholesterolemia, hypertension, and atherosclerosis. Polyphenols of olive oil (OO), virgin olive oil (VOO), and extra virgin olive oil contribute an essential role for the management of CVDs. Olive oil induces cardioprotective effects due to the presence of a plethora of polyphenolic compounds, for example, oleuropein (OL), tyrosol, and hydroxytyrosol. The present study examines the bioavailability and absorption of major olive bioactive compounds, for instance, oleacein, oleocanthal, OL, and tyrosol. This review also elucidates the snobbish connection of olive polyphenols (OP) and the potential mechanism involved in combating various CVD results taken up from the in vitro and in vivo studies, such as animal and human model studies.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Prasanna Patil
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
10
|
Wang B, Cheng M, Yang S, Qiu W, Li W, Zhou Y, Wang X, Yang M, He H, Zhu C, Cen X, Chen A, Xiao L, Zhou M, Ma J, Mu G, Wang D, Guo Y, Zhang X, Chen W. Exposure to acrylamide and reduced heart rate variability: The mediating role of transforming growth factor-β. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122677. [PMID: 32339852 DOI: 10.1016/j.jhazmat.2020.122677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The potential adverse health effects of acrylamide have drawn worldwide attention and the World Health Organization has urged further urgent studies on its health threat. Herein we explored the exposure-response relationship and underlying mechanism between internal acrylamide exposure and heart rate variability (HRV) alteration, a marker of cardiac autonomic dysfunction. We measured six HRV indices and two urinary acrylamide metabolites (N-Acetyl-S-(2-carbamoylethyl)-l-cysteine, AAMA; N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine, GAMA) for 2997 general Chinese adults from the Wuhan-Zhuhai cohort, of whom 2414 had data on plasma transforming growth factor-β1 (TGF-β1). The associations among urinary acrylamide metabolites, HRV and TGF-β1 were evaluated by linear mixed models and restricted cubic spline models. The mediating role of TGF-β1 was investigated by conducting mediation analysis. We found significantly negative dose-response relationships of all urinary acrylamide metabolites and TGF-β1 with all six HRV indices after adjusting for potential confounders (all P < 0.05). Urinary GAMA (β=0.074, P < 0.05) rather than AAMA (β=0.024, P > 0.05) was positively and dose-dependently associated with TGF-β1, which in turn significantly mediated 5.71-7.41 % of the GAMA-associated HRV reduction. Our findings suggest for the first time that daily exposure of general population to acrylamide is associated with cardiac autonomic dysfunction, where a mechanism involving TGF-β pathway may be involved.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meng Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng He
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xingzu Cen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ailian Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanjun Guo
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaomin Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
11
|
Bukhari IA, Mohamed OY, Almotrefi AA, Sheikh BY, Nayel O, Vohra F, Afzal S. Cardioprotective Effect of Olive Oil Against Ischemia Reperfusion-induced Cardiac Arrhythmia in Isolated Diabetic Rat Heart. Cureus 2020; 12:e7095. [PMID: 32231891 PMCID: PMC7098416 DOI: 10.7759/cureus.7095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Olive oil is rich in monounsaturated fatty acids and has been reported for a variety of beneficial cardiovascular effects, including blood pressure lowering, anti-platelet, anti-diabetic, and anti-inflammatory effects. Diabetes is a major risk factor for cardiac dysfunctions, and olive oil prevents diabetes-induced adverse myocardial remodeling. Objective The study aimed to evaluate the effects of olive oil against streptozotocin-induced cardiac dysfunction in animal models of diabetes and ischemia and reperfusion (I/R)-induced cardiac arrhythmias. Methods Diabetes was induced in male rats with a single intraperitoneal injection of streptozotocin (60 mg/kg i.p), rats were treated for five, 15, or 56 days with olive oil (1 ml/kg p.o). Control animals received saline. Blood glucose and body weight were monitored every two weeks. At the end of the treatment, rats were sacrificed and hearts were isolated for mounting on Langedorff’s apparatus. The effect of olive oil on oxidative stress and histopathological changes in the cardiac tissues were studied. Results The initial blood glucose and body weight were not significantly different in the control and olive-treated animals. Streptozotocin (60 mg/kg i.p) caused a significant increase in the blood glucose of animals as compared to saline-treated animals. The control, saline-treated diabetic animals exhibited a 100% incidence of I/R-induced ventricular fibrillation, which was reduced to 0% with olive oil treatment. The protective effects of olive oil were evident after 15 and 56 days of treatment. Diltiazem, a calcium channel blocker (1 µm/L) showed similar results and protected the I/R-induced cardiac disorders. The cardiac tissues isolated from diabetic rats exhibited marked pathological changes in the cardiomyocytes, including decreased glutathione (GSH) and increased oxidative stress (malondialdehyde; MDA). Pretreatment of animals with olive oil (1 ml/kg p.o) increased GSH and decreased MDA levels. Olive oil also improved the diabetic-induced histopathological changes in the cardiomyocytes. Conclusion Olive oil possesses cardiac protective properties against I/R-induced cardiac arrhythmias in rats. It attenuated oxidative stress and diabetes-induced histopathological changes in cardiac tissues. The observed cardiac protectiveness of olive oil in the present investigation may be related to its antioxidant potential.
Collapse
Affiliation(s)
- Ishfaq A Bukhari
- Pharmacology, College of Medicine, King Saud University, Riyadh, SAU
| | - Osama Y Mohamed
- Pharmacology, College of Medicine, King Saud University, Riyadh, SAU
| | | | - Bassem Y Sheikh
- Neurosurgery, College of Medicine, Taibah University, Almadinah Almunawara, Madinah, SAU
| | - Omnia Nayel
- Pharmacology, College of Medicine, University of Alexandria, Alexandria, EGY
| | - Fahim Vohra
- Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, SAU
| | - Sibtain Afzal
- Allergy and Immunology, College of Medicine, King Saud University, Riyadh, SAU
| |
Collapse
|
12
|
Kouka P, Tekos F, Papoutsaki Z, Stathopoulos P, Halabalaki M, Tsantarliotou M, Zervos I, Nepka C, Liesivuori J, Rakitskii VN, Tsatsakis A, Veskoukis AS, Kouretas D. Olive oil with high polyphenolic content induces both beneficial and harmful alterations on rat redox status depending on the tissue. Toxicol Rep 2020; 7:421-432. [PMID: 32140426 PMCID: PMC7052070 DOI: 10.1016/j.toxrep.2020.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023] Open
Abstract
Olive oil (OO) possesses a predominant role in the diet of Mediterranean countries. According to a health claim approved by the European Food Safety Authority, OO protects against oxidative stress‑induced lipid peroxidation in human blood, when it contains at least 5 mg of hydroxytyrosol and its derivatives per 20 g. However, studies regarding the effects of a total OO biophenols on redox status in vivo are scarce and either observational and do not provide a holistic picture of their action in tissues. Following a series of in vitro screening tests an OO containing biophenols at 800 mg/kg of OO was administered for 14 days to male Wistar rats at a dose corresponding to 20 g OO/per day to humans. Our results showed that OO reinforced the antioxidant profile of blood, brain, muscle and small intestine, it induced oxidative stress in spleen, pancreas, liver and heart, whereas no distinct effects were observed in lung, colon and kidney. The seemingly negative effects of OO follow the recently formulated idea in toxicology, namely the real life exposure scenario. This study reports that OO, although considered a nutritional source rich in antioxidants, it exerts a tissues specific action when administered in vivo.
Collapse
Key Words
- Biophenols
- Blood
- CARB, protein carbonyls
- CAT, catalase
- GSH, glutathione
- HT, hydroxytyrosol
- OLEA, oleacein
- OLEO, oleocanthal
- OO, olive oil
- Olive oil
- Real life exposure scenario
- Redox status
- T, tyrosol
- TAC, total antioxidant capacity
- TBARS, thiobarbituric acid reactive substances
- Tissues
Collapse
Affiliation(s)
- Paraskevi Kouka
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zoi Papoutsaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of University of Athens, 15771 Athens, Greece
| | - Panagiotis Stathopoulos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of University of Athens, 15771 Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of University of Athens, 15771 Athens, Greece
| | - Maria Tsantarliotou
- Department of Physiology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Ioannis Zervos
- Department of Physiology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Charitini Nepka
- Department of Pathology, University Hospital of Larissa, 41110 Larissa, Greece
| | | | - Valerii N. Rakitskii
- Federal Scientific Center of Hygiene, F.F. Erisman, 2, Semashko Street, Mytishchi, Moscow Region 141014, Russia
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aristidis S. Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
13
|
Silymarin Ameliorates Acrylamide-Induced Hyperlipidemic Cardiomyopathy in Male Rats. BIOMED RESEARCH INTERNATIONAL 2019. [DOI: 10.1155/2019/4825075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Acrylamide (AA) is a well-known potent carcinogen and neurotoxin that has been recently linked to atherosclerotic pathogenesis. The present study is aimed at investigating the protective effect of silymarin (SIL) as an antioxidant against AA-induced hyperlipidemic cardiomyopathy in male rats. The obtained results showed that animals exposed to AA exhibited a significant increase in the levels of cardiac serum markers, serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol with a significant decrease in high-density lipoprotein cholesterol. Furthermore, AA intoxication significantly increased the malondialdehyde level (a hallmark of lipid peroxidation) and reduced antioxidant enzyme activities (i.e., superoxide dismutase, catalase, and glutathione peroxidase). SIL administration significantly attenuated all these biochemical perturbations in AA-treated rats, except for the decreased high-density lipoprotein cholesterol. Our results were confirmed by histopathological assessment of the myocardium. In conclusion, this study demonstrated a beneficial effect of SIL therapy in the prevention of AA-induced cardiotoxicity by reversing the redox stress and dyslipidemia in experimental animals.
Collapse
|
14
|
Galal SM, Hasan HF, Abdel-Rafei MK, El Kiki SM. Synergistic effect of cranberry extract and losartan against aluminium chloride-induced hepatorenal damage associated cardiomyopathy in rats. Arch Physiol Biochem 2019; 125:357-366. [PMID: 29685075 DOI: 10.1080/13813455.2018.1465437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study was designed to evaluate the effect of cranberry extract (CRAN) and/or losartan (LOS) against aluminium chloride (AlCl3) induced hepatorenal damage associated cardiomyopathy in rats. To induce hepatorenal and cardiotoxicity, animals were received (AlCl3; 70 mg/kg i.p.) for 8 weeks day after day and treated with CRAN (100 mg/kg b.wt.) orally daily for 4 weeks started after 4 weeks from AlCl3 injection accompanied with an administration of LOS (5 mg/kg i.p.) three times weekly for 4 weeks. Our data revealed that, compared to AlCl3, administration of CRAN extract and LOS produced a significant improvement which was evidenced by a significant amelioration in myocardial and vascular indices, kidney and liver markers, lipid profile and oxidative stress indices. Furthermore, histopathological and immunohistochemical examination reinforced the previous results. It could be concluded that combination of CRAN extract and LOS hindered AlCl3 induced hepatorenal damage complicated cardiomyopathy in rats.
Collapse
Affiliation(s)
- Shereen Mohamed Galal
- a Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| | - Hesham Farouk Hasan
- b Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| | - Mohamed Khairy Abdel-Rafei
- b Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| | - Shereen Mohamed El Kiki
- a Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| |
Collapse
|
15
|
GC-MS Chemical Characterization and In Vitro Evaluation of Antioxidant and Toxic Effects Using Drosophila melanogaster Model of the Essential Oil of Lantana montevidensis (Spreng) Briq. ACTA ACUST UNITED AC 2019; 55:medicina55050194. [PMID: 31126036 PMCID: PMC6572660 DOI: 10.3390/medicina55050194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/27/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
Abstract
Background and objectives: Natural products such as essential oils with antioxidant potential can reduce the level of oxidative stress and prevent the oxidation of biomolecules. In the present study, we investigated the antioxidant potential of Lantana montevidensis leaf essential oil (EOLM) in chemical and biological models using Drosophila melanogaster. Materials and methods: in addition, the chemical components of the oil were identified and quantified by gas chromatography coupled to mass spectrometry (GC-MS), and the percentage compositions were obtained from electronic integration measurements using flame ionization detection (FID). Results: our results demonstrated that EOLM is rich in terpenes with Germacrene-D (31.27%) and β-caryophyllene (28.15%) as the major components. EOLM (0.12-0.48 g/mL) was ineffective in scavenging DPPH radical, and chelating Fe(II), but showed reducing activity at 0.24 g/mL and 0.48 g/mL. In in vivo studies, exposure of D. melanogaster to EOLM (0.12-0.48 g/mL) for 5 h resulted in 10% mortality; no change in oxidative stress parameters such as total thiol, non-protein thiol, and malondialdehyde contents, in comparison to control (p > 0.05). Conclusions: taken together, our results indicate EOLM may not be toxic at the concentrations tested, and thus may not be suitable for the development of new botanical insecticides, such as fumigants or spray-type control agents against Drosophila melanogaster.
Collapse
|
16
|
Tsai MH, Fang YW, Liou HH, Leu JG, Lin BS. Association of Serum Aluminum Levels with Mortality in Patients on Chronic Hemodialysis. Sci Rep 2018; 8:16729. [PMID: 30425257 PMCID: PMC6233210 DOI: 10.1038/s41598-018-34799-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 08/28/2018] [Indexed: 12/29/2022] Open
Abstract
Despite reported evidence on the relationship between higher serum aluminum levels and poor outcomes in patients on chronic hemodialysis (CHD), the acceptable cutoff value of serum aluminum for mortality remains unclear. A retrospective observational cohort study with 636 Taiwanese patients on CHD was conducted to investigate the impact of serum aluminum levels on mortality. The predictors were bivariate serum aluminum level (<6 and ≥6 ng/mL) and the Outcomes were all-cause and cardiovascular (CV) mortality. During the mean follow-up of 5.3 ± 2.9 years, 253 all-cause and 173 CV deaths occurred. Crude analysis showed that a serum aluminum level of ≥6 ng/mL was a significant predictor of all-cause [hazard ratio (HR), 1.80; 95% confidence interval (CI), 1.40–2.23] and CV (HR, 1.84; 95% CI, 1.36–2.50) mortality. After multivariable adjustment, the serum aluminum level of ≥6 ng/mL remained a significant predictor of all-cause mortality (HR, 1.37, 95% CI, 1.05–1.81) but became insignificant for CV mortality (HR, 1.29; 95% CI, 0.92–1.81). Therefore, our study revealed that a serum aluminum level of ≥6 ng/mL was independently associated with all-cause death in patients on CHD, suggesting that early intervention for aluminum level in patients on CHD might be beneficial even in the absence of overt aluminum toxicity.
Collapse
Affiliation(s)
- Ming-Hsien Tsai
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, ROC, Taiwan.,Fu-Jen Catholic University School of Medicine, Taipei, ROC, Taiwan.,Division of Biostatistics, Institutes of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, ROC, Taiwan
| | - Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, ROC, Taiwan.,Fu-Jen Catholic University School of Medicine, Taipei, ROC, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, New Taipei City, ROC, Taiwan
| | - Jyh-Gang Leu
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, ROC, Taiwan.,Fu-Jen Catholic University School of Medicine, Taipei, ROC, Taiwan
| | - Bing-Shi Lin
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, ROC, Taiwan.
| |
Collapse
|
17
|
Gabrielová E, Bartošíková L, Nečas J, Modrianský M. Cardioprotective effect of 2,3-dehydrosilybin preconditioning in isolated rat heart. Fitoterapia 2018; 132:12-21. [PMID: 30385403 DOI: 10.1016/j.fitote.2018.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022]
Abstract
2,3-dehydrosilybin (DHS) is a minor component of silymarin, Silybum marianum seed extract, used in some dietary supplements. One of the most promising activities of this compound is its anticancer and cardioprotective activity that results, at least partially, from its cytoprotective, antioxidant, and chemopreventive properties. The present study investigated the cardioprotective effects of DHS in myocardial ischemia and reperfusion injury in rats. Isolated hearts were perfused by the Langendorff technique with low dose DHS (100 nM) prior to 30 min of ischemia induced by coronary artery occlusion. After 60 min of coronary reperfusion infarct size was determined by triphenyltetrazolium staining, while lactatedehydrogenase activity was evaluated in perfusate samples collected at several timepoints during the entire perfusion procedure. Signalosomes were isolated from a heart tissue after reperfusion and involved signalling proteins were detected. DHS reduced the extent of infarction compared with untreated control hearts at low concentration; infarct size as proportion of ischemic risk zone was 7.47 ± 3.1% for DHS versus 75.3 ± 4.8% for ischemia. This protective effect was comparable to infarct limitation induced by ischemic preconditioning (22.3 ± 4.5%). Selective inhibition of Src-family kinases with PP2 (4-Amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine) abrogated the protection afforded by DHS. This study provides experimental evidence that DHS can mediate Src-kinase-dependent cardioprotection against myocardial damage produced by ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Eva Gabrielová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Lenka Bartošíková
- Department of Physiology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jiří Nečas
- Department of Physiology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Martin Modrianský
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
18
|
Aly FM, Kotb AM, Haridy MAM, Hammad S. Impacts of fullerene C 60 and virgin olive oil on cadmium-induced genotoxicity in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:750-756. [PMID: 29499533 DOI: 10.1016/j.scitotenv.2018.02.205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/29/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
Currently, cadmium is considered to be one of the major environmental pollutants. Environmentally, cadmium is released in various forms e.g. oxide, chloride and sulphide. The aim of the present study was to examine the genotoxic impact of fullerene nanoparticles C60 (C60) and virgin olive oil (VOO) on cadmium chloride (CdCl2)-induced genotoxicity in rats. To evaluate these effects on DNA damage and chromosomal frequency, 25 albino rats were randomly assigned to 5 groups (n=5 per group): Group 1 served as a control; Group 2 received a single intraperitoneal dose of CdCl2 (3.5mg/kg); Group 3 animals were treated with C60 (4mg/kg, orally) every other day for 20days; Group 4 received a single intraperitoneal dose of CdCl2 (3.5mg/kg) and an oral dose of C60 (4mg/kg); and Group 5 received a single intraperitoneal dose of CdCl2 (3.5mg/kg) and oral doses of VOO every other day for 20 consecutive days. Genotoxic and anti-genotoxic effects of C60 and VOO were evaluated in the liver, kidney and bone marrow using molecular and cytogenetic assays. As expected, CdCl2 and C60 administration was associated with band number alterations in both liver and kidney; however, C60 pretreatment recovered to approximately basal number. Surprisingly, C60 and VOO significantly attenuated the genotoxic effects caused by CdCl2 in livers and kidneys. In bone marrow, in addition to a reduction in the chromosomal number, several chromosomal aberrations were caused by CdCl2. These chromosomal alterations were also reversed by C60 and VOO. In conclusion, molecular and cytogenetic studies showed that C60 and VOO exhibit anti-genotoxic agents against CdCl2-induced genotoxicity in rats. Further studies are needed to investigate the optimal conditions for potential biomedical applications of these anti-genotoxic agents.
Collapse
Affiliation(s)
- Fayza M Aly
- Zoology Department, Faculty of Science, South Valley University, 83523-Qena, Egypt
| | - Ahmed M Kotb
- Department of Anatomy and Histology, Assiut University, Faculty of Veterinary Medicine, 71515-Assiut, Egypt
| | - Mohie A M Haridy
- Department of Pathology & Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Seddik Hammad
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523-Qena, Egypt; Molecular Hepatology Section, Department of Medicine II, Medical Faculty, Mannheim Heidelberg University, 68167-Mannheim, Germany.
| |
Collapse
|
19
|
|
20
|
Wang TL, Fang YW, Leu JG, Tsai MH. Association between serum aluminum levels and cardiothoracic ratio in patients on chronic hemodialysis. PLoS One 2017; 12:e0190008. [PMID: 29261793 PMCID: PMC5738104 DOI: 10.1371/journal.pone.0190008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/06/2017] [Indexed: 11/18/2022] Open
Abstract
The cardiothoracic ratio (CTR) and serum aluminum levels are both associated with mortality in hemodialysis patients. However, limited data regarding the association between serum aluminum levels and the CTR have been published to date. Therefore, we aimed to elucidate this association in patients on chronic hemodialysis (CHD). We investigated the association between the serum aluminum level and the CTR in CHD in a retrospective cross-sectional study of 547 Taiwanese patients on CHD. The mean age of patients was 62.5±13.2 years, with a mean hemodialysis time of 7.1±5.2 years. Among the patients, 36.9% were diabetic and 47.9% were male. After natural logarithmic transformation (ln(aluminum)), the serum aluminum level exhibited an independent and linear relationship with the CTR (β: 1.40, 95% confidence interval (CI), 0.6–2.2). A high serum aluminum level (≥6 ng/dL) was significantly associated with a CTR >0.5 in the crude analysis (odds ratio (OR): 2.15, 95% CI, 1.52–3.04) and remained significant after multivariable adjustment (OR: 2.45, 95% CI, 1.63–3.67). Moreover, the ln(aluminum) value was significantly associated with a CTR >0.5 (OR: 1.71, 95%CI, 1.28–2.29) in multivariable analysis, indicating a dose effect of aluminum on cardiomegaly. In conclusion, the serum aluminum level was independently associated with cardiac remodeling (elevated CTR) in patients on CHD.
Collapse
Affiliation(s)
- Tzu-Lin Wang
- Division of Cardiology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,Fu-Jen Catholic University School of Medicine, Taipei, Taiwan, R.O.C
| | - Jyh-Gang Leu
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,Fu-Jen Catholic University School of Medicine, Taipei, Taiwan, R.O.C
| | - Ming-Hsien Tsai
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,Fu-Jen Catholic University School of Medicine, Taipei, Taiwan, R.O.C.,Division of Biostatistics, Institutes of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan, R.O.C
| |
Collapse
|
21
|
Ghorbel I, Elwej A, Fendri N, Mnif H, Jamoussi K, Boudawara T, Grati Kamoun N, Zeghal N. Olive oil abrogates acrylamide induced nephrotoxicity by modulating biochemical and histological changes in rats. Ren Fail 2017; 39:236-245. [PMID: 27846768 PMCID: PMC6014333 DOI: 10.1080/0886022x.2016.1256320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/08/2016] [Accepted: 10/27/2016] [Indexed: 01/18/2023] Open
Abstract
Acrylamide (ACR) is one of the most important contaminants occurring in foods heated at high temperatures. The aim of this study is to investigate the protective efficacy of extra virgin olive oil (EVOO), a main component of the Mediterranean diet, against nephrotoxicity induced by ACR. Rats have received by gavage during 21 days either ACR (40 mg/kg body weight) or ACR-associated with EVOO (300 μl) or only EVOO (300 μl). Acrylamide induced nephrotoxicity as evidenced by an increase in malondialdehyde (MDA), hydrogen peroxide (H2O2), protein carbonyls (PCOs) and a decrease in glutathione, non-protein thiols (NPSHs), and vitamin C levels. Activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) were also decreased. Lactate dehydrogenase (LDH) activity, creatinine, urea, and uric acid, urinary volume and creatinine clearance levels were modified. EVOO supplementation improved all the parameters indicated above. Kidney histoarchitecture confirmed the biochemical parameters and the beneficial role of EVOO. EVOO, when added to the diet, may have a beneficial role against kidney injury by scavenging free radicals and by its potent antioxidant power.
Collapse
Affiliation(s)
- Imen Ghorbel
- Animal Physiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Awatef Elwej
- Animal Physiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Nesrine Fendri
- Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - Héla Mnif
- Anatomopathology Laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Kamel Jamoussi
- Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - Tahia Boudawara
- Anatomopathology Laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Naziha Grati Kamoun
- Technology & Quality Research Unit, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
22
|
Paz LNF, Moura LM, Feio DCA, Cardoso MDSG, Ximenes WLO, Montenegro RC, Alves APN, Burbano RR, Lima PDL. Evaluation of in vivo and in vitro toxicological and genotoxic potential of aluminum chloride. CHEMOSPHERE 2017; 175:130-137. [PMID: 28211326 DOI: 10.1016/j.chemosphere.2017.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Aluminum and its compounds are common contaminants of water and food, as well as medications and cosmetics. The wide distribution of the element facilitates the demand for detailed studies of its biological and toxicological effects. This work aimed to evaluate the possible genotoxic and toxic activity resulting from in vivo and in vitro exposure to Al. For in vivo analysis, 40 Swiss mice were used, various concentrations of hydrated aluminum chloride were administered orally. They were analyzed for possible genic activity and metal cytotoxicity using a micronucleus test (MN), and for toxicity through histopathological evaluation of the extracted organs. For in vitro analysis, lymphocytes from the peripheral blood of 3 healthy donors were used. These cells were exposed to the same chemical agent in various concentrations. In vivo study revealed a significant increase in the number of MN in all Al concentrations. Furthermore, significant alterations in all the organs evaluated were verified by the presence of irreversible lesions (such as necrosis). Corroborating these findings, a significant increase in the quantity of MN in all concentrations with lymphocytes in vitro. In light of this, we suggest that this metal presents genotoxic potential and is potentially a cause of pathological disorders.
Collapse
Affiliation(s)
- Letícia Nazareth Fernandes Paz
- Molecular Biology Laboratory - Post Graduate Program of Amazon Parasitic Biology, Biological and Health Sciences Center, State University of Pará, Belém, Pará, Brazil
| | - Laís Mesquita Moura
- Molecular Biology Laboratory - Post Graduate Program of Amazon Parasitic Biology, Biological and Health Sciences Center, State University of Pará, Belém, Pará, Brazil
| | - Danielle Cristinne A Feio
- Molecular Biology Laboratory - Post Graduate Program of Amazon Parasitic Biology, Biological and Health Sciences Center, State University of Pará, Belém, Pará, Brazil.
| | - Mirella de Souza Gonçalves Cardoso
- Molecular Biology Laboratory - Post Graduate Program of Amazon Parasitic Biology, Biological and Health Sciences Center, State University of Pará, Belém, Pará, Brazil
| | - Wagner Luiz O Ximenes
- Molecular Biology Laboratory - Post Graduate Program of Amazon Parasitic Biology, Biological and Health Sciences Center, State University of Pará, Belém, Pará, Brazil
| | - Raquel C Montenegro
- Human Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Ana Paula N Alves
- Department of Clinical Dentistry - Health Sciences Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rommel R Burbano
- Human Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Patrícia Danielle L Lima
- Molecular Biology Laboratory - Post Graduate Program of Amazon Parasitic Biology, Biological and Health Sciences Center, State University of Pará, Belém, Pará, Brazil
| |
Collapse
|
23
|
Cheng D, Wang R, Wang C, Hou L. Mung bean (Phaseolus radiatus L.) polyphenol extract attenuates aluminum-induced cardiotoxicity through an ROS-triggered Ca 2+/JNK/NF-κB signaling pathway in rats. Food Funct 2017; 8:851-859. [PMID: 28128384 DOI: 10.1039/c6fo01817c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aluminum (Al) has been linked to the development of some cardiovascular diseases and mung bean is a functional food with the ability to detoxify. We aimed to evaluate the preventive effect and possible underlying mechanisms of the mung bean polyphenol extract (MPE) on Al-induced cardiotoxicity. Control, AlCl3 (171.8 mg Al per kg body weight), MPE + AlCl3 (Al-treatment plus 200 mg MPE per kg body weight), and a group of MPE per se were used. Al intake induced a significant increase of serum CK and LDH activity and the level of Na+, Ca2+, malondialdehyde and advanced oxidation protein products in the AlCl3-treated rats' heart tissue. Administration of MPE significantly improved the integrity and normal ion levels of heart tissue, and attenuated oxidative damage and the accumulation of Al in Al-treated rats. MPE significantly inhibited Al-induced increase of myocardial p-JNK, cytoplasmic NF-κB, cytochrome C, and caspase-9 protein expressions. Therefore, these results showed that MPE has a cardiac protective effect against Al-induced biotoxicity through ROS-JNK and NF-κB-mediated caspase pathways. Furthermore, the stability constant for the vitexin-Al complex was analyzed (log K = log K1 + log K2 = 4.91 + 4.85 = 9.76). We found that MPE-mediated protection against Al-cardiotoxicity is connected both with MPE antioxidant and chelation properties.
Collapse
Affiliation(s)
- Dai Cheng
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China.
| | - Ruhua Wang
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China.
| | - Chunling Wang
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China.
| | - Lihua Hou
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China.
| |
Collapse
|
24
|
Ghorbel I, Chaâbane M, Boudawara O, Kamoun NG, Boudawara T, Zeghal N. Dietary unsaponifiable fraction of extra virgin olive oil supplementation attenuates lung injury and DNA damage of rats co-exposed to aluminum and acrylamide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19397-19408. [PMID: 27378219 DOI: 10.1007/s11356-016-7126-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Aluminum chloride (AlCl3) and acrylamide (ACR) are well known as environmental pollutants inducing oxidative stress. Our study investigated the effects of these contaminants and if the hydrophilic fraction of extra virgin olive oil was able to prevent lung oxidative stress and DNA damage. Animals were divided into four groups of six each: group 1, serving as controls, received distilled water; group 2 received in drinking water aluminum chloride (50 mg/ kg body weight) and by gavage acrylamide (20 mg/kg body weight); group 3 received both aluminum and acrylamide in the same way and the same dose as group 2 and hydrophilic fraction from olive oil (OOHF) (1 ml) by gavage; group 4 received only OOHF by gavage. Exposure of rats to both aluminum and acrylamide provoked oxidative stress in lung tissue based on biochemical parameters and histopathological alterations. In fact, we have observed an increase in malondialdehyde (MDA), H2O2, and advanced oxidation protein product (AOPP) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH), and vitamin C levels. Activities of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were also decreased. Histopathological changes in lung tissue were noted like emphysema, vascular congestion, and infiltration of inflammatory cells. A random DNA degradation was observed on agarose gel in the lung of AlCl3 and acrylamide (ACR)-treated rats. Co-administration of OOHF to treated rats improved biochemical parameters to near control values and lung histoarchitecture. The smear formation of genomic DNA was reduced. The hydrophilic fraction of extra virgin olive oil might provide a basis for developing a new dietary supplementation strategy in order to prevent lung tissue damage.
Collapse
Affiliation(s)
- Imen Ghorbel
- Animal Physiology Laboratory, UR 11/ ES-70 Sciences Faculty of Sfax, University of Sfax, Route de la Soukra Km 3,5. BP 1171, 3000, Sfax, Tunisia.
| | - Mariem Chaâbane
- Animal Physiology Laboratory, UR 11/ ES-70 Sciences Faculty of Sfax, University of Sfax, Route de la Soukra Km 3,5. BP 1171, 3000, Sfax, Tunisia
| | - Ons Boudawara
- Anatomopathology Laboratory, CHU Habib Bourguiba, University of Sfax, 3029, Sfax, Tunisia
| | - Naziha Grati Kamoun
- Technology and Quality Research Unit, Olive Tree Institute, University of Sfax, BP 1087, 3000, Sfax, Tunisia
| | - Tahia Boudawara
- Anatomopathology Laboratory, CHU Habib Bourguiba, University of Sfax, 3029, Sfax, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, UR 11/ ES-70 Sciences Faculty of Sfax, University of Sfax, Route de la Soukra Km 3,5. BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|