1
|
Praveena G, Jayachandran A, Manda Venkata S, Asthana A. From bench to bedside: The evolution of extracellular vesicle diagnostics through microfluidic and paper-based technologies. Colloids Surf B Biointerfaces 2025; 252:114675. [PMID: 40222114 DOI: 10.1016/j.colsurfb.2025.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/15/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
"Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication and valuable biomarkers for various diseases. However, traditional EV isolation and detection methods often struggle with efficiency, scalability, and purity, limiting their clinical utility. Recent advances in microfluidic and paper-based technologies offer innovative solutions that enhance EV isolation and detection by reducing sample volume, accelerating processing times, and integrating multiple analytical steps into compact platforms. These technologies hold significant promise for advancing point-of-care diagnostics, enabling rapid disease detection, personalized treatment monitoring, and better patient outcomes. For example, early detection of cancer biomarkers through EVs can facilitate timely intervention, potentially improving survival rates, while rapid infectious disease diagnostics can support prompt treatment. Despite their potential, challenges such as standardization, scalability, and regulatory hurdles remain. This review discusses recent advancements in microfluidic and paper-based EV diagnostic technologies, their comparative advantages over traditional methods, and their transformative potential in clinical practice."
Collapse
Affiliation(s)
- Ganji Praveena
- Urvogelbio Private Limited, AHERF, Film Nagar, Hyderabad, Telangana 500033, India
| | - Arjun Jayachandran
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER - Hyderabad), Balanagar, Hyderabad, Telangana 500037, India
| | - Sasidhar Manda Venkata
- Urvogelbio Private Limited, AHERF, Film Nagar, Hyderabad, Telangana 500033, India; Apollo Hospitals Educational and Research Foundation (AHERF), Cell and Molecular Biology Research Lab, Hyderabad, India.
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER - Hyderabad), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
2
|
Wang Y, Liu D, Wang R, Chen A, Fang X. An orthogonal barcoding enabled smart nanodevice for highly efficient isolation and proteomic profiling of tumor-derived extracellular vesicles. Analyst 2025. [PMID: 40401310 DOI: 10.1039/d5an00348b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Tumor-derived extracellular vesicles (T-EVs) are small, membrane-bound particles secreted by cancer cells into the extracellular environment. These vesicles carry tumor-specific molecules, making them promising candidates as biomarkers for cancer diagnosis and monitoring. Among the various molecular components of T-EVs, such as nucleic acids and lipids, proteins stand out due to their unique characteristics and functional significance in cancer progression, diagnosis, and therapy. However, the heterogeneity of T-EVs poses a significant challenge to their effective utilization. Herein, we developed an orthogonal barcoding enabled smart nanodevice for the isolation of T-EVs and proteomic profiling. The T-EVs subpopulations were recognized from complex clinical samples, specifically through an orthogonal labeling barcode, which was created using two allosteric aptamers against the exosomal marker CD63 and the tumor marker EpCAM. Simultaneously, the labeled barcode on T-EVs initiated targeted binding with the DNA complementary tag modified mesoporous silica foam (MOSF-tag), achieving in situ exosomal protein extraction and digestion within the nanopores of the MOSF-tag. This integrated strategy not only streamlines the process by eliminating complex steps and minimizing sample loss but also significantly enhances protein identification efficiency. Compared to traditional methods for T-EVs isolation and protein digestion, the smart nanodevice has demonstrated a remarkable improvement in the detection of exosomal proteins and specific proteins from the cell culture medium. As a proof of concept, we applied this strategy to serum samples from prostate cancer (PCa) patients, confirming its efficacy. A total of 832 proteins were identified, with 211 showing differential expression between patients and healthy controls. Among these, 113 proteins were significantly upregulated in the PCa group. These uniquely expressed proteins are likely associated with PCa development, invasion, and metastasis, highlighting their potential as biomarkers for the early diagnosis and prognosis of PCa in the future. This innovative approach not only advances the field of T-EVs research but also opens new avenues for the discovery of clinically relevant biomarkers in cancer.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China.
| | - Dongmei Liu
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao 266001, China
| | - Ruoke Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China.
| | - Aipeng Chen
- School of Pharmacy, Fudan University, Shanghai, 200438, China.
| | - Xiaoni Fang
- School of Pharmacy, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Kang H, Qiu L, Li Y, Xu X, Pei R, Yang T, Yang L, Xu X, Sun N. Si Microanemones Integrated Microfluidic Chip for Highly Efficient Isolation of Extracellular Vesicles. Adv Healthc Mater 2025:e2500439. [PMID: 40395100 DOI: 10.1002/adhm.202500439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/29/2025] [Indexed: 05/22/2025]
Abstract
Liquid biopsy has emerged as a transformative approach for early cancer detection and treatment monitoring, offering significant potential to improve patient outcomes. However, isolating tumor-derived extracellular vesicles (EVs) from body fluids is often impeded by background noise, making subsequent analysis challenging. Herein, a bio-inspired 3D silicon microanemone (SMA) microfluidic chip is reported. This innovative structure is prepared by a two-step lithographic method combined with nanosphere lithography, achieving an impressive isolation efficiency of 89.4%. Simulation results reveal that the hierarchical structure not only provides more antibody binding sites but also synergizes with an integrated chaotic mixer to amplify fluid perturbations, while inducing a flow around circular cylinder phenomenon to enhance EV-antibody interactions. Finally, the SMA chip's performance is assessed with clinical samples and combined with RT-qPCR-based β-actin (ACTB) mRNA quantification in purified EVs. The results demonstrate its high sensitivity and specificity in isolating cancer-related EV subgroups, enabling non-invasive and precise detection of cancer biomarkers in blood samples.
Collapse
Affiliation(s)
- Hanyue Kang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Lei Qiu
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yecheng Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xiaocheng Xu
- Department of Thyroid and Breast Surgery, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Tongqing Yang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Lizhi Yang
- Zhejiang Dongfang Polytechnic School of Health Medicine, Wenzhou, Zhejiang, 325000, China
| | - Xiaobin Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Na Sun
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Phan N, Li Y, Yang M, Liu F. Tear fluid derived extracellular vesicles for new biomarker discovery. Ocul Surf 2025; 37:314-322. [PMID: 40368029 DOI: 10.1016/j.jtos.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Various cell types release extracellular vesicles (EVs) containing proteins, DNA, and RNA essential for intercellular communication. The bioactive molecules from EVs can reflect disease status and monitor progression, while their communication abilities suggest therapeutic potential. We will review various EV isolation methods, EV-enriched fluids, and studies analyzing differential mi-RNA and protein levels extracted from EVs. Specifically, tear-derived EVs, which protect their molecular content and allow for real-time monitoring of ocular conditions such as Dry Eye Disease (DED), Sjögren's disease (SJD), Ocular graft-versus-host disease (oGVHD), and Diabetic Retinopathy (DR), which all currently remain undiagnosed in patients. EVs also provide potential as carriers for gene transfer, and mesenchymal stem cell (MSCs)-derived EVs are shown to be immunomodulatory, demonstrating promise for autoimmune ocular diseases. Through the multi-omic analysis of tear-fluid content, EVs are promising biomarkers and therapeutic agents in ocular diseases.
Collapse
Affiliation(s)
- Natalie Phan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Yi Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| | - Fei Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Das A, Sonar S, Dhar R, Subramaniyan V. Exosomes in melanoma: Future potential for clinical theranostics. Pathol Res Pract 2025; 269:155950. [PMID: 40179441 DOI: 10.1016/j.prp.2025.155950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Melanoma, an aggressive form of skin cancer, presents significant therapeutic challenges due to its resistance to conventional treatments and propensity for metastasis. Exosomes, nanoscale vesicles secreted by a wide variety of cells, have emerged as promising tools for developing novel melanoma therapies. Exosome-based therapeutic approaches offer several advantages, including inherent biocompatibility, low immunogenicity, and the ability to cross biological barriers. This review explores the therapeutic potential of exosomes in melanoma treatment, focusing on their multifaceted roles in modulating tumor cell behavior, enhancing anti-tumor immune responses, and serving as targeted drug delivery vehicles. We discuss various strategies employed to engineer exosomes for enhanced therapeutic efficacy, including loading them with chemotherapeutic agents, small interfering RNAs (siRNAs), microRNAs (miRNAs), and immunomodulatory molecules. Additionally, we highlight the potential of exosomes derived from diverse sources to enhance anti-cancer effects. Furthermore, we address the challenges and future directions in translating exosome-based therapies from bench to bedside, emphasizing the need for standardized isolation and manufacturing protocols, as well as rigorous preclinical and clinical evaluations to unlock the full therapeutic potential of exosomes in the fight against melanoma.
Collapse
Affiliation(s)
- Asmit Das
- Department of Oncology and Maxillofacial Pathology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Swarup Sonar
- Department of Oncology and Maxillofacial Pathology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Rajib Dhar
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
6
|
Yin W, Ma H, Qu Y, Ren J, Sun Y, Guo ZN, Yang Y. Exosomes: the next-generation therapeutic platform for ischemic stroke. Neural Regen Res 2025; 20:1221-1235. [PMID: 39075892 PMCID: PMC11624871 DOI: 10.4103/nrr.nrr-d-23-02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024] Open
Abstract
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yingying Sun
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
7
|
He W, Cui J, Wang XY, Siu RHP, Tanner JA. Early-Stage Pancreatic Cancer Diagnosis: Serum Biomarkers and the Potential for Aptamer-Based Biosensors. Molecules 2025; 30:2012. [PMID: 40363817 PMCID: PMC12073606 DOI: 10.3390/molecules30092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Pancreatic cancer has a high mortality rate, and both the incidence and mortality are continuing to increase in many countries globally. The poor prognosis of pancreatic cancer is in part due to the challenges in early diagnosis. Improving early-stage pancreatic cancer diagnosis would improve survival outcomes. Aptamer-based biosensors provide an alternative technological approach for the analysis of serum biomarkers with several potential advantages. This review summarizes the major pancreatic cancer serum biomarkers, as well as discusses recent progress in biomarker exploration and aptasensor development. Here, we review both established and novel serum biomarkers identified recently, emphasizing their potential for early-stage pancreatic cancer diagnosis. We also propose strategies for further expanding multiplex biomarker panels beyond the established CA19-9 biomarker to enhance diagnostic performance. We discuss technological advancements in aptamer-based sensors for pancreatic cancer-related biomarkers over the last decade. Optical and electrochemical sensors are highlighted as two primary modalities in aptasensor design, each offering unique advantages. Finally, we propose steps towards clinical application using aptamer-based sensors with multiplexed biomarker detection for improved pancreatic cancer diagnostics.
Collapse
Affiliation(s)
- Weisi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Jingyu Cui
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Xue-Yan Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Ryan H. P. Siu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| |
Collapse
|
8
|
Araujo-Abad S, Berna JM, Lloret-Lopez E, López-Cortés A, Saceda M, de Juan Romero C. Exosomes: from basic research to clinical diagnostic and therapeutic applications in cancer. Cell Oncol (Dordr) 2025; 48:269-293. [PMID: 39298081 PMCID: PMC11997007 DOI: 10.1007/s13402-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer continues to pose a global threat despite potent anticancer drugs, often accompanied by undesired side effects. To enhance patient outcomes, sophisticated multifunctional approaches are imperative. Small extracellular vesicles (EVs), a diverse family of naturally occurring vesicles derived from cells, offer advantages over synthetic carriers. Among the EVs, the exosomes are facilitating intercellular communication with minimal toxicity, high biocompatibility, and low immunogenicity. Their tissue-specific targeting ability, mediated by surface molecules, enables precise transport of biomolecules to cancer cells. Here, we explore the potential of exosomes as innovative therapeutic agents, including cancer vaccines, and their clinical relevance as biomarkers for clinical diagnosis. We highlight the cargo possibilities, including nucleic acids and drugs, which make them a good delivery system for targeted cancer treatment and contrast agents for disease monitoring. Other general aspects, sources, and the methodology associated with therapeutic cancer applications are also reviewed. Additionally, the challenges associated with translating exosome-based therapies into clinical practice are discussed, together with the future prospects for this innovative approach.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito, 170124, Ecuador
| | - José Marcos Berna
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Elena Lloret-Lopez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, 170124, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain.
| |
Collapse
|
9
|
Nair SK, Hersh EV, Margulies KB, Daniell H. Clinical studies in Myxomatous Mitral Valve Disease dogs: most prescribed ACEI inhibits ACE2 enzyme activity and ARB increases AngII pool in plasma. Hypertens Res 2025; 48:1477-1490. [PMID: 39837966 PMCID: PMC11972962 DOI: 10.1038/s41440-025-02109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
The hypertension patient population has doubled since 1990, affecting 1.3 billion globally and >75% live in low-and middle-income countries. Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) are the most prescribed drugs (>160 million times in the US), but mortality increased >30% since 1990s globally. Clinical relevance of Myxomatous Mitral Valve Disease (MMVD) is directly linked to WHO group 2 pulmonary hypertension, with no disease specific therapies. Therefore, MMVD pet dogs with elevated systolic blood pressure treated with ACEI/ARB, were supplemented with oral ACE2 enzyme and Angiotensin1-7 (Ang1-7) bioencapsulated in plant cells. The oral ACE2/Ang1-7 was well tolerated by healthy and MMVD dogs with no adverse events and increased sACE2 activity by 670-755% with ARB (Telmisartan) than with ACEI (Enalapril) background therapy. In vitro rhACE2 activity was inhibited >90% by ACEIs enalapril/benazeprilat at higher doses but lisinopril inhibited at much lower doses. Membrane ACE2 activity evaluated in exosomes was 43-fold higher than the sACE2 and this was also inhibited 211% by ACEI, when compared to ARB. Background ACEI treatment reduced the Ang-II pool by 11-20-fold and proportionately decreased the abundance of Ang1-7 + Ang1-5 peptides. In contrast, ARB treatment increased Ang-II pool 11-20-fold and Ang1-7 + Ang1-5 by 160-260%. Systolic blood pressure was regulated by ARB better than ACEI, despite very high Ang-II levels. This first report on evaluation of metabolic pools in the RAS pathway identifies surprising interactions between ACEI/ARB/ACE2 and significant changes in key molecular dynamics. Affordable biologics developed in plant cells may offer potential new treatment options for hypertension.
Collapse
Affiliation(s)
- Smruti K Nair
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elliot V Hersh
- Department of Oral Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Zhou T, Fang G, Wang Z, Qiao Z, Nie N, Fu B, Tseng PH, Sun X, Chen YC. Digital Lasing Biochip for Tumor-Derived Exosome Analysis. Anal Chem 2025; 97:5605-5611. [PMID: 40042136 PMCID: PMC11923948 DOI: 10.1021/acs.analchem.4c06172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Digital microfluidics represents an emerging versatile platform that offers numerous advantages in biomolecule detection. However, conventional probes often lack high-intensity and high-sensitivity signals, making it challenging for precise and automatic analysis. Recently, optical microresonators stand as a prominent high-sensitivity detection in the biological field. Here we introduce whispering gallery mode (WGM) microlasers into the microwell array, forming a digital lasing detection system. The lasing signal makes it highly sensitive, which amplifies the subtle changes via the strong interactions of light and matter. The microfluidic droplet technique further allowed microlasers with uniform laser thresholds and high-throughput fabrication. We utilized this tool for the analysis of exosomes derived from tumor spheroids. We believe that this digital optofluidic system could serve as a promising tool in diverse biomolecule assays and various biomedical applications.
Collapse
Affiliation(s)
- Tian Zhou
- School
of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Guocheng Fang
- School
of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ziyihui Wang
- School
of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zhen Qiao
- School
of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jun Gong Road, Shanghai 200093, China
| | - Ningyuan Nie
- School
of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Bowen Fu
- School
of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Po-Hao Tseng
- School
of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiyu Sun
- School
of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Cheng Chen
- School
of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
11
|
An Y, Sun JX, Ma SY, Xu MY, Xu JZ, Liu CQ, Wang SG, Xia QD. From Plant Based Therapy to Plant-Derived Vesicle-Like Nanoparticles for Cancer Treatment: Past, Present and Future. Int J Nanomedicine 2025; 20:3471-3491. [PMID: 40125436 PMCID: PMC11927496 DOI: 10.2147/ijn.s499893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer stands as a formidable malady profoundly impacting human health. Throughout history, plant-based therapies have remained pivotal in the arsenal against cancer, evolving alongside the epochs. Presently, challenges such as the arduous extraction of active components and potential safety concerns impede the progression of plant-based anticancer therapies. The isolation of plant-derived vesicle-like nanoparticles (PDVLNs), a kind of lipid bilayer capsules isolated from plants, has brought plant-based anticancer therapy into a novel realm and has led to decades of research on PDVLNs. Accumulating evidence indicates that PDVLNs can deliver plant-derived active substances to human cells and regulate cellular functions. Regulating immunity, inducing cell cycle arrest, and promoting apoptosis in cancer cells are the most commonly reported mechanisms of PDVLNs in tumor suppression. Low immunogenicity and lack of tumorigenicity make PDVLNs a good platform for drug delivery. The molecules within the PDVLNs are all from source plants, so the selection of source plants is crucial. In recent years, there has been a clear trend that the source plants have changed from vegetables or fruits to medicinal plants. This review highlights the mechanisms of medicinal plant-based cancer therapies to identify candidate source plants. More importantly, the current research on PDVLN-based cancer therapy and the applications of PDVLNs for drug delivery are systematically discussed.
Collapse
Affiliation(s)
- Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
12
|
Zare H, Kasdorf MM, Bakhshian Nik A. Microfluidics in neural extracellular vesicles characterization for early Alzheimer's disease diagnosis. Mol Cell Neurosci 2025; 132:103982. [PMID: 39631514 DOI: 10.1016/j.mcn.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Dementia is a general term for conditions impairing cognitive abilities including perception, reasoning, attention, judgment, memory, and daily brain function. Early diagnosis of Alzheimer's disease (AD), the most common form of dementia, using neural extracellular vesicles (nEVs) is the focus of the current study. These nEVs carry AD biomarkers including β-amyloid proteins and phosphorylated tau proteins. The novelty of this review lies in developing a microfluidic perspective by introducing the techniques using a microfluidic platform for early diagnosis of AD. A microfluidic device can detect small sample sizes with significantly low concentrations. These devices combine nEV isolation, enrichment, and detection, which makes them ideal candidates for early AD diagnosis.
Collapse
Affiliation(s)
- Hossein Zare
- Chemical and Biochemical Engineering Department, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
13
|
Chen BD, Zhao Y, Wu JL, Zhu ZG, Yang XD, Fang RP, Wu CS, Zheng W, Xu CA, Xu K, Ji X. Exosomes in Skin Flap Survival: Unlocking Their Role in Angiogenesis and Tissue Regeneration. Biomedicines 2025; 13:353. [PMID: 40002766 PMCID: PMC11853446 DOI: 10.3390/biomedicines13020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the critical role of exosomes in promoting angiogenesis, a key factor in skin flap survival. Skin flaps are widely used in reconstructive surgery, and their survival depends heavily on the formation of new blood vessels. Exosomes, small extracellular vesicles secreted by various cells, have emerged as important mediators of intercellular communication and play a crucial role in biological processes such as angiogenesis. Compared to traditional methods of promoting angiogenesis, exosomes show more selective and targeted therapeutic potential as they naturally carry angiogenic factors and can precisely regulate the angiogenesis process. The review will delve into the molecular mechanisms by which exosomes facilitate angiogenesis, discuss their potential therapeutic applications in enhancing skin flap survival, and explore future research directions, particularly the challenges and prospects of exosomes in clinical translation. By highlighting the unique advantages of exosomes in skin flap survival, this review provides a new perspective in this field and opens up new research directions for future therapeutic strategies.
Collapse
Affiliation(s)
- Bo-da Chen
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou 310053, China;
| | - Jian-long Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Zi-guan Zhu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Xiao-dong Yang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Ren-peng Fang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Chen-si Wu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Wei Zheng
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Cheng-an Xu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Keyang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China;
| | - Xin Ji
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| |
Collapse
|
14
|
Zhang J, Pang H, Tang H, Tu Q, Xia F, Zhang H, Meng Y, Han G, Wang J, Qiu C. The pharmacodynamic and pharmacological mechanisms underlying nanovesicles of natural products: Developments and challenges. Pharmacol Ther 2025; 265:108754. [PMID: 39566562 DOI: 10.1016/j.pharmthera.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Natural products such as Traditional Chinese Medicines (TCMs) show great advantages in the treatment and prevention of diseases, but the unclear effective ingredients and mechanisms are key obstacles to restrict their rapid development. Under the guidance of the theoretical guidance of reductionism and the theoretical of allopathic medicine, some researches have indeed achieved some breakthrough results. However, these incomplete methods mainly limited to direct actions or indirect actions (such as the intermediated substances mediated cross-organ or cross-system regulation) mechanism of single active ingredient derived from natural products, which are often inconsistent with Systemism and Harmonizing Medicine and make it difficult to reasonably explain the pharmacodynamics and pharmacological mechanism of most natural products. Actually, effective pharmaceutical ingredients often do not exist in the form of free monomers, but prefer to assembly nanovesicles (NVs) for a combinational pharmacological effect, mainly including self-assembled nanoparticles (SANs) and exosome-like nanoparticles (ELNs). These developments of NVs-based application are a good supplement to existing pharmacological mechanism research. Hence, this review focuses on the developments and strategies of the pharmacodynamics and pharmacological mechanism of NVs-based TCMs under the combining theory of traditional Chinese and western medicine. On this basis, a novel "multidimensional combination" research approach is proposed firstly, which will provide new strategies and directions for breaking through the bottleneck of pharmacological mechanism research, and promote the clinical application of innovative natural products including TCMs.
Collapse
Affiliation(s)
- Junzhe Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingchao Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore.
| | - Chong Qiu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
15
|
Park M, Lee CH, Noh H, Kang G, Lee J, Bae JH, Moon H, Park J, Kong S, Baek MC, Park H. High-precision extracellular-vesicle isolation-analysis integrated platform for rapid cancer diagnosis directly from blood plasma. Biosens Bioelectron 2025; 267:116863. [PMID: 39442437 DOI: 10.1016/j.bios.2024.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Cancer-derived small extracellular vesicles (sEVs) in body fluids hold promise as biomarkers for cancer diagnosis. For sEV-based liquid biopsy, isolation of sEVs with a high-purity and cancer-sEV detection with an extremely high sensitivity are essential because body fluids include much higher density of normal-cell-derived sEVs and other biomolecules and bioparticles. Here, we propose an isolation-analysis-integrated cancer-diagnosis platform based on dielectrophoresis(DEP)-ELISA technique which enables a three orders of magnitude higher sensitivity over conventional ELISA method and direct cancer diagnosis from blood plasma with high accuracy. The limit of detection (LOD) for sEVs in human plasma was as low as 104 sEVs/mL without a time-consuming and low-yield sEV isolation and purification process. The capability of this platform was validated by monitoring mice with cancer cell inoculation and assessing the effect of cancer-sEV-inhibiting drug. Using the developed sEV-based liquid biopsy, we diagnosed clinical samples from healthy donors (N = 39) and cancer patients (N = 90). The diagnostic accuracy was 94.2%, 98.6%, and 91.3% for breast, colon, and lung cancers, respectively. This integrated sEV isolation and analysis platform could be applied for high-sensitivity biomarker profiling and sEV-based liquid biopsy.
Collapse
Affiliation(s)
- Minsu Park
- School of Electronic and Electrical Engineering, Kyungpook National University, 41566, Daegu, South Korea
| | - Chan-Hyeong Lee
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, 41944, Daegu, South Korea
| | - Hyowoong Noh
- School of Electronic and Electrical Engineering, Kyungpook National University, 41566, Daegu, South Korea; Digital Biomedical Research Division, Electronics and Telecommunications Research Institute (ETRI) , 34129, Daejeon, South Korea
| | - Geeyoon Kang
- School of Electronic and Electrical Engineering, Kyungpook National University, 41566, Daegu, South Korea
| | - Junyeong Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, 41566, Daegu, South Korea; Digital Biomedical Research Division, Electronics and Telecommunications Research Institute (ETRI) , 34129, Daejeon, South Korea
| | - Ju-Hyun Bae
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, 41944, Daegu, South Korea
| | - Hyeri Moon
- School of Electronic and Electrical Engineering, Kyungpook National University, 41566, Daegu, South Korea
| | - Jonghoo Park
- School of Electronic and Electrical Engineering, Kyungpook National University, 41566, Daegu, South Korea
| | - Seongho Kong
- School of Electronic and Electrical Engineering, Kyungpook National University, 41566, Daegu, South Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, 41944, Daegu, South Korea.
| | - Hongsik Park
- School of Electronic and Electrical Engineering, Kyungpook National University, 41566, Daegu, South Korea.
| |
Collapse
|
16
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Lou Y, Yan J, Liu Q, Miao M, Shao Y. Biological functions and molecular mechanisms of exosome-derived circular RNAs and their clinical implications in digestive malignancies: the vintage in the bottle. Ann Med 2024; 56:2420861. [PMID: 39484707 PMCID: PMC11536637 DOI: 10.1080/07853890.2024.2420861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are identified as a novel family of endogenous RNA molecules through 'back-splicing' and covalently linked at the 5' and 3' ends. Emerging researches have demonstrated circRNAs are stable and abundant in exosomes called exosomal circRNAs (exo-circRNA). MATERIALS AND METHODS We searched recent studies and references to summary the research progress of exosomal circRNA. RESULTS Recent studies have revealed that exosome-derived circRNAs including exo-CDR1as, exo-circRanGAP1, exo-circIAR play vital roles in cell proliferation and apoptosis, epithelial mesenchymal transition, invasion and metastasis, angiogenesis, immune evasion, cellular crosstalk, cancer cachexia through a variety of biological mechanisms, such as serving as microRNA sponges, interacting with RNA binding proteins, regulating gene transcription, N6-Methyladenosine modification and so on. Due to their characteristics of origin, structure, properties and biological functions, exo-circRNAs are expected to apply in precious diagnosis and prognostic indicators, improving drug and radiation resistance and sensitivity, becoming biological therapeutic targets. CONCLUSION We summarize the update of digestive malignancies associated exo-circRNAs in biogenesis, biological functions, molecular mechanisms, clinical implications, potential applications and experimental technique in order to effectively promote transformation and application in the future.
Collapse
Affiliation(s)
- Yuanyan Lou
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qingqing Liu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Min Miao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Molinski JH, Parwal S, Zhang JXJ. Laser-Patterning of Micromagnets for Immuno-Magnetophoretic Exosome Capture. SMALL METHODS 2024; 8:e2400388. [PMID: 39003624 DOI: 10.1002/smtd.202400388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/23/2024] [Indexed: 07/15/2024]
Abstract
Efficient isolation and patterning of biomolecules is a vital step within sample preparation for biomolecular analysis, with numerous diagnostic and therapeutic applications. For exosomes, nanoscale lipid-bound biomolecules, efficient isolation is challenging due to their minute size and resultant behavior within biofluids. This study presents a method for the rapid isolation and patterning of magnetically tagged exosomes via rationally designed micromagnets. Micromagnet fabrication utilizes a novel, scalable, and high-throughput laser-based fabrication approach that enables patterning at microscale lateral resolution (<50 µm) without lithographic processing and is agnostic to micromagnet geometry. Laser-based processing allows for flexible and tunable device configurations, and herein magnetophoretic capture within both an open-air microwell and an enclosed microfluidic system is demonstrated. Patterned micromagnets enhance localized gradient fields throughout the fluid medium, resulting in rapid and high efficiency magnetophoretic separation, with capture efficiencies nearing 70% after just 1s within open-air microwells, and throughputs upward of 3 mL h-1 within enclosed microfluidic systems. Using this microchip architecture, immunomagnetic exosome isolation and patterning directly from undiluted plasma samples is further achieved. Lastly, a FEA-based modeling workflow is introduced to characterize and optimize micromagnet unit cells, simulating magnetophoretic capture zones for a given micromagnet geometry.
Collapse
Affiliation(s)
- John H Molinski
- Thayer School of Engineering at Dartmouth, Hanover, NH, 03755, USA
| | - Siddhant Parwal
- Thayer School of Engineering at Dartmouth, Hanover, NH, 03755, USA
| | - John X J Zhang
- Thayer School of Engineering at Dartmouth, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03766, USA
| |
Collapse
|
19
|
Pierce C, Suryoraharjo K, Robertson IH, Su X, Hatchett DB, Shin A, Adams KN, Berthier E, Thongpang S, Ogata A, Theberge AB, Sohn LL. CandyCollect: An Open-Microfluidic Device for the Direct Capture and Enumeration of Salivary-Extracellular Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617508. [PMID: 39463934 PMCID: PMC11507796 DOI: 10.1101/2024.10.09.617508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Extracellular Vesicles (EVs) are membrane-derived vesicles shed by cells into the extracellular space that play key roles in intercellular communication and other biological processes. As membrane-bound cargos of nucleic acids and other proteins that are abundantly found in virtually every biofluid including blood, urine, and saliva, EVs are widely regarded as promising biomarkers for disease detection. While it is an increasingly promising biofluid from which to isolate EVs, saliva poses challenges due its complexity and heterogeneity-cells, debris, and other proteins can inhibit the isolation of EVs by traditional platforms. Here, we employ the CandyCollect, a lollipop-inspired sampling device with open microfluidic channels, as a non-invasive and patient-friendly alternative for the capture of salivary EVs. The CandyCollect simplifies sample preparation by effectively pre-concentrating EVs on the device surface before EVs are eluted off of the CandyCollect, labeled with cholesterol-tagged oligonucleotides, and subsequently detected by qPCR with primers specific for the tagged oligos to enumerate the relative number of EVs. We demonstrate that downstream EV cargo analysis can be performed using Simoa. Overall, the CandyCollect ushers a new method to capture, enumerate, and analyze salivary EVs.
Collapse
|
20
|
Wang C, Xu S, Yang X. Hypoxia-Driven Changes in Tumor Microenvironment: Insights into Exosome-Mediated Cell Interactions. Int J Nanomedicine 2024; 19:8211-8236. [PMID: 39157736 PMCID: PMC11328847 DOI: 10.2147/ijn.s479533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Hypoxia, as a prominent feature of the tumor microenvironment, has a profound impact on the multicomponent changes within this environment. Under hypoxic conditions, the malignant phenotype of tumor cells, the variety of cell types within the tumor microenvironment, as well as intercellular communication and material exchange, undergo complex alterations. These changes provide significant prospects for exploring the mechanisms of tumor development under different microenvironmental conditions and for devising therapeutic strategies. Exosomes secreted by tumor cells and stromal cells are integral components of the tumor microenvironment, serving as crucial mediators of intercellular communication and material exchange, and have consequently garnered increasing attention from researchers. This review focuses on the mechanisms by which hypoxic conditions promote the release of exosomes by tumor cells and alter their encapsulated contents. It also examines the effects of exosomes derived from tumor cells, immune cells, and other cell types under hypoxic conditions on the tumor microenvironment. Additionally, we summarize current research progress on the potential clinical applications of exosomes under hypoxic conditions and propose future research directions in this field.
Collapse
Affiliation(s)
- Churan Wang
- Dalian Medical University, Dalian, 116000, People’s Republic of China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| | - Xiao Yang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| |
Collapse
|
21
|
Kim M, Song CY, Lee JS, Ahn YR, Choi J, Lee SH, Shin S, Na HJ, Kim HO. Exosome Isolation Using Chitosan Oligosaccharide Lactate-1-Pyrenecarboxylic Acid-Based Self-Assembled Magnetic Nanoclusters. Adv Healthc Mater 2024; 13:e2303782. [PMID: 38430208 DOI: 10.1002/adhm.202303782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/30/2024] [Indexed: 03/03/2024]
Abstract
Exosomes are small extracellular vesicles that play a crucial role in intercellular communication and offer significant potential for a wide range of biomedical applications. However, conventional methods for exosome isolation have limitations in terms of purity, scalability, and preservation of exosome structural integrity. To address these challenges, an exosome isolation platform using chitosan oligosaccharide lactate conjugated 1-pyrenecarboxylic acid (COL-Py) based self-assembled magnetic nanoclusters (CMNCs), is presented. CMNCs are characterized to optimize their size, stability, and interaction dynamics with exosomes. The efficiency of CMNCs in isolating exosomes is systematically evaluated using various analytical methods to demonstrate their ability to capture exosomes based on amphiphilic lipid bilayers. CMNC-based exosome isolation consistently yields exosomes with structural integrity and purity similar to those obtained using traditional methods. The reusability of CMNCs over multiple exosome isolation cycles underscores their scalability and offers an efficient solution for biomedical applications. These results are supported by western blot analysis, which demonstrated the superiority of CMNC-based isolation in terms of purity compared to conventional methods. By providing a scalable and efficient exosome isolation process that preserves both structural integrity and purity, CMNCs can constitute a new platform that can contribute to the field of exosome studies.
Collapse
Affiliation(s)
- Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Chi-Yeon Song
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jin Sil Lee
- Hauulbio, 32, Soyanggang-ro, Chuncheon-si, Gangwon-do, 24232, Republic of Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sang Hoon Lee
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - SoJin Shin
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hee Jun Na
- Hauulbio, 32, Soyanggang-ro, Chuncheon-si, Gangwon-do, 24232, Republic of Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| |
Collapse
|
22
|
Jacobson R, Ha S, Tani S, Ghosh S, Jarajapu YPR, Brand RE, Kim J, Choi Y. Differential extracellular vesicle concentration and their biomarker expression of integrin α v/β 5, EpCAM, and glypican-1 in pancreatic cancer models. Sci Rep 2024; 14:14273. [PMID: 38902362 PMCID: PMC11189911 DOI: 10.1038/s41598-024-65209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Tumor-derived extracellular vesicles (EVs) show great potential as biomarkers for several diseases, including pancreatic cancer, due to their roles in cancer development and progression. However, the challenge of utilizing EVs as biomarkers lies in their inherent heterogeneity in terms of size and concentration, making accurate quantification difficult, which is highly dependent on the isolation and quantification methods used. In our study, we compared three EV isolation techniques and two EV quantification methods. We observed variations in EV concentration, with approximately 1.5-fold differences depending on the quantification method used. Interestingly, all EV isolation techniques consistently yielded similar EV quantities, overall size distribution, and modal sizes. In contrast, we found a notable increase in total EV amounts in samples from pancreatic cancer cell lines, mouse models, and patient plasma, compared to non-cancerous conditions. Moreover, individual tumor-derived EVs exhibited at least a 3-fold increase in several EV biomarkers. Our data, obtained from EVs isolated using various techniques and quantified through different methods, as well as originating from various pancreatic cancer models, suggests that EV profiling holds promise for the identification of unique and cancer-specific biomarkers in pancreatic cancer.
Collapse
Affiliation(s)
- Reed Jacobson
- Departments of Physics, North Dakota State University, Fargo, ND, 58108, USA
- Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Sangdeuk Ha
- Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Sakurako Tani
- Departments of Physics, North Dakota State University, Fargo, ND, 58108, USA
| | - Shrinwanti Ghosh
- Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Yagna P R Jarajapu
- Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58108, USA
- Molecular and Cellular Biology Program, North Dakota State University, Fargo, ND, 58108, USA
| | - Randall E Brand
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15232, USA
| | - Jiha Kim
- Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA.
- Molecular and Cellular Biology Program, North Dakota State University, Fargo, ND, 58108, USA.
| | - Yongki Choi
- Departments of Physics, North Dakota State University, Fargo, ND, 58108, USA.
- Molecular and Cellular Biology Program, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
23
|
Oushyani Roudsari Z, Esmaeili Z, Nasirzadeh N, Heidari Keshel S, Sefat F, Bakhtyari H, Nadri S. Microfluidics as a promising technology for personalized medicine. BIOIMPACTS : BI 2024; 15:29944. [PMID: 39963565 PMCID: PMC11830131 DOI: 10.34172/bi.29944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 02/20/2025]
Abstract
Introduction Due to the recent advances in biomedicine and the increasing understanding of the molecular mechanism of diseases, healthcare approaches have tended towards preventive and personalized medicine. Consequently, in recent decades, the utilization of interdisciplinary technologies such as microfluidic systems had a significant increase to provide more accurate high throughput diagnostic/therapeutic methods. Methods In this article, we will review a summary of innovations in microfluidic technologies toward improving personalized biomolecular diagnostics, drug screening, and therapeutic strategies. Results Microfluidic systems by providing a controllable space for fluid flow, three-dimensional growth of cells, and miniaturization of molecular experiments are useful tools in the field of personalization of health and treatment. These conditions have enabled the potential to carry out studies like; disease modeling, drug screening, and improving the accuracy of diagnostic methods. Conclusion Microfluidic devices have become promising point-of-care (POC) and personalized medicine instruments due to their ability to perform diagnostic tests with small sample volumes, cost reduction, high resolution, and automation.
Collapse
Affiliation(s)
- Zahra Oushyani Roudsari
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nafiseh Nasirzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hassan Bakhtyari
- Department of Pediatrics, School of Medicine, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
24
|
Saad MG, Beyenal H, Dong WJ. Dual roles of the conditional extracellular vesicles derived from Pseudomonas aeruginosa biofilms: Promoting and inhibiting bacterial biofilm growth. Biofilm 2024; 7:100183. [PMID: 38380422 PMCID: PMC10876606 DOI: 10.1016/j.bioflm.2024.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Antibiotic-resistant biofilm infections have emerged as public health concerns because of their enhanced tolerance to high-dose antibiotic treatments. The biofilm life cycle involves multiple developmental stages, which are tightly regulated by active cell-cell communication via specific extracellular signal messengers such as extracellular vesicles. This study was aimed at exploring the roles of extracellular vesicles secreted by Pseudomonas aeruginosa at different developmental stages in controlling biofilm growth. Our results show that extracellular vesicles secreted by P. aeruginosa biofilms during their exponential growth phase (G-EVs) enhance biofilm growth. In contrast, extracellular vesicles secreted by P. aeruginosa biofilms during their death/survival phase (D-EVs) can effectively inhibit/eliminate P. aeruginosa PAO1 biofilms up to 4.8-log10 CFU/cm2. The inhibition effectiveness of D-EVs against P. aeruginosa biofilms grown for 96 h improved further in the presence of 10-50 μM Fe3+ ions. Proteomic analysis suggests the inhibition involves an iron-dependent ferroptosis mechanism. This study is the first to report the functional role of bacterial extracellular vesicles in bacterial growth, which depends on the developmental stage of the parent bacteria. The finding of D-EV-activated ferroptosis-based bacterial death may have significant implications for preventing antibiotic resistance in biofilms.
Collapse
Affiliation(s)
- Marwa Gamal Saad
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Wen-Ji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
25
|
Padinharayil H, George A. Small extracellular vesicles: Multi-functional aspects in non-small cell lung carcinoma. Crit Rev Oncol Hematol 2024; 198:104341. [PMID: 38575042 DOI: 10.1016/j.critrevonc.2024.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Extracellular vesicles (EVs) impact normal and pathological cellular signaling through bidirectional trafficking. Exosomes, a subset of EVs possess biomolecules including proteins, lipids, DNA fragments and various RNA species reflecting a speculum of their parent cells. The involvement of exosomes in bidirectional communication and their biological constituents substantiate its role in regulating both physiology and pathology, including multiple cancers. Non-small cell lung cancer (NSCLC) is the most common lung cancers (85%) with high incidence, mortality and reduced overall survival. Lack of efficient early diagnostic and therapeutic tools hurdles the management of NSCLC. Interestingly, the exosomes from body fluids similarity with parent cells or tissue offers a potential future multicomponent tool for the early diagnosis of NSCLC. The structural twinning of exosomes with a cell/tissue and the competitive tumor derived exosomes in tumor microenvironment (TME) promotes the unpinning horizons of exosomes as a drug delivery, vaccine, and therapeutic agent. Exosomes in clinical point of view assist to trace: acquired resistance caused by various therapeutic agents, early diagnosis, progression, and surveillance. In an integrated approach, EV biomarkers offer potential cutting-edge techniques for the detection and diagnosis of cancer, though the purification, characterization, and biomarker identification processes for the translational research regarding EVs need further optimization.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India.
| |
Collapse
|
26
|
Mao Y, Li J, Li J, Su C, Long K, Li D, Ding Z, Guo S. Enhanced immune capture of extracellular vesicles with gelatin nanoparticles and acoustic mixing. Analyst 2024; 149:3195-3203. [PMID: 38651605 DOI: 10.1039/d4an00268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Extracellular vesicles (EVs) originating from cancer cells incorporate various critical biomolecules that can aid in early cancer diagnosis. However, the rapid analysis of these micro vesicles remains challenging due to their nano-scale size and overlapping dimensions, hindering sufficient capture in terms of quantity and purity. In this study, an acoustofluidic device was developed to enhance the yield of immune-captured EVs. The channel of the device was modified with degradable gelatin nanoparticles (∼220 nm) to increase the surface roughness, and subsequently treated with CD63 antibodies. The acoustic-induced streaming would prolong the rotation time of the EVs in the targeted continuous flow area, improving their aggregation towards the surrounding pillars and subsequent capture by the specific CD63 antibodies. Consequently, the capture efficiency of the device was improved when the signal was on, as evidenced by enhanced fluorescence intensity in the main channel. It is demonstrated that the acoustofluidic device could enhance the immune capture of EVs through acoustic mixing, showcasing great potential in the rapid and fast detection of EVs in liquid biopsy applications.
Collapse
Affiliation(s)
- Yiqian Mao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Juan Li
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
- Hubei Yangtze Memory Laboratories, Wuhan 430205, P. R. China
| | - Jingxing Li
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Cuicui Su
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Kaixiang Long
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Daojiang Li
- Department of Colorectal and Anal Surgery, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
- Hubei Yangtze Memory Laboratories, Wuhan 430205, P. R. China
| |
Collapse
|
27
|
Bhadra M, Sachan M. An overview of challenges associated with exosomal miRNA isolation toward liquid biopsy-based ovarian cancer detection. Heliyon 2024; 10:e30328. [PMID: 38707279 PMCID: PMC11068823 DOI: 10.1016/j.heliyon.2024.e30328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
As one of the deadliest gynaecological cancers, ovarian cancer has been on the list. With lesser-known symptoms and lack of an accurate detection method, it is still difficult to catch it early. In terms of both the diagnosis and outlook for cancer, liquid biopsy has come a long way with significant advancements. Exosomes, extracellular components commonly shed by cancerous cells, are nucleic acid-rich particles floating in almost all body fluids and hold enormous promise, leading to minimallyinvasive molecular diagnostics. They have been shown as potential biomarkers in liquid biopsy, being implicated in tumour growth and metastasis. In order to address the drawbacks of ovarian cancer tumor heterogeneity, a liquid biopsy-based approach is being investigated by detecting cell-free nucleic acids, particularly non-coding RNAs, having the advantage of being less invasive and more prominent in nature. microRNAs are known to actively contribute to cancer development and their existence inside exosomes has also been made quite apparent which can be leveraged to diagnose and treat the disease. Extraction of miRNAs and exosomes is an arduous execution, and while other approaches have been investigated, none have produced results that are as encouraging due to limits in time commitment, yield, and, most significantly, damage to the exosomal structure resulting discrepancies in miRNA-based expression profiling for disease diagnosis. We have briefly outlined and reviewed the difficulties with exosome isolation techniques and the need for their standardization. The several widely used procedures and their drawbacks in terms of the exosomal purity they may produce have also been outlined.
Collapse
Affiliation(s)
- Mridula Bhadra
- Department of Biotechnology, Motilal Nehru National Institute of Technology-Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology-Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| |
Collapse
|
28
|
Liu Y, Xiao S, Wang D, Qin C, Wei H, Li D. A review on separation and application of plant-derived exosome-like nanoparticles. J Sep Sci 2024; 47:e2300669. [PMID: 38651549 DOI: 10.1002/jssc.202300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 04/25/2024]
Abstract
Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Siqiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dianbing Wang
- Institute of Biophysics, Chinese Academy of Sciences, Research Center of Biomacromolecules, China Academy of Sciences, National Laboratory of Biomacromolecules, Beijing, China
| | - Chengyu Qin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongling Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dewen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
29
|
Mohammadi M, Mansouri K, Mohammadi P, Pournazari M, Najafi H. Exosomes in renal cell carcinoma: challenges and opportunities. Mol Biol Rep 2024; 51:443. [PMID: 38520545 DOI: 10.1007/s11033-024-09384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer that accounts for approximately 2-3% of adult malignancies. Among the primary treatment methods for this type of cancer are surgery and targeted treatment. Still, due to less than optimal effectiveness, there are problems such as advanced distant metastasis, delayed diagnosis, and drug resistance that continue to plague patients. In recent years, therapeutic advances have increased life expectancy and effective treatment in renal cell carcinoma patients. One of these methods is the use of stem cells. Although the therapeutic effects of stem cells, especially mesenchymal stem cells, are still impressive, today, extracellular vesicles (EVs) as carrying molecules and various mediators in intercellular communications, having a central role in tumorigenesis, metastasis, immune evasion, and drug response, and on the other hand, due to its low immunogenicity and strong regulatory properties of the immune system, has received much attention from researchers and doctors. Despite the increasing interest in exosomes as the most versatile type of EVs, the heterogeneity of their efficacy presents challenges and, on the other hand, exciting opportunities for diagnostic and clinical interventions.In the upcoming article, we will review the various aspects of exosomes' effects in the prevention, treatment, and progress of renal cell carcinoma and also ways to optimize them to strengthen their positive sides.
Collapse
Affiliation(s)
- Mahan Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
30
|
Zhang Q, Lu F, Zhang C, Yu X, Yang X, Yan H. Blocking exosomal secretion aggravated 1,4-benzoquinone-induced cytotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:1099-1106. [PMID: 37818967 DOI: 10.1002/tox.23944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/06/2023] [Accepted: 08/13/2023] [Indexed: 10/13/2023]
Abstract
Benzene exposure inhibits the hematopoietic system and leads to the occurrence of various types of leukemia. However, the mechanism underlying the hematotoxicity of benzene is still largely unclear. Emerging evidence has shown that exosomes are involved in toxic mechanisms of benzene. To understand the effect of 1,4-benzoquinone (PBQ; an active metabolite of benzene in bone marrow) on the exosomal release characteristics and role of exosomal secretion in PBQ-induced cytotoxicity. Exosomes were isolated from PBQ-treated HL-60 cells, purified by ultracentrifugation, and verified by transmission electron microscopy, nanoparticle tracking analysis and the presence of specific biomarkers. Our results showed that PBQ increased exosomal secretion in a dose-dependent manner, reaching a peak in 3 h at 10 μM PBQ treatment and then slowly decreasing in HL-60 cells. The exosomes contained miRNAs, which have been reported to be associated with benzene exposure or benzene poisoning. In particular, mir-34a-3p and mir-34A-5p were enriched in exosomes derived from PBQ-treated cells. In addition, the inhibition of exosomal release by GW4869 (an inhibitor of exosomal release) exacerbated PBQ-induced cytotoxicity, including increased intracellular reactive oxygen species levels, decreased mitochondrial membrane potential, and increased the apoptosis rate. Our findings illustrated that exosomes secretion plays an important role in antagonizing PBQ-induced cytotoxicity and maintaining cell homeostasis.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Medicine, Shandong Xiandai University, Jinan, Shandong, People's Republic of China
| | - Fangfang Lu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chunxiao Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiuyuan Yu
- Clinical Laboratory, Traditional Chinese Medicine Hospital of Jimo City, Jimo, Shandong, People's Republic of China
| | - Xinjun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hongtao Yan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
31
|
Madhan S, Dhar R, Devi A. Plant-derived exosomes: a green approach for cancer drug delivery. J Mater Chem B 2024; 12:2236-2252. [PMID: 38351750 DOI: 10.1039/d3tb02752j] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Plant-derived exosomes (PDEs) are natural extracellular vesicles (EVs). In the current decade, they have been highlighted for cancer therapeutic development. Cancer is a global health crisis and it requires an effective, affordable, and less side effect-based treatment. Emerging research based on PDEs suggests that they have immense potential to be considered as a therapeutic option. Research evidences indicate that PDEs' internal molecular cargos show impressive cancer prevention activity with less toxicity. PDEs-based drug delivery systems overcome several limitations of traditional drug delivery tools. Extraction of PDEs from plant sources employ diverse methodologies, encompassing ultracentrifugation, immunoaffinity, size-based isolation, and precipitation, each with distinct advantages and limitations. The core constituents of PDEs comprise of lipids, proteins, DNA, and RNA. Worldwide, a few clinical trials on plant-derived exosomes are underway, and regulatory affairs for their use as therapeutic agents are still not understood with clarity. This review aims to comprehensively analyze the current state of research on plant-derived exosomes as a promising avenue for drug delivery, highlighting anticancer activity, challenges, and future orientation in effective cancer therapeutic development.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| |
Collapse
|
32
|
Mukerjee N, Maitra S, Ghosh A, Sengupta T, Alexiou A, Subramaniyan V, Anand K. Synergizing Proteolysis-Targeting Chimeras and Nanoscale Exosome-Based Delivery Mechanisms for HIV and Antiviral Therapeutics. ACS APPLIED NANO MATERIALS 2024; 7:3499-3514. [DOI: 10.1021/acsanm.3c04537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata 700126, India
| | - Swastika Maitra
- Department of Microbiology, Adamas University, West Bengal, Kolkata 700126, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurasha Srimanta Sankaradeva Viswavidyalaya, Guwahati, Assam 781032, India
| | - Tapti Sengupta
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata 700126, India
| | - Athanasios Alexiou
- Department of Health Sciences, Novel Global Community and Educational Foundation, Hebersham, New South Wales 2070, Australia
- AFNP Med, Wien 1030, Austria
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
33
|
Aliakbari F, Stocek NB, Cole-André M, Gomes J, Fanchini G, Pasternak SH, Christiansen G, Morshedi D, Volkening K, Strong MJ. A methodological primer of extracellular vesicles isolation and characterization via different techniques. Biol Methods Protoc 2024; 9:bpae009. [PMID: 38425334 PMCID: PMC10902684 DOI: 10.1093/biomethods/bpae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
We present four different protocols of varying complexity for the isolation of cell culture-derived extracellular vesicles (EVs)/exosome-enriched fractions with the objective of providing researchers with easily conducted methods that can be adapted for many different uses in various laboratory settings and locations. These protocols are primarily based on polymer precipitation, filtration and/or ultracentrifugation, as well as size-exclusion chromatography (SEC) and include: (i) polyethylene glycol and sodium chloride supplementation of the conditioned medium followed by low-speed centrifugation; (ii) ultracentrifugation of conditioned medium; (iii) filtration of conditioned media through a 100-kDa exclusion filter; and (iv) isolation using a standard commercial kit. These techniques can be followed by further purification by ultracentrifugation, sucrose density gradient centrifugation, or SEC if needed and the equipment is available. HEK293 and SH-SY5Y cell cultures were used to generate conditioned medium containing exosomes. This medium was then depleted of cells and debris, filtered through a 0.2-µM filter, and supplemented with protease and RNAse inhibitors prior to exosomal isolation. The purified EVs can be used immediately or stably stored at 4°C (up to a week for imaging or using intact EVS downstream) or at -80°C for extended periods and then used for biochemical study. Our aim is not to compare these methodologies but to present them with descriptors so that researchers can choose the "best method" for their work under their individual conditions.
Collapse
Affiliation(s)
- Farhang Aliakbari
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Noah B Stocek
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Maxximuss Cole-André
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Janice Gomes
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Giovanni Fanchini
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Stephen H Pasternak
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Gunna Christiansen
- Department of Health Science and Technology, The Faculty of Medicine, Medical Microbiology and Immunology, Aalborg University, Aalborg Ø 9220, Denmark
| | - Dina Morshedi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O. Box 14965/161, Iran
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
34
|
Xu X, Iqbal Z, Xu L, Wen C, Duan L, Xia J, Yang N, Zhang Y, Liang Y. Brain-derived extracellular vesicles: Potential diagnostic biomarkers for central nervous system diseases. Psychiatry Clin Neurosci 2024; 78:83-96. [PMID: 37877617 DOI: 10.1111/pcn.13610] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanovesicles secreted by cells into the extracellular space and contain functional biomolecules, e.g. signaling receptors, bioactive lipids, nucleic acids, and proteins, which can serve as biomarkers. Neurons and glial cells secrete EVs, contributing to various physiological and pathological aspects of brain diseases. EVs confer their role in the bidirectional crosstalk between the central nervous system (CNS) and the periphery owing to their distinctive ability to cross the unique blood-brain barrier (BBB). Thus, EVs in the blood, cerebrospinal fluid (CSF), and urine can be intriguing biomarkers, enabling the minimally invasive diagnosis of CNS diseases. Although there has been an enormous interest in evaluating EVs as promising biomarkers, the lack of ultra-sensitive approaches for isolating and detecting brain-derived EVs (BDEVs) has hindered the development of efficient biomarkers. This review presents the recent salient findings of exosomal biomarkers, focusing on brain disorders. We summarize highly sensitive sensors for EV detection and state-of-the-art methods for single EV detection. Finally, the prospect of developing advanced EV analysis approaches for the non-invasive diagnosis of brain diseases is presented.
Collapse
Affiliation(s)
- Xiao Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Limei Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Caining Wen
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Ningning Yang
- Lake Erie College of Osteopathic Medicine School of Pharmacy, Bradenton, Florida, USA
| | - Yuanmin Zhang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Yujie Liang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| |
Collapse
|
35
|
Xu Z, Xie Y, Wu C, Gu T, Zhang X, Yang J, Yang H, Zheng E, Huang S, Xu Z, Li Z, Cai G, Liu D, Hong L, Wu Z. The effects of boar seminal plasma extracellular vesicles on sperm fertility. Theriogenology 2024; 213:79-89. [PMID: 37816296 DOI: 10.1016/j.theriogenology.2023.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
Extracellular vesicles (EVs) are abundant in body fluid and are critical in cell interaction. Seminal plasma contains numerous EVs which affecting sperm function via transferring regulatory cargoes to the sperm. However, the mechanism of seminal plasma extracellular vesicles (SP-EVs) is still not clear. The present study aimed to isolate the boar SP-EVs and explore its potential function, then identify the key protein involved in SP-EVs and sperms interaction, and elucidate mechanism of SP-EVs protein on sperms. Here, we successfully isolated and concentrated boar SP-EVs, the SP-EVs showed a typical vesicle structure under transmission electron microscopy, most of their diameters range between 50 and 200 nm and express EVs biomarkers CD9 and CD63. We proved that SP-EVs could inhibit sperm acrosome reaction and in vitro fertility. Through a data-independent acquisition analysis of protein profiles of noncapacitated sperms, normal capacitated sperms and SP-EVs treated capacitated sperms, we identified that EZRIN was one of the active proteins that participated in SP-EVs and sperms interaction. Furthermore, we tested that the inhibition of EZRIN could promote boar sperm fertility, which is in consistence with the function of SP-EVs. The results may facilitate future research of SP-EVs on sperm function and male infertility.
Collapse
Affiliation(s)
- Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Xianwei Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Wens Foodstuff Group Co., Ltd., Yunfu, 527400, Guangdong, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China.
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, Guangdong, China; Wens Foodstuff Group Co., Ltd., Yunfu, 527400, Guangdong, China.
| |
Collapse
|
36
|
Stosic K, Senar OA, Tarfouss J, Bouchart C, Navez J, Van Laethem JL, Arsenijevic T. A Comprehensive Review of the Potential Role of Liquid Biopsy as a Diagnostic, Prognostic, and Predictive Biomarker in Pancreatic Ductal Adenocarcinoma. Cells 2023; 13:3. [PMID: 38201207 PMCID: PMC10778087 DOI: 10.3390/cells13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignant diseases, with a mortality rate being close to incidence. Due to its heterogeneity and plasticity, as well as the lack of distinct symptoms in the early phases, it is very often diagnosed at an advanced stage, resulting in poor prognosis. Traditional tissue biopsies remain the gold standard for making a diagnosis, but have an obvious disadvantage in their inapplicability for frequent sampling. Blood-based biopsies represent a non-invasive method which potentially offers easy and repeated sampling, leading to the early detection and real-time monitoring of the disease and hopefully an accurate prognosis. Given the urgent need for a reliable biomarker that can estimate a patient's condition and response to an assigned treatment, blood-based biopsies are emerging as a potential new tool for improving patients' survival and surveillance. In this article, we discuss the current advances and challenges in using liquid biopsies for pancreatic cancer, focusing on circulating tumour DNA (ctDNA), extracellular vesicles (EVs), and circulating tumour cells (CTCs), and compare the performance and reliability of different biomarkers and combinations of biomarkers.
Collapse
Affiliation(s)
- Kosta Stosic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Oier Azurmendi Senar
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Jawad Tarfouss
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Christelle Bouchart
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Julie Navez
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
37
|
Slika H, Karimov Z, Alimonti P, Abou-Mrad T, De Fazio E, Alomari S, Tyler B. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues. Int J Mol Sci 2023; 24:16316. [PMID: 38003507 PMCID: PMC10671665 DOI: 10.3390/ijms242216316] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common malignant primary central nervous system tumor and one of the most debilitating cancers. The prognosis of patients with glioblastoma remains poor, and the management of this tumor, both in its primary and recurrent forms, remains suboptimal. Despite the tremendous efforts that are being put forward by the research community to discover novel efficacious therapeutic agents and modalities, no major paradigm shifts have been established in the field in the last decade. However, this does not mirror the abundance of relevant findings and discoveries made in preclinical glioblastoma research. Hence, developing and utilizing appropriate preclinical models that faithfully recapitulate the characteristics and behavior of human glioblastoma is of utmost importance. Herein, we offer a holistic picture of the evolution of preclinical models of glioblastoma. We further elaborate on the commonly used in vitro and vivo models, delving into their development, favorable characteristics, shortcomings, and areas of potential improvement, which aids researchers in designing future experiments and utilizing the most suitable models. Additionally, this review explores progress in the fields of humanized and immunotolerant mouse models, genetically engineered animal models, 3D in vitro models, and microfluidics and highlights promising avenues for the future of preclinical glioblastoma research.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Ziya Karimov
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
- Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Tatiana Abou-Mrad
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emerson De Fazio
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| |
Collapse
|
38
|
Altıntaş Ö, Saylan Y. Exploring the Versatility of Exosomes: A Review on Isolation, Characterization, Detection Methods, and Diverse Applications. Anal Chem 2023; 95:16029-16048. [PMID: 37874907 DOI: 10.1021/acs.analchem.3c02224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are crucial mediators of intercellular communication and can be classified based on their physical properties, biomolecular structure, and origin. Among EVs, exosomes have garnered significant attention due to their potential as therapeutic and diagnostic tools. Exosomes are released via fusion of multivesicular bodies on plasma membranes and can be isolated from various biofluids using methods such as differential ultracentrifugation, immune affinity capture, ultrafiltration, and size exclusion chromatography. Herein, an overview of different techniques for exosome characterization and isolation, as well as the diverse applications of exosome detection, including their potential use in drug delivery and disease diagnosis, is provided. Additionally, we discuss the emerging field of exosome detection by sensors, which offers an up-and-coming avenue for point-of-care diagnostic tools development. Overall, this review aims to provide a exhaustive and up-to-date summary of the current state of exosome research.
Collapse
Affiliation(s)
- Özge Altıntaş
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| |
Collapse
|
39
|
Krivitsky V, Krivitsky A, Mantella V, Ben-Yehuda Greenwald M, Sankar DS, Betschmann J, Bader J, Zoratto N, Schreier K, Feiss S, Walker D, Dengjel J, Werner S, Leroux JC. Ultrafast and Controlled Capturing, Loading, and Release of Extracellular Vesicles by a Portable Microstructured Electrochemical Fluidic Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212000. [PMID: 37452635 DOI: 10.1002/adma.202212000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are found in body fluids. They exert numerous physiological and pathological functions and serve as cargo shuttles. Due to their safety and inherent bioactivity, they have emerged as versatile therapeutic agents, biomarkers, and potential drug carriers. Despite the growing interest in EVs, current progress in this field is, in part, limited by relatively inefficient isolation techniques. Conventional methods are indeed slow, laborious, require specialized laboratory equipment, and may result in low yield and purity. This work describes an electrochemically controlled "all-in-one" device enabling capturing, loading, and releasing of EVs. The device is composed of a fluidic channel confined within antibody-coated microstructured electrodes. It rapidly isolates EVs with a high level of purity from various biofluids. As a proof of principle, the device is applied to isolate EVs from skin wounds of healthy and diabetic mice. Strikingly, it is found that EVs from healing wounds of diabetic mice are enriched in mitochondrial proteins compared to those of healthy mice. Additionally, the device improves the loading protocol of EVs with polyplexes, and may therefore find applications in nucleic acid delivery. Overall, the electrochemical device can greatly facilitate the development of EVs-based technologies.
Collapse
Affiliation(s)
- Vadim Krivitsky
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Adva Krivitsky
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Valeria Mantella
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Maya Ben-Yehuda Greenwald
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | | | - Jil Betschmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Nicole Zoratto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Kento Schreier
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Sarah Feiss
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Dario Walker
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
40
|
Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol 2023; 601:4873-4893. [PMID: 36398654 PMCID: PMC10192497 DOI: 10.1113/jp282053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 07/28/2023] Open
Abstract
Exosomes are nanosized vesicles that carry biologically diverse molecules for intercellular communication. Researchers have been trying to engineer exosomes for therapeutic purposes by using different approaches to deliver biologically active molecules to the various target cells efficiently. Recent technological advances may allow the biodistribution and pharmacokinetics of exosomes to be modified to meet scientific needs with respect to specific diseases. However, it is essential to determine an exosome's optimal dosage and potential side effects before its clinical use. Significant breakthroughs have been made in recent decades concerning exosome labelling and imaging techniques. These tools provide in situ monitoring of exosome biodistribution and pharmacokinetics and pinpoint targetability. However, because exosomes are nanometres in size and vary significantly in contents, a deeper understanding is required to ensure accurate monitoring before they can be applied in clinical settings. Different research groups have established different approaches to elucidate the roles of exosomes and visualize their spatial properties. This review covers current and emerging strategies for in vivo and in vitro exosome imaging and tracking for potential studies.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Karen Colin
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- UAB School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
41
|
Mun B, Kim R, Jeong H, Kang B, Kim J, Son HY, Lim J, Rho HW, Lim EK, Haam S. An immuno-magnetophoresis-based microfluidic chip to isolate and detect HER2-Positive cancer-derived exosomes via multiple separation. Biosens Bioelectron 2023; 239:115592. [PMID: 37603987 DOI: 10.1016/j.bios.2023.115592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Exosomes are useful for cancer diagnosis and monitoring. However, clinical samples contain impurities that complicate direct analyses of cancer-derived exosomes. Therefore, a microfluidic chip-based magnetically labeled exosome isolation system (MEIS-chip) was developed as a lab-on-a-chip platform for human epidermal growth factor receptor 2 (HER2)-positive cancer diagnosis and monitoring. Various magnetic nanoclusters (MNCs) were synthesized with different degrees of magnetization, and antibodies were introduced to capture HER2-overexpressing and common exosomes using immunoaffinity. MNC-bonded exosomes were separated into different exits according to their magnetization degrees. The MEIS-chip efficiently separated HER2-overexpressing exosomes from common exosomes that did not contain disease-related information. The simultaneous separation of HER2-and non-HER2-overexpressing exosomes provided a means of analyzing high-purity HER2-overexpressing exosomes while minimizing the contribution of non-target exosomes, reducing misdiagnosis risk. Notably, common exosomes served as a negative control for monitoring real-time changes in HER2 expression. These findings support the application of MEIS-chip for cancer diagnosis and treatment monitoring via effective exosome isolation.
Collapse
Affiliation(s)
- Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ryunhyung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyein Jeong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byunghoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Young Son
- Department of Radiology College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaewoo Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Medical Device Development Center, Osong Medical innovation foundation, 123, Osongsaengmyeong-ro, Chungcheongbuk-do, 28160, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
42
|
Huang J, Yuan X, Chen L, Hu B, Wang H, Huang W. The Biology, Pathological Roles of Exosomes and Their Clinical Application in Parkinson's Disease. Neuroscience 2023; 531:24-38. [PMID: 37689233 DOI: 10.1016/j.neuroscience.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a high global incidence and places a great burden on the patient, their family and society. Early diagnosis of PD is the key to hindering the progression process and may enable treatment to partially reverse the disease course. Exosomes are lipid bilayers with a diameter of 40-160 nm (average ∼100 nm), show a cup-shaped structure in transmission electron microscopy (TEM) images, and contain different types of nucleic acids and proteins. On the one hand, several molecules contained in exosomes are correlated with PD pathology. On the other hand, biomarkers based on exosomes have gradually become diagnostic tools in PD. Since exosomes can freely cross the blood-brain barrier, CNS-derived exosomes obtained from the periphery have the potential to be a powerful marker for early PD diagnosis. Of course, exosomes also have great potential as drug delivery systems due to their low toxicity, lipid solubility and immunological inertness. However, there is still a lack of standardized, efficient, and ultrasensitive methods for the isolation of exosomes, hindering the development of effective biomarkers. Therefore, this review describes the biological characteristics of exosomes, exosome extraction methods, and the pathological role, diagnostic/therapeutic value of exosomes in PD.
Collapse
Affiliation(s)
- Juan Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Xingxing Yuan
- The department of Anesthesiology, Hunan Provincial People,s Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lin Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Binbin Hu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Hui Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Wei Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
43
|
Gao Z, Li Z, Hutchins Z, Zhang Q, Zhong W. Enhancing Extracellular Vesicle Analysis by Integration of Large-Volume Sample Stacking in Capillary Electrophoresis with Asymmetrical Flow Field-Flow Fractionation. Anal Chem 2023; 95:15778-15785. [PMID: 37795969 PMCID: PMC10947528 DOI: 10.1021/acs.analchem.3c03303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Extracellular vesicles (EVs) play important roles in cell-cell communication and pathological development. Cargo profiling for the EVs present in clinical specimens can provide valuable insights into their functions and help discover effective EV-based markers for diagnostic and therapeutic purposes. However, the highly abundant and complex matrix components pose significant challenges for specific identification of low-abundance EV cargos. Herein, we combine asymmetrical flow field-flow fractionation (AF4) with large-volume sample stacking and capillary electrophoresis (LVSS/CE), to attain EVs with high purity for downstream protein profiling. This hyphenated system first separates the EVs from the contamination of smaller serum proteins by AF4, and second resolves the EVs from the coeluted, nonvesicular matrix components by CE following LVSS. The optimal LVSS condition permits the injection of 10-fold more EVs into CE compared to the nonstacking condition without compromising separation resolution. Collection and downstream analysis of the highly pure EVs after CE separation were demonstrated in the present work. The high EV purity yields a much-improved labeling efficiency when detected by fluorescent antibodies compared to those collected from the one-dimension separation of AF4, and permits the identification of more EV-specific cargos by LC-MS/MS compared to those isolated by ultracentrifugation (UC), the exoEasy Maxi Kit, and AF4. Our results strongly support that AF4-LVSS/CE can improve EV isolation and cargo analysis, opening up new opportunities for understanding EV functions and their applications in the biomedical fields.
Collapse
Affiliation(s)
- Ziting Gao
- Department of Chemistry, University of California – Riverside, Riverside, CA 92521, U.S.A
| | - Zongbo Li
- Department of Chemistry, University of California – Riverside, Riverside, CA 92521, U.S.A
| | - Zachary Hutchins
- Department of Chemistry, University of California – Riverside, Riverside, CA 92521, U.S.A
| | - Quanqing Zhang
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California – Riverside, Riverside, CA 92521, U.S.A
| | - Wenwan Zhong
- Department of Chemistry, University of California – Riverside, Riverside, CA 92521, U.S.A
| |
Collapse
|
44
|
Meng Y, Zhang Y, Bühler M, Wang S, Asghari M, Stürchler A, Mateescu B, Weiss T, Stavrakis S, deMello AJ. Direct isolation of small extracellular vesicles from human blood using viscoelastic microfluidics. SCIENCE ADVANCES 2023; 9:eadi5296. [PMID: 37801500 PMCID: PMC10558121 DOI: 10.1126/sciadv.adi5296] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Small extracellular vesicles (sEVs; <200 nm) that contain lipids, nucleic acids, and proteins are considered promising biomarkers for a wide variety of diseases. Conventional methods for sEV isolation from blood are incompatible with routine clinical workflows, significantly hampering the utilization of blood-derived sEVs in clinical settings. Here, we present a simple, viscoelastic-based microfluidic platform for label-free isolation of sEVs from human blood. The separation performance of the device is assessed by isolating fluorescent sEVs from whole blood, demonstrating purities and recovery rates of over 97 and 87%, respectively. Significantly, our viscoelastic-based microfluidic method also provides for a remarkable increase in sEV yield compared to gold-standard ultracentrifugation, with proteomic profiles of blood-derived sEVs purified by both methods showing similar protein compositions. To demonstrate the clinical utility of the approach, we isolate sEVs from blood samples of 20 patients with cancer and 20 healthy donors, demonstrating that elevated sEV concentrations can be observed in blood derived from patients with cancer.
Collapse
Affiliation(s)
- Yingchao Meng
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Yanan Zhang
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Marcel Bühler
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Shuchen Wang
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Mohammad Asghari
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Alessandra Stürchler
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Bogdan Mateescu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
45
|
Ma Z, Xu H, Ye BC. Recent progress in quantitative technologies for the analysis of cancer-related exosome proteins. Analyst 2023; 148:4954-4966. [PMID: 37721099 DOI: 10.1039/d3an01228j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Exosomes are a kind of extracellular vesicles, which play a significant role in intercellular communication and molecular exchange. Cancer-derived exosomes are potential and ideal biomarkers for the early diagnosis and treatment monitoring of cancers because of their abundant biological information and contribution to the interaction between cancer cells and the tumor microenvironment. However, there are a number of drawbacks, such as low sensitivity and tedious steps, in conventional detection techniques. Furthermore, exosome quantification is not enough to accurately distinguish cancer patients from healthy individuals. Therefore, developing efficient, accurate, and inexpensive exosome surface protein analysis techniques is necessary and critical. In recent years, a considerable number of researchers have presented novel detection strategies in this field. This review summarizes the recent progress in quantitative technologies for the analysis of cancer-related exosome proteins, mainly including the detection methods based on aptamers, nanomaterials, and antibodies, discusses a roadmap for future developments, and aims to offer an innovative perspective of exosome research.
Collapse
Affiliation(s)
- Zhongwen Ma
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
46
|
Pouraria H, Foudazi R, Houston JP. Exploitation of elasto-inertial fluid flow for the separation of nano-sized particles: Simulating the isolation of extracellular vesicles. Cytometry A 2023; 103:786-795. [PMID: 37334483 PMCID: PMC10592338 DOI: 10.1002/cyto.a.24772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
High throughput and efficient separation/isolation of nanoparticles such as exosomes remain a challenge owing to their small size. Elasto-inertial approaches have a new potential to be leveraged because of the ability to achieve fine control over the forces that act on extremely small particles. That is, the viscoelasticity of fluid that helps carry biological particles such as extracellular vesicles (EVs) and cells through microfluidic channels can be tailored to optimize how different-sized particles move within the chip. In this contribution, we demonstrate through computational fluid dynamics (CFD) simulations the ability to separate nanoparticles with a size comparable to exosomes from larger spheres with physical properties comparable to cells and larger EVs. Our current design makes use of an efficient flow-focusing geometry at the inlet of the device in which two side channels deliver the sample, while the inner channel injects the sheath flow. Such flow configuration results in an efficient focusing of all the particles near the sidewalls of the channel at the inlet. By dissolving a minute amount of polymer in the sample and sheath fluid, the elastic lift force arises and the initially focused particle adjacent to the wall will gradually migrate toward the center of the channel. This results in larger particles experiencing larger elastic forces, thereby migrating faster toward the center of the channel. By adjusting the size and location of the outlets, nanoparticles comparable to the size of exosomes (30-100 nm) will be effectively separated from other particles. Furthermore, the influence of different parameters such as channel geometry, flow rate, and fluid rheology on the separation process is evaluated by computational analysis.
Collapse
Affiliation(s)
- Hassan Pouraria
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico, 88003
| | - Reza Foudazi
- School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019
| | - Jessica P. Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico, 88003
| |
Collapse
|
47
|
Li Z, Lei Z, Cai Y, Cheng DB, Sun T. MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. J Mater Chem B 2023; 11:7804-7833. [PMID: 37539650 DOI: 10.1039/d3tb00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.
Collapse
Affiliation(s)
- Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yilun Cai
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
48
|
Kaur S, Nathani A, Singh M. Exosomal delivery of cannabinoids against cancer. Cancer Lett 2023; 566:216243. [PMID: 37257632 PMCID: PMC10426019 DOI: 10.1016/j.canlet.2023.216243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Exosomes are extracellular vesicles (EVs) originating from endosomes that play a role in cellular communication. These vesicles which mimic the parental cells that release them are promising candidates for targeted drug delivery and therapeutic applications against cancer because of their favorable biocompatibility, specific targeting, low toxicity, and immunogenicity. Currently, Delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and other cannabinoids (e.g., CBG, THCV, CBC), are being explored for their anticancer and anti-proliferative properties. Several mechanisms, including cell cycle arrest, proliferation inhibition, activation of autophagy and apoptosis, inhibition of adhesion, metastasis, and angiogenesis have been proposed for their anticancer activity. EVs could be engineered as cannabinoid delivery systems for tumor-specificity leading to superior anticancer effects. This review discusses current techniques for EV isolation from various sources, characterization and strategies to load them with cannabinoids. More extensively, we culminate information available on different sources of EVs that have anticancer activity, mechanism of action of cannabinoids against various wild type and resistant tumors and role of CBD in histone modifications and cancer epigenetics. We have also enumerated the role of EVs containing cannabinoids against various tumors and in chemotherapy induced neuropathic pain.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
49
|
Yokoi A, Ukai M, Yasui T, Inokuma Y, Hyeon-Deuk K, Matsuzaki J, Yoshida K, Kitagawa M, Chattrairat K, Iida M, Shimada T, Manabe Y, Chang IY, Asano-Inami E, Koya Y, Nawa A, Nakamura K, Kiyono T, Kato T, Hirakawa A, Yoshioka Y, Ochiya T, Hasegawa T, Baba Y, Yamamoto Y, Kajiyama H. Identifying high-grade serous ovarian carcinoma-specific extracellular vesicles by polyketone-coated nanowires. SCIENCE ADVANCES 2023; 9:eade6958. [PMID: 37418532 PMCID: PMC10328412 DOI: 10.1126/sciadv.ade6958] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Cancer cell-derived extracellular vesicles (EVs) have unique protein profiles, making them promising targets as disease biomarkers. High-grade serous ovarian carcinoma (HGSOC) is the deadly subtype of epithelial ovarian cancer, and we aimed to identify HGSOC-specific membrane proteins. Small EVs (sEVs) and medium/large EVs (m/lEVs) from cell lines or patient serum and ascites were analyzed by LC-MS/MS, revealing that both EV subtypes had unique proteomic characteristics. Multivalidation steps identified FRα, Claudin-3, and TACSTD2 as HGSOC-specific sEV proteins, but m/lEV-associated candidates were not identified. In addition, for using a simple-to-use microfluidic device for EV isolation, polyketone-coated nanowires (pNWs) were developed, which efficiently purify sEVs from biofluids. Multiplexed array assays of sEVs isolated by pNW showed specific detectability in cancer patients and predicted clinical status. In summary, the HGSOC-specific marker detection by pNW are a promising platform as clinical biomarkers, and these insights provide detailed proteomic aspects of diverse EVs in HGSOC patients.
Collapse
Affiliation(s)
- Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mayu Ukai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takao Yasui
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yasuhide Inokuma
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kim Hyeon-Deuk
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8502, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kitagawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kunanon Chattrairat
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yumehiro Manabe
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - I-Ya Chang
- Department of Chemistry, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eri Asano-Inami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihiro Koya
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Tomoyasu Kato
- Department of Gynecologic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Akihiko Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Kanagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroaki Kajiyama
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| |
Collapse
|
50
|
Agborbesong E, Bissler J, Li X. Liquid Biopsy at the Frontier of Kidney Diseases: Application of Exosomes in Diagnostics and Therapeutics. Genes (Basel) 2023; 14:1367. [PMID: 37510273 PMCID: PMC10379367 DOI: 10.3390/genes14071367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In the era of precision medicine, liquid biopsy techniques, especially the use of urine analysis, represent a paradigm shift in the identification of biomarkers, with considerable implications for clinical practice in the field of nephrology. In kidney diseases, the use of this non-invasive tool to identify specific and sensitive biomarkers other than plasma creatinine and the glomerular filtration rate is becoming crucial for the diagnosis and assessment of a patient's condition. In recent years, studies have drawn attention to the importance of exosomes for diagnostic and therapeutic purposes in kidney diseases. Exosomes are nano-sized extracellular vesicles with a lipid bilayer structure, composed of a variety of biologically active substances. In the context of kidney diseases, studies have demonstrated that exosomes are valuable carriers of information and are delivery vectors, rendering them appealing candidates as biomarkers and drug delivery vehicles with beneficial therapeutic outcomes for kidney diseases. This review summarizes the applications of exosomes in kidney diseases, emphasizing the current biomarkers of renal diseases identified from urinary exosomes and the therapeutic applications of exosomes with reference to drug delivery and immunomodulation. Finally, we discuss the challenges encountered when using exosomes for therapeutic purposes and how these may affect its clinical applications.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|