1
|
Sultana R, Kamihira M. Multifaceted Heparin: Diverse Applications beyond Anticoagulant Therapy. Pharmaceuticals (Basel) 2024; 17:1362. [PMID: 39459002 PMCID: PMC11510354 DOI: 10.3390/ph17101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heparin, a naturally occurring polysaccharide, has fascinated researchers and clinicians for nearly a century due to its versatile biological properties and has been used for various therapeutic purposes. Discovered in the early 20th century, heparin has been a key therapeutic anticoagulant ever since, and its use is now implemented as a life-saving pharmacological intervention in the management of thrombotic disorders and beyond. In addition to its known anticoagulant properties, heparin has been found to exhibit anti-inflammatory, antiviral, and anti-tumorigenic activities, which may lead to its widespread use in the future as an essential drug against infectious diseases such as COVID-19 and in various medical treatments. Furthermore, recent advancements in nanotechnology, including nano-drug delivery systems and nanomaterials, have significantly enhanced the intrinsic biofunctionalities of heparin. These breakthroughs have paved the way for innovative applications in medicine and therapy, expanding the potential of heparin research. Therefore, this review aims to provide a creation profile of heparin, space for its utilities in therapeutic complications, and future characteristics such as bioengineering and nanotechnology. It also discusses the challenges and opportunities in realizing the full potential of heparin to improve patient outcomes and elevate therapeutic interventions.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
2
|
Yu Y, Song Y, Zhao Y, Wang N, Wei B, Linhardt RJ, Dordick JS, Zhang F, Wang H. Quality control, safety assessment and preparation approaches of low molecular weight heparin. Carbohydr Polym 2024; 339:122216. [PMID: 38823901 DOI: 10.1016/j.carbpol.2024.122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
Low Molecular Weight Heparins (LMWHs) are well-established for use in the prevention and treatment of thrombotic diseases, and as a substitute for unfractionated heparin (UFH) due to their predictable pharmacokinetics and subcutaneous bioavailability. LMWHs are produced by various depolymerization methods from UFH, resulting in heterogeneous compounds with similar biochemical and pharmacological properties. However, the delicate supply chain of UFH and potential contamination from animal sources require new manufacturing approaches for LMWHs. Various LMWH preparation methods are emerging, such as chemical synthesis, enzymatic or chemical depolymerization and chemoenzymatic synthesis. To establish the sameness of active ingredients in both innovator and generic LMWH products, the Food and Drug Administration has implemented a stringent scientific method of equivalence based on physicochemical properties, heparin source material and depolymerization techniques, disaccharide composition and oligosaccharide mapping, biological and biochemical properties, and in vivo pharmacodynamic profiles. In this review, we discuss currently available LMWHs, potential manufacturing methods, and recent progress for manufacturing quality control of these LMWHs.
Collapse
Affiliation(s)
- Yanlei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yue Song
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yunjie Zhao
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Ningning Wang
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China; Binjiang Cyberspace Security Institute of ZJUT, Hangzhou 310056, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China; Binjiang Cyberspace Security Institute of ZJUT, Hangzhou 310056, China.
| |
Collapse
|
3
|
Zhao S, Zhang T, Kan Y, Li H, Li JP. Overview of the current procedures in synthesis of heparin saccharides. Carbohydr Polym 2024; 339:122220. [PMID: 38823902 DOI: 10.1016/j.carbpol.2024.122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Natural heparin, a glycosaminoglycan consisting of repeating hexuronic acid and glucosamine linked by 1 → 4 glycosidic bonds, is the most widely used anticoagulant. To subvert the dependence on animal sourced heparin, alternative methods to produce heparin saccharides, i.e., either heterogenous sugar chains similar to natural heparin, or structurally defined oligosaccharides, are becoming hot subjects. Although the success by chemical synthesis of the pentasaccharide, fondaparinux, encourages to proceed through a chemical approach generating homogenous product, synthesizing larger oligos is still cumbersome and beyond reach so far. Alternatively, the chemoenzymatic pathway exhibited exquisite stereoselectivity of glycosylation and regioselectivity of modification, with the advantage to skip the tedious protection steps unavoidable in chemical synthesis. However, to a scale of drug production needed today is still not in sight. In comparison, a procedure of de novo biosynthesis in an organism could be an ultimate goal. The main purpose of this review is to summarize the current available/developing strategies and techniques, which is expected to provide a comprehensive picture for production of heparin saccharides to replenish or eventually to replace the animal derived products. In chemical and chemoenzymatic approaches, the methodologies are discussed according to the synthesis procedures: building block preparation, chain elongation, and backbone modification.
Collapse
Affiliation(s)
- Siran Zhao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
4
|
Ramadan S, Mayieka M, Pohl NLB, Liu J, Hsieh-Wilson LC, Huang X. Recent advances in the synthesis of extensive libraries of heparan sulfate oligosaccharides for structure-activity relationship studies. Curr Opin Chem Biol 2024; 80:102455. [PMID: 38636446 PMCID: PMC11164629 DOI: 10.1016/j.cbpa.2024.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
Heparan sulfate (HS) is a linear, sulfated and highly negatively-charged polysaccharide that plays important roles in many biological events. As a member of the glycosaminoglycan (GAG) family, HS is commonly found on mammalian cell surfaces and within the extracellular matrix. The structural complexities of natural HS polysaccharides have hampered the comprehension of their biological functions and structure-activity relationships (SARs). Although the sulfation patterns and backbone structures of HS can be major determinants of their biological activities, obtaining significant amounts of pure HS from natural sources for comprehensive SAR studies is challenging. Chemical and enzyme-based synthesis can aid in the production of structurally well-defined HS oligosaccharides. In this review, we discuss recent innovations enabling the syntheses of large libraries of HS and how these libraries can provide insights into the structural preferences of various HS binding proteins.
Collapse
Affiliation(s)
- Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA; Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Morgan Mayieka
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Pongener I, Sletten ET, Danglad-Flores J, Seeberger PH, Miller GJ. Synthesis of a heparan sulfate tetrasaccharide using automated glycan assembly. Org Biomol Chem 2024; 22:1395-1399. [PMID: 38291974 PMCID: PMC10865181 DOI: 10.1039/d3ob01909h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Herein we utilise automated glycan assembly to complete solid-phase synthesis of defined heparan sulfate oligosaccharides, employing challenging D-glucuronate disaccharide donors. Using an orthogonally protected D-GlcN-α-D-GlcA donor, milligram-scale synthesis of a heparan sulfate tetrasaccharide is completed in 18% yield over five steps. Furthermore, orthogonal protecting groups enabled regiospecific on-resin 6-O-sulfation. This methodology provides an important benchmark for the rapid assembly of biologically relevant heparan sulfate sequences.
Collapse
Affiliation(s)
- Imlirenla Pongener
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Gavin J Miller
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
6
|
Nazarzadeh Zare E, Khorsandi D, Zarepour A, Yilmaz H, Agarwal T, Hooshmand S, Mohammadinejad R, Ozdemir F, Sahin O, Adiguzel S, Khan H, Zarrabi A, Sharifi E, Kumar A, Mostafavi E, Kouchehbaghi NH, Mattoli V, Zhang F, Jucaud V, Najafabadi AH, Khademhosseini A. Biomedical applications of engineered heparin-based materials. Bioact Mater 2024; 31:87-118. [PMID: 37609108 PMCID: PMC10440395 DOI: 10.1016/j.bioactmat.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Heparin is a negatively charged polysaccharide with various chain lengths and a hydrophilic backbone. Due to its fascinating chemical and physical properties, nontoxicity, biocompatibility, and biodegradability, heparin has been extensively used in different fields of medicine, such as cardiovascular and hematology. This review highlights recent and future advancements in designing materials based on heparin for various biomedical applications. The physicochemical and mechanical properties, biocompatibility, toxicity, and biodegradability of heparin are discussed. In addition, the applications of heparin-based materials in various biomedical fields, such as drug/gene delivery, tissue engineering, cancer therapy, and biosensors, are reviewed. Finally, challenges, opportunities, and future perspectives in preparing heparin-based materials are summarized.
Collapse
Affiliation(s)
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Hulya Yilmaz
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatma Ozdemir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Onur Sahin
- Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Sevin Adiguzel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D'Oltremare pad. 20, 80125, Naples, Italy
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | | | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| |
Collapse
|
7
|
Liu W, Hu Z, Xu P, Yu B. Synthesis of Anticoagulant Pentasaccharide Fondaparinux via 3,5-Dimethyl-4-(2'-phenylethynylphenyl)phenyl Glycosides. Org Lett 2023; 25:8506-8510. [PMID: 37983186 DOI: 10.1021/acs.orglett.3c03484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Here, we disclosed a convenient procedure for the preparation of EPP [3,5-dimethyl-4-(2'-phenylethynylphenyl)phenyl] glycosides and their application to an effective synthesis of fondaparinux, the clinically approved anticoagulant heparin pentasaccharide. The use of EPP glycosides in the one-pot orthogonal glycosylation for the synthesis of heparin-like tetrasaccharides has also been achieved.
Collapse
Affiliation(s)
- Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Zhifei Hu
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
8
|
Smith RAA, Luo X, Lu X, Tan TC, Le BQ, Zubkova OV, Tyler PC, Nurcombe V, Cool SM. Enhancing BMP-2-mediated osteogenesis with a synthetic heparan sulfate mimetic. BIOMATERIALS ADVANCES 2023; 155:213671. [PMID: 39492001 DOI: 10.1016/j.bioadv.2023.213671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Bone morphogenetic protein 2 (BMP-2) is an osteoinductive protein and a potent inducers of bone formation, playing an essential role during bone fracture repair. Heparan sulfate (HS), a highly charged and linear polysaccharide, is known to interact with and enhance BMP-2 bioactivity. Despite showing potential as a potent adjuvant of the endogenous bone healing response, commercially available HS is derived from animal sources which are less desirable when considering translation into the clinic. In the present study, we screen twenty glycomimetics against BMP-2 to determine if fully synthetic analogues of HS can enhance the bioactivity of BMP-2 in vitro and bone healing in vivo. We found that a four-armed dendrimer harboring oversulfated maltose residues could bind BMP-2 with high affinity, enhance BMP-2 bioactivity in vitro and enhance bone regeneration in vivo. These data suggest fully synthetic glycomimetics are viable alternatives to naturally derived HS and offer an attractive alternative for clinical translation.
Collapse
Affiliation(s)
- Raymond A A Smith
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia.
| | - Xiaoman Luo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Xiaohua Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Tuan Chun Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Bach Q Le
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Olga V Zubkova
- The Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, New Zealand
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, New Zealand
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Orthopaedic Surgery, Yong Yoo Lin School of Medicine, National University of Singapore; School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
9
|
Pongener I, Miller GJ. d-Glucuronate and d-Glucuronate Glycal Acceptors for the Scalable Synthesis of d-GlcN-α-1,4-d-GlcA Disaccharides and Modular Assembly of Heparan Sulfate. J Org Chem 2023; 88:11130-11139. [PMID: 37458063 PMCID: PMC10407932 DOI: 10.1021/acs.joc.3c01108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 07/18/2023]
Abstract
Reported herein is a scalable chemical synthesis of disaccharide building blocks for heparan sulfate (HS) oligosaccharide assembly. The use of d-glucuronate-based acceptors for dehydrative glycosylation with d-glucosamine partners is explored, enabling diastereoselective synthesis of appropriately protected HS disaccharide building blocks (d-GlcN-α-1,4-d-GlcA) on a multigram scale. Isolation and characterization of key donor (1,2 glycal)- and acceptor (ortho-ester, anhydro)-derived side products ensure methodology improvements to reduce their formation; protecting the d-glucuronate acceptor at the anomeric position with a para-methoxyphenyl unit proves optimal. We also introduce glycal uronate acceptors, showing them to be comparative in reactivity to their pyranuronate counterparts. Taken together, this gram-scale access offers the capability to explore the iterative assembly of defined HS sequences containing the d-GlcN-α-1,4-d-GlcA repeat, highlighted by completing this for two tetrasaccharide syntheses.
Collapse
Affiliation(s)
- Imlirenla Pongener
- School of Chemical and Physical Sciences
& Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| | - Gavin J. Miller
- School of Chemical and Physical Sciences
& Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| |
Collapse
|
10
|
Jiang L, Zhang T, Lu H, Li S, Lv K, Tuffour A, Zhang L, Ding K, Li JP, Li H, Liu X. Heparin mimetics as potential intervention for COVID-19 and their bio-manufacturing. Synth Syst Biotechnol 2023; 8:11-19. [PMID: 36313216 PMCID: PMC9595387 DOI: 10.1016/j.synbio.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The COVID-19 pandemic has caused severe health problems worldwide and unprecedented decimation of the global economy. Moreover, after more than 2 years, many populations are still under pressure of infection. Thus, a broader perspective in developing antiviral strategies is still of great importance. Inspired by the observed multiple benefits of heparin in the treatment of thrombosis, the potential of low molecular weight heparin (LMWH) for the treatment of COVID-19 have been explored. Clinical applications found that LMWH decreased the level of inflammatory cytokines in COVID-19 patients, accordingly reducing lethality. Furthermore, several in vitro studies have demonstrated the important roles of heparan sulfate in SARS-CoV-2 infection and the inhibitory effects of heparin and heparin mimetics in viral infection. These clinical observations and designed studies argue for the potential to develop heparin mimetics as anti-SARS-CoV-2 drug candidates. In this review, we summarize the properties of heparin as an anticoagulant and the pharmaceutical possibilities for the treatment of virus infection, focusing on the perspectives of developing heparin mimetics via chemical synthesis, chemoenzymatic synthesis, and bioengineered production by microbial cell factories. The ultimate goal is to pave the eminent need for exploring novel compounds to treat coronavirus infection-caused diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saijuan Li
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Alex Tuffour
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin-Ping Li
- International Research Center for Soft Matter, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Hongmei Li
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Mardhekar S, Subramani B, Samudra P, Srikanth P, Mahida V, Bhoge PR, Toraskar S, Abraham NM, Kikkeri R. Sulfation of Heparan and Chondroitin Sulfate Ligands Enables Cell-Specific Homing of Nanoprobes. Chemistry 2023; 29:e202202622. [PMID: 36325647 PMCID: PMC7616003 DOI: 10.1002/chem.202202622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Demystifying the sulfation code of glycosaminoglycans (GAGs) to induce precise homing of nanoparticles in tumor cells or neurons influences the development of a potential drug- or gene-delivery system. However, GAGs, particularly heparan sulfate (HS) and chondroitin sulfate (CS), are structurally highly heterogeneous, and synthesizing well-defined HS/CS composed nanoparticles is challenging. Here, we decipher how specific sulfation patterns on HS and CS regulate receptor-mediated homing of nanoprobes in primary and secondary cells. We discovered that aggressive cancer cells such as MDA-MB-231 displayed a strong uptake of GAG-nanoprobes compared to mild or moderately aggressive cancer cells. However, there was no selectivity towards the GAG sequences, thus indicating the presence of more than one form of receptor-mediated uptake. However, U87 cells, olfactory bulb, and hippocampal primary neurons showed selective or preferential uptake of CS-E-coated nanoprobes compared to other GAG-nanoprobes. Furthermore, mechanistic studies revealed that the 4,6-O-disulfated-CS nanoprobe used the CD44 and caveolin-dependent endocytosis pathway for uptake. These results could lead to new opportunities to use GAG nanoprobes in nanomedicine.
Collapse
Grants
- SERB/F/9228/2019-2020 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- BT/PR34475/MED/15/210/2020 Department of Biotechnology, Ministry of Science and Technology, India
- SR/WOS-A/CS-72/2019 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- DST/CSRI/2017/271 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- IA/I/14/1/501306 DBT-Wellcome Trust India Alliance
- Wellcome Trust
- IA/I/14/1/501306 The Wellcome Trust DBT India Alliance
- BT/PR21934/NNT/28/1242/2017 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Sandhya Mardhekar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Balamurugan Subramani
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Prasanna Samudra
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Virendrasinh Mahida
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Preeti Ravindra Bhoge
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Suraj Toraskar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Nixon M. Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Raghavendra Kikkeri
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| |
Collapse
|
12
|
Baryal KN, Ramadan S, Su G, Huo C, Zhao Y, Liu J, Hsieh‐Wilson LC, Huang X. Synthesis of a Systematic 64-Membered Heparan Sulfate Tetrasaccharide Library. Angew Chem Int Ed Engl 2023; 62:e202211985. [PMID: 36173931 PMCID: PMC9933061 DOI: 10.1002/anie.202211985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 02/02/2023]
Abstract
Heparan sulfate (HS) has multifaceted biological activities. To date, no libraries of HS oligosaccharides bearing systematically varied sulfation structures are available owing to the challenges in synthesizing a large number of HS oligosaccharides. To overcome the obstacles and expedite the synthesis, a divergent approach was designed, where 64 HS tetrasaccharides covering all possible structures of 2-O-, 6-O- and N-sulfation with the glucosamine-glucuronic acid-glucosamine-iduronic acid backbone were successfully produced from a single strategically protected tetrasaccharide intermediate. This extensive library helped identify the structural requirements for HS sequences to have strong fibroblast growth factor-2 binding but a weak affinity for platelet factor-4. Such a strategy to separate out these two interactions could lead to new HS-based potential therapeutics without the dangerous adverse effect of heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
- Kedar N. Baryal
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
| | - Sherif Ramadan
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
- Chemistry DepartmentFaculty of ScienceBenha UniversityBenhaQaliobiya13518Egypt
| | - Guowei Su
- Glycan Therapeutics617 Hutton StreetRaleighNC 27606USA
| | - Changxin Huo
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
| | - Yuetao Zhao
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
- School of Life SciencesCentral South UniversityChangshaHunan410013China
| | - Jian Liu
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North CarolinaChapel HillNC 27599USA
| | - Linda C. Hsieh‐Wilson
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA 91125USA
| | - Xuefei Huang
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI 48824USA
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI 48824USA
| |
Collapse
|
13
|
Zhang L, Liu Y, Xu Z, Hao T, Wang PG, Zhao W, Li T. Design and Synthesis of Neutralizable Fondaparinux. JACS AU 2022; 2:2791-2799. [PMID: 36590263 PMCID: PMC9795572 DOI: 10.1021/jacsau.2c00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Fondaparinux, a clinically approved anticoagulant pentasaccharide for the treatment of thrombotic diseases, displays better efficacy and biosafety than other heparin-based anticoagulant drugs. However, there is no suitable antidote available for fondaparinux to efficiently manage its potential bleeding risks, thereby precluding its widespread use. Herein, we describe a convergent and stereocontrolled approach to efficiently synthesize an aminopentyl-functionalized pentasaccharide, which is further used to prepare fondaparinux-based biotin conjugates and clusters. Biological activity evaluation demonstrates that the anticoagulant activity of the fondaparinux-based biotin conjugate and trimer is, respectively, neutralized by avidin and protamine as effective antidotes. This work suggests that our synthetic biotin conjugate and trimer have potential for the development of neutralizable and safe anticoagulant drugs.
Collapse
Affiliation(s)
- Liangwei Zhang
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Yating Liu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Zhuojia Xu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhui Hao
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng George Wang
- School
of Medicine, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Wei Zhao
- College
of Pharmacy, Nankai University, Tianjin 300353, China
| | - Tiehai Li
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory
of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Zhang J, Liang L, Yang W, Ramadan S, Baryal K, Huo C, Bernard JJ, Liu J, Hsieh‐Wilson L, Zhang F, Linhardt RJ, Huang X. Expedient Synthesis of a Library of Heparan Sulfate-Like "Head-to-Tail" Linked Multimers for Structure and Activity Relationship Studies. Angew Chem Int Ed Engl 2022; 61:e202209730. [PMID: 36199167 PMCID: PMC9675719 DOI: 10.1002/anie.202209730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Heparan sulfate (HS) plays important roles in many biological processes. The inherent complexity of naturally existing HS has severely hindered the thorough understanding of their structure-activity relationship. To facilitate biological studies, a new strategy has been developed to synthesize a HS-like pseudo-hexasaccharide library, where HS disaccharides were linked in a "head-to-tail" fashion from the reducing end of a disaccharide module to the non-reducing end of a neighboring module. Combinatorial syntheses of 27 HS-like pseudo-hexasaccharides were achieved. This new class of compounds bound with fibroblast growth factor 2 (FGF-2) with similar structure-activity trends as HS oligosaccharides bearing native glycosyl linkages. The ease of synthesis and the ability to mirror natural HS activity trends suggest that the new head-to-tail linked pseudo-oligosaccharides could be an exciting tool to facilitate the understanding of HS biology.
Collapse
Affiliation(s)
- Jicheng Zhang
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Li Liang
- Department of Chemistry & Chemical BiologyCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNY 12180USA
| | - Weizhun Yang
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Sherif Ramadan
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA,Chemistry DepartmentFaculty of ScienceBenha UniversityBenhaQaliobiya13518Egypt
| | - Kedar Baryal
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Chang‐Xin Huo
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Jamie J. Bernard
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMI 48824USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North CarolinaChapel HillNC 27599USA
| | - Linda Hsieh‐Wilson
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA 91125USA
| | - Fuming Zhang
- Department of Chemistry & Chemical BiologyCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNY 12180USA
| | - Robert J. Linhardt
- Department of Chemistry & Chemical BiologyCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNY 12180USA
| | - Xuefei Huang
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA,Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI 48824USA,Department of Biomedical EngineeringMichigan State UniversityEast LansingMI 48824USA
| |
Collapse
|
15
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Dhara D, Dhara A, Murphy PV, Mulard LA. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022; 521:108644. [PMID: 36030632 DOI: 10.1016/j.carres.2022.108644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France
| |
Collapse
|
17
|
Uchimura K, Nishitsuji K, Chiu L, Ohgita T, Saito H, Allain F, Gannedi V, Wong C, Hung S. Design and Synthesis of 6-O-Phosphorylated Heparan Sulfate Oligosaccharides to Inhibit Amyloid β Aggregation. Chembiochem 2022; 23:e202200191. [PMID: 35585797 PMCID: PMC9401075 DOI: 10.1002/cbic.202200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Dysregulation of amyloidogenic proteins and their abnormal processing and deposition in tissues cause systemic and localized amyloidosis. Formation of amyloid β (Aβ) fibrils that deposit as amyloid plaques in Alzheimer's disease (AD) brains is an earliest pathological hallmark. The polysulfated heparan sulfate (HS)/heparin (HP) is one of the non-protein components of Aβ deposits that not only modulates Aβ aggregation, but also acts as a receptor for Aβ fibrils to mediate their cytotoxicity. Interfering with the interaction between HS/HP and Aβ could be a therapeutic strategy to arrest amyloidosis. Here we have synthesized the 6-O-phosphorylated HS/HP oligosaccharides and reported their competitive effects on the inhibition of HP-mediated Aβ fibril formation in vitro using a thioflavin T fluorescence assay and a tapping mode atomic force microscopy.
Collapse
Affiliation(s)
- Kenji Uchimura
- Univ. Lille, CNRSUMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Kazuchika Nishitsuji
- Department of BiochemistryWakayama Medical University811–1 KimiideraWakayama641-8509Japan
| | - Li‐Ting Chiu
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
| | - Takashi Ohgita
- Department of Biophysical ChemistryKyoto Pharmaceutical University, 5Misasagi-Nakauchi-choYamashina-kuKyoto607-8414Japan
| | - Hiroyuki Saito
- Department of Biophysical ChemistryKyoto Pharmaceutical University, 5Misasagi-Nakauchi-choYamashina-kuKyoto607-8414Japan
| | - Fabrice Allain
- Univ. Lille, CNRSUMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | | | - Chi‐Huey Wong
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines Road BCC 338La JollaCA 92037USA
| | - Shang‐Cheng Hung
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
- Department of Applied ScienceNational Taitung University369, Section 2 University RoadTaitung95092Taiwan
| |
Collapse
|
18
|
Chemical synthesis of polysaccharides. Curr Opin Chem Biol 2022; 69:102154. [DOI: 10.1016/j.cbpa.2022.102154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
|
19
|
Tyrikos-Ergas T, Sletten ET, Huang JY, Seeberger PH, Delbianco M. On resin synthesis of sulfated oligosaccharides. Chem Sci 2022; 13:2115-2120. [PMID: 35308866 PMCID: PMC8848854 DOI: 10.1039/d1sc06063e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/29/2022] [Indexed: 01/19/2023] Open
Abstract
Sulfated glycans are involved in many biological processes, making well-defined sulfated oligosaccharides highly sought molecular probes. These compounds are a considerable synthetic challenge, with each oligosaccharide target requiring specific synthetic protocols and extensive purifications steps. Here, we describe a general on resin approach that simplifies the synthesis of sulfated glycans. The oligosaccharide backbone, obtained by Automated Glycan Assembly (AGA), is subjected to regioselective sulfation and hydrolysis of protecting groups. The protocol is compatible with several monosaccharides and allows for multi-sulfation of linear and branched glycans. Seven diverse, biologically relevant sulfated glycans were prepared in good to excellent overall yield.
Collapse
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jhih-Yi Huang
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
20
|
Ramadan S, Su G, Baryal K, Hsieh-Wilson LC, Liu J, Huang X. Automated Solid Phase Assisted Synthesis of a Heparan Sulfate Disaccharide Library. Org Chem Front 2022; 9:2910-2920. [PMID: 36212917 PMCID: PMC9536483 DOI: 10.1039/d2qo00439a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heparan sulfate (HS) regulates a wide range of biological events, including blood coagulation, cancer development, cell differentiation, and viral infections. It is generally recognized that structures of HS can critically...
Collapse
Affiliation(s)
- Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Guowei Su
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, USA
| | - Kedar Baryal
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
21
|
Pongener I, O'Shea C, Wootton H, Watkinson M, Miller GJ. Developments in the Chemical Synthesis of Heparin and Heparan Sulfate. CHEM REC 2021; 21:3238-3255. [PMID: 34523797 DOI: 10.1002/tcr.202100173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Indexed: 11/08/2022]
Abstract
Heparin and heparan sulfate represent key members of the glycosaminoglycan family of carbohydrates and underpin considerable repertoires of biological importance. As such, their efficiency of synthesis represents a key requirement, to further understand and exploit the H/HS structure-to-biological function axis. In this review we focus on chemical approaches to and methodology improvements for the synthesis of these essential sugars (from 2015 onwards). We first consider advances in accessing the heparin-derived pentasaccharide anticoagulant fondaparinux. This is followed by heparan sulfate targets, including key building block synthesis, oligosaccharide construction and chemical sulfation techniques. We end with a consideration of technological improvements to traditional, solution-phase synthesis approaches that are increasingly being utilised.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Conor O'Shea
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Hannah Wootton
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Michael Watkinson
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Gavin J Miller
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| |
Collapse
|
22
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
23
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
24
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
25
|
Jain P, Shanthamurthy CD, Leviatan Ben-Arye S, Woods RJ, Kikkeri R, Padler-Karavani V. Discovery of rare sulfated N-unsubstituted glucosamine based heparan sulfate analogs selectively activating chemokines. Chem Sci 2021; 12:3674-3681. [PMID: 33889380 PMCID: PMC8025211 DOI: 10.1039/d0sc05862a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Achieving selective inhibition of chemokines with structurally well-defined heparan sulfate (HS) oligosaccharides can provide important insights into cancer cell migration and metastasis. However, HS is highly heterogeneous in chemical composition, which limits its therapeutic use. Here, we report the rational design and synthesis of N-unsubstituted (NU) and N-acetylated (NA) heparan sulfate tetrasaccharides that selectively inhibit structurally homologous chemokines. HS analogs were produced by divergent synthesis, where fully protected HS tetrasaccharide precursor was subjected to selective deprotection and regioselectively O-sulfated, and O-phosphorylated to obtain 13 novel HS tetrasaccharides. HS microarray and SPR analysis with a wide range of chemokines revealed the structural significance of sulfation patterns and NU domain in chemokine activities for the first time. Particularly, HT-3,6S-NH revealed selective recognition by CCL2 chemokine. Further systematic interrogation of the role of HT-3,6S-NH in cancer demonstrated an effective blockade of CCL2 and its receptor CCR2 interactions, thereby impairing cancer cell proliferation, migration and invasion, a step towards designing novel drug molecules.
Collapse
Affiliation(s)
- Prashant Jain
- Department of Chemistry , Indian Institute of Science Education and Research , Pune-411008 , India .
| | - Chethan D Shanthamurthy
- Department of Chemistry , Indian Institute of Science Education and Research , Pune-411008 , India .
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology , The Shmunis School of Biomedicine and Cancer Research , The George S. Wise Faculty of Life Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel .
| | - Robert J Woods
- Complex Carbohydrate Research Center , University of Georgia , Athens 30606 , GA , USA
| | - Raghavendra Kikkeri
- Department of Chemistry , Indian Institute of Science Education and Research , Pune-411008 , India .
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology , The Shmunis School of Biomedicine and Cancer Research , The George S. Wise Faculty of Life Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel .
| |
Collapse
|
26
|
Jain P, Shanthamurthy CD, Chaudhary PM, Kikkeri R. Rational designing of glyco-nanovehicles to target cellular heterogeneity. Chem Sci 2021; 12:4021-4027. [PMID: 34163672 PMCID: PMC8179433 DOI: 10.1039/d1sc00140j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aberrant expression of endocytic epidermal growth factor receptors (EGFRs) in cancer cells has emerged as a key target for therapeutic intervention. Here, we describe for the first time a state-of-the-art design for a heparan sulfate (HS) oligosaccharide-based nanovehicle to target EGFR-overexpressed cancer cells in cellular heterogeneity. An ELISA plate IC50 inhibition assay and surface plasma resonance (SPR) binding assay of structurally well-defined HS oligosaccharides showed that 6-O-sulfation (6-O-S) and 6-O-phosphorylation (6-O-P) of HS tetrasaccharides significantly enhanced EGFR cognate growth factor binding. The conjugation of these HS ligands to multivalent fluorescent gold nanoparticles (AuNPs) enabled the specific and efficient targeting of EGFR-overexpressed cancer cells. In addition, this heparinoid-nanovehicle exhibited selective homing to NPs in cancer cells in three-dimensional (3D) coculture spheroids, thus providing a novel target for cancer therapy and diagnostics in the tumor microenvironment (TME). Heparan sulfate oligosaccharide based nanovehicle greatly enhance the selective targeting of cancer cells in tumor microenvironment.![]()
Collapse
Affiliation(s)
- Prashant Jain
- Department of Chemistry, Indian Institute of Science Education and Research Pune-411008 India
| | - Chethan D Shanthamurthy
- Department of Chemistry, Indian Institute of Science Education and Research Pune-411008 India
| | | | - Raghavendra Kikkeri
- Department of Chemistry, Indian Institute of Science Education and Research Pune-411008 India
| |
Collapse
|
27
|
Yu M, Zhang T, Zhang W, Sun Q, Li H, Li JP. Elucidating the Interactions Between Heparin/Heparan Sulfate and SARS-CoV-2-Related Proteins-An Important Strategy for Developing Novel Therapeutics for the COVID-19 Pandemic. Front Mol Biosci 2021; 7:628551. [PMID: 33569392 PMCID: PMC7868326 DOI: 10.3389/fmolb.2020.628551] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to the high mortality and the spread rate, the infectious disease caused by SARS-CoV-2 has become a major threat to public health and social economy, leading to over 70 million infections and 1. 6 million deaths to date. Since there are currently no effective therapeutic or widely available vaccines, it is of urgent need to look for new strategies for the treatment of SARS-CoV-2 infection diseases. Binding of a viral protein onto cell surface heparan sulfate (HS) is generally the first step in a cascade of interaction that is required for viral entry and the initiation of infection. Meanwhile, interactions of selectins and cytokines (e.g., IL-6 and TNF-α) with HS expressed on endothelial cells are crucial in controlling the recruitment of immune cells during inflammation. Thus, structurally defined heparin/HS and their mimetics might serve as potential drugs by competing with cell surface HS for the prevention of viral adhesion and modulation of inflammatory reaction. In this review, we will elaborate coronavirus invasion mechanisms and summarize the latest advances in HS-protein interactions, especially proteins relevant to the process of coronavirus infection and subsequent inflammation. Experimental and computational techniques involved will be emphasized.
Collapse
Affiliation(s)
- Mingjia Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Wei Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Qianyun Sun
- Division of Chemistry, Shandong Institute of Metrology, Jinan, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Jin-ping Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
28
|
Cornil J, Hu Z, Bouchet M, Mulard LA. Multigram synthesis of an orthogonally-protected pentasaccharide for use as a glycan precursor in a Shigella flexneri 3a conjugate vaccine: application to a ready-for-conjugation decasaccharide. Org Chem Front 2021. [DOI: 10.1039/d1qo00761k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fine-tuned catalytic processes facilitating regio- and stereoselective conversions for the large-scale synthesis of a pentasaccharide and its oligomerization into ready-for-conjugation haptens.
Collapse
Affiliation(s)
- Johan Cornil
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| | - Zhaoyu Hu
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| | - Marion Bouchet
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| | - Laurence A. Mulard
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| |
Collapse
|
29
|
Ray B, Schütz M, Mukherjee S, Jana S, Ray S, Marschall M. Exploiting the Amazing Diversity of Natural Source-Derived Polysaccharides: Modern Procedures of Isolation, Engineering, and Optimization of Antiviral Activities. Polymers (Basel) 2020; 13:E136. [PMID: 33396933 PMCID: PMC7794815 DOI: 10.3390/polym13010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring polysaccharide sulfates are highly diverse, owning variations in the backbone structure, linkage pattern and stereochemistry, branching diversity, sulfate content and positions of sulfate group(s). These structural characteristics bring about diverse sulfated polymers with dissimilar negative charge densities and structure-activity relationships. Herein, we start with a short discussion of techniques needed for extraction, purification, chemical sulfation, and structural characterization of polysaccharides. Processes of isolation and sulfation of plant-derived polysaccharides are challenging and usually involve two steps. In this context, we describe an integrated extraction-sulfation procedure that produces polysaccharide sulfates from natural products in one step, thereby generating additional pharmacological activities. Finally, we provide examples of the spectrum of natural source-derived polysaccharides possessing specific features of bioactivity, in particular focusing on current aspects of antiviral drug development and drug-target interaction. Thus, the review presents a detailed view on chemically engineered polysaccharides, especially sulfated derivatives, and underlines their promising biomedical perspectives.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Manfred Marschall
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| |
Collapse
|
30
|
Sun L, Chopra P, Boons GJ. Modular Synthesis of Heparan Sulfate Oligosaccharides Having N-Acetyl and N-Sulfate Moieties. J Org Chem 2020; 85:16082-16098. [DOI: 10.1021/acs.joc.0c01881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lifeng Sun
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
31
|
Ní Cheallaigh A, Guimond SE, Oscarson S, Miller GJ. Chemical synthesis of a sulfated d-glucosamine library and evaluation of cell proliferation capabilities. Carbohydr Res 2020; 495:108085. [PMID: 32807354 DOI: 10.1016/j.carres.2020.108085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Aisling Ní Cheallaigh
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK; Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Scott E Guimond
- School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
32
|
Zhu Q, Shen Z, Chiodo F, Nicolardi S, Molinaro A, Silipo A, Yu B. Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nat Commun 2020; 11:4142. [PMID: 32811831 PMCID: PMC7434892 DOI: 10.1038/s41467-020-17992-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Glycans are involved in various life processes and represent critical targets of biomedical developments. Nevertheless, the accessibility to long glycans with precise structures remains challenging. Here we report on the synthesis of glycans consisting of [→4)-α-Rha-(1 → 3)-β-Man-(1 → ] repeating unit, which are relevant to the O-antigen of Bacteroides vulgatus, a common component of gut microbiota. The optimal combination of assembly strategy, protecting group arrangement, and glycosylation reaction has enabled us to synthesize up to a 128-mer glycan. The synthetic glycans are accurately characterized by advanced NMR and MS approaches, the 3D structures are defined, and their potent binding activity with human DC-SIGN, a receptor associated with the gut lymphoid tissue, is disclosed.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhengnan Shen
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai, 201210, China
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, De Boelelaan 1108, 1081HZ, Amsterdam, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy.
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
33
|
Sheppard DJ, Cameron SA, Tyler PC, Schwörer R. Comparison of disaccharide donors for heparan sulfate synthesis: uronic acids vs. their pyranose equivalents. Org Biomol Chem 2020; 18:4728-4733. [PMID: 32531013 DOI: 10.1039/d0ob00671h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Late oxidation of hexose based building blocks or the use of uronic acid containing building blocks are two complementary strategies in the synthesis of glycosaminoglycans, the latter simplifiying the later stages of the process. Here we report the synthesis and evaluation of various disaccharide donors-uronic acids and their pyranose equivalents-for the synthesis of heparan sulfate, using an established protective group strategy. Hexose based "imidate" type donors perform well in the studied glycosylations, while their corresponding uronate esters fall short; a uronate ester thioglycoside performs equal to, if not better than, a hexose thioglycoside equivalent.
Collapse
Affiliation(s)
- Daniel J Sheppard
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Scott A Cameron
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Peter C Tyler
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Ralf Schwörer
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| |
Collapse
|
34
|
Yang W, Eken Y, Zhang J, Cole LE, Ramadan S, Xu Y, Zhang Z, Liu J, Wilson AK, Huang X. Chemical synthesis of human syndecan-4 glycopeptide bearing O-, N-sulfation and multiple aspartic acids for probing impacts of the glycan chain and the core peptide on biological functions. Chem Sci 2020; 11:6393-6404. [PMID: 34094105 PMCID: PMC8159385 DOI: 10.1039/d0sc01140a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proteoglycans are a family of complex glycoproteins with glycosaminoglycan chains such as heparan sulfate (HS) attached to the core protein backbone. Due to the high structural heterogeneity of HS in nature, it is challenging to decipher the respective roles of the HS chain and the core protein on proteoglycan functions. While the sulfation patterns of HS dictate many activities, the core protein can potentially impact HS functions. In order to decipher this, homogeneous proteoglycan glycopeptides are needed. Herein, we report the first successful synthesis of proteoglycan glycopeptides bearing multiple aspartic acids in the core peptide and O- and N-sulfations in the glycan chain, as exemplified by the syndecan-4 glycopeptides. To overcome the high acid sensitivities of sulfates and base sensitivities of the glycopeptide during synthesis, a new synthetic approach has been developed to produce a sulfated glycan chain on a peptide sequence prone to the formation of aspartimide side products. The availability of the structurally well-defined synthetic glycopeptide enabled the investigation of their biological functions including cytokine, growth factor binding and heparanase inhibition. Interestingly, the glycopeptide exhibited context dependent enhancement or decrease of biological activities compared to the peptide or the glycan alone. The results presented herein suggest that besides varying the sulfation patterns of HS, linking the HS chain to core proteins as in proteoglycans may be an additional approach to modulate biological functions of HS in nature.
Collapse
Affiliation(s)
- Weizhun Yang
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Yigitcan Eken
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Jicheng Zhang
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Logan Emerson Cole
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing MI 48824 USA.,Chemistry Department, Faculty of Science, Benha University Benha Qaliobiya 13518 Egypt
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill NC 27599 USA
| | - Zeren Zhang
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill NC 27599 USA
| | - Angela K Wilson
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing MI 48824 USA.,Department of Biomedical Engineering, Michigan State University East Lansing MI 48824 USA.,Institute for Quantitative Health Science and Engineering, Michigan State University East Lansing MI 48824 USA
| |
Collapse
|
35
|
Anand S, Mardhekar S, Raigawali R, Mohanta N, Jain P, D. Shanthamurthy C, Gnanaprakasam B, Kikkeri R. Continuous-Flow Accelerated Sulfation of Heparan Sulfate Intermediates. Org Lett 2020; 22:3402-3406. [DOI: 10.1021/acs.orglett.0c00878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saurabh Anand
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Rakesh Raigawali
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Nirmala Mohanta
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Prashant Jain
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | | | - Boopathy Gnanaprakasam
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| |
Collapse
|
36
|
Chiu LT, Sabbavarapu NM, Lin WC, Fan CY, Wu CC, Cheng TJR, Wong CH, Hung SC. Trisaccharide Sulfate and Its Sulfonamide as an Effective Substrate and Inhibitor of Human Endo- O-sulfatase-1. J Am Chem Soc 2020; 142:5282-5292. [PMID: 32083852 DOI: 10.1021/jacs.0c00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human endo-O-sulfatases (Sulf-1 and Sulf-2) are extracellular heparan sulfate proteoglycan (HSPG)-specific 6-O-endosulfatases, which regulate a multitude of cell-signaling events through heparan sulfate (HS)-protein interactions and are associated with the onset of osteoarthritis. These endo-O-sulfatases are transported onto the cell surface to liberate the 6-sulfate groups from the internal d-glucosamine residues in the highly sulfated subdomains of HSPGs. In this study, a variety of HS oligosaccharides with different chain lengths and N- and O-sulfation patterns via chemical synthesis were systematically studied about the substrate specificity of human Sulf-1 employing the fluorogenic substrate 4-methylumbelliferyl sulfate (4-MUS) in a competition assay. The trisaccharide sulfate IdoA2S-GlcNS6S-IdoA2S was found to be the minimal-size substrate for Sulf-1, and substitution of the sulfate group at the 6-O position of the d-glucosamine unit with the sulfonamide motif effectively inhibited the Sulf-1 activity with IC50 = 0.53 μM, Ki = 0.36 μM, and KD = 12 nM.
Collapse
Affiliation(s)
- Li-Ting Chiu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, 155, Section 2, Linong Street, Taipei 115, Taiwan
| | | | - Wei-Chen Lin
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chiao-Yuan Fan
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chih-Chung Wu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Ting-Jen Rachel Cheng
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road BCC 338, La Jolla, California 92037, United States
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Department of Applied Science, National Taitung University, 369, Section 2, University Road, Taitung 95092, Taiwan
| |
Collapse
|
37
|
Dvores MP, Çarçabal P, Maître P, Simons JP, Gerber RB. Gas phase dynamics, conformational transitions and spectroscopy of charged saccharides: the oxocarbenium ion, protonated anhydrogalactose and protonated methyl galactopyranoside. Phys Chem Chem Phys 2020; 22:4144-4157. [PMID: 32039431 DOI: 10.1039/c9cp06572e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protonated intermediates are postulated to be involved in the rate determining step of many sugar reactions. This paper presents a study of protonated sugar species, isolated in the gas phase, using a combination of infrared multiple photon dissociation (IRMPD) spectroscopy, classical ab initio molecular dynamics (AIMD) and quantum mechanical vibrational self-consistent field (VSCF) calculations. It provides a likely identification of the reactive intermediate oxocarbenium ion structure in a d-galactosyl system as well as the saccharide pyrolysis product anhydrogalactose (that suggests oxocarbenium ion stabilization), along with the spectrum of the protonated parent species: methyl d-galactopyranoside-H+. Its vibrational fingerprint indicates intramolecular proton sharing. Classical AIMD simulations for galactosyl oxocarbenium ions, conducted in the temperature range ∼300-350 K (using B3LYP potentials on-the-fly) reveal efficient transitions on the picosecond timescale. Multiple conformers are likely to exist under the experimental conditions and along with static VSCF calculations, they have facilitated the identification of the individual structural motifs of the galactosyl oxocarbenium ion and protonated anhydrogalactose ion conformers that contribute to the observed experimental spectra. These results demonstrate the power of experimental IRMPD spectroscopy combined with dynamics simulations and with computational spectroscopy at the anharmonic level to unravel conformer structures of protonated saccharides, and to provide information on their lifetimes.
Collapse
Affiliation(s)
- M P Dvores
- Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel.
| | - P Çarçabal
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - P Maître
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - J P Simons
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK
| | - R B Gerber
- Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel. and Department of Chemistry, University of California Irvine, CA 92697, USA
| |
Collapse
|
38
|
Pan D, Zhang L, Hua Q, Yang Y. Highly convergent synthesis of a β-mannuronic acid alginate hexadecasaccharide. Org Biomol Chem 2019; 17:6174-6177. [PMID: 31168536 DOI: 10.1039/c9ob01254k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution-phase synthesis of poly-β-mannuronic acids still remains unexplored. We report the first synthesis of a β-mannuronic acid alginate hexadecasaccharide representing the longest synthetic polymannuronic acid so far. The highly convergent synthetic approach provides a new avenue to access poly-β-mannuronic acids that can enable the biological evaluation of poly-β-mannuronic acids as potential therapeutics and vaccines.
Collapse
Affiliation(s)
- Dingyi Pan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | |
Collapse
|
39
|
Jeanneret RA, Dalton CE, Gardiner JM. Synthesis of Heparan Sulfate- and Dermatan Sulfate-Related Oligosaccharides via Iterative Chemoselective Glycosylation Exploiting Conformationally Disarmed [2.2.2] l-Iduronic Lactone Thioglycosides. J Org Chem 2019; 84:15063-15078. [PMID: 31674785 DOI: 10.1021/acs.joc.9b01594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heparan sulfate (HS) and dermatan sulfate (DS) are l-iduronic acid containing glycosaminoglycans (GAGs) which are implicated in a number of biological processes and conditions including cancer and viral infection. Chemical synthesis of HS and DS is required to generate structurally defined oligosaccharides for a biological study. Herein, we present a new synthetic approach to HS and DS oligosaccharides using chemoselective glycosylation which relies on a disarmed [2.2.2] l-ido lactone motif. The strategy provides a general approach for iterative-reducing end chain extension, using only shelf-stable thioglycoside building blocks, exploiting a conformational switch to control reactivity, and thus requires no anomeric manipulation steps between glycosylations.
Collapse
Affiliation(s)
- Robin A Jeanneret
- School of Chemistry and Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Charlotte E Dalton
- School of Chemistry and Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - John M Gardiner
- School of Chemistry and Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
40
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
41
|
Brinkø A, Risinger C, Lambert A, Blixt O, Grandjean C, Jensen HH. Combining Click Reactions for the One-Pot Synthesis of Modular Biomolecule Mimetics. Org Lett 2019; 21:7544-7548. [PMID: 31502847 DOI: 10.1021/acs.orglett.9b02811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report on the first combined one-pot use of the two so-called "click reactions": the thiol-ene coupling and the copper-catalyzed alkyne-azide cycloaddition. These reactions were employed in an alternating and one-pot fashion to combine appropriately functionalized monomeric carbohydrate building blocks to create mimics of trisaccharides and tetrasaccharides as single anomers, with only minimal purification necessary. The deprotected oligosaccharide mimics were found to bind both plant lectins and human galectin-3.
Collapse
Affiliation(s)
- Anne Brinkø
- Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C, Denmark
| | - Christian Risinger
- Department of Chemistry, Chemical Biology , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg C, Denmark
| | - Annie Lambert
- Faculté des Sciences et des Techniques, Unité Fonctionnalité et Ingénierie des Protéines (UFIP) , Université de Nantes , UMR CNRS 6286, 2, rue de la Houssinière , BP92208, 44322 Nantes Cedex 3, France
| | - Ola Blixt
- Department of Chemistry, Chemical Biology , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg C, Denmark
| | - Cyrille Grandjean
- Faculté des Sciences et des Techniques, Unité Fonctionnalité et Ingénierie des Protéines (UFIP) , Université de Nantes , UMR CNRS 6286, 2, rue de la Houssinière , BP92208, 44322 Nantes Cedex 3, France
| | - Henrik H Jensen
- Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C, Denmark
| |
Collapse
|
42
|
Cuffaro D, Landi M, D'Andrea F, Guazzelli L. Preparation of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives by aminocyclization of a 1,5-dicarbonyl derivative. Carbohydr Res 2019; 482:107744. [PMID: 31306898 DOI: 10.1016/j.carres.2019.107744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022]
Abstract
Iminosugars are known glycosidase inhibitors which are the subject of drug development efforts against several diseases. The access to structurally-related families of iminosugars is of primary importance for running structure-activity relationship studies. In this work, the double reductive amination (aminocyclization) reaction of a dicarbonyl derivative of the l-arabino series, in turn obtained from lactose, is reported. Different ratios of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives were obtained depending on the amine employed in this transformation which provided an insight into the effects of their structure on the outcome of the reaction. Of particular interest were the results obtained when two enantiomeric amino acids (d-Phe-OMe and l-Phe-OMe) were used, which resulted in the inversion of the reaction stereoselectivity.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy
| | - Martina Landi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy
| | - Felicia D'Andrea
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy.
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy.
| |
Collapse
|
43
|
Zhang X, Dickinson DM, Lin L, Suflita M, Baytas S, Linhardt RJ. Chemoenzymatic synthesis of heparan sulfate tetrasaccharide from a N-acetyl-α-d-glucosamine-O-methylglycoside acceptor. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Budhadev D, Saxby K, Walton J, Davies G, Tyler PC, Schwörer R, Fascione MA. Using automated glycan assembly (AGA) for the practical synthesis of heparan sulfate oligosaccharide precursors. Org Biomol Chem 2019; 17:1817-1821. [PMID: 30543331 DOI: 10.1039/c8ob02756k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report synthesis of complex heparan sulfate oligosaccharide precursors by automated glycan assembly using disaccharide donor building blocks. Rapid access to a hexasaccharide was achieved through iterative solid phase glycosylations on a photolabile resin using Glyconeer™, an automated oligosaccharide synthesiser, followed by photochemical cleavage and glycan purification using simple flash column chromatography.
Collapse
|
45
|
Caputo HE, Straub JE, Grinstaff MW. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem Soc Rev 2019; 48:2338-2365. [DOI: 10.1039/c7cs00593h] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the synthetic methods to sulphated polysaccharides, describes their compositional and structural diversity in regards to activity, and showcases their biomedical applications.
Collapse
Affiliation(s)
| | | | - Mark W. Grinstaff
- Department of Chemistry
- Boston University
- Boston
- USA
- Department of Biomedical Engineering
| |
Collapse
|
46
|
Nath N, Bordoloi P, Barman B, Baishya B, Chaudhari SR. Insight into old and new pure shift nuclear magnetic resonance methods for enantiodiscrimination. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:876-892. [PMID: 29411898 DOI: 10.1002/mrc.4719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Enantiodiscrimination and their quantification using nuclear magnetic resonance (NMR) spectroscopy has always been a subject of great interest. Proton is the nucleus of choice for enantiodiscrimination due to its high sensitivity and ubiquitous presence in nature. Despite its advantages, enantiodiscrimination suffers from extensive signal splitting by the proton-proton scalar couplings, which give complex multiplets that spread over a frequency range of some tens of hertz. These multiplets often overlap, further complicating interpretation of the spectra and quantifications. In the present review, we discuss some of the recent developments in the pure shift 1 H NMR based methods for enantiomer resolution and enantiodiscrimination. We also compare various pure shift methods used for enantiodiscrimination and measurement of enantiomeric excess, considering the fact that conventional 1 H NMR fails to provide any detailed insight.
Collapse
Affiliation(s)
- Nilamoni Nath
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Priyakshi Bordoloi
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Bhaskar Barman
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Bikash Baishya
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, 226014, India
| | - Sachin R Chaudhari
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
47
|
Dey S, Wong CH. Programmable one-pot synthesis of heparin pentasaccharides enabling access to regiodefined sulfate derivatives. Chem Sci 2018; 9:6685-6691. [PMID: 30310602 PMCID: PMC6115620 DOI: 10.1039/c8sc01743c] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/01/2018] [Indexed: 01/17/2023] Open
Abstract
Heparin (H) and heparan sulfate (HS) belong to the glycosaminoglycan (GAG) family of oligosaccharides, and their sequences and sulfation patterns are known to regulate the functions of various proteins in biological processes. Among these, the 6-O-sulfation of HS/H contributes most significantly to the structural diversity and binding interactions. However, the synthesis of HS with defined sulfation patterns remains a major challenge. Herein, we report a highly efficient and programmable one-pot method for the synthesis of protected heparin pentasaccharides using thioglycoside building blocks with optimized relative reactivities to allow the selective deprotection and preparation of regiodefined sulfate derivatives.
Collapse
Affiliation(s)
- Supriya Dey
- Department of Chemistry , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla 92037 , USA
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla 92037 , USA
- The Genomics Research Center , Academia Sinica , No. 128, Academia Road, Section 2 , Taipei , Taiwan .
| |
Collapse
|
48
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
49
|
Zulueta MML, Chyan CL, Hung SC. Structural analysis of synthetic heparan sulfate oligosaccharides with fibroblast growth factors and heparin-binding hemagglutinin. Curr Opin Struct Biol 2018; 50:126-133. [DOI: 10.1016/j.sbi.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
|
50
|
Abronina PI, Zinin AI, Romashin DA, Tereshina VV, Chizhov AO, Kononov LO. Application of a Janus aglycon with dual function in benzyl-free synthesis of spacer-armed oligosaccharide fragments of polysaccharides from rhizobacterium Azospirillum brasilense sp7. Carbohydr Res 2018; 464:28-43. [PMID: 29803733 DOI: 10.1016/j.carres.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
Abstract
Both protective and pre-spacer features of 4-(2-chloroethoxy)phenyl (CEP) aglycon, which belong to the class of Janus aglycons, were engaged in a benzyl-free synthesis of oligosaccharide fragments of polysaccharides from rhizobacterium Azospirillum brasilense sp7. Introduction of α-1,4-linked L-fucose residue was performed using 3,4-di-O-benzoyl-2-O-triisopropylsilyl-α-L-fucopyranosyl N-phenyltrifluoroacetimidate in excellent stereoselectivity and high yields. The obtained deprotected di-, tri- and tetrasaccharides contain 4-(2-azidoethoxy)phenyl (AEP) spacer aglycon, which allows straightforward preparation of neoglycoconjugates that will be used for the study of the role of lipopolysaccharide of rhizobacterium A. brasilense sp7 in plant-microbe symbiosis. The intermediate protected oligosaccharide building blocks with cleavable CEP/AEP aglycons have a strong potential for further application in the synthesis of more complex oligosaccharides.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Denis A Romashin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Valeria V Tereshina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| |
Collapse
|