1
|
Jiang Y, Wu Q, Dang Y, Peng L, Meng L, You C. Untargeted metabolomics unveils critical metabolic signatures in novel phenotypes of acute ischemic stroke. Metab Brain Dis 2025; 40:130. [PMID: 39969622 DOI: 10.1007/s11011-024-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/01/2024] [Indexed: 02/20/2025]
Abstract
This study aimed to identify metabolic footprints associated with distinct phenotypes of acute ischemic stroke (AIS) using untargeted metabolomics. We included 20 samples each from AIS phenotype A (n = 251), B (n = 213), and C (n = 43) groups, along with 20 age- and gender-matched healthy controls (HCs). Plasma metabolic profiles were analyzed using liquid chromatography-mass spectrometry (LC-MS). Weighted gene correlation network analysis (WGCNA) evaluated associations between metabolite clusters and clinical traits, including the National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRS). We identified three, five, and six key differential metabolites for diagnosing phenotypes A, B, and C, respectively, demonstrating high diagnostic performance. These metabolites were focused on fatty acids, sex hormones, amino acids, and their derivatives. WGCNA identified 12 core metabolites involved in phenotype progression. Notably, phenylalanylphenylalanine and phenylalanylleucine were inversely correlated with disease severity and disability. Metabolites related to energy supply and inflammation were common across phenotypes, with additional changes in ionic homeostasis in phenotype A and decreased neurotransmitter release in phenotype C. Biosynthesis of unsaturated fatty acids and the pentose phosphate pathway (PPP) were relevant across all phenotypes, while the folate biosynthesis pathway was linked to phenotype C and clinical scales. Key metabolites, including phenylalanylphenylalanine and phenylalanylleucine, and pathways such as folate biosynthesis, significantly contribute to AIS severity and differentiation of phenotypes. These findings offer new insights into the pathogenesis and mechanisms underlying AIS phenotypes.
Collapse
Affiliation(s)
- Yao Jiang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Qian Wu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yingqiang Dang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Lingling Peng
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ling Meng
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Yu Q, Tian L, Zhang J. Chemoprotective Effect of Myrrhone against Diethylnitrosamine and Ferric Nitrile Induced Renal Cancer via Alteration of HO-1/Nrf2 and TRL4/NF-κB Signaling Pathway. DOKL BIOCHEM BIOPHYS 2025:10.1134/S160767292460091X. [PMID: 39847305 DOI: 10.1134/s160767292460091x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 01/24/2025]
Abstract
. Renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is the primary malignancy affecting the genitourinary system. It represents the majority of kidney cancer cases and is distinguished by its aggressive nature and high mortality rate. The current study investigates the chemoprotective effect of myrrhone against Diethylnitrosamine (DEN) and ferric nitrile (Fe-NTA) induced RCC in rats and elucidates the underlying mechanism. METHODS . Following a single dose of intraperitoneal DEN (200 mg/kg) and a twice-weekly administration of Fe-NTA, rats were administered either an oral dose of myrrhone (5, 10, or 15 mg/kg). The body weights and food intake of the rats were monitored at regular intervals, and the levels of renal cancer markers, antioxidants, inflammatory markers, and other parameters were assessed. Additionally, histopathological studies were conducted on the renal tissues, and the mRNA expression of Bax, Bcl-2, HO-1, SOD2, mtDNA, ATP8, PGC-1α, TRL4, and NF-κB was analyzed. RESULTS . The dosage-dependent administration of myrrhone demonstrated a remarkable suppression of tumor incidence and an improvement in body weight and food intake. Myrrhone markedly decreased the level of ODC, Thymidine [3H] incorporation, and renal parameters such as creatinine, uric acid, BUN, Kim-1, Cysc-C, and LDH. Additionally, myrrhone significantly altered the levels of MDA, GSH, GPx, CAT, and SOD, as well as inflammatory cytokines such as TNF-α, INF-γ, IL-1β, IL-6, and IL-10, and inflammatory parameters such as COX-2, PGE2, TGF-β1, NF-κB, and iNOS. Furthermore, myrrhone significantly decreased the histopathological score and improved the condition of histopathology. Finally, myrrhone significantly altered the mRNA expression of Bax, Bcl-2, HO-1, SOD2, mtDNA, ATP8, PGC-1α, TRL4, and NF-κB. CONCLUSION : The result clearly showed the chemoprotective effect of myrrhone against diethylnitrosamine and ferric nitrile induced Renal Cancer via alteration of HO-1/Nrf2 and TRL4/NF-κB Signaling pathway.
Collapse
Affiliation(s)
- Qian Yu
- Department of Geriatrics, Affiliated Hospital of Hebei University, 071000, Baoding City, Hebei Province, China
| | - Ling Tian
- Hebei Key Laboratory, Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, 071000, Baoding, Hebei, China
| | - Jiwei Zhang
- Affiliated Hospital of Hebei University, 071000, Baoding City, Hebei Province, China.
| |
Collapse
|
3
|
Li Z, Zhang X, Wu H, Ma Z, Liu X, Ma J, Zhang D, Sheng L, Chen X, Zhang S. Hydrangea paniculata coumarins attenuate experimental membranous nephritis by bidirectional interactions with the gut microbiota. Commun Biol 2023; 6:1189. [PMID: 37993541 PMCID: PMC10665342 DOI: 10.1038/s42003-023-05581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Coumarins isolated from Hydrangea paniculata (HP) had a renal protective effect in experimental membranous nephritis (MN), but the mechanisms are not clear. Currently, we investigate whether the modulation of gut dysbiosis by HP contributes to its renal protection. Experimental MN rats were treated with HP for six weeks. Fecal 16S rDNA sequencing and metabolomics were performed. Fecal microbiota transplantation (FMT) was used for the evaluation study. The results demonstrate that deteriorated renal function and gut dysbiosis are found in MN rats, as manifested by a higher Firmicutes/Bacteroidetes ratio and reduced diversity and richness, but both changes were reversed by HP treatment. Reduced gut dysbiosis is correlated with improved colonic integrity and lower endotoxemia in HP-treated rats. HP normalized the abnormal level of fecal metabolites by increasing short-chain fatty acid production and hindering the production of uremic toxin precursors. FMT of HP-treated feces to MN animals moderately reduced endotoxemia and albuminuria. Moreover, major coumarins in HP were only biotransformed into more bioactive 7-hydroxycoumarin by gut microbiota, which strengthened the effect of HP in vivo. Depletion of the gut microbiota partially abolished its renal protective effect. In conclusion, the bidirectional interaction between HP and the gut microbiota contributes to its beneficial effect.
Collapse
Affiliation(s)
- Zhaojun Li
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Xingguang Zhang
- Department of Endocrinology, The seventh medical center of Chinese PLA General Hospital, Beijing, 100070, China
| | - Haijie Wu
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
| | - Zhiling Ma
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
| | - Xikun Liu
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
| | - Jie Ma
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
| | - Dongming Zhang
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
| | - Li Sheng
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| | - Xiaoguang Chen
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| | - Sen Zhang
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| |
Collapse
|
4
|
Yang F, Shi X, Yang W, Gao C, Cui Z, Wang W. Pueraria montana (Kudzu vine) Ameliorate the Inflammation and Oxidative Stress against Fe-NTA Induced Renal Cancer. J Oleo Sci 2022; 71:1481-1492. [PMID: 36089399 DOI: 10.5650/jos.ess22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Renal tissue plays a crucial function in maintaining homeostasis, making it vulnerable to xenobiotic toxicity. Pueraria montana has more beneficial potential against the various diseases and has long history used as a traditional Chinese medicine. But its effect against the renal cancer not scrutinize. The goal of this study is to see if Pueraria montana can protect rats from developing kidney tumors caused by diethylnitrosamine (DEN) and ferric nitrite (Fe-NTA). Wistar rats was selected for the current study and DEN (use as an inducer) and Fe-NTA (promoter) for induction the renal cancer. For 22 weeks, the rats were given orally Pueraria montana (12.5, 25, and 50 mg/kg) treatment. At regular intervals, the body weight and food intake were calculated. The rats were macroscopically evaluated for identification of cancer in the renal tissue. The renal tumor makers, renal parameters, antioxidant enzymes, phase I and II enzymes, inflammatory cytokines and mediators were estimated at end of the experimental study. Pueraria montana treated rats displayed the suppression of renal tumors, incidence of the tumors along with suppression of tumor percentage. Pueraria montana treated rats significantly (p < 0.001) increased body weight and suppressed the renal weight and food intake. It also reduced the level of renal tumor marker ornithine decarboxylase (ODC) and [3H] thymidine incorporation along with suppression of renal parameter such as uric acid, blood urea nitrogen (BUN), urea and creatinine. Pueraria montana treatment significantly (p < 0.001) altered the level of phase enzymes and antioxidant. Pueraria montana treatment significantly (p < 0.001) repressed the level of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and improved the level of interleukin-10 (IL-10). Pueraria montana treatment suppressed the level of prostaglandin (PGE2), cyclooxygenase-2 (COX-2), nuclear kappa B factor (NF-κB) and transforming growth factor beta 1 (TGF-β1). Pueraria montana suppressed the inflammatory necrosis, size the bowman capsules in the renal histopathology. Pueraria montana exhibited the chemoprotective effect via dual mechanism such as suppression of inflammatory reaction and oxidative stress.
Collapse
Affiliation(s)
- Fan Yang
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| | - Xiaoqiang Shi
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| | - Weidong Yang
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| | - Chao Gao
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| | - Zhenyu Cui
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| | - Wentao Wang
- Department of Urology Surgery, Affiliated Hospital of Hebei University
| |
Collapse
|
5
|
Liu Y, Wang F, Zhang D, Li Z. Anti-Inflammatory and Immunomodulatory Effects of Hesperidin against the Ovalbumin-Induced Allergic Rhinitis in Mice. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1026.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Guo X, Wang H, Zheng W, Guo C, Song Q. Chemoprotective Effect of Ginsenoside Against the 1,2-Dimethylhydrazine (DMH) Induced Colorectal Cancer in Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1004.1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Teranishi K. Near-infrared chemiluminescence imaging of superoxide anion production in kidneys with iron 3+-nitrilotriacetate-induced acute renal oxidative stress in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112391. [PMID: 35074679 DOI: 10.1016/j.jphotobiol.2022.112391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Iron-catalyzed oxidative stress generates reactive oxygen species in the kidney and induces oxidative damage including lipid, protein, and DNA modifications which induces renal injury and may lead to cancer. An analysis of oxidative stress dynamics by reactive oxygen species has not been performed non-invasively in real time in intact kidneys and is a significant challenge in biology and medicine. Here, I report that MCLA-800 is a near-infrared chemiluminescent probe that visualizes the dynamics of superoxide anion (O2•-) production and the upstream generation of reactive oxygen species in living rat kidneys suffering acute renal oxidative stress induced by intraperitoneal administration of iron3+-nitrilotriacetate (Fe3+-NTA) as a representative Fe3+ chelate. MCLA-800 was intravenously injected at 250 nmol/kg body weight and immediately transported to the kidneys with the emitting light dependent on O2•- production. The magnitude of O2•- production correlated with the Fe3+-NTA dose. O2•- was continuously produced in the blood stream following Fe3+-NTA injection at 0.15 mmol/kg body weight, while peak production in the renal cortex occurred at 24 h, then decreased to the background level at 72 h. This study clearly revealed the dynamics of Fe3+-NTA-mediated O2•- production in the living kidney by chemiluminescent imaging of O2•- production using MCLA-800.
Collapse
Affiliation(s)
- Katsunori Teranishi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
8
|
Singh D, Yadav E, Kumar V, Verma A. Madhuca longifolia Embedded Silver Nanoparticles Attenuate Diethylnitrosamine (DEN)-Induced Renal Cancer via Regulating Oxidative Stress. Curr Drug Deliv 2021; 18:634-644. [PMID: 32914714 DOI: 10.2174/1567201817666200910154301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Madhuca longifolia has been used for the treatment of renal cancer. Therefore, the current study describes the protective effects of biofabricated silver nanoparticles (MLAg- NPs) using Madhuca longifolia aqueous leaves extract against diethylnitrosamine (DEN) induced Renal Cell Carcinoma (RCC) in rats. METHODS Animals were categorized into five groups and treated with doses of silver nanoparticles for 16 weeks. Antineoplastic effect in renal cancer was dose dependent to control the macroscopical variations when compared to DEN induced group. Significant changes were observed in biochemical parameters and dose graded improvement in the level of antioxidants parameters were accountable for its protective nature. RESULTS Silver nanoparticles in dose dependent manner was effective to modify the raised levels of pro-inflammatory cytokines and inflammatory mediators during renal cancer. Alteration in renal histopathology were also detected in the silver nanoparticles treated group, which show its safety concern. Biofabricated silver nanoparticles (MLAgNPs) using Madhuca longifolia can convey significant chemo-protective effect against renal cancer by suppressing the IL-6, TNF-α and IL-1β by nuclear factor-kappa B (NF-κB) pathway. CONCLUSION Our outcomes implicates that biofabricated MLAgNPs exhibited a chemoprotective potential in the prevention and intervention of RCC.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, Uttar Pradesh, India
| | - Ekta Yadav
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, Uttar Pradesh, India
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, Uttar Pradesh, India
| | - Amita Verma
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, Uttar Pradesh, India
| |
Collapse
|
9
|
Icoglu Aksakal F, Koc K, Geyikoglu F, Karakaya S. Ameliorative effect of umbelliferone in remote organ injury induced by renal ischemia-reperfusion in rats. J Food Biochem 2021; 45:e13628. [PMID: 33502024 DOI: 10.1111/jfbc.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 01/10/2021] [Indexed: 12/01/2022]
Abstract
We evaluated the ameliorative role of umbelliferone in kidney, heart, and lung damage induced by renal ischemia/reperfusion (I/R) injury in rats. Umbelliferone was given orally to rats 60 min before ischemia. Ischemia was induced for 50 min and then reperfusion for 3 hr. The antioxidant enzymes, myeloperoxidase (MPO) activity, malondialdehyde (MDA) content, and cytokine levels in the kidney, heart, and lung were measured by ELISA. Moreover, histopathological changes were monitored. Renal I/R-induced oxidative stress in the organs by decreasing antioxidant enzymes. However, umbelliferone pretreatment enhanced superoxide dismutase (SOD) and glutathione (GSH), levels, reduced MDA and MPO levels. Renal I/R increased in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) levels, and histopathological changes but these effects were inhibited with umbelliferone pretreatment. Furthermore, umbelliferone increased in nitric oxide synthase (eNOS) level under ischemia conditions. Our results indicated that pretreatment of umbelliferone-ameliorated damages in remote organ induced by renal I/R through suppressing oxidative stress and modulating inflammatory responses. PRACTICAL APPLICATIONS: kidney, heart, and lung damages induced by renal I/R in rats was alleviated by umbelliferone. The oral treatment of umbelliferone markedly reversed the oxidative stress, inflammation, and histopathological changes by increasing in the levels of SOD, GSH, and eNOS, decreasing in the levels of MDA, MPO, TNF-α, and IL-6 in distant organ injury induced by renal I/R. This study firstly revealed that umbelliferone has potent antioxidant and anti-inflammatory activity in the remote organ damages caused by renal I/R. Consequently, umbelliferone may be an alternative therapeutic agent for treating renal I/R-induced damages.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Kubra Koc
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Songul Karakaya
- Department of Pharmacognosy, Faculty of Pharmaceutical Botany, Atatürk University, Erzurum, Turkey
| |
Collapse
|
10
|
Roy N, Ghosh B, Roy D, Bhaumik B, Roy MN. Exploring the Inclusion Complex of a Drug (Umbelliferone) with α-Cyclodextrin Optimized by Molecular Docking and Increasing Bioavailability with Minimizing the Doses in Human Body. ACS OMEGA 2020; 5:30243-30251. [PMID: 33251458 PMCID: PMC7689913 DOI: 10.1021/acsomega.0c04716] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/04/2020] [Indexed: 05/10/2023]
Abstract
In this study, umbelliferone and α-cyclodextrin host molecules have been mixed up through a coprecipitation method to prepare a supramolecular complex to provide physical insights into the formation and stability of the inclusion complex (IC). The prepared hybrid was characterized by 1H nuclear magnetic resonance (1H NMR), Fourier transform infrared (FTIR) spectroscopy, electrospray ionization (ESI) mass spectrometry, DSC, and fluorescence spectroscopic studies. Job's plot provides a stoichiometric ratio of 1:1 and the Benesi-Hildebrand double reciprocal plot gives binding constant values using fluorescence spectroscopic titrations and the ESI mass data support the experimental observations. The results of molecular modeling were systematically analyzed to validate the inclusion complexation. In preliminary computational screening, α-cyclodextrin IC of umbelliferone was found to be quite stable based on the docking score, binding free energies, and dynamic simulations. In addition, the results obtained from 1H NMR and FTIR spectroscopy studies supported the inclusion complexation phenomenon. The results obtained from computational studies were found to be consistent with the experimental data to ascertain the encapsulation of umbelliferone into α-cyclodextrin.
Collapse
Affiliation(s)
- Niloy Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Biswajit Ghosh
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Debadrita Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Biswajit Bhaumik
- Department
of Chemistry, Surya Sen Mahavidyalaya, Jalpaiguri 734004, India
| | - Mahendra Nath Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
| |
Collapse
|
11
|
Kundu M, Chatterjee S, Ghosh N, Manna P, Das J, Sil PC. Tumor targeted delivery of umbelliferone via a smart mesoporous silica nanoparticles controlled-release drug delivery system for increased anticancer efficiency. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111239. [PMID: 32806268 DOI: 10.1016/j.msec.2020.111239] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Herein, a mesoporous silica nanoparticle (MSN) based biocompatible, targeted and controlled drug delivery system has been synthesized for tumor tissue-specific drug delivery. Umbelliferone, a natural coumarin derivative was loaded into the pores of MSN and capped with pH-sensitive poly acrylic acid (PAA). For targeted delivery of umbelliferone in tumor tissue, folic acid (FA) was grafted onto the surface of drug-loaded and PAA-coated MSN. The successful construction of the nanohybrid (Umbe@MSN-PAA-FA) was confirmed by performing a series of characterization. The synthesized pH-responsive nanohybrid showed diameter of around 50 nm with overall negative surface charge and drug loading content of 12.56%. In vitro study showed that the nanohybrid caused significant cytotoxicity through the induction of both oxidative stress as well as mitochondrial damage in folate receptor over-expressed in human breast cancer cell, MCF-7 compared with free umbelliferone. In vivo study also exhibited that the nanohybrid effectively reduced tumor growth in tumor-bearing mice compared with free umbelliferone due to the enlarged bioavailability of the drug in tumor tissue. Besides, the nanohybrid did not exhibit any significant sign of systemic toxicity in other vital organs. Together, the study denoted that PAA and FA functionalized MSN controlled-drug delivery system could assist to increase the anticancer potential of umbelliferone.
Collapse
Affiliation(s)
- Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Joydeep Das
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India.
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
12
|
Liang S, Chen Z, Li H, Cang Z, Yin K, Wu M, Luo S. Neuroprotective effect of Umbelliferone against Cerebral ischemia/Reperfusion induced neurological deficits: in-vivo and in-silico studies. J Biomol Struct Dyn 2020; 39:4715-4725. [PMID: 32552356 DOI: 10.1080/07391102.2020.1780153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammatory pathway is the significant marker of neuro-inflammation and plays a significant role in the expansion of cerebral ischemia/reperfusion injury. Umbelliferone (UF), 7-hydroxy coumarin, has been already proved for its anti-inflammatory and anti-oxidative effects against ischemic brain injury in the rodent model, but its underlying pharmacological mechanism for neuro-protection remain unclear. In this study, we try to explore the neuro-protective effect of umbelliferone against ischemia/Reperfusion induced neurological deficits in rats and explore the underlying mechanism. Inserting thread into the middle cerebral artery was used to induce the ischemic stroke model. The rats were treated with the umbelliferone (5, 10 and 20 mg/kg) for 14 days prior to the ischemic stroke. At the end of the experimental study, brain infarction volume, neurological score, brain edema, pro-inflammatory cytokines, inflammatory mediator were estimated in the region of brain and serum. The mRNA expression of Toll-like receptor-4 (TLR4), myeloid differentiation factor 88 (MyD88), Fas and FasL were also estimated at the end of the study. Dose dependently treatment of umbelliferone down-regulated the neurological score, brain infarction, inflammatory mediator (TNF-α, IL-1β, IL-6, COX-2, NF-kB and PGE2) in the serum and brain tissue as compared to I/R induced control group rats. Umbelliferone also reduced the expression of TRL4, MyD88, Fas and FasL as compared to I/R control group rats. Umbelliferone also decreased the level of nuclear factor kappa B (NF-kB) compared to MACO control group rats. Collectively, the obtained result showed that the umbelliferone protected the brain against the ischemic injury in the rats through the inhibition of inflammatory pathway.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sen Liang
- Department of Neurology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing city, Jiangsu, China
| | - Zhaoyao Chen
- Department of Neurology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing city, Jiangsu, China
| | - Hui Li
- Department of Neurology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing city, Jiangsu, China
| | - Zhilan Cang
- Department of Neurology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing city, Jiangsu, China
| | - Kailin Yin
- Department of Neurology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing city, Jiangsu, China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing city, Jiangsu, China
| | - Shouzhen Luo
- Department of Neurology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing city, Jiangsu, China
| |
Collapse
|
13
|
Radiation-synthesis of chitosan/poly (acrylic acid) nanogel for improving the antitumor potential of rutin in hepatocellular carcinoma. Drug Deliv Transl Res 2020; 11:261-278. [PMID: 32488816 DOI: 10.1007/s13346-020-00792-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The current study aimed to investigate the ability of chitosan/poly (acrylic acid) nanogel (CAN) to improve the bioavailability and anticancer potential of rutin. Synthesis of CAN was carried out by gamma radiation-induced polymerization of acrylic acid in an aqueous solution of chitosan. The relationship between the hydrodynamic radius of CAN and the absorbed radiation doses was also investigated. The prepared nanogels were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques, and then, it was used as a nano-drug carrier for rutin. The developed formulation was evaluated for its antitumor activity against chemically induced hepatocarcinoma in rats. The following parameters were measured: aspartate and alanine aminotransferase, alkaline phosphatase, gamma glutamyltransferase, and total bilirubin as liver function test; vascular endothelial growth factor as an angiogenesis marker; α-fetoprotein as a tumor marker; and P53, caspase-3, Bax, and Bcl-2 as apoptosis markers. Histopathological examination was also confirmed. Significant enhanced anti-proliferative, anti-angiogenic, and apoptotic effects were observed for rutin-loaded CAN than free rutin, indicating that this formulation could provide a novel therapeutic approach to serve as a promising agent for treatment of hepatocellular carcinoma. Graphical abstract.
Collapse
|
14
|
Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1675957. [PMID: 32377290 PMCID: PMC7196981 DOI: 10.1155/2020/1675957] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
The Keap1/Nrf2/ARE system is a central defensive mechanism against oxidative stress which plays a key role in the pathogenesis and progression of many diseases. Nrf2 is a redox-sensitive transcription factor controlling a variety of downstream antioxidant and cytodefensive genes. Nrf2 has a powerful anti-inflammatory activity mediated via modulating NF-κB. Therefore, pharmacological activation of Nrf2 is a promising therapeutic strategy for the treatment/prevention of several diseases that are underlined by both oxidative stress and inflammation. Coumarins are natural products with promising pharmacological activities, including antioxidant, anticancer, antimicrobial, and anti-inflammatory efficacies. Coumarins are found in many plants, fungi, and bacteria and have been widely used as complementary and alternative medicines. Some coumarins have shown an ability to activate Nrf2 signaling in different cells and animal models. The present review compiles the research findings of seventeen coumarin derivatives of plant origin (imperatorin, visnagin, urolithin B, urolithin A, scopoletin, esculin, esculetin, umbelliferone, fraxetin, fraxin, daphnetin, anomalin, wedelolactone, glycycoumarin, osthole, hydrangenol, and isoimperatorin) as antioxidant and anti-inflammatory agents, emphasizing the role of Nrf2 activation in their pharmacological activities. Additionally, molecular docking simulations were utilized to investigate the potential binding mode of these coumarins with Keap1 as a strategy to disrupt Keap1/Nrf2 protein-protein interaction and activate Nrf2 signaling.
Collapse
|
15
|
Siddiqi A, Saidullah B, Sultana S. Anti-carcinogenic effect of hesperidin against renal cell carcinoma by targeting COX-2/PGE2 pathway in Wistar rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:1069-1077. [PMID: 30098279 DOI: 10.1002/tox.22626] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The present study was designed to evaluate the protective effects of hesperidin, a flavonoid on DEN initiated and Fe-NTA promoted renal carcinogenesis in Wistar rats. Renal cancer was initiated by a single i.p. injection of DEN (200 mg/kg b.wt.) and promoted with Fe-NTA (9 mg Fe/kg b.wt. i.p.) twice a week for 16 weeks. Rats were simultaneously administered with hesperidin (100 and 200 mg/kg b.wt.) for 16 consecutive weeks. The chemopreventive effect of hesperidin was assessed in terms of antioxidant activities, renal function, PGE2 level, and the expressions of COX-2 and VEGF. Hesperidin decreased the DEN and Fe-NTA induced lipid peroxidation, improved the renal function (by decreasing the levels of BUN, creatinine, and KIM-1) and restored the renal antioxidant armory (GSH, GPx, GR, SOD, and catalase). Hesperidin was also found to decrease the level of PGE2 and downregulate the expressions of COX-2 and VEGF. Histological findings further revealed the protective effects of hesperidin against DEN and Fe-NTA induced kidney damage. The result of our present findings suggest that hesperidin may be a promising modulator in preventing renal cancer possibly by virtue of its ability to alleviate oxidative stress and inhibit COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Aisha Siddiqi
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Bano Saidullah
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Sarwat Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
16
|
Kumar V, Sharma K, Ahmed B, Al-Abbasi FA, Anwar F, Verma A. Deconvoluting the dual hypoglycemic effect of wedelolactone isolated from Wedelia calendulacea: investigation via experimental validation and molecular docking. RSC Adv 2018; 8:18180-18196. [PMID: 35542112 PMCID: PMC9080591 DOI: 10.1039/c7ra12568b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/02/2018] [Indexed: 01/10/2023] Open
Abstract
Wedelia calendulacea has a long history of use in the Indian Ayurvedic System of Medicine for the treatment, prevention, and cure of a diverse range of human diseases such as diabetes obesity, and other metabolic diseases. A wide range of chemical constituents, such as triterpenoid saponin, kauren diterpene, and coumestans, has been isolated from the plant. Conversely, no published literature is available in relation to the isolation of wedelolactone (WEL) for its anti-diabetic effect. The aim of the present study was to isolate the bioactive phyto-constituent from Wedelia calendulacea and to scrutinize the antidiabetic effect with its possible mechanism of action. The structure of the isolated compound was elucidated by different spectroscopy techniques. Proteins, such as dipeptidyl peptidase-4 (DPPIV), glucose transporter 1 (GLUT1), and peroxisome proliferator-activated receptors-γ (PPARγ), were also subjected to in silico docking. Later, this isolated compound was scrutinized against α-glucosidase and α-amylase enzyme activity along with an oral glucose tolerance test (OGTT) for estimation of glucose utilization. Streptozotocin (STZ) was used for the induction of type II diabetes mellitus (DM) in Wistar rats. The rats were divided into different groups and received the WEL (5, 10, and 20 mg kg-1, b.w.) and glibenclamide (2.5 mg kg-1, b.w.) for 28 days. The blood glucose level (BGL), plasma insulin, and body weight were determined at regular time intervals. The serum lipid profile hypolipidemic effect for the different antioxidant markers and hepatic tissue markers were scrutinized along with an inflammatory mediator to deduce the possible mechanism. With the help of spectroscopy techniques, the isolated compound was identified as wedelolactone. In the docking study, WEL showed docking scores of -6.17, -9.43, and -7.66 against DPP4, GLUTI, and PRARY, respectively. WEL showed the inhibition of α-glucosidase (80.65%) and α-amylase (93.83%) and suggested an effect on postprandial hyperglycemia. In the OGTT, WEL significantly (P < 0.001) downregulated the BGL, a marker for better utilization of drugs. In the diabetes model, WEL reduced the BGL and enhanced the plasma insulin and body weight. It also significantly (P < 0.001) modulated the lipid profile; this suggested an anti-hyperlipidemia effect. WEL significantly (P < 0.001) distorted the hepatic tissue, acting as an antioxidant marker in a dose-dependent manner. WEL significantly (P < 0.001) downregulated the C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) level. On the basis of the available results, we can conclude that WEL can be an alternative drug for the treatment of type II DM either by inhibiting the production of inflammatory mediator or by the downregulation of oxidative stress.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences Allahabad Uttar Pradesh India - 211007
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard New Delhi-110062 India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard New Delhi-110062 India
| | - F A Al-Abbasi
- Department of Biochemistry, King Abdulaziz University Jeddah-21589 Kingdom of Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University Jeddah-21589 Kingdom of Saudi Arabia
| | - Amita Verma
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences Allahabad-211007 Uttar Pradesh India
| |
Collapse
|
17
|
Pandey P, Rahman M, Bhatt PC, Beg S, Paul B, Hafeez A, Al-Abbasi FA, Nadeem MS, Baothman O, Anwar F, Kumar V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine (Lond) 2018; 13:849-870. [DOI: 10.2217/nnm-2017-0306] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The present work describes the development of poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) of rutin (RT) for the treatment of hepatocellular carcinoma in rats. Materials & methods: RT-loaded PLGA NPs (RT-PLGA-NPs) were prepared by double emulsion evaporation method. Further these are optimized by Box–Behnken design. PLGA NPs were evaluated for size, polydispersity index, drug-loading capacity, entrapment, gastric stability, in vitro drug release, in vivo preclinical studies and biochemical studies. Results: Preclinical evaluation of RT-PLGA-NPs for anticancer activity through oral route exhibited significant improvement in hepatic, hematologic and renal biochemical parameters. Highly superior activity was observed in regulating oxidative stress and inflammatory markers, antioxidant enzymes, cytokines and inflammatory mediators and their role on plasma membrane ATPases responsible for destruction in liver tissues. Conclusion: Histopathological evaluation indicated reduced incidence of hepatic nodules, necrosis formation, infiltration of inflammatory cells, blood vessel inflammation and cell swelling with RT-PLGA-NP treatment along with considerable downregulation in the levels of proinflammatory cytokines.
Collapse
Affiliation(s)
- Preeti Pandey
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| | - Prakash Chandra Bhatt
- Centre for Advanced Research in Pharmaceutical Sciences, Microbial & Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| | - Sarwar Beg
- Product Development Research, Jubilant Generics Limited, Noida-201301, UP, India
| | - Basudev Paul
- Product Development Research, Jubilant Generics Limited, Noida-201301, UP, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, UP, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| |
Collapse
|
18
|
Pandey P, Bhatt PC, Rahman M, Patel DK, Anwar F, Al-Abbasi F, Verma A, Kumar V. Preclinical renal chemo-protective potential of Prunus amygdalus Batsch seed coat via alteration of multiple molecular pathways. Arch Physiol Biochem 2018; 124:88-96. [PMID: 28835129 DOI: 10.1080/13813455.2017.1364773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prunus amygdalus Batsch (almond) is a classical nutritive traditional Indian medicine. Along with nutritive with anti-oxidant properties, it is, clinically, used in the treatment of various diseases with underlying anti-oxidant mechanism. This study is an effort to scrutinise the renal protective effect of P. amygdalus Batsch or green almond (GA) seed coat extract and its underlying mechanism in animal model of Ferric nitrilotriacetate (Fe-NTA) induced renal cell carcinoma (RCC). RCC was induced in Swiss Albino Wistar rats by intraperitoneal injection of Fe-NTA. The rats were then treated with ethanolic extract of GA (25, 50 and 100 mg/kg per oral) for 22 weeks. Efficacy of GA administration was evaluated by change in biochemical, renal, macroscopical and histopathological parameters and alterations. Additionally, interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inflammatory mediator including prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB) were also observed to explore the possible mechanisms. The oral administration of GA significantly (p < .001) altered the Fe-NTA induced RCC in rats by inhibition of renal nodules, decolourisation of tissues, tumour promoter marker including thymidine 3[H] incorporation, ornithine decarboxylase, renal parameters and anti-oxidant parameters in serum. Additionally, GA treatment significantly (p < .001) down-regulated the IL-6, IL-1β, TNF-α, inflammatory mediators PGE2 and NF-κB in a dose-dependent manner. Histopathology observation supported the renal protective effect of GA by alteration in necrosis, size of Bowman capsules and inflammatory cells. Hence, it can be concluded that GA possesses observable chemo-protective action and effect on Fe-NTA induced RCC via dual inhibition mechanism one by inhibiting free radical generation and second by inhibiting inflammation.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Carcinoma, Renal Cell/diet therapy
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- Dietary Supplements/analysis
- Dietary Supplements/economics
- Ethnopharmacology
- Free Radical Scavengers/administration & dosage
- Free Radical Scavengers/chemistry
- Free Radical Scavengers/pharmacology
- Free Radical Scavengers/therapeutic use
- Inflammation Mediators/blood
- Inflammation Mediators/metabolism
- Kidney Neoplasms/diet therapy
- Kidney Neoplasms/immunology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Male
- Medicine, Ayurvedic
- Necrosis
- Nuts/chemistry
- Nuts/economics
- Plant Epidermis/chemistry
- Plant Extracts/administration & dosage
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Prunus dulcis/chemistry
- Random Allocation
- Rats
- Seeds/chemistry
- Tumor Burden
Collapse
Affiliation(s)
- Preeti Pandey
- a Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences , Allahabad , India
| | - Prakash Chandra Bhatt
- b Centre for Advanced Research in Pharmaceutical Sciences, Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| | - Mahfoozur Rahman
- a Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences , Allahabad , India
| | - Dinesh Kumar Patel
- a Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences , Allahabad , India
| | - Firoz Anwar
- c Department of Biochemistry, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Fahad Al-Abbasi
- c Department of Biochemistry, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Amita Verma
- d Bio-organic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences , Allahabad , India
| | - Vikas Kumar
- a Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences , Allahabad , India
| |
Collapse
|
19
|
Kumar V, Bhatt PC, Rahman M, Al-Abbasi FA, Anwar F, Verma A. Umbelliferon-α-d-glucopyranosyl-(2 I→1 II)-α-Dglucopyranoside ameliorates Diethylnitrosamine induced precancerous lesion development in liver via regulation of inflammation, hyperproliferation and antioxidant at pre-clinical stage. Biomed Pharmacother 2017; 94:834-842. [PMID: 28802237 DOI: 10.1016/j.biopha.2017.07.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022] Open
Abstract
It is well documented that anomalous production of inflammatory proteins linked with most of the toxic expression and genesis of diverse chronic disease including cancer. Diethylnitrosamine (DEN) a well-known hepatotoxin and hepatocarcinogen, can induce oxidative stress and inflammatory reaction in it. Umbelliferone, secondary metabolites, is present in different plants and widely consumed by humans as medicine and food supplements. The aim of the current study was to scrutinize the chemoprotective potential of umbelliferon-α-d-glucopyranosyl-(2I→1II)-α-d-glucopyranoside (UFD) against DEN-induced hepatocellular carcinoma (HCC) in experimental rats. Single intraperitoneal injection of DEN (200mg/kg) was used for induction of HCC in rats and rats were grouped and orally treated with UFD (5, 10 and 20mg/kg) dose for 22 weeks. Parameters under investigation included hepatic, non-hepatic enzymes, oxidative stress, pro-inflammatory cytokines, COX-2 and NF-κB level along with histopathological examination in HCC rats. UFD exerted protective effect via reduction of oxidative stress, liver and non-liver parameters in a dose-dependent manner. It also reduced the expression of TNF-α, IL-1β, IL-6 and COX-2 in diseased rats. Our result revealed the essential repression of the inflammation cascade through modulation of nuclear factor-kappa B (NF-κB) signaling pathway.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India.
| | - Prakash Chandra Bhatt
- Centre for Advanced Research in Pharmaceutical Sciences, Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amita Verma
- Bio-organic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| |
Collapse
|
20
|
Magnolol attenuates the inflammation and apoptosis through the activation of SIRT1 in experimental stroke rats. Pharmacol Rep 2017; 69:642-647. [DOI: 10.1016/j.pharep.2016.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/04/2016] [Accepted: 12/28/2016] [Indexed: 11/23/2022]
|
21
|
Verma A, Singh D, Anwar F, Bhatt PC, Al-Abbasi F, Kumar V. Triterpenoids principle of Wedelia calendulacea attenuated diethynitrosamine-induced hepatocellular carcinoma via down-regulating oxidative stress, inflammation and pathology via NF-kB pathway. Inflammopharmacology 2017; 26:133-146. [DOI: 10.1007/s10787-017-0350-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/15/2017] [Indexed: 02/07/2023]
|
22
|
Afzal M, Kazmi I, Khan R, Rana P, Kumar V, Al-Abbasi FA, Zamzami MA, Anwar F. Thiamine potentiates chemoprotective effects of ibuprofen in DEN induced hepatic cancer via alteration of oxidative stress and inflammatory mechanism. Arch Biochem Biophys 2017; 623-624:58-63. [DOI: 10.1016/j.abb.2017.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022]
|
23
|
Verma A, Ahmed B, Anwar F, Rahman M, Patel DK, Kaithwas G, Rani R, Bhatt PC, Kumar V. Novel glycoside from Wedelia calendulacea inhibits diethyl nitrosamine-induced renal cancer via downregulating the COX-2 and PEG2 through nuclear factor-κB pathway. Inflammopharmacology 2017; 25:159-175. [DOI: 10.1007/s10787-017-0310-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022]
|
24
|
Kumar V, Bhatt PC, Rahman M, Patel DK, Sethi N, Kumar A, Sachan NK, Kaithwas G, Al-Abbasi FA, Anwar F, Verma A. Melastoma malabathricum Linn attenuates complete freund's adjuvant-induced chronic inflammation in Wistar rats via inflammation response. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:510. [PMID: 27927194 PMCID: PMC5142378 DOI: 10.1186/s12906-016-1470-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/19/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Natural products use for arthritis treatment is gaining importance in the medical worldt. Various studies reports medical importance of Melastoma malabathricum Linn. (MM) (Melastomataceae), also known as "putki," has a broad range of health benefits, for its free radical scavenging constituents. The current investigation scrutinizes the antioxidant and anti-inflammatory effect of MM against adjuvant-induced arthritis in experimental rats. METHODS High-performance thin layer chromatography (HPTLC) was used for estimation of phytochemical-constituents present in the MM extract. Protective effect of MM extract in Wistar rats was estimated using CFA-induced model. The rats were divided into different groups with six rats in each group. All animals received oral administration of MM and indomethacin for 28 days. The body weight and arthritic score were scrutinized at regular intervals. At the end of experimental protocol, the rats were sacrificed, and blood samples were used for antioxidant, hematological parameters, pro-inflammatory and inflammatory mediator, respectively. Histopathological observation was used to evaluate the protective effect of MM extract. RESULT & DISCUSSION Current study confirmed the preventive effect of MM against adjuvant-induced paw edema, paw redness and arthritic progression. MM significantly (P < 0.001) modulated the oxidative stress parameters as well as hematological parameter induced by CFA. The result also altered the distorted level of proinflammatory mediators and inflammatory mediator, which further reinforce the implication of MM in CFA induced arthritis. Histological analyses of joints of rats showed a reduction in the synovial hyperplasia and mononuclear infiltration in the MM treated group which provides evidence for the antiarthritic effect of MM. CONCLUSION From above parameters our study states that the MM is capable of restraining the alteration produced via adjuvant-induced arthritis in aminals. The repressing effect of MM could be attributed, at least in part, to antioxidant, hematological and anti-inflammatory effect. Figure Caption: Melastoma Malabathricum Linn Attenuates Complete Freund's Adjuvant-Induced Chronic Inflammation in Wistar rats by Inflammation Response.
Collapse
Affiliation(s)
- Vikas Kumar
- Nautral Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences (Deemed University), Allahabad, -211007, Uttar Pradesh, India.
| | - Prakash Chandra Bhatt
- Centre for Advanced Research in Pharmaceutical Sciences, Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy Jamia Hamdard, New Delhi, 110062, India
| | - Mahfoozur Rahman
- Nautral Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences (Deemed University), Allahabad, -211007, Uttar Pradesh, India
| | - Dinesh Kumar Patel
- Centre for Advanced Research in Pharmaceutical Sciences, Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy Jamia Hamdard, New Delhi, 110062, India
| | - Nikunj Sethi
- University Institute of Pharmacy, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Atul Kumar
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786001, India
| | - Nikhil Kumar Sachan
- University Institute of Pharmacy, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (Central University), Vidya Vihar, Rai Bareli Road, Lucknow, 226025, India
| | - F A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Amita Verma
- Bio-organic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, technology & Sciences (Deemed University), Allahabad, -211007, Uttar Pradesh, India.
| |
Collapse
|
25
|
Verma A, Bhatt PC, Kaithwas G, Sethi N, Rashid M, Singh Y, Rahman M, Al-Abbasi F, Anwar F, Kumar V. Chemomodulatory effect Melastoma Malabathricum Linn against chemically induced renal carcinogenesis rats via attenuation of inflammation, oxidative stress, and early markers of tumor expansion. Inflammopharmacology 2016; 24:233-251. [PMID: 27628241 DOI: 10.1007/s10787-016-0276-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 01/11/2023]
Abstract
Melastoma malabathricum Linn (MM) has high valued for its commercial significance. Indian market (northeast) has great demand for the plants, which extended, its use as a traditional home remedy due to its anti-inflammatory effects. In this study, we scrutinize the therapeutic and protective effect of MM against diethylnitrosamine (DEN) and ferric nitrilotriacetate (Fe-NTA)-induced renal carcinogenesis, renal hyperproliferation, and oxidative stress in rats. Liquid chromatography mass spectroscopy (LC-MS) was used for identification of phytoconstituents. Administration of DEN confirmed the initiation the renal carcinogenesis via enhancing the expansion of tumor incidence. Intraperitoneally, administration of Fe-NTA boost the antioxidant enzymes (phase I), viz., superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and phase II, viz., quinone reductase (QR) and glutathione-S-transferase (GST). It also increased the content of renal lipid peroxidation (LPO), hydrogen peroxidase (H2O2) with decrease content in glutathione content (GSH). It also increased the renal biochemical and non-biochemical parameter. It also confirmed the augment the level of thymidine [3H] incorporation into renal DNA, ornithine decarboxylase (ODC) activity and increased the generation of proinflammatory (TNF-α, IL-6 and IL-β) and inflammatory mediator (PGE2). We also analyzed the macroscopic and histologic of renal tissue. In addition, the effect of phytoconstituent of MM extract was evaluated in silico and free radical scavenging activity against the DPPH and ABTS free radicals. LC-MS confirmed the presence of quercetin >gallic acid in MM extract. Renal carcinogenesis rats treated with MM (100, 250, and 500 mg/kg) confirmed the significantly (P < 0.001) protective effect via reduction the antioxidant (phase I and phase II) enzymes, biochemical parameter and restore the proinflammatory and inflammatory mediator at dose dependent manner. MM altered the ODC and thymidine activity in renal DNA. The chemoprotective effect of MM was confirmed via decreased the renal tumor incidence, which was confirmed by the macroscopic and histopathological observation. Consequently, our result suggests that MM is a potent chemoprotective agent and suppresses DEN+ Fe-NTA-induced renal carcinogenesis, inflammatory reaction, and oxidative stress injury in Wister rats.
Collapse
Affiliation(s)
- Amita Verma
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology and Sciences (Deemed to be University), Allahabad, 211007, Uttar Pradesh, India
| | - Prakash Chandra Bhatt
- Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Center for Advanced Research in Pharmaceutical Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Nikunj Sethi
- University Institute of Pharmacy, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, Uttar Pradesh, India
| | - Mohd Rashid
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology and Sciences (Deemed to be University), Allahabad, 211007, Uttar Pradesh, India
| | - Yashwant Singh
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology and Sciences (Deemed to be University), Allahabad, 211007, Uttar Pradesh, India
| | - Fahad Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology and Sciences (Deemed to be University), Allahabad, 211007, Uttar Pradesh, India.
| |
Collapse
|
26
|
α-Mangostin Mediated Pharmacological Modulation of Hepatic Carbohydrate Metabolism in Diabetes Induced Wistar Rat. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2016.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
27
|
Karthikeyan R, Kanimozhi G, Prasad NR, Agilan B, Ganesan M, Mohana S, Srithar G. 7-Hydroxycoumarin prevents UVB-induced activation of NF-κB and subsequent overexpression of matrix metalloproteinases and inflammatory markers in human dermal fibroblast cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:170-6. [DOI: 10.1016/j.jphotobiol.2016.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 01/29/2023]
|