1
|
Liu B, Gong S, Qiu J, Ejaz W, Thayumanavan S. Synergistic Effects of Polycationic and Polyfluorinated Functionalities for Efficient Intracellular Protein Delivery. Biomacromolecules 2025; 26:2413-2420. [PMID: 40020198 DOI: 10.1021/acs.biomac.4c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Intracellular protein therapy is a promising strategy in biologics, including vaccine development, gene editing, and cancer therapeutics. However, protein-based drug delivery remains a significant challenge, particularly in penetrating cell barriers to reach intracellular targets. Inspired by transport adjuvants, we designed a series of polymeric vectors to achieve efficient functional protein trafficking with low cytotoxicity. With an adequate combination of guanidinium and fluorocarbon functionalities, a synergistic improvement of intracellular delivery is achieved in terms of both high intracellular transport and low cellular toxicity. The observed synergistic outcomes highlight new opportunities for delivery vehicle optimizations of intracellular biologics.
Collapse
|
2
|
Wang Y, Guo J, He Z, Zhou Z, Shi S, Cheng X, Zhang W. Regulating the Chiroptical Expression of Aggregated Solvophobic Core by Solvophilic Segments. Macromol Rapid Commun 2025; 46:e2400178. [PMID: 38683103 DOI: 10.1002/marc.202400178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The investigation of chiral supramolecular stacking is of essential significance for the understanding of the origin of homochirality in nature. Unlike structurally well-defined amphiphilic liposomes, it remains unclear whether the solvophilic segments of the amphiphilic block copolymer play a decisive role in the construction of asymmetric superstructures. Herein, insights are presented into the stacking patterns and morphological regulation in azobenzene-containing block copolymer assemblies solely by modulating the solvophilic chain length. The solvophilic poly(methacrylic acid) (PMAA) segments of different molecular weights could cause multi-mode chirality inversions involving stacking transitions between intra-chain π-π stacking, inter-chain H- and J-aggregation. Furthermore, the length of the solvophilic PMAA also affects the morphology of the chiral supramolecular assemblies; rice grain-like micelles, worms, nanofibers, floccules, and lamellae can be prepared at different solvophilic-solvophobic balance. The comprehensive mechanism is collectively revealed by utilizing various measurement methods, such as including circular dichroism (CD), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). This study highlights the critical importance of fully dissolved solvophilic segments for the chiroptical regulation of the aggregated core, providing new insights into the arrangement of chiral supramolecular structures in polymer systems.
Collapse
Affiliation(s)
- Yuqing Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaying Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenyang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shengyu Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
3
|
Wang L, Kong B, Wang J, Yang G, Wu X, Zang J, Li C, Wang X, Si M, Wang Z, Liu P, Wang Y, Chen H, Liu F, Yang PP, Wang L, Wang H, Xu W. A Novel Targeted Microtubules Transformable Nanopeptide System Yields Strong Anti-Prostate Cancer Effects by Suppressing Nuclear Translocation of Androgen Receptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407826. [PMID: 39313982 DOI: 10.1002/adma.202407826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/06/2024] [Indexed: 09/25/2024]
Abstract
The extended use of androgen deprivation therapy (ADT) may often lead to the progression from castration-sensitive prostate cancer (CSPC) to castration-resistant prostate cancer (CRPC) in prostate cancer. To address this, it is essential to inhibit the nuclear translocation of the androgen receptor (AR) as part of an effective disease-modifying strategy. Microtubules play a central role in facilitating AR nuclear translocation, highlighting their importance as a therapeutic target. In this regard, a designated as the targeted microtubules transformable nanopeptide system (MTN) is developed. This system is designed to disrupt microtubule structure and function through dual-targeting of prostate-specific membrane antigen (PSMA) and β-tubulin. Initially, MTN targets prostate cells via PSMA and then specifically binds to β-tubulin within microtubules, leading to the formation of nanofibers. These nanofibers subsequently induce the polymerization of microtubules, thereby disrupting AR transport. Notably, MTN exhibits efficient and prolonged suppression of prostate cancer across the spectrum from CSPC to CRPC, with a highly favorable safety profile in normal cells. These findings highlight the potential of MTN as a novel and promising approach for comprehensive prostate cancer therapy throughout its entire progression.
Collapse
Affiliation(s)
- Lu Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Bin Kong
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Jiaqi Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiuhai Wu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Jiahui Zang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Cong Li
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Xinyue Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Minggui Si
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Zhijia Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Pan Liu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Yuting Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Huilin Chen
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Feng Liu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
4
|
Buddhiraju HS, Yadav DN, Dey S, Eswar K, Padmakumar A, Rengan AK. Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. ACS APPLIED BIO MATERIALS 2024; 7:4879-4893. [PMID: 37996391 DOI: 10.1021/acsabm.3c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Peptides are ideal biologicals for targeted drug delivery and have also been increasingly employed as theranostic tools in treating various diseases, including cancer, with minimal or no side effects. Owing to their receptor-specificity, peptide-mediated drug delivery aids in targeted drug delivery with better pharmacological biodistribution. Nanostructured self-assembled peptides and peptide-drug conjugates demonstrate enhanced stability and performance and captivating biological effects in comparison with conventional peptides. Moreover, they serve as valuable tools for establishing interfaces between drug carriers and biological systems, enabling the traversal of multiple biological barriers encountered by peptide-drug conjugates on their journeys to their intended targets. Peptide-based drugs play a pivotal role in the field of medicine and hold great promise for addressing a wide range of complex diseases such as cancer and autoimmune disorders. Nanotechnology has revolutionized the fields of medicine, biomedical engineering, biotechnology, and engineering sciences over the past two decades. With the help of nanotechnology, better delivery of peptides to the target site could be achieved by exploiting the small size, increased surface area, and passive targeting ability of the nanocarrier. Furthermore, nanocarriers also ensure safe delivery of the peptide moieties to the target site, protecting them from degradation. Nanobased peptide delivery systems would be of significant importance in the near future for the successful targeted and efficient delivery of peptides. This review focuses on peptide-drug conjugates and nanoparticle-mediated self-assembled peptide delivery systems in cancer therapeutics.
Collapse
Affiliation(s)
- Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Ananya Padmakumar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| |
Collapse
|
5
|
Ye XW, Tian W, Han L, Li YJ, Liu S, Lai WJ, Liu YX, Wang L, Yang PP, Wang H. High-Throughput Screening of pH-Dependent β-sheet Self-Assembling Peptide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307963. [PMID: 38183362 DOI: 10.1002/smll.202307963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/20/2023] [Indexed: 01/08/2024]
Abstract
pH-dependent peptide biomaterials hold tremendous potential for cell delivery and tissue engineering. However, identification of responsive self-assembling sequences with specified secondary structure remains a challenge. In this work, An experimental procedure based on the one-bead one-compound (OBOC) combinatorial library is developed to rapidly screen self-assembling β-sheet peptides at neutral aqueous solution (pH 7.5) and disassemble at weak acidic condition (pH 6.5). Using the hydrophobic fluorescent molecule thioflavin T (ThT) as a probe, resin beads displaying self-assembling peptides show fluorescence under pH 7.5 due to the insertion of ThT into the hydrophobic domain, and are further cultured in pH 6.5 solution. The beads with extinguished fluorescence are selected. Three heptapeptides are identified that can self-assemble into nanofibers or nanoparticles at pH 7.5 and disassemble at pH 6.5. P1 (LVEFRHY) shows a rapid acid response and morphology transformation with pH modulation. Changes in the charges of histidine and hydrophobic phenyl motif of phenylalanine may play important roles in the formation of pH-responsive β-sheet nanofiber. This high-throughput screening method provides an efficient way to identify pH-dependent β-sheet self-assembling peptide and gain insights into structural design of such nanomaterials.
Collapse
Affiliation(s)
- Xin-Wei Ye
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- China Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Tian
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lu Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yi-Jing Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Shan Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Wen-Jia Lai
- Division of Nanotechnology Development, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yi-Xuan Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- China Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Institution, Beijing, 100049, China
| |
Collapse
|
6
|
Sharma RK, Dey G, Banerjee P, Maity JP, Lu CM, Siddique JA, Wang SC, Chatterjee N, Das K, Chen CY. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review. J Mater Chem B 2022; 11:10-32. [PMID: 36484467 DOI: 10.1039/d2tb01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.
Collapse
Affiliation(s)
- Raju Kumar Sharma
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.,Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chung-Ming Lu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Nalonda Chatterjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
7
|
Wang L, Gong X, Qi G, Li Y, Zhang K, Gao YH, Wang D, Cao H, Yang Z. Self-assembling and cellular distribution of a series of transformable peptides. J Mater Chem B 2022; 10:3886-3894. [DOI: 10.1039/d1tb02814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformable peptides (TPs) are biomedical materials with unique structures and diverse functionalities that have drawn great interest in material science and nanomedicine. Here, we design a series of TPs with...
Collapse
|
8
|
Lebedeva G, Kononova S, Kruchinina E, Vlasova E, Gofman I, Bol'shakov M, Romashkova K. Novel hydroxyl‐containing and thermo‐dehydrocyclizable polycondensation polymers for multifunctional materials: Synthesis, properties, application. J Appl Polym Sci 2021. [DOI: 10.1002/app.51978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Galina Lebedeva
- Institute of Macromolecular Compounds Russian Academy of Science (IMC RAS) St. Petersburg Russia
| | - Svetlana Kononova
- Institute of Macromolecular Compounds Russian Academy of Science (IMC RAS) St. Petersburg Russia
- Peter the Great St. Petersburg Polytechnic University (SPbPU) St.Petersburg Russia
| | - Elena Kruchinina
- Institute of Macromolecular Compounds Russian Academy of Science (IMC RAS) St. Petersburg Russia
| | - Elena Vlasova
- Institute of Macromolecular Compounds Russian Academy of Science (IMC RAS) St. Petersburg Russia
| | - Iosif Gofman
- Institute of Macromolecular Compounds Russian Academy of Science (IMC RAS) St. Petersburg Russia
| | - Maxim Bol'shakov
- Institute of Macromolecular Compounds Russian Academy of Science (IMC RAS) St. Petersburg Russia
| | - Kira Romashkova
- Institute of Macromolecular Compounds Russian Academy of Science (IMC RAS) St. Petersburg Russia
| |
Collapse
|
9
|
Janczak J. Supramolecular architecture formed between amidinothiourea and 2-pyridinecarboxylic acid. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Yang PP, Li YJ, Cao Y, Zhang L, Wang JQ, Lai Z, Zhang K, Shorty D, Xiao W, Cao H, Wang L, Wang H, Liu R, Lam KS. Rapid discovery of self-assembling peptides with one-bead one-compound peptide library. Nat Commun 2021; 12:4494. [PMID: 34301935 PMCID: PMC8302598 DOI: 10.1038/s41467-021-24597-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/28/2021] [Indexed: 12/02/2022] Open
Abstract
Self-assembling peptides have shown tremendous potential in the fields of material sciences, nanoscience, and medicine. Because of the vast combinatorial space of even short peptides, identification of self-assembling sequences remains a challenge. Herein, we develop an experimental method to rapidly screen a huge array of peptide sequences for self-assembling property, using the one-bead one-compound (OBOC) combinatorial library method. In this approach, peptides on beads are N-terminally capped with nitro-1,2,3-benzoxadiazole, a hydrophobicity-sensitive fluorescence molecule. Beads displaying self-assembling peptides would fluoresce under aqueous environment. Using this approach, we identify eight pentapeptides, all of which are able to self-assemble into nanoparticles or nanofibers. Some of them are able to interact with and are taken up efficiently by HeLa cells. Intracellular distribution varied among these non-toxic peptidic nanoparticles. This simple screening strategy has enabled rapid identification of self-assembling peptides suitable for the development of nanostructures for various biomedical and material applications. Self-assembling peptides have a range of potential applications but developing self-assembling sequences can be challenging. Here, the authors report on a one-bead one-compound combinatorial library where fluorescence is used to detect the potential for self-assembly and identified candidates are evaluated.
Collapse
Affiliation(s)
- Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Yi-Jing Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, China.,Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yan Cao
- Institute for Advanced Study, Shenzhen University, Guangdong, China
| | - Lu Zhang
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Jia-Qi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | - Ziwei Lai
- Institute for Advanced Study, Shenzhen University, Guangdong, China
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, China.,Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Diedra Shorty
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Hui Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA. .,Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
11
|
Chander S, Kulkarni GT, Dhiman N, Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem 2021; 9:573748. [PMID: 34307293 PMCID: PMC8299995 DOI: 10.3389/fchem.2021.573748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels possess a unique three-dimensional, cross-linked network of polymers capable of absorbing large amounts of water and biological fluids without dissolving. Nanohydrogels (NGs) or nanogels are composed of diverse types of polymers of synthetic or natural origin. Their combination is bound by a chemical covalent bond or is physically cross-linked with non-covalent bonds like electrostatic interactions, hydrophobic interactions, and hydrogen bonding. Its remarkable ability to absorb water or other fluids is mainly attributed to hydrophilic groups like hydroxyl, amide, and sulphate, etc. Natural biomolecules such as protein- or peptide-based nanohydrogels are an important category of hydrogels which possess high biocompatibility and metabolic degradability. The preparation of protein nanohydrogels and the subsequent encapsulation process generally involve use of environment friendly solvents and can be fabricated using different proteins, such as fibroins, albumin, collagen, elastin, gelatin, and lipoprotein, etc. involving emulsion, electrospray, and desolvation methods to name a few. Nanohydrogels are excellent biomaterials with broad applications in the areas of regenerative medicine, tissue engineering, and drug delivery due to certain advantages like biodegradability, biocompatibility, tunable mechanical strength, molecular binding abilities, and customizable responses to certain stimuli like ionic concentration, pH, and temperature. The present review aims to provide an insightful analysis of protein/peptide nanohydrogels including their preparation, biophysiochemical aspects, and applications in diverse disciplines like in drug delivery, immunotherapy, intracellular delivery, nutraceutical delivery, cell adhesion, and wound dressing. Naturally occurring structural proteins that are being explored in protein nanohydrogels, along with their unique properties, are also discussed briefly. Further, the review also covers the advantages, limitations, overview of clinical potential, toxicity aspects, stability issues, and future perspectives of protein nanohydrogels.
Collapse
Affiliation(s)
- Subhash Chander
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| | - Giriraj T. Kulkarni
- Amity Institute of Pharmacy, Amity University, Noida, India
- Gokaraju Rangaraju College of Pharmacy, Hyderabad, India
| | | | - Harsha Kharkwal
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| |
Collapse
|
12
|
Structural and vibrational characterization of 1-(diaminomethylene)-thiouron-1-ium 4-aminobenzoate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
|
14
|
Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 2021; 172:275-295. [PMID: 33450330 PMCID: PMC8107146 DOI: 10.1016/j.addr.2021.01.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023]
Abstract
Hydrogels prepared via self-assembly offer scalable and tunable platforms for drug delivery applications. Molecular-scale self-assembly leverages an interplay of attractive and repulsive forces; drugs and other active molecules can be incorporated into such materials by partitioning in hydrophobic domains, affinity-mediated binding, or covalent integration. Peptides have been widely used as building blocks for self-assembly due to facile synthesis, ease of modification with bioactive molecules, and precise molecular-scale control over material properties through tunable interactions. Additional opportunities are manifest in stimuli-responsive self-assembly for more precise drug action. Hydrogels can likewise be fabricated from macromolecular self-assembly, with both synthetic polymers and biopolymers used to prepare materials with controlled mechanical properties and tunable drug release. These include clinical approaches for solubilization and delivery of hydrophobic drugs. To further enhance mechanical properties of hydrogels prepared through self-assembly, recent work has integrated self-assembly motifs with polymeric networks. For example, double-network hydrogels capture the beneficial properties of both self-assembled and covalent networks. The expanding ability to fabricate complex and precise materials, coupled with an improved understanding of biology, will lead to new classes of hydrogels specifically tailored for drug delivery applications.
Collapse
Affiliation(s)
- Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556, USA.
| | - E Thomas Pashuck
- Lehigh University, Department of Bioengineering, Bethlehem, PA 18015, USA.
| |
Collapse
|
15
|
Post-synthesis nanostructuration of BSA-Capsaicin nanoparticles generated by sucrose excipient. Sci Rep 2021; 11:7549. [PMID: 33824363 PMCID: PMC8024356 DOI: 10.1038/s41598-021-87241-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/25/2021] [Indexed: 01/17/2023] Open
Abstract
In the pharmaceutical industry nano-hydrocolloid systems frequently coalesce or present nanoparticle aggregation after a long storage periods. Besides, the lyophilization process used to dry nanoparticles (NPs) produces loss of their original properties after dispersion. In this work we evaluated the effect on morphology and physicochemical properties of different protective excipients during drying of bovine serum albumin (BSA) NPs loaded with different concentrations of capsaicin. Capsaicin concentrations of 0, 812, 1625, 2437, and 3250 µg mL−1 were used; subsequently, NPs were dried with deionized water (DW), NaCl (DN), sucrose (DS), and not dried (ND). We found that ND, DW, and DN treatments showed a negative effect on the NPs properties; while, DS reduced the aggregation and produced the formation of isolated nanoparticles at higher concentrations of capsaicin (3250 µg mL−1), improving their circular shape, morphometrical parameters, and ζ-potential. The stability of the BSA-capsaicin NPs was associated to complex capsaicin/amino acid/water, in which GLY/GLN, ALA/HIS, ARG, THR, TYR, and Iso/CYS amino acids are involved in the restructuration of capsaicin molecules into the surface of nanoparticles during the drying process. The secondary nanostructuration in the post-synthesis stage can improve the molecular stability of the particles and the capacity of entrapping hydrophobic drugs, like capsaicin.
Collapse
|
16
|
Chakraborty D, Sarkar D, Ghosh AK, Das PK. Lipase sensing by naphthalene diimide based fluorescent organic nanoparticles: a solvent induced manifestation of self-assembly. SOFT MATTER 2021; 17:2170-2180. [PMID: 33448273 DOI: 10.1039/d0sm02056g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The precise control of supramolecular self-assembly is gaining utmost interest for the demanding applications of manifested nano-architecture across the scientific domain. This study delineates the morphological transformation of naphthalene diimide (NDI) derived amphiphiles with varying water content in dimethyl sulfoxide (DMSO) and the selective sensing of lipase using its aggregation-induced emission (AIE) properties. To this end, NDI-based, benzyl alcohol protected alkyl chain (C1, C5, and C10) linked amphiphilic molecules (NDI-1,2,3) were synthesized. Among the synthesized amphiphiles, benzyl ester linked C5 tailored naphthalene diimide (NDI-2) exhibited AIE with an emission maximum at 490 nm in a DMSO-water binary solvent system from fw = 30% and above water content. The fibrous morphology of NDI-2 at fw = 30% got gradually transformed to spherical aggregated particles along with steady increment in the emission intensity upon increasing the amount of water in DMSO. At fw = 99% water in DMSO, complete transformation to fluorescent organic nanoparticles (FONPs) was observed. Microscopic and spectroscopic techniques demonstrated the solvent driven morphological transformation and the AIE property of NDI-2. Moreover, this AIE of NDI-2 FONPs was employed in the selective turn-off sensing of lipase against many other enzymes including esterase, through hydrolysis of a benzyl ester linkage with a limit of detection 10.0 ± 0.8 μg L-1. The NDI-2 FONP also exhibited its lipase sensing efficiency in vitro using a human serum sample.
Collapse
Affiliation(s)
- Debayan Chakraborty
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Deblina Sarkar
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| |
Collapse
|
17
|
Ren H, Li R, Chen Z, Li L, Wang H. Modification Methods and Applications of Self-Assembly Peptides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Chen Z, Zhang K, Fan J, Fan Y, Yang C, Tian W, Li Y, Li W, Zhang J, Wang H, Wang L. In situ construction of ligand nano-network to integrin αvβ3 for angiogenesis inhibition. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Liu Z, Ma M, Yu D, Ren J, Qu X. Target-driven supramolecular self-assembly for selective amyloid-β photooxygenation against Alzheimer's disease. Chem Sci 2020; 11:11003-11008. [PMID: 34094349 PMCID: PMC8162409 DOI: 10.1039/d0sc04984k] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 12/03/2022] Open
Abstract
Photo-oxygenation of β-amyloid (Aβ) has been considered an efficient way to inhibit Aβ aggregation in Alzheimer's disease (AD). However, current photosensitizers cannot simultaneously achieve enhanced blood-brain barrier (BBB) permeability and selective photooxygenation of Aβ, leading to poor therapeutic efficacy, severe off-target toxicity, and substandard bioavailability. Herein, an Aβ target-driven supramolecular self-assembly (PKNPs) with enhanced BBB penetrability and switchable photoactivity is designed and demonstrated to be effective in preventing Aβ aggregation in vivo. PKNPs are prepared by the self-assembly of the Aβ-targeting peptide KLVFF and an FDA-approved porphyrin derivative (5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin). Due to the photothermal effect of PKNPs, the BBB permeability of PKNPs under irradiation is 8.5-fold higher than that of porphyrin alone. Moreover, upon selective interaction with Aβ, PKNPs undergo morphological change from the spherical to the amorphous form, resulting in a smart transformation from photothermal activity to photodynamic activity. Consequently, the disassembled PKNPs can selectively oxygenate Aβ without affecting off-target proteins (insulin, bovine serum albumin, and human serum albumin). The well-designed PKNPs exhibit not only improved BBB permeability but also highly selective Aβ photooxygenation. Furthermore, in vivo experiments demonstrate that PKNPs can alleviate Aβ-induced neurotoxicity and prolong the life span of the commonly used AD transgenic Caenorhabditis elegans CL2006. Our work may open a new path for using supramolecular self-assemblies as switchable phototheranostics for the selective and effective prevention of Aβ aggregation and related neurotoxicity in AD.
Collapse
Affiliation(s)
- Zhenqi Liu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Mengmeng Ma
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Dongqin Yu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Jinsong Ren
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| |
Collapse
|
20
|
Affiliation(s)
- Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
21
|
Yang PP, Zhang K, He PP, Fan Y, Gao XJ, Gao X, Chen ZM, Hou DY, Li Y, Yi Y, Cheng DB, Zhang JP, Shi L, Zhang XZ, Wang L, Wang H. A biomimetic platelet based on assembling peptides initiates artificial coagulation. SCIENCE ADVANCES 2020; 6:eaaz4107. [PMID: 32766439 PMCID: PMC7385434 DOI: 10.1126/sciadv.aaz4107] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/18/2020] [Indexed: 05/16/2023]
Abstract
Platelets play a critical role in the regulation of coagulation, one of the essential processes in life, attracting great attention. However, mimicking platelets for in vivo artificial coagulation is still a great challenge due to the complexity of the process. Here, we design platelet-like nanoparticles (pNPs) based on self-assembled peptides that initiate coagulation and form clots in blood vessels. The pNPs first bind specifically to a membrane glycoprotein (i.e., CD105) overexpressed on angiogenetic endothelial cells in the tumor site and simultaneously transform into activated platelet-like nanofibers (apNFs) through ligand-receptor interactions. Next, the apNFs expose more binding sites and recruit and activate additional pNPs, forming artificial clots in both phantom and animal models. The pNPs are proven to be safe in mice without systemic coagulation. The self-assembling peptides mimic platelets and achieve artificial coagulation in vivo, thus providing a promising therapeutic strategy for tumors.
Collapse
Affiliation(s)
- Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ping-Ping He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Yu Fan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Xuejiao J. Gao
- Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Xingfa Gao
- Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zi-Ming Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Yuan Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Dong-Bing Cheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Jing-Ping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Lazzari F, Manfredi A, Alongi J, Ganazzoli F, Vasile F, Raffaini G, Ferruti P, Ranucci E. Hydrogen Bonding in a l-Glutamine-Based Polyamidoamino Acid and its pH-Dependent Self-Ordered Coil Conformation. Polymers (Basel) 2020; 12:E881. [PMID: 32290338 PMCID: PMC7240574 DOI: 10.3390/polym12040881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
This paper reports on synthesis, acid-base properties, and self-structuring in water of a chiral polyamidoamino acid, M-l-Gln, obtained from the polyaddition of N,N'-methylenebisacrylamide with l-glutamine, with the potential of establishing hydrogen bonds through its prim-amide pendants. The M-l-Gln showed pH-responsive circular dichroism spectra, revealing ordered conformations. Structuring was nearly insensitive to ionic strength but sensitive to denaturing agents. The NMR diffusion studies were consistent with a population of unimolecular nanoparticles thus excluding aggregation. The M-l-Gln had the highest molecular weight and hydrodynamic radius among all polyamidoamino acids described. Possibly, transient hydrogen bonds between l-glutamine molecules and M-l-Gln growing chains facilitated the polyaddition reaction. Theoretical modeling showed that M-l-Gln assumed pH-dependent self-ordered coil conformations with main chain transoid arrangements reminiscent of the protein hairpin motif owing to intramolecular dipole moments and hydrogen bonds. The latter were most numerous at the isoelectric point (pH 4.5), where they mainly involved even topologically distant main chain amide N-H and side chain amide C=O brought to proximity by structuring. Hydrogen bonds at pH 4.5 were also suggested by variable temperature NMR. The 2D NOESY experiments at pH 4.5 confirmed the formation of compact structures through the analysis of the main chain/side chain hydrogen contacts, in line with MD simulations.
Collapse
Affiliation(s)
- Federica Lazzari
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (F.L.); (A.M.); (J.A.); (F.V.)
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (F.L.); (A.M.); (J.A.); (F.V.)
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (F.L.); (A.M.); (J.A.); (F.V.)
| | - Fabio Ganazzoli
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta” Politecnico di Milano, Piazza Leonardo da Vinci 32, 20131 Milano, Italy;
| | - Francesca Vasile
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (F.L.); (A.M.); (J.A.); (F.V.)
| | - Giuseppina Raffaini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta” Politecnico di Milano, Piazza Leonardo da Vinci 32, 20131 Milano, Italy;
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (F.L.); (A.M.); (J.A.); (F.V.)
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (F.L.); (A.M.); (J.A.); (F.V.)
| |
Collapse
|
23
|
Guo RC, Zhang XH, Ji L, Wei ZJ, Duan ZY, Qiao ZY, Wang H. Recent progress of therapeutic peptide based nanomaterials: from synthesis and self-assembly to cancer treatment. Biomater Sci 2020; 8:6175-6189. [DOI: 10.1039/d0bm01358g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review has described the synthesis, self-assembly and the anti-cancer application of therapeutic peptides and their conjugates, particularly polymer–peptide conjugates (PPCs).
Collapse
Affiliation(s)
- Ruo-Chen Guo
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Lei Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Zi-Jin Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| |
Collapse
|
24
|
Wang Q, Jiang N, Fu B, Huang F, Liu J. Self-assembling peptide-based nanodrug delivery systems. Biomater Sci 2019; 7:4888-4911. [PMID: 31509120 DOI: 10.1039/c9bm01212e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Self-assembling peptide-based nanodrug delivery systems (NDDs), consisting of naturally occurring amino acids, not only share the advantages of traditional nanomedicine but also possess the unique properties of excellent biocompatibility, biodegradability, flexible responsiveness, specific biological function, and synthetic feasibility. Physical methods, enzymatic reaction, chemical reaction, and biosurface induction can yield versatile peptide-based NDDs; flexible responsiveness is their main advantage. Different functional peptides and abundant covalent modifications endow such systems with precise controllability and multifunctionality. Inspired by the above merits, researchers have taken advantage of the self-assembling peptide-based NDDs and achieved the accurate delivery of drugs to the lesion site. The present review outlines the methods for designing self-assembling peptide-based NDDs for small-molecule drugs, with an emphasis on the different drug delivery strategies and their applications in using peptides and peptide conjugates.
Collapse
Affiliation(s)
- Qian Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Nan Jiang
- Tianjin chest hospital, Tianjin 300051, P. R. China
| | - Bo Fu
- Tianjin chest hospital, Tianjin 300051, P. R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China. and Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
25
|
Hupfer ML, Herrmann‐Westendorf F, Kaufmann M, Weiß D, Beckert R, Dietzek B, Presselt M. Autonomous Supramolecular Interface Self‐Healing Monitored by Restoration of UV/Vis Absorption Spectra of Self‐Assembled Thiazole Layers. Chemistry 2019; 25:8630-8634. [DOI: 10.1002/chem.201901549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Maximilian L. Hupfer
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Albert-Einstein-Str. 9 07745 Jena Germany
| | - Felix Herrmann‐Westendorf
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Albert-Einstein-Str. 9 07745 Jena Germany
| | - Martin Kaufmann
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Institute of Organic and Macromolecular ChemistryFriedrich Schiller University Jena Humboldstraße 10 07743 Jena Germany
| | - Dieter Weiß
- Institute of Organic and Macromolecular ChemistryFriedrich Schiller University Jena Humboldstraße 10 07743 Jena Germany
| | - Rainer Beckert
- Institute of Organic and Macromolecular ChemistryFriedrich Schiller University Jena Humboldstraße 10 07743 Jena Germany
| | - Benjamin Dietzek
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Albert-Einstein-Str. 9 07745 Jena Germany
| | - Martin Presselt
- Institute of Physical ChemistryFriedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Albert-Einstein-Str. 9 07745 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
- sciclus GmbH & Co. KG Moritz-von-Rohr-Str. 1a 07745 Jena Germany
| |
Collapse
|
26
|
He PP, Li XD, Wang L, Wang H. Bispyrene-Based Self-Assembled Nanomaterials: In Vivo Self-Assembly, Transformation, and Biomedical Effects. Acc Chem Res 2019; 52:367-378. [PMID: 30653298 DOI: 10.1021/acs.accounts.8b00398] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Self-assembled nanomaterials show potential high efficiency as theranostic agents for high-performance imaging and therapy. However, superstructures and properties of preassembled nanomaterials are somewhat compromised under complicated physiological conditions. Given the advantages of the dynamic nature and adaptive behavior of self-assembly systems, we propose an "in vivo self-assembly" strategy for in situ construction of nanomaterials in living objects. For the proof-of-concept study of in vivo self-assembly, we developed a bispyrene (BP) molecule as a multifunctional building block. BP molecules show nonfluorescence in the monomeric state. Quantum-chemical calculations indicate that BP forms twisted intramolecular charge transfer states, which are separated into two orthogonal units, preventing the fluorescence emission. Interestingly, the typical excimeric emission of BP is observed with the formation of J-type aggregates, as confirmed by single-crystal X-ray diffraction. Packing of the BP molecules generates parallel pyrene units that interact with adjacent ones in a slipped face-to-face fashion through intermolecular π-π interactions. BP and/or its amphiphilic derivatives are capable of self-aggregating into nanoparticles (NPs) in aqueous solution because of the hydrophobic and π-π interactions of BP. Upon specific biological stimuli, BP NPs can be transformed into variable self-assembled superstructures. Importantly, the self-assembled BP NPs exhibit turn-on fluorescence signals that can be used to monitor the self-assembly/disassembly process in vitro and in vivo. On the basis of the photophysical properties of BP and its aggregates, we synthesized a series of designed BP derivatives as building blocks for in situ construction of functional nanomaterials for bioimaging and/or therapeutics. We observed several new biomedical effects, e.g., (i) the assembly/aggregation-induced retention (AIR) effect, which shows improved accumulation and retention of bioactive nanomaterials in the regions of interests; (ii) the transformation-induced surface adhesion (TISA) effect, which means the BP NPs transform into nanofibers (NFs) on cell surfaces upon binding with specific receptors, which leads to less uptake of BP NPs by cells via traditional endocytosis pathway; and (iii) transformation of the BP NPs into NFs in the tumor microenvironment, showing high accumulation and long-term retention, revealing the transformation-enhanced accumulation and retention (TEAR) effect. In this Account, we summarize the fluorescence property and emission mechanism of BP building blocks upon aggregation in the biological environment. Moreover, BP-derived compounds used for in vivo self-assembly and transformation are introduced involving modulation strategies. Subsequently, unexpected biomedical effects and applications for theranostics of BP based nanomaterials are discussed. We finally conclude with an outlook toward future developments of BP-based self-assembled nanomaterials.
Collapse
Affiliation(s)
- Ping-Ping He
- Key Laboratory of Chemistry and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, 182 Minzu Road, Hongshan District, Wuhan, Hubei 430074, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China
| | - Xiang-Dan Li
- Key Laboratory of Chemistry and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, 182 Minzu Road, Hongshan District, Wuhan, Hubei 430074, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Thamizhanban A, Lalitha K, Sarvepalli GP, Maheswari CU, Sridharan V, Rayappan JBB, Nagarajan S. Smart supramolecular gels of enolizable amphiphilic glycosylfuran. J Mater Chem B 2019; 7:6238-6246. [DOI: 10.1039/c9tb01480b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this report, bio-based amphiphilic glycosylfurans were synthesized using a biocatalyst. For the first time, we are reporting on hydrogelation via in situ molecular tuning of amphiphilic glycosylfurans followed by a self-sorting mechanism.
Collapse
Affiliation(s)
- Ayyapillai Thamizhanban
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - Krishnamoorthy Lalitha
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - Guru Prasanth Sarvepalli
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - C. Uma Maheswari
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences
- Central University of Jammu
- Rahya-Suchani (Bagla)
- Jammu – 181143
- India
| | | | - Subbiah Nagarajan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| |
Collapse
|
28
|
Yang P, Yang C, Zhang K, Wang L, Wang H. KLVFF peptide functionalized nanoparticles capture Aβ42 by co-assembly for decreasing cytotoxicity. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Zhang K, Gao YJ, Yang PP, Qi GB, Zhang JP, Wang L, Wang H. Self-Assembled Fluorescent Organic Nanomaterials for Biomedical Imaging. Adv Healthc Mater 2018; 7:e1800344. [PMID: 30137689 DOI: 10.1002/adhm.201800344] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/21/2018] [Indexed: 11/05/2022]
Abstract
Fluorescent nanomaterials, self-assembled from building blocks through multiple intermolecular interactions show diversified structures and functionalities, and are potential fluorescence contrast agents/probes for high-performance biomedical imaging. Self-assembled nanomaterials exhibit high stability, long circulation time, and targeted biological distribution. This review summarizes recent advances of self-assembled nanomaterials as fluorescence contrast agents/probes for biomedical imaging. The self-assembled nanomaterials are classified into two groups, i.e., ex situ and in situ construction of self-assembled nanomaterials. The advantages of ex situ as well as in situ constructed nanomaterials for biomedical applications are discussed thoroughly. The directions of future developments for self-assembled nanomaterials are provided.
Collapse
Affiliation(s)
- Kuo Zhang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 China
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| | - Yu-Juan Gao
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| | - Pei-Pei Yang
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| | - Guo-Bin Qi
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| | - Jing-Ping Zhang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 China
| | - Lei Wang
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| | - Hao Wang
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| |
Collapse
|
30
|
Li BN, He PP, Yang PP, Zhang JP, Wang L, Wang H. In situ construction of nanonetworks from transformable nanoparticles for anti-angiogenic therapy. J Mater Chem B 2018; 6:5282-5289. [PMID: 32254765 DOI: 10.1039/c8tb00974k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor metastasis as the most common reason of death from cancer has always been a great challenge in both clinical and scientific research, where angiogenesis plays a necessary role. Herein, we report an extracellularly transformable nanomaterial for in situ construction of defensive networks on interaction with vascular endothelial growth factor (VEGF) for anti-angiogenic therapy of tumor. The fibrous networks exhibit transformation-enhanced accumulation and retention (TEAR) effects (over 72 h), and bind and intercept cell-secreted VEGF over particulate and molecular anti-angiogenic agents with high efficiency, leading to anti-angiogenesis. This study demonstrates that angiogenesis is positively related to tumor growth as well as tumor metastasis; the anti-angiogenic therapy inhibits tumor metastasis with an inhibition rate of 65.9%. In addition, this extracellular strategy of transformation may be utilized to bind huge amounts of cell-secreted biomolecules/factors or receptors on cell surfaces and inhibit their functionalities for cancer therapy.
Collapse
Affiliation(s)
- Bing-Nan Li
- Faculty of Chemistry, Northeast Normal University, Changchun, China.
| | | | | | | | | | | |
Collapse
|
31
|
Cong Y, Qiao ZY, Wang H. Molecular Self-Assembly Constructed in Physiological Conditions for Cancer Diagnosis and Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yong Cong
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| |
Collapse
|
32
|
|
33
|
Qi GB, Gao YJ, Wang L, Wang H. Self-Assembled Peptide-Based Nanomaterials for Biomedical Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703444. [PMID: 29460400 DOI: 10.1002/adma.201703444] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Indexed: 05/22/2023]
Abstract
Peptide-based materials are one of the most important biomaterials, with diverse structures and functionalities. Over the past few decades, a self-assembly strategy is introduced to construct peptide-based nanomaterials, which can form well-controlled superstructures with high stability and multivalent effect. More recently, peptide-based functional biomaterials are widely utilized in clinical applications. However, there is no comprehensive review article that summarizes this growing area, from fundamental research to clinic translation. In this review, the recent progress of peptide-based materials, from molecular building block peptides and self-assembly driving forces, to biomedical and clinical applications is systematically summarized. Ex situ and in situ constructed nanomaterials based on functional peptides are presented. The advantages of intelligent in situ construction of peptide-based nanomaterials in vivo are emphasized, including construction strategy, nanostructure modulation, and biomedical effects. This review highlights the importance of self-assembled peptide nanostructures for nanomedicine and can facilitate further knowledge and understanding of these nanosystems toward clinical translation.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
34
|
Meng QF, Rao L, Zan M, Chen M, Yu GT, Wei X, Wu Z, Sun Y, Guo SS, Zhao XZ, Wang FB, Liu W. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. NANOTECHNOLOGY 2018; 29:134004. [PMID: 29334363 DOI: 10.1088/1361-6528/aaa7c7] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanotechnology possesses the potential to revolutionize the diagnosis and treatment of tumors. The ideal nanoparticles used for in vivo cancer therapy should have long blood circulation times and active cancer targeting. Additionally, they should be harmless and invisible to the immune system. Here, we developed a biomimetic nanoplatform with the above properties for cancer therapy. Macrophage membranes were reconstructed into vesicles and then coated onto magnetic iron oxide nanoparticles (Fe3O4 NPs). Inherited from the Fe3O4 core and the macrophage membrane shell, the resulting Fe3O4@MM NPs exhibited good biocompatibility, immune evasion, cancer targeting and light-to-heat conversion capabilities. Due to the favorable in vitro and in vivo properties, biomimetic Fe3O4@MM NPs were further used for highly effective photothermal therapy of breast cancer in nude mice. Surface modification of synthetic nanomaterials with biomimetic cell membranes exemplifies a novel strategy for designing an ideal nanoplatform for translational medicine.
Collapse
Affiliation(s)
- Qian-Fang Meng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Hu XX, He PP, Qi GB, Gao YJ, Lin YX, Yang C, Yang PP, Hao H, Wang L, Wang H. Transformable Nanomaterials as an Artificial Extracellular Matrix for Inhibiting Tumor Invasion and Metastasis. ACS NANO 2017; 11:4086-4096. [PMID: 28334523 DOI: 10.1021/acsnano.7b00781] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tumor metastasis is one of the big challenges in cancer treatment and is often associated with high patient mortality. Until now, there is an agreement that tumor invasion and metastasis are related to degradation of extracellular matrix (ECM) by enzymes. Inspired by the formation of natural ECM and the in situ self-assembly strategy developed in our group, herein, we in situ constructed an artificial extracellular matrix (AECM) based on transformable Laminin (LN)-mimic peptide 1 (BP-KLVFFK-GGDGR-YIGSR) for inhibition of tumor invasion and metastasis. The peptide 1 was composed of three modules including (i) the hydrophobic bis-pyrene (BP) unit for forming and tracing nanoparticles; (ii) the KLVFF peptide motif that was inclined to form and stabilize fibrous structures through intermolecular hydrogen bonds; and (iii) the Y-type RGD-YIGSR motif, derived from LN conserved sequence, served as ligands to bind cancer cell surfaces. The peptide 1 formed nanoparticles (1-NPs) by the rapid precipitation method, owing to strong hydrophobic interactions of BP. Upon intravenous injection, 1-NPs effectively accumulated in the tumor site due to the enhanced permeability and retention (EPR) effect and/or targeting capability of RGD-YIGSR. The accumulated 1-NPs simultaneously transformed into nanofibers (1-NFs) around the solid tumor and further entwined to form AECM upon binding to receptors on the tumor cell surfaces. The AECM stably existed in the primary tumor site over 72 h, which consequently resulted in efficiently inhibiting the lung metastasis in breast and melanoma tumor models. The inhibition rates in two tumor models were 82.3% and 50.0%, respectively. This in vivo self-assembly strategy could be widely utilized to design effective drug-free biomaterials for inhibiting the tumor invasion and metastasis.
Collapse
Affiliation(s)
- Xiao-Xue Hu
- National Engineering Research Center of Industrial Crystallization Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Ping-Ping He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Chao Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| |
Collapse
|
37
|
Yang PP, Luo Q, Qi GB, Gao YJ, Li BN, Zhang JP, Wang L, Wang H. Host Materials Transformable in Tumor Microenvironment for Homing Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605869. [PMID: 28195446 DOI: 10.1002/adma.201605869] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/09/2016] [Indexed: 06/06/2023]
Abstract
A pathology-adaptive nanosystem, in which nest-like hosts are built based on nanofibers that are transformed from i.v. injected nanoparticles under the acidic tumor microenvironment. The solid tumor is artificially modified by nest-like hosts readily and firmly, resulting in highly efficient accumulation and stabilization of guest theranostics. This strategy shows great potential for the theranostics delivery to tumors.
Collapse
Affiliation(s)
- Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qiang Luo
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Bing-Nan Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jing-Ping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
38
|
Wang K, Guo Z, Zhang L, Sun K, Yu P, Zhou S, Wang W, Li Z. Co-assembly of donor and acceptor towards organogels tuned by charge transfer interaction strength. SOFT MATTER 2017; 13:1948-1955. [PMID: 28177029 DOI: 10.1039/c6sm02691e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Co-assembly of n-type semiconductors NDI and PDI with p-type pyrene derivatives resulted in the formation of stable organogels, which was induced by the strong charge transfer (CT) interactions between acceptors and donors in chloroform. The dimension size of the aromatic core from the acceptors was found to have a significant impact on the organogels. The width of the fibers from CT gels with NDI is about twice that from gels with PDI. It was found that the acceptor NDI preferred an alternate stacking with donors, intercalated with each other via CT interactions. In contrast, the acceptor PDI preferred to stack among themselves within the assemblies and this arose from the stronger π-π interactions because they had larger aromatic cores than the acceptor NDI. The dimension size of the aromatic core has been proved to have a significant impact on the organogels. The substituent impact of the donors was also studied.
Collapse
Affiliation(s)
- Kun Wang
- School of Polymer Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China.
| | - Zongxia Guo
- School of Polymer Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China.
| | - Li Zhang
- Department Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Kai Sun
- Department Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ping Yu
- School of Polymer Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China.
| | - Shenghua Zhou
- School of Polymer Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China.
| | - Wenpin Wang
- School of Polymer Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China.
| | - Zhibo Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China.
| |
Collapse
|
39
|
Lin YX, Qiao SL, Wang Y, Zhang RX, An HW, Ma Y, Rajapaksha RPYJ, Qiao ZY, Wang L, Wang H. An in Situ Intracellular Self-Assembly Strategy for Quantitatively and Temporally Monitoring Autophagy. ACS NANO 2017; 11:1826-1839. [PMID: 28112893 DOI: 10.1021/acsnano.6b07843] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Autophagy plays a crucial role in the metabolic process. So far, conventional methods are incapable of rapid, precise, and real-time monitoring of autophagy in living objects. Herein, we describe an in situ intracellular self-assembly strategy for quantitative and temporal determination of autophagy in living objectives. The intelligent building blocks (DPBP) are composed by a bulky dendrimer as a carrier, a bis(pyrene) derivative (BP) as a signal molecule, and a peptide linker as a responsive unit that can be cleaved by an autophagy-specific enzyme, i.e., ATG4B. DPBP maintains the quenched fluorescence with monomeric BP. However, the responsive peptide is specifically tailored upon activation of autophagy, resulting in self-aggregation of BP residues which emit a 30-fold enhanced fluorescence. By measuring the intensity of fluorescent signal, we are able to quantitatively evaluate the autophagic level. In comparison with traditional techniques, such as TEM, Western blot, and GFP-LC3, the reliability and accuracy of this method are finally validated. We believe this in situ intracellular self-assembly strategy provides a rapid, effective, real-time, and quantitative method for monitoring autophagy in living objects, and it will be a useful tool for autophagy-related fundamental and clinical research.
Collapse
Affiliation(s)
- Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Sheng-Lin Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Ruo-Xin Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yang Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - R P Yeshan J Rajapaksha
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
40
|
Hu X, Yang P, He J, Liang R, Niu D, Wang H, Li Y. In vivo self-assembly induced retention of gold nanoparticles for enhanced photothermal tumor treatment. J Mater Chem B 2017; 5:5931-5936. [DOI: 10.1039/c7tb01268c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A simple route to fabricate peptide modified spherical gold nanoparticles with enhanced retention performance in tumor sites for improved photothermal treatment.
Collapse
Affiliation(s)
- Xuefeng Hu
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Peipei Yang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Jianping He
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Ruijie Liang
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Hao Wang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
41
|
Nath Neupane L, Kumar Mehta P, Lee KH. Sensitive and selective ratiometric fluorescent detection of monosaccharides in aqueous solutions at physiological pH using self-assembled peptides with different aromatic side chains. NEW J CHEM 2017. [DOI: 10.1039/c6nj03830a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The control of disassembly of supramolecular nanostructures of the self-assembled peptides by monosaccharides was investigated for the fluorescent detection of monosaccharides in aqueous solutions.
Collapse
Affiliation(s)
- Lok Nath Neupane
- Bioorganic Chemistry Lab
- Center for Design and Applications of Molecular Catalysts
- Department of Chemistry and Chemical Engineering
- Inha University
- Nam-Gu
| | - Pramod Kumar Mehta
- Bioorganic Chemistry Lab
- Center for Design and Applications of Molecular Catalysts
- Department of Chemistry and Chemical Engineering
- Inha University
- Nam-Gu
| | - Keun-Hyeung Lee
- Bioorganic Chemistry Lab
- Center for Design and Applications of Molecular Catalysts
- Department of Chemistry and Chemical Engineering
- Inha University
- Nam-Gu
| |
Collapse
|