1
|
Qian N, Zhao Z, El Khoury E, Gao X, Canela C, Shen Y, Shi L, Shi L, Hu F, Wei L, Min W. Illuminating life processes by vibrational probes. Nat Methods 2025; 22:928-944. [PMID: 40360917 DOI: 10.1038/s41592-025-02689-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025]
Abstract
Vibration of chemical bonds can serve as imaging contrast. Vibrational probes, synergized with major advances in chemical bond imaging instruments, have recently flourished and proven valuable in illuminating life processes. Here, we review how the development of vibrational probes with optimal biocompatibility, enhanced sensitivity, multichromatic colors and diverse functionality has extended chemical bond imaging beyond the prevalent label-free paradigm into various novel applications such as imaging metabolites, metabolic imaging, drug imaging, super-multiplex imaging, vibrational profiling and vibrational sensing. These advancements in vibrational probes have greatly facilitated understanding living systems, a new field of vibrational chemical biology.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Elsy El Khoury
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Carli Canela
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Yihui Shen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanghao Hu
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Li J, Zhu Z, Xue Y, Downes A. Analysis of Drug Molecules in Living Cells. Crit Rev Anal Chem 2025:1-16. [PMID: 39854220 DOI: 10.1080/10408347.2025.2453431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Cells are the fundamental units of life, comprising a highly concentrated and complex assembly of biomolecules that interact dynamic ally across spatial and temporal scales. Living cells are constantly undergoing dynamic processes, therefore, to understand the interactions between drug molecules and living cells is of paramount importance in the biomedical sciences and pharmaceutical development. Compared with traditional end-point assays and fixed cell analysis, analysis of drug molecules in living cells can provide more insight into the effects of drugs on cells in real-time and allowing for a better understanding of drug mechanisms and effects, which will contribute to the development of drug developing and testing and personalize medicine. However, the high demands of living cell analysis, including high costs, technical complexity, and throughput limitations, hinder the widespread application of this technology. In recent years, the rapid development of analytical methods such as Raman spectroscopy and fluorescence has made the in situ and real-time detection possible, allowing the analysis of single cell or cell populations at various conditions. In this review, we summarize the advanced analytical methods and technologies from last few years for drug detection in living cells.
Collapse
Affiliation(s)
- Jiaming Li
- Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Zhiyuan Zhu
- Department of Infection Medicine, Faculty of Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yuxiang Xue
- Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Andrew Downes
- Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 PMCID: PMC11887860 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
4
|
Li Y, Sun Y, Shi L. Viewing 3D spatial biology with highly-multiplexed Raman imaging: from spectroscopy to biotechnology. Chem Commun (Camb) 2024. [PMID: 39041798 DOI: 10.1039/d4cc02319f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Understansding complex biological systems requires the simultaneous characterization of a large number of interacting components in their native 3D environment with high spatial resolution. Highly-multiplexed Raman imaging is an emerging general strategy for detecting biomarkers with scalable multiplexity and ultra-sensitivity based on a series of stimulated Raman scattering (SRS) techniques. Here we review recent advances in highly-multiplexed Raman imaging and how they contribute to the technological revolution in 3D spatial biology, focusing on the developmental pathway from spectroscopy study to biotechnology invention. We envision highly-multiplexed Raman imaging is taking off, which will greatly facilitate our understanding in biological and medical research fields.
Collapse
Affiliation(s)
- Yingying Li
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yuchen Sun
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Ma L, Luo K, Liu Z, Ji M. Stain-Free Histopathology with Stimulated Raman Scattering Microscopy. Anal Chem 2024; 96:7907-7925. [PMID: 38713830 DOI: 10.1021/acs.analchem.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Affiliation(s)
- Liyang Ma
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Kuan Luo
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Zhijie Liu
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Vardaki MZ, Gregoriou VG, Chochos CL. Biomedical applications, perspectives and tag design concepts in the cell - silent Raman window. RSC Chem Biol 2024; 5:273-292. [PMID: 38576725 PMCID: PMC10989507 DOI: 10.1039/d3cb00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
Spectroscopic studies increasingly employ Raman tags exhibiting a signal in the cell - silent region of the Raman spectrum (1800-2800 cm-1), where bands arising from biological molecules are inherently absent. Raman tags bearing functional groups which contain a triple bond, such as alkyne and nitrile or a carbon-deuterium bond, have a distinct vibrational frequency in this region. Due to the lack of spectral background and cell-associated bands in the specific area, the implementation of those tags can help overcome the inherently poor signal-to-noise ratio and presence of overlapping Raman bands in measurements of biological samples. The cell - silent Raman tags allow for bioorthogonal imaging of biomolecules with improved chemical contrast and they have found application in analyte detection and monitoring, biomarker profiling and live cell imaging. This review focuses on the potential of the cell - silent Raman region, reporting on the tags employed for biomedical applications using variants of Raman spectroscopy.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Vasilis G Gregoriou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| | - Christos L Chochos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| |
Collapse
|
7
|
Wang M, Huang Z, Wu C, Yan S, Fang HT, Pan W, Tan QG, Pan K, Ji R, Yang L, Pan B, Wang P, Miao AJ. Stimulated Raman Scattering Microscopy Reveals Bioaccumulation of Small Microplastics in Protozoa from Natural Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2922-2930. [PMID: 38294405 DOI: 10.1021/acs.est.3c07486] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Microplastics (MPs) are pollutants of global concern, and bioaccumulation determines their biological effects. Although microorganisms form a large fraction of our ecosystem's biomass and are important in biogeochemical cycling, their accumulation of MPs has never been confirmed in natural waters because current tools for field biological samples can detect only MPs > 10 μm. Here, we show that stimulated Raman scattering microscopy (SRS) can image and quantify the bioaccumulation of small MPs (<10 μm) in protozoa. Our label-free method, which differentiates MPs by their SRS spectra, detects individual and mixtures of different MPs (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polystyrene, and poly(methyl methacrylate)) in protozoa. The ability of SRS to quantify cellular MP accumulation is similar to that of flow cytometry, a fluorescence-based method commonly used to determine cellular MP accumulation. Moreover, we discovered that protozoa in water samples from Yangtze River, Xianlin Wastewater Treatment Plant, Lake Taihu and the Pearl River Estuary accumulated MPs < 10 μm, but the proportion of MP-containing cells was low (∼2-5%). Our findings suggest that small MPs could potentially enter the food chain and transfer to organisms at higher trophic levels, posing environmental and health risks that deserve closer scrutiny.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Zhiliang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China PRC
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Shuai Yan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China PRC
| | - Hai-Tao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Wei Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China PRC
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China PRC
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| | - Ping Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China PRC
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China PRC
| |
Collapse
|
8
|
Wei M, Qian N, Gao X, Lang X, Song D, Min W. Single-particle imaging of nanomedicine entering the brain. Proc Natl Acad Sci U S A 2024; 121:e2309811121. [PMID: 38252832 PMCID: PMC10835139 DOI: 10.1073/pnas.2309811121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Nanomedicine has emerged as a revolutionary strategy of drug delivery. However, fundamentals of the nano-neuro interaction are elusive. In particular, whether nanocarriers can cross the blood-brain barrier (BBB) and release the drug cargo inside the brain, a basic process depicted in numerous books and reviews, remains controversial. Here, we develop an optical method, based on stimulated Raman scattering, for imaging nanocarriers in tissues. Our method achieves a suite of capabilities-single-particle sensitivity, chemical specificity, and particle counting capability. With this method, we visualize individual intact nanocarriers crossing the BBB of mouse brains and quantify the absolute number by particle counting. The fate of nanocarriers after crossing the BBB shows remarkable heterogeneity across multiple scales. With a mouse model of aging, we find that blood-brain transport of nanocarriers decreases with age substantially. This technology would facilitate development of effective therapeutics for brain diseases and clinical translation of nanocarrier-based treatment in general.
Collapse
Affiliation(s)
- Mian Wei
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Xiaoqi Lang
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Donghui Song
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| |
Collapse
|
9
|
Liu Y, Li M, Liu H, Kang C, Yu X. Strategies and Progress of Raman Technologies for Cellular Uptake Analysis of the Drug Delivery Systems. Int J Nanomedicine 2023; 18:6883-6900. [PMID: 38026519 PMCID: PMC10674749 DOI: 10.2147/ijn.s435087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have the potential to significantly enhance the pharmacological and therapeutic properties of drugs. These systems enhance the bioavailability and biocompatibility of pharmaceutical agents via enabling targeted delivery to specific tissues or organs. However, the efficacy and safety of these systems are largely dependent on the cellular uptake and intracellular transport of NPs. Thus, it is crucial to monitor the intracellular behavior of NPs within a single cell. Yet, it is challenging due to the complexity and size of the cell. Recently, the development of the Raman instrumentation offers a versatile tool to allow noninvasive cellular measurements. The primary objective of this review is to highlight the most recent advancements in Raman techniques (spontaneous Raman scattering, bioorthogonal Raman scattering, coherence Raman scattering, and surface-enhanced Raman scattering) when it comes to assessing the internalization of NP-based drug delivery systems and their subsequent movement within cells.
Collapse
Affiliation(s)
- Yajuan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Mei Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Haisha Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| |
Collapse
|
10
|
Wang X, Xia J, Aipire A, Li J. Reviews of bio-orthogonal probes in bioscience by stimulated Raman scattering microscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 306:123545. [PMID: 39492383 DOI: 10.1016/j.saa.2023.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/10/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Stimulated Raman scattering (SRS) microscopy, is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds, with high sensitivity, resolution, speed, and specificity. In the current review, we provided a comprehensive and critical review of the most recent developments in the field of SRS in combination with bio-orthogonal Raman tags or labels in bioscience. Firstly, we introduced the fundamentals of SRS microscopy and the theory principle of bio-orthogonal Raman tags. In particular, present the applications of each kind of bio-orthogonal Raman tags, including heavy water (D2O), stable isotope probes (SIP), and triple-bonds tags. And shared our vision for the remaining challenges, research needs, and potential future breakthroughs for SRS technology lastly. We envision that the advanced SRS imaging and analysis will be a major force in future biological discovery.
Collapse
Affiliation(s)
- Xiaoting Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jingjing Xia
- Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
11
|
Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem Rev 2023; 123:8297-8346. [PMID: 37318957 PMCID: PMC10626597 DOI: 10.1021/acs.chemrev.2c00897] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
12
|
Abstract
As an emerging optical imaging modality, stimulated Raman scattering (SRS) microscopy provides invaluable opportunities for chemical biology studies using its rich chemical information. Through rapid progress over the past decade, the development of Raman probes harnessing the chemical biology toolbox has proven to play a key role in advancing SRS microscopy and expanding biological applications. In this perspective, we first discuss the development of biorthogonal SRS imaging using small tagging of triple bonds or isotopes and highlight their unique advantages for metabolic pathway analysis and microbiology investigations. Potential opportunities for chemical biology studies integrating small tagging with SRS imaging are also proposed. We next summarize the current designs of highly sensitive and super-multiplexed SRS probes, as well as provide future directions and considerations for next-generation functional probe design. These rationally designed SRS probes are envisioned to bridge the gap between SRS microscopy and chemical biology research and should benefit their mutual development.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
13
|
Hilzenrat G, Gill ET, McArthur SL. Imaging approaches for monitoring three-dimensional cell and tissue culture systems. JOURNAL OF BIOPHOTONICS 2022; 15:e202100380. [PMID: 35357086 DOI: 10.1002/jbio.202100380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.
Collapse
Affiliation(s)
- Geva Hilzenrat
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Emma T Gill
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
14
|
Qian N, Min W. Super-multiplexed vibrational probes: Being colorful makes a difference. Curr Opin Chem Biol 2022; 67:102115. [PMID: 35077919 PMCID: PMC8940683 DOI: 10.1016/j.cbpa.2021.102115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
Biological systems with intrinsic complexity require multiplexing techniques to comprehensively describe the phenotype, interaction, and heterogeneity. Recent years have witnessed the development of super-multiplexed vibrational microscopy, overcoming the 'color barrier' of fluorescence-based optical techniques. Here, we will review the recent progress in the design and applications of super-multiplexed vibrational probes. We hope to illustrate how rainbow-like vibrational colors can be generated from systematic studies on structure-spectroscopy relationships and how being colorful makes a difference to various biomedical applications.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
15
|
Pavliuk MV, Wrede S, Liu A, Brnovic A, Wang S, Axelsson M, Tian H. Preparation, characterization, evaluation and mechanistic study of organic polymer nano-photocatalysts for solar fuel production. Chem Soc Rev 2022; 51:6909-6935. [DOI: 10.1039/d2cs00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides the guidelines and knowledge gained so far on current strategies used to prepare, optimize and investigate polymer nanoparticles for fuel production, highlighting the future directions of polymer nano-photocatalyst development.
Collapse
Affiliation(s)
- Mariia V. Pavliuk
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sina Wrede
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Aijie Liu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Andjela Brnovic
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sicong Wang
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Martin Axelsson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Haining Tian
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
16
|
Matuszyk E, Adamczyk A, Radwan B, Pieczara A, Szcześniak P, Mlynarski J, Kamińska K, Baranska M. Multiplex Raman imaging of organelles in endothelial cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119658. [PMID: 33744837 DOI: 10.1016/j.saa.2021.119658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Raman imaging using molecular reporters is a relatively new approach in subcellular investigations. It enables the visualization of organelles in cells with better selectivity and sensitivity compared to the label-free approach. Essentially Raman reporters possess in their structure an alkyne molecular group that can be selectively identified in the spectral region silent for biomolecules, hence facilitate the localization of individual organelles. The aim of this work is to visualize the main cell organelles in endothelial cells (HMEC-1) using established reporters (EdU and MitoBADY), but also to test a new one, namely falcarinol, which exhibits lipophilic properties. Moreover, we tested the possibility to use Raman reporters as a probe to detect changes in distribution of certain organelles after induced endothelial dysfunction (ED) in in vitro models. In both cases, induced ED is characterized by the formation of lipid droplets in the cells, which is why a good tool for the detection of lipid-rich organelles is so important in these studies. Two-dimensional Raman images were obtained, visualizing the distribution of selected organic compounds in the cell, such as proteins, lipids, and nucleic acids. Additionally, the distribution of EdU, MitoBADY and falcarinol in endothelial cells (ECs) was determined. Moreover, we highlight some drawback of established Raman reporter and the need for testing them in various physiological state of the cell.
Collapse
Affiliation(s)
- Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Adriana Adamczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Anna Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Piotr Szcześniak
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland
| | - Katarzyna Kamińska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
17
|
Chen C, Zhao Z, Qian N, Wei S, Hu F, Min W. Multiplexed live-cell profiling with Raman probes. Nat Commun 2021; 12:3405. [PMID: 34099708 PMCID: PMC8184955 DOI: 10.1038/s41467-021-23700-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Single-cell multiparameter measurement has been increasingly recognized as a key technology toward systematic understandings of complex molecular and cellular functions in biological systems. Despite extensive efforts in analytical techniques, it is still generally challenging for existing methods to decipher a large number of phenotypes in a single living cell. Herein we devise a multiplexed Raman probe panel with sharp and mutually resolvable Raman peaks to simultaneously quantify cell surface proteins, endocytosis activities, and metabolic dynamics of an individual live cell. When coupling it to whole-cell spontaneous Raman micro-spectroscopy, we demonstrate the utility of this technique in 14-plexed live-cell profiling and phenotyping under various drug perturbations. In particular, single-cell multiparameter measurement enables powerful clustering, correlation, and network analysis with biological insights. This profiling platform is compatible with live-cell cytometry, of low instrument complexity and capable of highly multiplexed measurement in a robust and straightforward manner, thereby contributing a valuable tool for both basic single-cell biology and translation applications such as high-content cell sorting and drug discovery.
Collapse
Affiliation(s)
- Chen Chen
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Shixuan Wei
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Fanghao Hu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Adamczyk A, Matuszyk E, Radwan B, Rocchetti S, Chlopicki S, Baranska M. Toward Raman Subcellular Imaging of Endothelial Dysfunction. J Med Chem 2021; 64:4396-4409. [PMID: 33821652 PMCID: PMC8154563 DOI: 10.1021/acs.jmedchem.1c00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Multiple diseases are at some point associated with altered endothelial
function, and endothelial dysfunction (ED) contributes to their pathophysiology.
Biochemical changes of the dysfunctional endothelium are linked to
various cellular organelles, including the mitochondria, endoplasmic
reticulum, and nucleus, so organelle-specific insight is needed for
better understanding of endothelial pathobiology. Raman imaging, which
combines chemical specificity with microscopic resolution, has proved
to be useful in detecting biochemical changes in ED at the cellular
level. However, the detection of spectroscopic markers associated
with specific cell organelles, while desirable, cannot easily be achieved
by Raman imaging without labeling. This critical review summarizes
the current advances in Raman-based analysis of ED, with a focus on
a new approach involving molecular Raman reporters that could facilitate
the study of biochemical changes in cellular organelles. Finally,
imaging techniques based on both conventional spontaneous Raman scattering
and the emerging technique of stimulated Raman scattering are discussed.
Collapse
Affiliation(s)
- Adriana Adamczyk
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Basseem Radwan
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Stefano Rocchetti
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.,Chair of Pharmacology, Jagiellonian University, 16 Grzegorzecka Str., 31-531 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| |
Collapse
|
19
|
Shi L, Fung AA, Zhou A. Advances in stimulated Raman scattering imaging for tissues and animals. Quant Imaging Med Surg 2021; 11:1078-1101. [PMID: 33654679 PMCID: PMC7829158 DOI: 10.21037/qims-20-712] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Stimulated Raman scattering (SRS) microscopy has emerged in the last decade as a powerful optical imaging technology with high chemical selectivity, speed, and subcellular resolution. Since the invention of SRS microscopy, it has been extensively employed in life science to study composition, structure, metabolism, development, and disease in biological systems. Applications of SRS in research and the clinic have generated new insights in many fields including neurobiology, tumor biology, developmental biology, metabolomics, pharmacokinetics, and more. Herein we review the advances and applications of SRS microscopy imaging in tissues and animals, as well as envision future applications and development of SRS imaging in life science and medicine.
Collapse
Affiliation(s)
- Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony A Fung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andy Zhou
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Zhao Z, Chen C, Wei S, Xiong H, Hu F, Miao Y, Jin T, Min W. Ultra-bright Raman dots for multiplexed optical imaging. Nat Commun 2021; 12:1305. [PMID: 33637723 PMCID: PMC7910594 DOI: 10.1038/s41467-021-21570-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Imaging the spatial distribution of biomolecules is at the core of modern biology. The development of fluorescence techniques has enabled researchers to investigate subcellular structures with nanometer precision. However, multiplexed imaging, i.e. observing complex biological networks and interactions, is mainly limited by the fundamental ‘spectral crowding’ of fluorescent materials. Raman spectroscopy-based methods, on the other hand, have a much greater spectral resolution, but often lack the required sensitivity for practical imaging of biomarkers. Addressing the pressing need for new Raman probes, herein we present a series of Raman-active nanoparticles (Rdots) that exhibit the combined advantages of ultra-brightness and compact sizes (~20 nm). When coupled with the emerging stimulated Raman scattering (SRS) microscopy, these Rdots are brighter than previously reported Raman-active organic probes by two to three orders of magnitude. We further obtain evidence supporting for SRS imaging of Rdots at single particle level. The compact size and ultra-brightness of Rdots allows immunostaining of specific protein targets (including cytoskeleton and low-abundant surface proteins) in mammalian cells and tissue slices with high imaging contrast. These Rdots thus offer a promising tool for a large range of studies on complex biological networks. Raman-based imaging of biomarkers is often challenging due to low sensitivity. Here, the authors use a swelling-diffusion approach to develop a series of Raman probes that are both ultra-bright and compact in size, and demonstrate multiplexed imaging of specific protein targets in cells and tissue slices.
Collapse
Affiliation(s)
- Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Chen Chen
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Shixuan Wei
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Hanqing Xiong
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Fanghao Hu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Yupeng Miao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Tianwei Jin
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Lehman SE, McCracken JM, Miller LA, Jayalath S, Nuzzo RG. Biocompliant Composite Au/pHEMA Plasmonic Scaffolds for 3D Cell Culture and Noninvasive Sensing of Cellular Metabolites. Adv Healthc Mater 2021; 10:e2001040. [PMID: 32902201 DOI: 10.1002/adhm.202001040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/24/2020] [Indexed: 12/19/2022]
Abstract
The field of 3D printing is an area of active research, with a substantial focus given to the design and construction of customized tools for applications in technology. There exists a particular need in these developing areas of opportunity for new multi-functional soft materials that are biologically compatible for the growth and directed culturing of cells. Herein, a composite material consisting of gold nanoparticles with useful plasmonic properties embedded within a highly hydrophilic poly-2-hydroxyethylmethacrylate matrix is described and characterized. This composite material serves dual functions as both host framework scaffold for cell lines such as pre-osteoblasts as well as a plasmonic biosensor for in situ measurements of living cells. The plasmonic properties of this system are characterized as a function of the material properties and related to compositional features of the material through a proposed light-directed mechanism. This chemistry provides a tunable, 3D printable plasmonic composite material of encapsulated gold nanoparticles in a biologically-compliant, acrylate-based hydrogel matrix. Surface-enhanced Raman scattering studies of 3D-microcultures supported by the scaffolds are carried out and the strong influence of perm-selective molecular diffusion in its analytical responses is established. Most notably, specific, largely hydrophilic, cellular metabolites are detected within the supported live cultures.
Collapse
Affiliation(s)
- Sean E. Lehman
- Department of Chemistry University of Illinois at Urbana Champaign Urbana IL 61801 USA
| | - Joselle M. McCracken
- Department of Chemistry University of Illinois at Urbana Champaign Urbana IL 61801 USA
| | - Lou Ann Miller
- Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| | - Sanjaya Jayalath
- Department of Chemistry University of Illinois at Urbana Champaign Urbana IL 61801 USA
| | - Ralph G. Nuzzo
- Department of Chemistry University of Illinois at Urbana Champaign Urbana IL 61801 USA
- Surface and Corrosion Science School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Drottning Kristinasväg 51 Stockholm 100 44 Sweden
| |
Collapse
|
22
|
Li Y, Shen B, Li S, Zhao Y, Qu J, Liu L. Review of Stimulated Raman Scattering Microscopy Techniques and Applications in the Biosciences. Adv Biol (Weinh) 2020; 5:e2000184. [PMID: 33724734 DOI: 10.1002/adbi.202000184] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Indexed: 01/10/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. Featuring high speed, high resolution, high sensitivity, high accuracy, and 3D sectioning, SRS microscopy has made tremendous progress toward biochemical information acquisition, cellular function investigation, and label-free medical diagnosis in the biosciences. In this review, the principle of SRS, system design, and data analysis are introduced, and the current innovations of the SRS system are reviewed. In particular, combined with various bio-orthogonal Raman tags, the applications of SRS microscopy in cell metabolism, tumor diagnosis, neuroscience, drug tracking, and microbial detection are briefly examined. The future prospects for SRS microscopy are also shared.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Shaowei Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Yihua Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| |
Collapse
|
23
|
Byrne HJ, Bonnier F, Efeoglu E, Moore C, McIntyre J. In vitro Label Free Raman Microspectroscopic Analysis to Monitor the Uptake, Fate and Impacts of Nanoparticle Based Materials. Front Bioeng Biotechnol 2020; 8:544311. [PMID: 33195114 PMCID: PMC7658377 DOI: 10.3389/fbioe.2020.544311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
The continued emergence of nanoscale materials for nanoparticle-based therapy, sensing and imaging, as well as their more general adoption in a broad range of industrial applications, has placed increasing demands on the ability to assess their interactions and impacts at a cellular and subcellular level, both in terms of potentially beneficial and detrimental effects. Notably, however, many such materials have been shown to interfere with conventional in vitro cellular assays that record only a single colorimetric end-point, challenging the ability to rapidly screen cytological responses. As an alternative, Raman microspectroscopy can spatially profile the biochemical content of cells, and any changes to it as a result of exogenous agents, such as toxicants or therapeutic agents, in a label free manner. In the confocal mode, analysis can be performed at a subcellular level. The technique has been employed to confirm the cellular uptake and subcellular localization of polystyrene nanoparticles (PSNPs), graphene and molybdenum disulfide micro/nano plates (MoS2), based on their respective characteristic spectroscopic signatures. In the case of PSNPs it was further employed to identify their local subcellular environment in endosomes, lysosomes and endoplasmic reticulum, while for MoS2 particles, it was employed to monitor subcellular degradation as a function of time. For amine functionalized PSNPs, the potential of Raman microspectroscopy to quantitatively characterize the dose and time dependent toxic responses has been explored, in a number of cell lines. Comparing the responses to those of poly (amidoamine) nanoscale polymeric dendrimers, differentiation of apoptotic and necrotic pathways based on the cellular spectroscopic responses was demonstrated. Drawing in particular from the experience of the authors, this paper details the progress to date in the development of applications of Raman microspectroscopy for in vitro, label free analysis of the uptake, fate and impacts of nanoparticle based materials, in vitro, and the prospects for the development of a routine, label free high content spectroscopic analysis technique.
Collapse
Affiliation(s)
- Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Franck Bonnier
- UFR Sciences Pharmaceutiques, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Esen Efeoglu
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Caroline Moore
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Jennifer McIntyre
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Liu X, Liu X, Rong P, Liu D. Recent advances in background-free Raman scattering for bioanalysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115765] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Baoxi Feng, Guo Z, Gai L, Zhou J. Tetrabromothiophene-Derived Sulfur-Containing Polymer Dots with Deep-Blue Luminescence and High Sensitivity to Fe3+. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Vanden-Hehir S, Cairns SA, Lee M, Zoupi L, Shaver MP, Brunton VG, Williams A, Hulme AN. Alkyne-Tagged PLGA Allows Direct Visualization of Nanoparticles In Vitro and Ex Vivo by Stimulated Raman Scattering Microscopy. Biomacromolecules 2019; 20:4008-4014. [PMID: 31408325 PMCID: PMC6794644 DOI: 10.1021/acs.biomac.9b01092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/19/2022]
Abstract
Polymeric nanoparticles (NPs) are attractive candidates for the controlled and targeted delivery of therapeutics in vitro and in vivo. However, detailed understanding of the uptake, location, and ultimate cellular fate of the NPs is necessary to satisfy safety concerns, which is difficult because of the nanoscale size of these carriers. In this work, we show how small chemical labels can be appended to poly(lactic acid-co-glycolic acid) (PLGA) to synthesize NPs that can then be imaged by stimulated Raman scattering microscopy, a vibrational imaging technique that can elucidate bond-specific information in biological environments, such as the identification of alkyne signatures in modified PLGA terpolymers. We show that both deuterium and alkyne labeled NPs can be imaged within primary rat microglia, and the alkyne NPs can also be imaged in ex vivo cortical mouse brain tissue. Immunohistochemical analysis confirms that the NPs localize in microglia in the mouse brain tissue, demonstrating that these NPs have the potential to deliver therapeutics selectively to microglia.
Collapse
Affiliation(s)
- Sally Vanden-Hehir
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Stefan A. Cairns
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Martin Lee
- Edinburgh
Cancer Research UK Centre, University of
Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | - Lida Zoupi
- MRC
Centre for Regenerative Medicine, The University
of Edinburgh, Edinburgh
BioQuarter, 5, Little France Drive, Edinburgh, EH16 4UU, United Kingdom
| | - Michael P. Shaver
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Valerie G. Brunton
- Edinburgh
Cancer Research UK Centre, University of
Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | - Anna Williams
- MRC
Centre for Regenerative Medicine, The University
of Edinburgh, Edinburgh
BioQuarter, 5, Little France Drive, Edinburgh, EH16 4UU, United Kingdom
| | - Alison N. Hulme
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
27
|
Wang J, Liang D, Feng J, Tang X. Multicolor Cocktail for Breast Cancer Multiplex Phenotype Targeting and Diagnosis Using Bioorthogonal Surface-Enhanced Raman Scattering Nanoprobes. Anal Chem 2019; 91:11045-11054. [PMID: 31361124 DOI: 10.1021/acs.analchem.9b01382] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Early precise diagnosis of cancers is crucial to realize more effective therapeutic interventions with minimal toxic effects. Cancer phenotypes may also alter greatly among patients and within individuals over the therapeutic process. The identification and characterization of specific biomarkers expressed on tumor cells are in high demand for diagnosis and treatment, but they are still a challenge. Herein, we designed three new bioorthogonal surface-enhanced Raman scattering (SERS) nanoprobes and successfully applied the cocktail of them for MDA-MB-231 and MCF-7 breast cancer multiplex phenotype detection. The SERS nanoprobes containing Raman reporters with diynl, azide, or cyano moieties demonstrated apparent Raman shift peaks in 2205, 2120, and 2230 cm-1, respectively, in the biologically Raman-silent region. Three target ligands, including oligonucleotide aptamer (AS1411), arginine-glycine-aspatic acid (RGD) peptide, and homing cell adhesion molecule antibody (anti-CD44), were separately conjugated to the nanoprobes for active recognition capability. The cocktail of the nanoprobes manifested minimal cytotoxicity and simultaneously multiplex phenotype imaging of MDA-MB-231 and MCF-7 cells. Quantitative measurement of cellular uptake by inductively coupled plasma mass spectrometry (ICPMS) verified that MDA-MB-231 cells harbored a much higher expression level of CD44 receptor than MCF-7 cells. For in vivo SERS detection, Raman shift peaks of 2120, 2205, and 2230 cm-1 in the micro-tumor were clearly observed, representing the existence of three specific biomarkers of nucleolin, integrin αvβ3, and CD44 reporter, which could be used for early cancer phenotype identification. The biodistribution results indicated that target ligand modified nanoprobes exhibited much more accumulation in tumors than those nanoprobes without target ligands. The multicolor cocktail of bioorthogonal SERS nanoprobes offers an attractive and insightful strategy for early cancer multiplex phenotype targeting and diagnosis in vivo that is noninvasive and has low cross-talk, unique spectral-molecular signature, high sensitivity, and negligible background interference.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, and Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Road , Beijing 100191 , P.R. China
| | - Duanwei Liang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, and Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Road , Beijing 100191 , P.R. China
| | - Jie Feng
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, and Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Road , Beijing 100191 , P.R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, and Department of Medicinal Chemistry, School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Road , Beijing 100191 , P.R. China
| |
Collapse
|
28
|
Hu F, Shi L, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat Methods 2019; 16:830-842. [PMID: 31471618 DOI: 10.1038/s41592-019-0538-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022]
Abstract
All molecules consist of chemical bonds, and much can be learned from mapping the spatiotemporal dynamics of these bonds. Since its invention a decade ago, stimulated Raman scattering (SRS) microscopy has become a powerful modality for imaging chemical bonds with high sensitivity, resolution, speed and specificity. We introduce the fundamentals of SRS microscopy and review innovations in SRS microscopes and imaging probes. We highlight examples of exciting biological applications, and share our vision for potential future breakthroughs for this technology.
Collapse
Affiliation(s)
- Fanghao Hu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Lixue Shi
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA. .,Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
29
|
Abstract
Cellular imaging is an active area of research that enables researchers to monitor cellular dynamics, as well as responses to various external stimuli (physiological stress, exogenous compounds, etc.). Stimulated Raman scattering (SRS) microscopy is one popular experimental tool used to image cells, largely because of its chemical specificity, high spatial resolution, and high image acquisition speed. In this Perspective, the theoretical background and experimental implementation of SRS microscopy are discussed and recent developments in the field of cellular imaging with SRS are highlighted and summarized.
Collapse
Affiliation(s)
- Andrew H Hill
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Dan Fu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
30
|
Xiong H, Qian N, Miao Y, Zhao Z, Min W. Stimulated Raman Excited Fluorescence Spectroscopy of Visible Dyes. J Phys Chem Lett 2019; 10:3563-3570. [PMID: 31185166 PMCID: PMC6657358 DOI: 10.1021/acs.jpclett.9b01289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fluorescence spectroscopy and Raman spectroscopy are two major classes of spectroscopy methods in physical chemistry. Very recently, stimulated Raman excited fluorescence (SREF) has been demonstrated ( Xiong, H.; et al. Nature Photonics , 2019 , 13 , 412 - 417 ) as a new hybrid spectroscopy that combines the vibrational specificity of Raman spectroscopy with the superb sensitivity of fluorescence spectroscopy (down to the single-molecule level). However, this proof-of-concept study was limited by both the tunability of the commercial laser source and the availability of the excitable molecules in the near-infrared. As a result, the generality of SREF spectroscopy remains unaddressed, and the understanding of the critical electronic preresonance condition is lacking. In this work, we built a modified excitation source to explore SREF spectroscopy in the visible region. Harnessing a large palette of red dyes, we have systematically studied SREF spectroscopy on a dozen different cases with a fine spectral interval of several nanometers. The results not only establish the generality of SREF spectroscopy for a wide range of molecules but also reveal a tight window of proper electronic preresonance for the stimulated Raman pumping process. Our theoretical modeling and further experiments on newly synthesized dyes also support the obtained insights, which would be valuable in designing and optimizing future SREF experiments for single-molecule vibrational spectroscopy and supermultiplex vibrational imaging.
Collapse
Affiliation(s)
- Hanqing Xiong
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
31
|
Abstract
Optical microscopy has served biomedical research for decades due to its high temporal and spatial resolutions. Among various optical imaging techniques, fluorescence imaging offers superb sensitivity down to single molecule level but its multiplexing capacity is limited by intrinsically broad bandwidth. To simultaneously capture a vast number of targets, the newly emerging vibrational microscopy technique draws increasing attention as vibration spectroscopy features narrow transition linewidth. Nonetheless, unlike fluorophores that have been studied for centuries, a systematic investigation on vibrational probes is underemphasized. Herein, we reviewed some of the recent developments of vibrational probes for multiplex imaging applications, particularly those serving stimulated Raman scattering (SRS) microscopy, which is one of the most promising vibrational imaging techniques. We wish to summarize the general guidelines for developing bioorthogonal vibrational probes with high sensitivity, chemical specificity and most importantly, tunability to fulfill super-multiplexed optical imaging. Future directions to significantly improve the performance are also discussed.
Collapse
Affiliation(s)
- Yupeng Miao
- Department of Chemistry, Columbia University, New York, NY 10027, United States of America
| | | | | | | |
Collapse
|
32
|
Vanden-Hehir S, Tipping WJ, Lee M, Brunton VG, Williams A, Hulme AN. Raman Imaging of Nanocarriers for Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E341. [PMID: 30832394 PMCID: PMC6474004 DOI: 10.3390/nano9030341] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
The efficacy of pharmaceutical agents can be greatly improved through nanocarrier delivery. Encapsulation of pharmaceutical agents into a nanocarrier can enhance their bioavailability and biocompatibility, whilst also facilitating targeted drug delivery to specific locations within the body. However, detailed understanding of the in vivo activity of the nanocarrier-drug conjugate is required prior to regulatory approval as a safe and effective treatment strategy. A comprehensive understanding of how nanocarriers travel to, and interact with, the intended target is required in order to optimize the dosing strategy, reduce potential off-target effects, and unwanted toxic effects. Raman spectroscopy has received much interest as a mechanism for label-free, non-invasive imaging of nanocarrier modes of action in vivo. Advanced Raman imaging techniques, including coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS), are paving the way for rigorous evaluation of nanocarrier activity at the single-cell level. This review focuses on the development of Raman imaging techniques to study organic nanocarrier delivery in cells and tissues.
Collapse
Affiliation(s)
- Sally Vanden-Hehir
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - William J Tipping
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Martin Lee
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| | - Anna Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Alison N Hulme
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
33
|
Jin Q, Fan X, Chen C, Huang L, Wang J, Tang X. Multicolor Raman Beads for Multiplexed Tumor Cell and Tissue Imaging and in Vivo Tumor Spectral Detection. Anal Chem 2019; 91:3784-3789. [PMID: 30758186 DOI: 10.1021/acs.analchem.9b00028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing new nanomaterials with strong and distinctive Raman vibrations in the biological Raman-silent region (1800-2800 cm-1) were highly desirable for Raman hyperspectral detection and imaging in living cells and animals. Herein, polymeric nanoparticles with monomers containing alkyne, cyanide, azide, and carbon-deuterate were prepared as Raman-active nanomaterials (Raman beads) for bioimaging applications. Intense Raman signals were obtained due to the high density of alkyne, cyanide, azide, and carbon-deuterate in single nanoparticles, in absence of metal (such as Au or Ag) as Raman enhancers. We have developed a library of Raman beads for frequency multiplexing through the end-capping substitutions of monomers and demonstrated five-color SRS imaging of mixed nanoparticles with distinct Raman frequencies. In addition, with further surface functionalization of targeting moieties (such as nucleic acid aptamers and targeting peptides), targetable Raman beads were successfully used as probes for tumor targeting and Raman spectroscopic detection, including multicolor SRS imaging in living tumor cells and tissues with high specificity. Further in vivo studies indicated that Raman beads anchored with targeting moieties were successfully employed to target tumors in living mice after tail intravenous injection, and Raman spectral detection of tumor in live mice was achieved only through spontaneous Raman signal at the biological Raman-silent region without any signal enhancement due to a high density of Raman reporters in Raman beads. With further copolymerization of these monomers, Raman beads with supermultiplex barcoding could be readily achieved.
Collapse
Affiliation(s)
- QingQing Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , No. 38 Xueyuan Road , Beijing , 100191 , China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , No. 38 Xueyuan Road , Beijing , 100191 , China
| | - Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , No. 38 Xueyuan Road , Beijing , 100191 , China
| | - Lei Huang
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 01238 , United States
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , No. 38 Xueyuan Road , Beijing , 100191 , China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , No. 38 Xueyuan Road , Beijing , 100191 , China
| |
Collapse
|
34
|
Battistella C, Yang Y, Chen J, Klok HA. Synthesis and Postpolymerization Modification of Fluorine-End-Labeled Poly(Pentafluorophenyl Methacrylate) Obtained via RAFT Polymerization. ACS OMEGA 2018; 3:9710-9721. [PMID: 31459100 PMCID: PMC6644891 DOI: 10.1021/acsomega.8b01654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 06/10/2023]
Abstract
Chain-end-labeled polymers are interesting for a range of applications. In polymer nanomedicine, chain-end-labeled polymers are useful to study and help understand cellular internalization and intracellular trafficking processes. The recent advent of fluorescent label-free techniques, such as nanoscale secondary ion mass spectrometry (NanoSIMS), provides access to high-resolution intracellular mapping that can complement information obtained using fluorescent-labeled materials and confocal microscopy and flow cytometry. Using poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) as a prototypical polymer nanomedicine, this paper presents a synthetic strategy to polymers that contain trace element labels, such as fluorine, which can be used for NanoSIMS analysis. The strategy presented in this paper is based on reversible addition fragmentation chain transfer (RAFT) polymerization of pentafluorophenyl methacrylate (PFMA) mediated by two novel chain-transfer agents (CTAs), which contain either one (α) or two (α,ω) fluorine labels. In the first part of this study, via a number of polymerization experiments, the polymerization properties of the fluorinated RAFT CTAs were established. 19F NMR spectroscopy revealed that these fluorinated RAFT agents possess unique spectral signatures, which allow to directly monitor RAFT agent conversion and measure end-group fidelity. Comparison with 4-cyanopentanoic acid dithiobenzoate, which is a standard CTA for the RAFT polymerization of PFMA, revealed that the introduction of one or two fluorine labels does not significantly affect the polymerization properties of the CTA. In the last part of this paper, a proof-of-concept study is presented that demonstrates the feasibility of the fluorine-labeled poly(pentafluorophenyl methacrylate) polymers as platforms for the postpolymerization modification to generate PHPMA-based polymer nanomedicines.
Collapse
Affiliation(s)
- Claudia Battistella
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Yuejiao Yang
- School
of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, China
| | - Jie Chen
- School
of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, China
| | - Harm-Anton Klok
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Huang B, Yan S, Xiao L, Ji R, Yang L, Miao AJ, Wang P. Label-Free Imaging of Nanoparticle Uptake Competition in Single Cells by Hyperspectral Stimulated Raman Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703246. [PMID: 29283225 DOI: 10.1002/smll.201703246] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Imaging and quantification of nanoparticles in single cells in their most natural condition are expected to facilitate the biotechnological applications of nanoparticles and allow for better assessment of their biosafety risks. However, current imaging modalities either require tedious sample preparation or only apply to nanoparticles with specific physicochemical characteristics. Here, the emerging hyperspectral stimulated Raman scattering (SRS) microscopy, as a label-free and nondestructive imaging method, is used for the first time to investigate the subcellular distribution of nanoparticles in the protozoan Tetrahymena thermophila. The two frequently studied nanoparticles, polyacrylate-coated α-Fe2 O3 and TiO2 , are found to have different subcellular distribution pattern as a result of their dissimilar uptake routes. Significant uptake competition between these two types of nanoparticles is further discovered, which should be paid attention to in future bioapplications of nanoparticles. Overall, this study illustrates the great promise of hyperspectral SRS as an analytical imaging tool in nanobiotechnology and nanotoxicology.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Shuai Yan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Lin Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Ping Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|