1
|
Zhou Y, Xiong K, Feng T, Wu X, Liang J, Chen Y, Chao H. A Nucleus-Targeting Ruthenium(II) Complex Induces DNA Condensation in Cisplatin-Resistant Tumor Cells. Angew Chem Int Ed Engl 2025; 64:e202504970. [PMID: 40169373 DOI: 10.1002/anie.202504970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/03/2025]
Abstract
One of the conventional ways to eradicate tumor cells is to utilize chemotherapy agents, e.g., cisplatin, to induce DNA damage. However, DNA damage repair mechanisms can significantly limit the therapeutic efficacy of cisplatin. These mechanisms enable tumor cells to repair the DNA damage caused by the drug, leading to resistance. Cisplatin and similar drugs bind to specific DNA sites without significantly altering their conformation. As a result, DNA repair enzymes can still attach to and repair the damaged DNA. To address this issue, we designed four Ru(II) complexes (RuC3, RuC6, RuC9, and RuC12) with high positive charges of +8 valence and regulated their nuclear accumulation levels by adjusting the length of alkyl chains. RuC9 exhibits the highest nucleus accumulation level. DNA conformation was significantly altered by inducing DNA condensation through indiscriminately neutralizing the negative charge of the DNA backbone. This significant change prevents DNA-related enzymes from binding to DNA, ultimately leading to the efficient eradication of various tumor cell lines. To the best of our knowledge, it is the first work that kills tumor cells and overcomes cisplatin resistance through inducing DNA condensation.
Collapse
Affiliation(s)
- Ying Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianbo Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jinzhe Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
2
|
Pivarcsik T, Kovács F, Spengler G, Nové M, Keppler BK, Kandioller W, Frank É, Enyedy ÉA. Anticancer organometallic half-sandwich complexes of estrone-derived (N,N) donor ligands with enhanced aqueous solubility. J Inorg Biochem 2025; 267:112858. [PMID: 40014912 DOI: 10.1016/j.jinorgbio.2025.112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Four steroidal derivatives (L1-4) bearing an (N,N) metal-chelating subunit on the D-ring, in addition to the organometallic [M(arene)(N,N)Cl]Cl complexes of L1,2 were synthesized and characterized, in which M(arene) is Rh(III)(η5-C5Me5) or Ir(III)(η5-C5Me5) or Ru(II)(η6-p-cymene). The solution chemical properties of both the estrone-based ligands and selected complexes were investigated by spectroscopic methods. At pH = 7.4, the ligands are predominantly positively charged, moderately lipophilic (logD7.4 = +0.6 - +3.2), and exhibit low-to-medium micromolar solubility (S7.4 = 9-543 μM) and are more hydrophilic than estrone; however, complexation improved the aqueous solubility of the obtained organometallics. The Rh(η5-C5Me5) and Ru(η6-p-cymene) complexes of L1 demonstrated high stability in solution (<1 % bidentate ligand dissociation at pH 7.4 for 48 h), forming a higher fraction of mixed hydroxido species [M(arene)(N,N)(OH)]+ in the case of the Ru complexes. Both coordination and intermolecular interactions of the organometallic complexes with human serum albumin were observed. The ligands and their complexes were tested in human cancer cell lines to investigate their in vitro anticancer activity. Studies in Colo-205 and MCF-7 cells revealed the moderate-to-strong cytotoxicity of the ligands (IC50 = 5-50 μM) with limited selectivity toward cancer cells over the non-cancerous CCD-19Lu fibroblast cell line. Complexation increased the cytotoxicity, especially for Rh(III)(η5-C5Me5) and Ir(III)(η5-C5Me5) complexes in the MCF-7 cell line compared to the ligands.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary; Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary
| | - Ferenc Kovács
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary; Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Márta Nové
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Éva Frank
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary; Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
| |
Collapse
|
3
|
Ferraro G, Pracharova J, Gotte G, Massai L, Berecka M, Starha P, Messori L, Merlino A. Cytotoxicity and Binding to DNA, Lysozyme, Ribonuclease A, and Human Serum Albumin of the Diiodido Analog of Picoplatin. Inorg Chem 2025; 64:8895-8905. [PMID: 40312957 PMCID: PMC12076543 DOI: 10.1021/acs.inorgchem.4c05424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Here we investigated cytotoxicity and DNA and protein binding of an iodido analog of picoplatin, the cis-ammine-diiodido(2-methylpyridine)platinum(II) complex (I-picoplatin). I-picoplatin (IC50 = 3.7-12.4 μM) outperforms picoplatin (IC50 = 11.8-22.6 μM) in the human cancer cell lines used and shows a greater ability to overcome the cisplatin resistance of A2780 ovarian cancer cells than does picoplatin. I-picoplatin also induces different cell cycle changes (reduced S-phase fraction and an increase in the G2/M phase arrest) in HeLa cervical carcinoma cells compared to both picoplatin and cisplatin. Binding of the metal compound to DNA model systems was investigated by ethidium bromide displacement assay and circular dichroism. Its reactivity with lysozyme (HEWL) and pancreatic RNase A was studied by X-ray diffraction and mass spectrometry experiments. I-picoplatin binds the DNA double helix and is able to retain the 2-methylpyridine ligand and at least one of the two iodido ligands when bound to the two proteins. Various Pt-containing moieties, including one based on the isomerized structure of I-picoplatin, coordinate the His and Met residues. A low-resolution structure of the I-picoplatin/human serum albumin (HSA) adduct has also been solved. The side chains of His146, Met289, and Met329 are the primary binding sites of the I-picoplatin moieties on HSA.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso
Universitario di Monte Sant’Angelo, via Cinthia 21, Naples 80126, Italy
| | - Jitka Pracharova
- Department
of Biophysics, Faculty of Science, Palacký
University Olomouc, Slechtitelu
27, Olomouc 783 71, Czech Republic
| | - Giovanni Gotte
- Department
of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry
Section, University of Verona, Strada Le Grazie 8, Verona I-37134, Italy
| | - Lara Massai
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3–13, Sesto Fiorentino 50019, Florence, Italy
| | - Michal Berecka
- Department
of Biophysics, Faculty of Science, Palacký
University Olomouc, Slechtitelu
27, Olomouc 783 71, Czech Republic
| | - Pavel Starha
- Department
of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17 listopadu 1192/12, Olomouc 771 46, Czech Republic
| | - Luigi Messori
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3–13, Sesto Fiorentino 50019, Florence, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso
Universitario di Monte Sant’Angelo, via Cinthia 21, Naples 80126, Italy
| |
Collapse
|
4
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
5
|
Liu P, Zhou S, Zhou Z, Jin Z, Chen W, Li Z, Xu J, Chen F, Li Y, Wen Y, Zhang S, Zhang C, Li B, Zhao J, Chen H. Discovery and antitumor evaluation of a mitochondria-targeting ruthenium complex for effective cancer therapy. Cancer Lett 2025; 616:217582. [PMID: 40021041 DOI: 10.1016/j.canlet.2025.217582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Ruthenium-based metallodrugs have garnered attention as a promising alternative for anticancer therapy, aiming to overcome chemoresistance and severe side effects linked to platinum-based drugs. However, ruthenium complexes tested in clinical trials to date have yielded unsatisfactory results. This study synthesized a positively charged ruthenium complex (Ru-2) that effectively penetrated cancer cells and exhibited superior cytotoxicity to cisplatin in vitro against cancer cell lines and organoids. Ru-2 selectively targeted mitochondria, disrupting their function by depolarizing mitochondrial membrane potential, elevating reactive oxygen species production, and impairing both oxidative phosphorylation and the tricarboxylic acid cycle. Furthermore, Ru-2 triggered endoplasmic reticulum (ER) stress and apoptosis. Integrative transcriptomic and proteomic analyses, performed using RNA sequencing and mass spectrometry, identified key molecular changes in cancer cells treated with Ru-2. For enhanced in vivo application, we developed a transferrin-based nanomedicine formulation, TF/Ru-2, incorporating Ru-2 into transferrin. In vivo studies demonstrated that both Ru-2 and TF/Ru-2 exhibited superior antitumor efficacy and improved biosafety compared to cisplatin. This study presents a novel ruthenium complex and a transferrin-based drug delivery platform with significant potential for future cancer therapies.
Collapse
Affiliation(s)
- Peng Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Shangbo Zhou
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zihan Jin
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Wei Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zihang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jiaqi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Feng Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China; Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Binbin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China; Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
6
|
Steel TR, Stjärnhage J, Riisom M, Bloomfield HO, Herbert CD, Jamieson SMF, Astin JW, Söhnel T, Hartinger CG. The Chemistry of Anticancer Mononuclear and N-Bridged Dinuclear 8-Aminoquinoline Half-sandwich Metal Complexes. Chemistry 2025; 31:e202404366. [PMID: 40130746 PMCID: PMC12015398 DOI: 10.1002/chem.202404366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 03/26/2025]
Abstract
Piano-stool complexes of ruthenium and other platinum group metals have shown promising preclinical results as anticancer agents, often with alternative modes of action to traditional platinum-based compounds. Quinoline is considered a privileged structure in medicinal chemistry and many complexes with potent anticancer activity have been reported. To assess the effect of incorporating bidentate 8-aminoquinoline-η2N-1,N-8 (AQH) ligands in half-sandwich piano-stool metal complexes of the general formula [M(L)(AQH)Cl]+, the respective Ru, Os (L=η6-p-cymene), Rh and Ir (L=η5-pentamethylcyclopentadienyl) complexes were prepared. Deprotonation of AQH during the reaction gave dinuclear [M(L)(AQ)]2 2+ complexes with the deprotonated μ-κ1N-8-aminoquinolinato-η2N-1,N-8 (AQ) ligands acting as bridges between the metal centers. Conversion of the mononuclear Ru, Rh and Ir compounds to the dimetallic analogues was facilitated under basic conditions and improved for the Ru derivative by the addition of AgNO3 to abstract the chlorido ligand. In in vitro anticancer activity studies, the dimetallic complexes were in general more potent than mononuclear analogues. The higher activity of the dimetallic compounds can be explained by higher uptake into cancer cells, as demonstrated for the respective Ru complexes, while zebrafish embryo studies demonstrated low toxicity, irrespective of the number of metal centers in the complexes.
Collapse
Affiliation(s)
- Tasha R. Steel
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Julia Stjärnhage
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Mie Riisom
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Hugh O. Bloomfield
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Caitlin D. Herbert
- Department of Molecular Medicine and PathologyFaculty of Medical and Health SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research CentreUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jonathan W. Astin
- Department of Molecular Medicine and PathologyFaculty of Medical and Health SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Tilo Söhnel
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- MacDiarmid Institute for Advanced Materials and NanotechnologyVictoria University of Wellington, PO Box 600Wellington6140New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
7
|
Boym MA, Pototskiy RA, Podyacheva ES, Muratov DV, Nelyubina YV, Perekalin DS. Planar chiral arene ruthenium complexes derived from R-carvone. Dalton Trans 2025; 54:5655-5658. [PMID: 40094431 DOI: 10.1039/d5dt00344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Natural R-carvone was converted into chiral 1-aryl-2-methyl-5-isopropyl-cyclohexadienes using a cross-coupling reaction as a key step. These dienes react with RuCl3 to give planar-chiral complexes [(arene)RuCl2]2 in 70-75% yields. Complex [(1-Ph-2-Me-5-iPr-C6H3)RuCl2]2, a chiral analogue of the classical catalyst [(cymene)RuCl2]2, promotes C-H activation of N-methoxy-benzamide and intramolecular insertion of a diazo compound into a C-H bond, but gives products with low stereoselectivity.
Collapse
Affiliation(s)
- Mikhail A Boym
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., Moscow, 119334, Russia.
- National Research University Higher School of Economics, 7 Vavilova str., Moscow, 117312, Russia
| | - Roman A Pototskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., Moscow, 119334, Russia.
| | - Evgeniya S Podyacheva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., Moscow, 119334, Russia.
- National Research University Higher School of Economics, 7 Vavilova str., Moscow, 117312, Russia
| | - Dmitry V Muratov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., Moscow, 119334, Russia.
| | - Yulia V Nelyubina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, 1 Acad. Semenov str., 142432, Chernogolovka, Russia
| | - Dmitry S Perekalin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., Moscow, 119334, Russia.
- National Research University Higher School of Economics, 7 Vavilova str., Moscow, 117312, Russia
| |
Collapse
|
8
|
Mohanty M, Das S, Pattanayak PD, Lima S, Kaminsky W, Dinda R. Ru III-Morpholine-Derived Thiosemicarbazone-Based Metallodrugs: Lysosome-Targeted Anticancer Agents. ACS APPLIED BIO MATERIALS 2025; 8:1210-1226. [PMID: 39806879 DOI: 10.1021/acsabm.4c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three RuIII complexes 1-3 of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of 2 through a single-crystal X-ray diffraction study. The solution stability of 1-3 was tested using conventional techniques such as UV-vis and HRMS. Further, the anticancer activity of 1-3 was tested in HT-29 and HeLa cancer cell lines. To gain insight into their mechanism of action, the cytotoxicity, hydrophobicity, and the interaction of 1-3 with DNA and HSA were evaluated by different conventional methods such as absorption, fluorescence, and circular dichroism studies. Along with favorable biomolecule interaction, 1-3 revealed potent selectivity toward cancer cells, which is a prerequisite for the generation of an anticancer drug. According to cell viability results, 1 has the highest cytotoxicity among all in the group, against both cells, respectively. Additionally, the fluorescence-active ruthenium complexes selectively target lysosomes, which is evaluated by live-cell imaging. 1-3 disrupt the lysosome membrane potential by generating an excessive amount of reactive oxygen species, which results in an apoptotic mode of cell death.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | | | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
9
|
Ghini V, Tristán AI, Di Paco G, Massai L, Mannelli M, Gamberi T, Fernández I, Rosato A, Turano P, Messori L. Novel NMR-Based Approach to Reveal the 'Metabolic Fingerprint' of Cytotoxic Gold Drugs in Cancer Cells. J Proteome Res 2025; 24:813-823. [PMID: 39757834 DOI: 10.1021/acs.jproteome.4c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
A combination of pathway enrichment and metabolite clustering analysis is used to interpret untargeted 1H NMR metabolomics data, enabling a biochemically informative comparison of the effects induced by a panel of known cytotoxic gold(I) and gold(III) compounds in A2780 ovarian cancer cells. The identification of the most dysregulated pathways for the major classes of compounds highlights specific chemical features that lead to common biological effects. The proposed approach may have broader applicability to the screening of metal-based drug candidate libraries, which is always complicated by their multitarget nature, and support the comprehensive interpretation of their metabolic actions.
Collapse
Affiliation(s)
- Veronica Ghini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Ana Isabel Tristán
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almeria 04120, Spain
| | - Giorgio Di Paco
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Michele Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almeria 04120, Spain
| | - Antonio Rosato
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florece, Sesto Fiorentino 50019, Italy
| | - Paola Turano
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florece, Sesto Fiorentino 50019, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| |
Collapse
|
10
|
Xuan Y, Yan Y, Wei X, Wang S, Zhang J, Tang Y, Li S. Positively-charged, chalcone-hydroxypyrone hybrid ruthenium(II)-arene complexes functionalized with ethacrynic acid: Synthesis, characterizaion, and antitumor effect. J Inorg Biochem 2025; 263:112778. [PMID: 39615317 DOI: 10.1016/j.jinorgbio.2024.112778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
A new family of ethacrynic acid-functionalized, chalcone-hydroxypyrone hybrid ruthenium(II)-arene complexes (4a-4e) have been designed, synthesis and fully characterized by 1H and 13C NMR, ESI-MS, elemental analysis, and melting point tests. The molecular structure of 3a, one of the precursor complexes, has been determined by single-crystal X-ray diffraction. The cytotoxicity of the obtained complexes toward human cancer cell lines such as HeLa, MGC803, A549, MDA-MB-231, and MCF-7 cells have been investigated by MTT assay. Whereas complexes 4d and 4e showed significantly higher cytotoxicity than cisplatin (the positive control group) and complexes 3a-3e. Moreover, complexes 4d and 4e exhibited a certain selectivity (selectivity index: 7.33 and 7.57) toward MCF-7 cells over MCF-10a normal cells. Glutathione S-transferases (GSTs) activity assay indicate that complexes 4d and 4e exhibited higher GST inhibitory activity than ethacrynic acid (EA, the best characterized GST inhibitor), consistent with their higher cytotoxicity. Further mechanistic studies showed that 4e-induced cell apoptosis may be aroused by the production of ROS, the loss of mitochondrial membrane potential and G2/M phase cell arrest in MCF-7 cells. In addition, the in vivo antitumor effect study on the xenograft mouse models of MCF-7 cells reveal that complex 4e significantly inhibited tumor growth with a higher inhibition efficiency of 68.80 %, in comparison with the groups treated with cisplatin (59.25 %). These results highlight the strong possibility to develop positively-charged, chalcone-hydroxypyrone hybrid ruthenium(II)-arene complexes funcionalized with GST inhibitor as promising anticancer agents.
Collapse
Affiliation(s)
- Yuxin Xuan
- Key Laboratory of Chemical Biology of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education; State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Materials Science, Hebei University, Baoding 071002, China
| | - Yuxi Yan
- Key Laboratory of Chemical Biology of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education; State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Materials Science, Hebei University, Baoding 071002, China
| | - Xiaonan Wei
- Key Laboratory of Chemical Biology of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education; State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Materials Science, Hebei University, Baoding 071002, China
| | - Shuxiang Wang
- Key Laboratory of Chemical Biology of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education; State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Materials Science, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education; State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Materials Science, Hebei University, Baoding 071002, China
| | - Yonghe Tang
- Key Laboratory of Chemical Biology of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education; State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Materials Science, Hebei University, Baoding 071002, China.
| | - Shenghui Li
- Key Laboratory of Chemical Biology of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education; State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry & Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
11
|
Öztürk E, Subaşı E, Kurşunluoğlu G, Yüksel BŞ, Kayalı HA. Anticancer potential of benzo[b]thiophene functionalized thiosemicarbazone ligands and their organoruthenium complexes. J Biol Inorg Chem 2025; 30:71-85. [PMID: 39739051 DOI: 10.1007/s00775-024-02090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
As novel promising anticancer candidates, the piano-stool type complexes of ruthenium, [RuCl(η6-p-cymene)(N,S-Ln)]PF6, K1-4, were synthesized from the reaction of the substituted benzo[b]thiophene based thiosemicarbazone ligands (L1-4) with [{RuCl(η6-p-cymene)}2(μ-Cl)2]. All complexes were fully characterized using elemental analysis, and spectroscopic methods such as FT-IR and 1H NMR. The molecular masses of the complexes were proved by MALDI-TOF analysis. Single crystal X-ray diffraction study was employed in the structural elucidation of complex K1 which shows a distorted octahedral geometry around the Ru(II) ion. Furthermore, spectroscopic methods revealed that in all complexes the ligands are coordinated to the metal center in neutral thione form via N, S donors. In this study, the effect of all ligands, complexes and commercial drugs with a different concentration on the viability of OVCAR-3, A2780 and OSE cells were compared. In this comparison, the cytotoxicity of ruthenium (II) complexes on two ovarian cancer cell lines (human A2780 and human OVCAR-3) was evaluated. For this purpose, the resazurin assay was performed. Based on our studies, complex K2 showed the highest toxicity against OVCAR-3 and A2780 cells. The cytotoxic effect of K2 was found to be higher than that of the commercial anticancer agents Oxalpin and Carbodex, 1.8-34.7-fold for OVCAR-3 cells and 1.9-11.8-fold for A2780 cells, respectively. These results provide insight into the potential of ruthenium (II) complexes as a cytotoxic agent for the treatment of ovarian cancer, particularly for primary tumors.
Collapse
Affiliation(s)
- Emine Öztürk
- The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, 35100, İzmir, Turkey
| | - Elif Subaşı
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, 35160, İzmir, Turkey.
| | - Gizem Kurşunluoğlu
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, 38039, Kayseri, Turkey
| | - Betül Şen Yüksel
- Department of Physics, Faculty of Science, Dokuz Eylul University, 35160, İzmir, Turkey
| | - Hülya Ayar Kayalı
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey.
- Drug Application and Research Center (ERFARMA), Erciyes University, 38039, Kayseri, Turkey.
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Dokuz Eylul University, 35390, İzmir, Turkey.
| |
Collapse
|
12
|
Bates AC, Klugh KL, Galaeva AO, Patch RA, Manganaro JF, Markham SA, Scurek E, Levina A, Lay PA, Crans DC. Optimizing Therapeutics for Intratumoral Cancer Treatments: Antiproliferative Vanadium Complexes in Glioblastoma. Int J Mol Sci 2025; 26:994. [PMID: 39940763 PMCID: PMC11817060 DOI: 10.3390/ijms26030994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Glioblastoma, an aggressive cancer, is difficult to treat due to its location, late detection, drug resistance, and poor absorption of chemotherapeutics. Intratumoral drug administration offers a promising potential treatment alternative with localized delivery and minimal systemic toxicity. Vanadium(V) coordination complexes, incorporating Schiff base and catecholate ligands, have shown effects as antiproliferative agents with tunable efficacy and reactivity, stability, steric bulk, hydrophobicity, uptake, and toxicity optimized for the intratumoral administration vehicle. A new series of oxovanadium(V) Schiff base-catecholate complexes were synthesized and characterized using nuclear magnetic resonance (NMR), UV-Vis, and infrared spectroscopy and mass spectrometry. Stability under physiological conditions was assessed via UV-Vis spectroscopy, and the antiproliferative activity was evaluated in T98G glioblastoma and SVG p12 normal glial cells using viability assays. The newly synthesized [VO(3-tBuHSHED)(TIPCAT)] complex was more stable (t1/2 ~4.5 h) and had strong antiproliferative activity (IC50 ~1.5 µM), comparing favorably with the current lead compound, [VO(HSHED)(DTB)]. The structural modifications enhanced stability, hydrophobicity, and steric bulk through substitution with iso-propyl and tert-butyl groups. The improved properties were attributed to steric hindrance associated with the new Schiff base and catecholato ligands, as well as the formation of non-toxic byproducts upon degradation. The [VO(3-tBuHSHED)(TIPCAT)] complex emerges as a promising candidate for glioblastoma therapy by demonstrating enhanced stability and a greater selectivity, which highlights the role of strategic ligand design in developing localized therapies for the treatment of resistant cancers. In reporting the new class of compounds effective against T98G glioblastoma cells, we describe the generally desirable properties that potential drugs being developed for intratumoral administration should have.
Collapse
Affiliation(s)
- Andrew C. Bates
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Kameron L. Klugh
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Anna O. Galaeva
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Raley A. Patch
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Skyler A. Markham
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Emma Scurek
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
13
|
Schleisiek J, Michaltsis E, Mayer S, Montesdeoca N, Karges J. Necrosis inducing tetranuclear Ru(II)-Re(I) metal complex for anticancer therapy. Dalton Trans 2025; 54:942-950. [PMID: 39714107 DOI: 10.1039/d4dt02992e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Chemotherapy is one of the most widely used anticancer treatments worldwide. However, despite its clinical effectiveness, most chemotherapeutic agents are associated with severe side effects. To address this limitation, there is an urgent need for the development of novel anticancer agents. Among the promising alternatives, Ruthenium and Rhenium complexes have garnered significant attention in the scientific literature. This study proposes combining these two metal moieties into a single tetranuclear complex, bridged by a 2,2'-bipyrimidine ligand. Cytotoxicity tests revealed broad activity of the novel metal complex against multiple cancer cell lines. Mechanistic studies suggested that the complex induces cell death by necrosis. Further analyses demonstrated its ability to eradicate colon carcinoma tumor spheroids at micromolar concentrations. To the best of our knowledge, this represents the first example of a Ru(II)-Re(I) tetranuclear metal complex as an anticancer agent.
Collapse
Affiliation(s)
- Julia Schleisiek
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Eleni Michaltsis
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Stephan Mayer
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
14
|
da Silva NNP, Palmeira-Mello MV, Acésio NO, Moraes CAF, Honorato J, Castellano EE, Tavares DC, Oliveira KM, Batista AA. Ru(II)-diphosphine/N,S-mercapto complexes and their anti-melanoma properties. Dalton Trans 2025; 54:605-615. [PMID: 39560113 DOI: 10.1039/d4dt02575j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
We have synthesized and characterized a novel series of ruthenium complexes with formulas [RuCl(N-S)(dppm)2]PF6 (Ru1), [Ru(N-S)(dppm)2]PF6 (Ru2), [Ru(N-S)(dppe)2]PF6 (Ru3), [Ru(N-S)(dppen)2]PF6 (Ru4), [Ru(N-S)(bpy)2]PF6 (Ru5). In these formulas, N-S or S represents H2mq (2-mercapto-4(3H)-quinazoline); dppe (1,2'-bis(diphenylphosphine)ethane), dppm (1,1'-bis(diphenylphosphine)methane), or dppen (1,2'-bis(diphenylphosphine)ethene); and bpy refers to 2,2'-bipyridine. We have also compared the cytotoxicity of cisplatin with these ruthenium complexes to murine melanoma cells (B16-F10), human melanoma cells (A-375), and the non-tumoral human keratinocyte cell line (HaCat). All the ruthenium complexes inhibited melanoma cell growth in a dose-dependent manner. [Ru(2mq)(dppen)2]PF6 was four times more active toward A-375 cells than toward HaCat cells, inhibited colony formation in HaCat and A-375 cells (with a more pronounced effect on A-375 cells), altered A-375 cell morphology, and inhibited cell migration at 0.2 and 0.4 μM. In addition, we investigated how these ruthenium complexes interact with biomolecules such as DNA and Human Serum Albumin (HSA). All the ruthenium complexes interacted weakly with DNA, possibly through the grooves. Based on fluorescence assays, the ruthenium complexes interacted moderately with HSA. In light of these results, ruthenium complexes bearing phosphine and H2mq display promising cytotoxic properties against melanoma.
Collapse
Affiliation(s)
- Nádija N P da Silva
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| | - Marcos V Palmeira-Mello
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| | | | - Carlos A F Moraes
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| | - João Honorato
- Physics Institute of São Carlos, University of São Paulo - USP, CEP 13560-970, São Carlos, SP, Brazil
| | - Eduardo E Castellano
- Physics Institute of São Carlos, University of São Paulo - USP, CEP 13560-970, São Carlos, SP, Brazil
| | - Denise C Tavares
- University of Franca - UNIFRAN, CEP 14404-600, Franca, SP, Brazil
| | - Katia M Oliveira
- Institute of Chemistry, University of Brasília - UnB, CEP 70910-900, Brasília, DF, Brazil.
| | - Alzir A Batista
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
15
|
Řezníčková E, Bárta O, Milde D, Kryštof V, Štarha P. Anticancer dinuclear Ir(III) complex activates Nrf2 and interferes with NAD(H) in cancer cells. J Inorg Biochem 2025; 262:112704. [PMID: 39255589 DOI: 10.1016/j.jinorgbio.2024.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Dinuclear complex [Ir2(μ-L1)(η5-Cp*)2Cl2](PF6)2 (1) exhibits low micromolar cytotoxic activity in vitro in various human cancer cells (GI50 = 1.7-3.0 μM) and outperformed its mononuclear analogue [Ir(η5-Cp*)Cl(L2)]PF6 (2; GI50 > 40.0 μM); Cp* = pentamethylcyclopentadienyl, L1 = 4-chloro-2,6-bis[5-(pyridin-2-yl)-1,3,4-thiadiazol-2-yl]pyridine, L2 = 5-(pyridin-2-yl)-1,3,4-thiadiazol-2-amine. Compound 1 upregulated the Keap1/Nrf2 oxidative stress-protective pathway in the treated MV4-11 acute myeloid leukemia cells. In connection with the redox-mediated mode of action of 1, its NADH-oxidizing activity was detected in solution (1H NMR), while NAD+ remained intact (with formate as a hydride source). Surprisingly, only negligible NADH oxidation was detected in the presence of the reduced glutathione and ascorbate. Following the results of in-solution experiments, NAD(H) concentration was assessed in 1-treated MV4-11 cancer cells. Besides the intracellular NADH oxidation in the presence of 1, the induced oxidative stress also led to a decrease of NAD+, resulting in depletion of both NAD+/NADH coenzymes. The discussed findings provide new insight into the biochemical effects of catalytic anticancer compounds that induce cell death via a redox-mediated mode of action.
Collapse
Affiliation(s)
- Eva Řezníčková
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Ondřej Bárta
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| |
Collapse
|
16
|
Binacchi F, Cirri D, Bimbi E, Busto N, Pratesi A, Biver T. Pd(II)/1,10-phenanthroline complexes bearing arene ligands: On the role of N- vs O-coordination to tune their cellular activity and binding ability towards DNA and RNA. J Inorg Biochem 2025; 262:112749. [PMID: 39366102 DOI: 10.1016/j.jinorgbio.2024.112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Three Pd(II)-based complexes of 1,10-phenanthroline and N- or O-coordinating ligands have been synthesised and tested with different relevant biosubstrates like double-stranded DNA, double and triple helix of RNA, DNA G-quadruplexes of different conformations and bovine serum albumin. Here a correlation between N- vs O-coordinating elements and binding mechanism emerged, where the N-coordinating ligands proved to be the most promising. These outcomes were confirmed also in the cellular experiments. The Pd(II) complex with naphthalene-1,8-diamine is the one that is able to be carried by BSA, to strongly bind nucleic acids, to produce reactive oxygen species (ROS) and to show the best cellular performances (poorly toxic towards healthy cells and highly toxic against the cisplatin-resistant cancer cell line). On the opposite, the complex with benzene-1,2-diolate may be sequestered by BSA, weakly binds nucleic acids, does not produce ROS and shows poor cellular activity. The complex with benzene-1,2-diamine stays in between. Other mechanistic details are discussed which show that the biophysical behaviour is the sum of the contribution of aromaticity, charge and N- or O-coordination.
Collapse
Affiliation(s)
- Francesca Binacchi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Eleonora Bimbi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Natalia Busto
- Departamento de Ciencias de la Salud, Universidad de Burgos, Paseo de los Comendadores s/n, 09001 Burgos, Spain.
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
17
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
18
|
He S, Zheng Q, Ma L, Shen H, Zheng B, Zhang Y, Deng HH, Chen W, Fan K. Mucin-Triggered Osmium Nanoclusters as Protein-Corona-Like Nanozymes with Photothermal-Enhanced Peroxidase-Like Activity for Tumor-Specific Therapy. NANO LETTERS 2024; 24:14337-14345. [PMID: 39470470 DOI: 10.1021/acs.nanolett.4c04026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Nanomaterials with peroxidase-like activity and photothermal conversion efficiency have garnered significant attention for their ability to generate cytotoxic hydroxyl radicals and provide synergistic therapeutic effects. Selecting nanozymes with suitable properties and carriers is crucial for maximizing efficacy. While the mucin family is known for its mucoadhesive, glycosylated structures that enhance drug bioavailability and targeting, its potential in nanozymes remains underexplored. Here, we utilize mucin-2 to facilitate osmium nanoclusters (Os@Mucin), creating protein-corona-like nanozymes. This configuration bestows Os@Mucin with excellent peroxidase-like activity (769 U/mg) and photothermal conversion efficiency (22.83%, 808 nm). Mucin-2 promotes Os uptake by cells, allowing Os@Mucin to exhibit tumor environment-responsive peroxidase-like activity, further enhanced under photothermal conditions for targeted cytotoxicity and synergistic effects. In vivo experiments demonstrate that this integration effectively treats triple-negative breast cancer. This study innovatively highlights the potential of the mucin family and underscores the promising role of Os nanozymes in tumor therapy.
Collapse
Affiliation(s)
- Shaobin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qionghua Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huanran Shen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Bohang Zheng
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| |
Collapse
|
19
|
Gobbo A, Chen F, Zacchini S, Gou S, Marchetti F. Enhanced DNA damage and anti-proliferative activity of a novel ruthenium complex with a chlorambucil-decorated ligand. J Inorg Biochem 2024; 260:112703. [PMID: 39182331 DOI: 10.1016/j.jinorgbio.2024.112703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Triphenylphosphine substitution reactions of [RuCl(PPh3)2(tpm)]Cl, 1, featuring tris(pyrazolyl)methane (tpm) as ligand, with the chlorambucil-decorated pyridine ligand PyCA, 3-aminopyridine (PyNH2) and 4-pyridinemethanol (PyOH) afforded the corresponding pyridine complexes 2-4 in high yields. PyCA was preliminarily obtained via esterification of 4-pyridinemethanol with chlorambucil. The new compounds PyCA and 2-3 were characterized by IR and multinuclear NMR spectroscopy. Additionally, the structure of 3 was ascertained by single crystal X-ray diffraction. The in vitro anti-proliferative activity of 2-4 and PyCA was determined against a panel of cancer cell lines, outlining 2 as the most performing compound. Targeted studies were subsequently undertaken using 2 to elucidate mechanistic aspects, including the assessment of ruthenium cellular uptake, cell cycle arrest, production of reactive oxygen species (ROS), western blotting and DNA damage (comet test). Overall, data highlight that the anticancer activity provided by 2 primarily affects the mitochondria pathway with a potential additional contribution from DNA damage.
Collapse
Affiliation(s)
- Alberto Gobbo
- University of Pisa, Department of Chemistry, and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Via P. Gobetti 85, I-40129 Bologna, Italy
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry, and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|
20
|
Jakopec S, Hamzic LF, Bočkor L, Car I, Perić B, Kirin SI, Sedić M, Raić-Malić S. Coumarin-modified ruthenium complexes: Synthesis, characterization, and antiproliferative activity against human cancer cells. Arch Pharm (Weinheim) 2024; 357:e2400271. [PMID: 38864840 DOI: 10.1002/ardp.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
Among ruthenium complexes studied as anticancer metallodrugs, NKP-1339, NAMI-A, RM175, and RAPTA-C have already entered clinical trials due to their potent antitumor activity demonstrated in preclinical studies and reduced toxicity in comparison with platinum drugs. Considering the advantages of ruthenium-based anticancer drugs and the cytostatic activity of organometallic complexes with triazole- and coumarin-derived ligands, we set out to synthesize Ru(II) complexes of coumarin-1,2,3,-triazole hybrids (L) with the general formula [Ru(L)(p-cymene)(Cl)]ClO4. The molecular structure of the complex [Ru(2a)(p-cymene)(Cl)]ClO4 (2aRu) was determined by single-crystal X-ray diffraction, which confirmed the coordination of the ligand to the central ruthenium(II) cation by bidentate mode of coordination. Coordination with Ru(II) resulted in the enhancement of cytostatic activity in HepG2 hepatocellular carcinoma cells and PANC-1 pancreatic cancer cells. Coumarin derivative 2a positively regulated the expression and activity of c-Myc and NPM1 in RKO colon carcinoma cells, while the Ru(II) half-sandwich complex 2cRu induced downregulation of AKT and ERK signaling in PANC-1 cells concomitant with reduced intracellular levels of reactive oxygen species. Altogether, our findings indicated that coumarin-modified half-sandwich Ru(II) complexes held potential as anticancer agents against gastrointestinal malignancies.
Collapse
Affiliation(s)
- Silvio Jakopec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Lejla F Hamzic
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Iris Car
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Berislav Perić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Srećko I Kirin
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
21
|
Botter E, Caligiuri I, Rizzolio F, Visentin F, Scattolin T. Liposomal Formulations of Metallodrugs for Cancer Therapy. Int J Mol Sci 2024; 25:9337. [PMID: 39273286 PMCID: PMC11394711 DOI: 10.3390/ijms25179337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The search for new antineoplastic agents is imperative, as cancer remains one of the most preeminent causes of death worldwide. Since the discovery of the therapeutic potential of cisplatin, the study of metallodrugs in cancer chemotherapy acquired increasing interest. Starting from cisplatin derivatives, such as oxaliplatin and carboplatin, in the last years, different compounds were explored, employing different metal centers such as iron, ruthenium, gold, and palladium. Nonetheless, metallodrugs face several drawbacks, such as low water solubility, rapid clearance, and possible side toxicity. Encapsulation has emerged as a promising strategy to overcome these issues, providing both improved biocompatibility and protection of the payload from possible degradation in the biological environment. In this respect, liposomes, which are spherical vesicles characterized by an aqueous core surrounded by lipid bilayers, have proven to be ideal candidates due to their versatility. In fact, they can encapsulate both hydrophilic and hydrophobic drugs, are biocompatible, and their properties can be tuned to improve the selective delivery to tumour sites exploiting both passive and active targeting. In this review, we report the most recent findings on liposomal formulations of metallodrugs, with a focus on encapsulation techniques and the obtained biological results.
Collapse
Affiliation(s)
- Eleonora Botter
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Isabella Caligiuri
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
22
|
Bortolamiol E, Mauceri M, Piccolo R, Cavarzerani E, Demitri N, Donati C, Gandin V, Brezar SK, Kamensek U, Cemazar M, Canzonieri V, Rizzolio F, Visentin F, Scattolin T. Palladium(II)-Indenyl Complexes Bearing N-Heterocyclic Carbene (NHC) Ligands as Potent and Selective Metallodrugs toward High-Grade Serous Ovarian Cancer Models. J Med Chem 2024; 67:14414-14431. [PMID: 39119630 DOI: 10.1021/acs.jmedchem.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
In this study, we synthesized novel Pd(II)-indenyl complexes using various N-heterocyclic carbene (NHC) ligands, including chelating NHC-picolyl, NHC-thioether, and diNHC ligands, and two monodentate NHCs. Transmetalation reactions between a Pd(II)-indenyl precursor and silver-NHC complexes were generally employed, except for chelating diNHC derivatives, which required direct reaction with bisimidazolium salts and potassium carbonate. Characterization included NMR, HRMS analysis, and single-crystal X-ray diffraction. In vitro on five ovarian cancer cell lines showed notable cytotoxicity, with IC50 values in the micro- and submicromolar range. Some compounds exhibited intriguing selectivity for cancer cells due to higher tumor cell uptake. Mechanistic studies revealed that monodentate NHCs induced mitochondrial damage while chelating ligands caused DNA damage. One chelating NHC-picolyl ligand showed promising cytotoxicity and selectivity in high-grade serous ovarian cancer models, supporting its consideration for preclinical study.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Matteo Mauceri
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Rachele Piccolo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Enrico Cavarzerani
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Chiara Donati
- Dipartimento di Scienze del Farmaco, Universita di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Vincenzo Canzonieri
- Department of Medical, Surgical and Health Sciences, Università degli Studi di Trieste, Strada di Fiume 447, 34100 Trieste, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.), IRCCS via Franco Gallini 2, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.), IRCCS via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
23
|
Wang WJ, Ling YY, Shi Y, Wu XW, Su X, Li ZQ, Mao ZW, Tan CP. Identification of mitochondrial ATP synthase as the cellular target of Ru-polypyridyl- β-carboline complexes by affinity-based protein profiling. Natl Sci Rev 2024; 11:nwae234. [PMID: 39114378 PMCID: PMC11304990 DOI: 10.1093/nsr/nwae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Ruthenium polypyridyl complexes are promising anticancer candidates, while their cellular targets have rarely been identified, which limits their clinical application. Herein, we design a series of Ru(II) polypyridyl complexes containing bioactive β-carboline derivatives as ligands for anticancer evaluation, among which Ru5 shows suitable lipophilicity, high aqueous solubility, relatively high anticancer activity and cancer cell selectivity. The subsequent utilization of a photo-clickable probe, Ru5a, serves to validate the significance of ATP synthase as a crucial target for Ru5 through photoaffinity-based protein profiling. Ru5 accumulates in mitochondria, impairs mitochondrial functions and induces mitophagy and ferroptosis. Combined analysis of mitochondrial proteomics and RNA-sequencing shows that Ru5 significantly downregulates the expression of the chloride channel protein, and influences genes related to ferroptosis and epithelial-to-mesenchymal transition. Finally, we prove that Ru5 exhibits higher anticancer efficacy than cisplatin in vivo. We firstly identify the molecular targets of ruthenium polypyridyl complexes using a photo-click proteomic method coupled with a multiomics approach, which provides an innovative strategy to elucidate the anticancer mechanisms of metallo-anticancer candidates.
Collapse
Affiliation(s)
- Wen-Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yin Shi
- School of Pharmacy, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiao-Wen Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuxian Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zheng-Qiu Li
- School of Pharmacy, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Li W, Yu J, Wang J, Fan X, Xu X, Wang H, Xiong Y, Li X, Zhang X, Zhang Q, Qi X, Pigeon P, Gu Q, Bruno-Colmenarez J, Jaouen G, McGlinchey MJ, Qiu X, You SL, Li J, Wang Y. How does ferrocene correlate with ferroptosis? Multiple approaches to explore ferrocene-appended GPX4 inhibitors as anticancer agents. Chem Sci 2024; 15:10477-10490. [PMID: 38994406 PMCID: PMC11234876 DOI: 10.1039/d4sc02002b] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Ferroptosis has emerged as a form of programmed cell death and exhibits remarkable promise for anticancer therapy. However, it is challenging to discover ferroptosis inducers with new chemotypes and high ferroptosis-inducing potency. Herein, we report a new series of ferrocenyl-appended GPX4 inhibitors rationally designed in a "one stone kills two birds" strategy. Ferroptosis selectivity assays, GPX4 inhibitory activity and CETSA experiments validated the inhibition of novel compounds on GPX4. In particular, the ROS-related bioactivity assays highlighted the ROS-inducing ability of 17 at the molecular level and their ferroptosis enhancement at the cellular level. These data confirmed the dual role of ferrocene as both the bioisostere motif maintaining the inhibition capacity of certain molecules with GPX4 and also as the ROS producer to enhance the vulnerability to ferroptosis of cancer cells, thereby attenuating tumor growth in vivo. This proof-of-concept study of ferrocenyl-appended ferroptosis inducers via rational design may not only advance the development of ferroptosis-based anticancer treatment, but also illuminate the multiple roles of the ferrocenyl component, thus opening the way to novel bioorganometallics for potential disease therapies.
Collapse
Affiliation(s)
- Wei Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Jing Yu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Jing Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Xuejing Fan
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Ximing Xu
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 266003 Shandong P. R. China
| | - Hui Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Ying Xiong
- School of Pharmacy, Fudan University Shanghai 201203 China
| | - Xinyu Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Xiaomin Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Qianer Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Xin Qi
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Pascal Pigeon
- PSL, Chimie ParisTech 11 Rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, UMR 8232 CNRS, IPCM 4 Place Jussieu F-75005 Paris France
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | | | - Gérard Jaouen
- PSL, Chimie ParisTech 11 Rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, UMR 8232 CNRS, IPCM 4 Place Jussieu F-75005 Paris France
| | | | - Xue Qiu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Jing Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Yong Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| |
Collapse
|
25
|
Bertoncini B, Xiao Z, Zacchini S, Biancalana L, Gasser G, Marchetti F. Aminocarbyne-Alkyne Coupling in Diruthenium Complexes: Exploring the Anticancer Potential of the Resulting Vinyliminium Complexes and Comparison with Diiron Homologues. Inorg Chem 2024; 63:12485-12497. [PMID: 38912873 DOI: 10.1021/acs.inorgchem.4c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
New diruthenium complexes based on the scaffold Ru2Cp2(CO)2 (Cp = η5-C5H5) and containing a bridging vinyliminium ligand, [2a-d]CF3SO3, were synthesized through regioselective coupling of alkynes with an aminocarbyne precursor (85-90% yields). The reaction involving phenylacetylene proceeded with the formation of a diruthenacyclobutene byproduct, [4]CF3SO3 (10% yield). Complexes [2a-d]+ undergo partial alkyne extrusion in contact with alumina or CDCl3. All products were characterized by elemental analysis, infrared and multinuclear NMR spectroscopy, and single crystal X-ray diffraction in two cases. Complexes [2a-d]+ revealed an outstanding stability in DMEM cell culture medium at 37 °C (<1% degradation over 72 h). These complexes exhibited cytotoxicity in human colon colorectal adenocarcinoma HT-29 cells in the low micromolar range, with lower IC50 values than those obtained with the homologous diiron complexes previously reported. Evaluation of ROS (reactive oxygen species) production and O2 consumption rate (OCR) highlighted the higher potential of Ru2 complexes, compared to the Fe2 counterparts, to impact mitochondrial activity, with the heterometallic Ru2-ferrocenyl complex [2d]+ showing the best performance.
Collapse
Affiliation(s)
- Benedetta Bertoncini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Zhimei Xiao
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, I-40129 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
26
|
Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H, Feizi-Dehnayebi M. Computational and experimental examinations of new antitumor palladium(II) complex: CT-DNA-/BSA-binding, in-silico prediction, DFT perspective, docking, molecular dynamics simulation and ONIOM. J Biomol Struct Dyn 2024; 42:5447-5469. [PMID: 37349936 DOI: 10.1080/07391102.2023.2226715] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Since the design of metal complexes with better biological activities is important, herein a new palladium(II) complex bearing en and acac (en and acac stand for ethylenediamine and acetylacetonato, respectively) as its ligands, [Pd(en)(acac)]NO3 complex, was synthesized and fully characterized. Quantum chemical computations of the palladium(II) complex were done via DFT/B3LYP method. Cytotoxicity activity of the new compound on leukemia cell line (K562) was assessed via MTT method. The findings indicated that the metal complex has remarkable cytotoxic effect than cisplatin. OSIRIS DataWarrior software was employed to calculate in-silico physicochemical and toxicity parameters of the synthesized complex which rendered significant results. To comprehend the interaction type of new metal compound with macromolecules, the in depth investigation of interaction of mentioned complex with CT-DNA and BSA was accomplished by fluorescence, UV-Visible absorption spectroscopy, viscosity measurement, gel electrophoresis, FRET analysis and circular dichroism (CD) spectroscopy. On the other hand, computational molecular docking was carried out and the obtained data demonstrated that H-bond and van der Waals forces are the dominant forces for the binding of the compound to the mentioned biomolecules. Molecular dynamics simulation was also done and confirmed the stability of best docked pose of palladium(II) complex inside DNA or BSA over the time and in presence of water solvent. Also, Our own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) methodology based on the hybridization of quantum mechanics and molecular mechanics (QM/MM) methodology was accomplished to inquire about binding of Pd(II) complex with DNA or BSA.HIGHLIGHTSNew biologically active Pd(II) complex was synthesized and characterized.The in silico studies of the designed complex and its ligands were accomplished by OSIRIS DataWarrior softwareInteraction with CT-DNA and BSA was assessed by various spectroscopic methods.Molecular docking simulation supported the interaction with both macromolecules.Based on ONIOM analysis, the structures of the complex and biomolecules are altered after binding. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | | | |
Collapse
|
27
|
Shtemenko N, Galiana-Rosello C, Gil-Martínez A, Blasco S, Gonzalez-García J, Velichko H, Holichenko O, Shtemenko O, García-España E. Two rhenium compounds with benzimidazole ligands: synthesis and DNA interactions. RSC Adv 2024; 14:19787-19793. [PMID: 38903672 PMCID: PMC11187564 DOI: 10.1039/d4ra02669a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Two rhenium compounds: cis-tetrachlorotetrabenzimidazoldirhenium(iii) chloride - I and tetrabenzimidazoldioxorhenium(v) - II have been synthesized and characterized. X-ray data are presented for the new complex II. I and II show strong emission that has been used to investigate their interaction with several non-canonical DNA structures. Both compounds have a quenching effect on the fluorescence intensity upon addition of the investigated oligonucleotides; I was more selective for binding G4-than II. Association constant values obtained for I and II with G-quadruplexes reached 106 M-1, which suggests a strong interaction between both complexes and these sequences. FRET-melting assays show that I and II have a rather high level of stabilization of ckit1 and ckit2 quadruplexes. I is toxic against macrophages RAW267.7 only in high concentrations, while complex II shows no toxicity against these cells. I and II accumulate inside cells in different degrees. Molecular dynamic simulation studies have provided insights into the binding modes of II with ckit1 and ckit2 G-quadruplexes. The results obtained show the DNA binding activity of the rhenium complexes and their ability to be players in the anti-cancer fight since they can bind to non-canonical DNA forms in oncogene promoters, accumulate in some cancer cells, and influence the cancer cells microenvironment.
Collapse
Affiliation(s)
- Nataliia Shtemenko
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
- Oles Honchar National University Haharina Ave, 72 Dnipro 49000 Ukraine
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Cristina Galiana-Rosello
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Ariadna Gil-Martínez
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Salvador Blasco
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Jorge Gonzalez-García
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Helen Velichko
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Oleksandr Holichenko
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Olexandr Shtemenko
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
- Ukrainian State University of Chemical Technology Haharina Ave, 8 Dnipro 49005 Ukraine
| | - Enrique García-España
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
28
|
Zain Aldin M, Zaragoza G, Choquenet E, Blampain G, Berger G, Delaude L. Synthesis, characterization, and biological activity of cationic ruthenium-arene complexes with sulfur ligands. J Biol Inorg Chem 2024; 29:441-454. [PMID: 38753160 DOI: 10.1007/s00775-024-02052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/08/2024] [Indexed: 06/20/2024]
Abstract
Five cationic ruthenium-arene complexes with the generic formula [Ru(SAc)(S2C·NHC)(p-cymene)](PF6) (5a-e) were prepared in almost quantitative yields using a straightforward one-pot, two-step experimental procedure starting from [RuCl2(p-cymene)]2, an imidazol(in)ium-2-dithiocarboxylate (NHC·CS2) zwitterion, KSAc, and KPF6. These half-sandwich compounds were fully characterized by various analytical techniques and the molecular structures of two of them were solved by X-ray diffraction analysis, which revealed the existence of an intramolecular chalcogen bond between the oxygen atom of the thioacetate ligand and a proximal sulfur atom of the dithiocarboxylate unit. DFT calculations showed that the C=S…O charge transfer amounted to 2.4 kcal mol-1. The dissolution of [Ru(SAc)(S2C·IMes)(p-cymene)](PF6) (5a) in moist DMSO-d6 at room temperature did not cause the dissociation of its sulfur ligands. Instead, p-cymene was slowly released to afford the 12-electron [Ru(SAc)(S2C·IMes)]+ cation that could be detected by mass spectrometry. Monitoring the solvolysis process by 1H NMR spectroscopy showed that more than 22 days were needed to fully decompose the starting ruthenium-arene complex. Compounds 5a-e exhibited a high antiproliferative activity against human glioma Hs683 and human lung carcinoma A549 cancer cells. In particular, the IMes derivative (5a) was the most potent compound of the series, achieving toxicities similar to those displayed by marketed platinum drugs.
Collapse
Affiliation(s)
- Mohammed Zain Aldin
- Laboratory of Catalysis, MolSys Research Unit, Institut de Chimie Organique (B6a), Université de Liège, Allée du Six Août 13, 4000, Liège, Belgium
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
| | - Eva Choquenet
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculté de Pharmacie, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Guillaume Blampain
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculté de Pharmacie, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculté de Pharmacie, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Lionel Delaude
- Laboratory of Catalysis, MolSys Research Unit, Institut de Chimie Organique (B6a), Université de Liège, Allée du Six Août 13, 4000, Liège, Belgium.
| |
Collapse
|
29
|
Tapala KC, Ndlangamandla NG, Ngoepe MP, Clayton HS. Molecular Structure, Spectroscopic, Frontier Molecular Orbital Analysis, Molecular Docking Studies, and In Vitro DNA-Binding Studies of Osmium(II)-Cymene Complexes with Aryl Phosphine and Aryl Phosphonium Assemblies. Bioinorg Chem Appl 2024; 2024:6697523. [PMID: 38840845 PMCID: PMC11152764 DOI: 10.1155/2024/6697523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/25/2023] [Accepted: 04/23/2024] [Indexed: 06/07/2024] Open
Abstract
X-ray crystallography, spectroscopy, computational methods, molecular docking studies, and in vitro DNA-binding studies have been useful in the investigations of intermolecular and intramolecular interactions of osmium-cymene oxalato complexes with aryl phosphine and aryl phosphonium groups in both primary and secondary coordination spheres, respectively. Molecular structures of the novel complexes PPh4[Os(η6-p-cymene)Br(κ2-O,O'-C2O4)] (1) and [Os(η6-p-cymene) (κ2-O,O'-C2O4)PPh3] (2) were resolved by single-crystal X-ray diffraction (XRD). Primary and secondary coordination sphere contacts were investigated using Hirshfeld surface analysis which was supported by molecular docking (MD) studies. The MD data obtained predicted significant differences in binding energy across three receptors for the two osmium complexes. An in vitro DNA-binding study was accomplished using UV-Vis spectroscopy which showed that both 1 and 2 bond with DNA through an intercalation approach. The optimized molecular geometry, frontier molecular orbital (EHOMO and ELUMO) energies, global electrophilicity index (ω), chemical hardness (η), chemical potential (µ), and the energy band gap (EHOMO-ELUMO) were calculated utilizing density functional theory (DFT) methods. Computed structural parameters (bond lengths and angles) support the experimental single-crystal XRD data.
Collapse
Affiliation(s)
- Kgaugelo C. Tapala
- Chemistry Department, University of South Africa, Unisa Science Campus, Johannesburg 1709, South Africa
| | - Nqobile G. Ndlangamandla
- Chemistry Department, University of South Africa, Unisa Science Campus, Johannesburg 1709, South Africa
| | - Mpho P. Ngoepe
- Chemistry Department, University of South Africa, Unisa Science Campus, Johannesburg 1709, South Africa
| | - Hadley S. Clayton
- Chemistry Department, University of South Africa, Unisa Science Campus, Johannesburg 1709, South Africa
| |
Collapse
|
30
|
Łomzik M, Błauż A, Tchoń D, Makal A, Rychlik B, Plażuk D. Development of Half-Sandwich Ru, Os, Rh, and Ir Complexes Bearing the Pyridine-2-ylmethanimine Bidentate Ligand Derived from 7-Chloroquinazolin-4(3H)-one with Enhanced Antiproliferative Activity. ACS OMEGA 2024; 9:18224-18237. [PMID: 38680348 PMCID: PMC11044151 DOI: 10.1021/acsomega.3c10482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Kinesin spindle protein (KSP) inhibitors are one of the most promising anticancer agents developed in recent years. Herein, we report the synthesis of ispinesib-core pyridine derivative conjugates, which are potent KSP inhibitors, with half-sandwich complexes of ruthenium, osmium, rhodium, and iridium. Conjugation of 7-chloroquinazolin-4(3H)-one with the pyridine-2-ylmethylimine group and the organometallic moiety resulted in up to a 36-fold increased cytotoxicity with IC50 values in the micromolar and nanomolar range also toward drug-resistant cells. All studied conjugates increased the percentage of cells in the G2/M phase, simultaneously decreasing the number of cells in the G1/G0 phase, suggesting mitotic arrest. Additionally, ruthenium derivatives were able to generate reactive oxygen species (ROS); however, no significant influence of the organometallic moiety on KSP inhibition was observed, which suggests that conjugation of a KSP inhibitor with the organometallic moiety modulates its mechanism of action.
Collapse
Affiliation(s)
- Michał Łomzik
- Faculty
of Chemistry, Department of Organic Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland
| | - Andrzej Błauż
- Faculty
of Biology and Environmental Protection, Department of Oncobiology
and Epigenetics, Cytometry Lab, University
of Lodz, ul. Pomorska
141/143, 90-236 Łódź, Poland
| | - Daniel Tchoń
- Laboratory
for Structural and Biochemical Research (LBSBio), Biological and Chemical
Research Centre, Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warszawa, Poland
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anna Makal
- Laboratory
for Structural and Biochemical Research (LBSBio), Biological and Chemical
Research Centre, Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Błażej Rychlik
- Faculty
of Biology and Environmental Protection, Department of Oncobiology
and Epigenetics, Cytometry Lab, University
of Lodz, ul. Pomorska
141/143, 90-236 Łódź, Poland
| | - Damian Plażuk
- Faculty
of Chemistry, Department of Organic Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
31
|
Chakraborty A, Ghosh S, Chakraborty MP, Mukherjee S, Roy SS, Das R, Acharya M, Mukherjee A. Inhibition of NF-κB-Mediated Proinflammatory Transcription by Ru(II) Complexes of Anti-Angiogenic Ligands in Triple-Negative Breast Cancer. J Med Chem 2024; 67:5902-5923. [PMID: 38520399 DOI: 10.1021/acs.jmedchem.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Nuclear factor kappa beta (NF-κB) plays a pivotal role in breast cancer, particularly triple-negative breast cancer, by promoting inflammation, proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance. Upregulation of NF-κB boosts vascular endothelial growth factor (VEGF) expression, assisting angiogenesis. The Ru(II) complexes of methyl- and dimethylpyrazolyl-benzimidazole N,N donors inhibit phosphorylation of ser536 in p65 and translocation of the NF-κB heterodimer (p50/p65) to the nucleus, disabling transcription to upregulate inflammatory signaling. The methyl- and dimethylpyrazolyl-benzimidazole inhibit VEGFR2 phosphorylation at Y1175, disrupting downstream signaling through PLC-γ and ERK1/2, ultimately suppressing Ca(II)-signaling. Partial release of the antiangiogenic ligand in a reactive oxygen species-rich environment is possible as per our observation to inhibit both NF-κB and VEGFR2 by the complexes. The complexes are nontoxic to zebrafish embryos up to 50 μM, but the ligands show strong in vivo antiangiogenic activity at 3 μM during embryonic growth in Tg(fli1:GFP) zebrafish but no visible effect on the adult phase.
Collapse
Affiliation(s)
- Ayan Chakraborty
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Shilpendu Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Manas Pratim Chakraborty
- Department of Biological Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Sujato Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | | | - Rahul Das
- Department of Biological Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | | | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| |
Collapse
|
32
|
Bonsignore R, Trippodo E, Di Gesù R, Carreca AP, Rubino S, Spinello A, Terenzi A, Barone G. Novel half Salphen cobalt(III) complexes: synthesis, DNA binding and anticancer studies. Dalton Trans 2024; 53:6311-6322. [PMID: 38487871 DOI: 10.1039/d4dt00092g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While platinum(II)-based drugs continue to be employed in cancer treatments, the escalating occurrence of severe side effects has spurred researchers to explore novel sources for potential therapeutic agents. Notably, cobalt(III) has emerged as a subject of considerable interest due to its ubiquitous role in human physiology. Several studies investigating the anticancer effects of Salphen complexes derived from cobalt(III) have unveiled intriguing antiproliferative properties. In a bid to enhance our understanding of this class of compounds, we synthesized and characterized two novel half Salphen cobalt(III) complexes. Both compounds exhibited notable stability, even in the presence of physiologically relevant concentrations of glutathione. The application of spectroscopic and computational methodologies unravelled their interactions with duplex and G4-DNAs, suggesting an external binding affinity for these structures, with preliminary indications of selectivity trends. Importantly, antiproliferative assays conducted on 3D cultured SW-1353 cancer cells unveiled a compelling anticancer activity at low micromolar concentrations, underscoring the potential therapeutic efficacy of this novel class of cobalt(III) complexes.
Collapse
Affiliation(s)
- Riccardo Bonsignore
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| | - Elisa Trippodo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| | | | | | - Simona Rubino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| | - Angelo Spinello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| | - Alessio Terenzi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| |
Collapse
|
33
|
Wei F, Chen F, Wu S, Zha M, Liu J, Wong KL, Li K, Wong KMC. Ligand Regulation Strategy to Modulate ROS Nature in a Rhodamine-Iridium(III) Hybrid System for Phototherapy. Inorg Chem 2024; 63:5872-5884. [PMID: 38498970 DOI: 10.1021/acs.inorgchem.3c04350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The efficacy of photodynamic therapy (PDT) is highly dependent on the photosensitizer features. The reactive oxygen species (ROS) generated by photosensitizers is proven to be associated with immunotherapy by triggering immunogenic cell death (ICD) as well. In this work, we establish a rhodamine-iridium(III) hybrid model functioning as a photosensitizer to comprehensively understand its performance and potential applications in photodynamic immunotherapy. Especially, the correlation between the ROS generation efficiency and the energy level of the Ir(III)-based excited state (T1'), modulated by the cyclometalating (C∧N) ligand, is systematically investigated and correlated. We prove that in addition to the direct population of the rhodamine triplet state (T1) formed through the intersystem crossing process with the assistance of a heavy Ir(III) metal center, the fine-tuned T1' state could act as a relay to provide an additional pathway for promoting the cascade energy transfer process that leads to enhanced ROS generation ability. Moreover, type I ROS can be effectively produced by introducing sulfur-containing thiophene units in C∧N ligands, providing a stronger M1 macrophage-activation efficiency under hypoxia to evoke in vivo antitumor immunity. Overall, our work provides a fundamental guideline for the molecular design and exploration of advanced transition-metal-based photosensitizers for biomedical applications.
Collapse
Affiliation(s)
- Fangfang Wei
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siye Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Menglei Zha
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiqiang Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
34
|
Domínguez-Jurado E, Ripoll C, Lara-Sánchez A, Ocaña A, Vitórica-Yrezábal IJ, Bravo I, Alonso-Moreno C. Evaluation of heteroscorpionate ligands as scaffolds for the generation of Ruthenium(II) metallodrugs in breast cancer therapy. J Inorg Biochem 2024; 253:112486. [PMID: 38266323 DOI: 10.1016/j.jinorgbio.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The modular synthesis of the heteroscorpionate core is explored as a tool for the rapid development of ruthenium-based therapeutic agents. Starting with a series of structurally diverse alcohol-NN ligands, a family of heteroscorpionate-based ruthenium derivatives was synthesized, characterized, and evaluated as an alternative to platinum therapy for breast cancer therapy. In vitro, the antitumoral activity of the novel derivatives was assessed in a series of breast cancer cell lines using UNICAM-1 and cisplatin as metallodrug control. Through this approach, a bimetallic heteroscorpionate-based metallodrug (RUSCO-2) was identified as the lead compound of the series with an IC50 value range as low as 3-5 μM. Notably, RUSCO-2 was found to be highly cytotoxic in TNBC cell lines, suggesting a mode of action independent of the receptor status of the cells. As a proof of concept and taking advantage of the luminescent properties of one of the complexes obtained, uptake was monitored in human breast cancer MCF7 cell lines by fluorescence lifetime imaging microscopy (FLIM) to reveal that the compound is evenly distributed in the cytoplasm and that the incorporation of the heteroscorpionate ligand protects it from aqueous processes, conversion in another entity, or the loss of the chloride group. Finally, ROS studies were conducted, lipophilicity was estimated, the chloride/water exchange was studied, and stability studies in simulated biological media were carried out to propose structure-activity relationships.
Collapse
Affiliation(s)
- Elena Domínguez-Jurado
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain
| | - Consuelo Ripoll
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física. Facultad de Farmacia de Albacete, Albacete 02071, Spain
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital clínico San Carlos, IdISSC and CIBERONC, Madrid, Spain
| | - Iñigo J Vitórica-Yrezábal
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda de Fuentenueva. s/n, 18071 Granada, Spain
| | - Iván Bravo
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física. Facultad de Farmacia de Albacete, Albacete 02071, Spain
| | - Carlos Alonso-Moreno
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain.
| |
Collapse
|
35
|
Happl B, Balber T, Heffeter P, Denk C, Welch JM, Köster U, Alliot C, Bonraisin AC, Brandt M, Haddad F, Sterba JH, Kandioller W, Mitterhauser M, Hacker M, Keppler BK, Mindt TL. Synthesis and preclinical evaluation of BOLD-100 radiolabeled with ruthenium-97 and ruthenium-103. Dalton Trans 2024; 53:6031-6040. [PMID: 38470348 DOI: 10.1039/d4dt00118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BOLD-100 (formerly IT-139, KP1339), a well-established chemotherapeutic agent, is currently being investigated in clinical trials for the treatment of gastric, pancreatic, colorectal, and bile duct cancer. Despite numerous studies, the exact mode of action is still the subject of discussions. Radiolabeled BOLD-100 could be a powerful tool to clarify pharmacokinetic pathways of the compound and to predict therapy responses in patients using nuclear molecular imaging prior to the therapy. In this study, the radiosyntheses of carrier-added (c.a.) [97/103Ru]BOLD-100 were performed with the two ruthenium isotopes ruthenium-103 (103Ru; β-, γ) and ruthenium-97 (97Ru; EC, γ), of which in particular the latter isotope is suitable for imaging by single-photon emission computed tomography (SPECT). To identify the best tumor-to-background ratio for diagnostic imaging, biodistribution studies were performed with two different injected doses of c.a. [103Ru]BOLD-100 (3 and 30 mg kg-1) in Balb/c mice bearing CT26 allografts over a time period of 72 h. Additionally, ex vivo autoradiography of the tumors (24 h p.i.) was conducted. Our results indicate that the higher injected dose (30 mg kg-1) leads to more unspecific accumulation of the compound in non-targeted tissue, which is likely due to an overload of the albumin transport system. It was also shown that lower amounts of injected c.a. [103Ru]BOLD-100 resulted in a relatively higher tumor uptake and, therefore, a better tumor-to-background ratio, which are encouraging results for future imaging studies using c.a. [97Ru]BOLD-100.
Collapse
Affiliation(s)
- B Happl
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
| | - T Balber
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - P Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - C Denk
- Institute of Applied Synthetic Chemistry, Technische Universität (TU) Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - J M Welch
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - U Köster
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - C Alliot
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
- CRCI2NA, Inserm/CNRS/Nantes Université, 8 quai Moncousu, 44007, Nantes Cedex 1, France
| | - A-C Bonraisin
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
| | - M Brandt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - F Haddad
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique/CNRS-IN2P3/Nantes Université, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France
| | - J H Sterba
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - W Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - M Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - M Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - B K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - T L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Pivarcsik T, Kiss MA, Rapuš U, Kljun J, Spengler G, Frank É, Turel I, Enyedy ÉA. Organometallic Ru(II), Rh(III) and Re(I) complexes of sterane-based bidentate ligands: synthesis, solution speciation, interaction with biomolecules and anticancer activity. Dalton Trans 2024; 53:4984-5000. [PMID: 38406993 DOI: 10.1039/d3dt04138g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, we present the synthesis, characterization and in vitro cytotoxicity of six organometallic [Ru(II)(η6-p-cymene)(N,N)Cl]Cl, [Rh(III)(η5-C5Me5)(N,N)Cl]Cl and [Re(I)(CO)3(N,N)Cl] complexes, in which the (N,N) ligands are sterane-based 2,2'-bipyridine derivatives (4-Me-bpy-St-OH, 4-Ph-bpy-St-OH). The solution chemical behavior of the ligands and the complexes was explored by UV-visible spectrophotometry and 1H NMR spectroscopy. The ligands and their Re(I) complexes are neutral at pH = 7.40; this contributes to their highly lipophilic character (log D7.40 > +3). The Ru(II) and Rh(III) half-sandwich complexes are much more hydrophilic, and this property is greatly affected by the actual chloride ion content of the medium. The half-sandwich Ru and Rh complexes are highly stable in 30% (v/v) DMSO/water (<5% dissociation at pH = 7.40); this is further increased in water. The Rh(III)(η5-C5Me5) complexes were characterized by higher water/chloride exchange and pKa constants compared to their Ru(II)(η6-p-cymene) counterparts. The Re(I)(CO)3 complexes are also stable in solution over a wide pH range (2-12) without the release of the bidentate ligand; only the chlorido co-ligand can be replaced with OH- at higher pH values. A comprehensive discussion of the binding affinity of the half-sandwich Ru(II) and Rh(III) complexes toward human serum albumin and calf-thymus DNA is also provided. The Ru(II)(η6-p-cymene) complexes interact with human serum albumin via intermolecular forces, while for the Rh(III)(η5-C5Me5) complexes the coordinative binding mode is suggested as well. They are also able to interact with calf-thymus DNA, most likely via the coordination of the guanine nitrogen. The Ru(II)(η6-p-cymene) complexes were found to be the most promising among the tested compounds as they exhibited moderate-to-strong cytotoxic activity (IC50 = 3-11 μM) in LNCaP as well as in PC3 prostate cells in an androgen receptor-independent manner. They were also significantly cytotoxic in breast and colon adenocarcinoma cancer cell lines and showed good selectivity for cancer cells.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary.
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| | - Márton A Kiss
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| | - Uroš Rapuš
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary.
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Éva Frank
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary.
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., H-6720 Szeged, Hungary
| |
Collapse
|
37
|
Ywaya DO, Ibrahim H, Friedrich HB, Bala MD, Soobramoney L, Daniels A, Singh M. Chemotherapeutic Activities of New η 6- p-Cymene Ruthenium(II) and Osmium(II) Complexes with Chelating SS and Tridentate SNS Ligands. Molecules 2024; 29:944. [PMID: 38474456 DOI: 10.3390/molecules29050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
A series of new chelating bidentate (SS) alkylimidazole-2-thione-Ru(II)/Os(II) complexes (3ai, 3aii, 3aiii, 3bii/4aiii, 4bi, 4bii), and the tridentate (SNS) pyridine-2,6-diylimidazole-2-thione-Ru(II)/Os(II) complexes (5bi, 5civ/6bi, 6ci, 6civ) in the forms [MII(cym)(L)Cl]PF6 and [MII(cym)(L)]PF6 (M = Ru or Os, cym = η6-p-cymene, and L = heterocyclic derivatives of thiourea) respectively, were successfully synthesized. Spectroscopic and analytical methods were used to characterize the complexes and their ligands. Solid-state single-crystal X-ray diffraction analyses revealed a "piano-stool" geometry around the Ru(II) or Os(II) centers in the respective complexes. The complexes were investigated for in vitro chemotherapeutic activities against human cervical carcinoma (HeLa) and the non-cancerous cell line (Hek293) using the MTT assay. The compounds 3aii, 5civ, 5bi, 4aiii, 6ci, 6civ, and the reference drug, 5-fluorouracil were found to be selective toward the tumor cells; the compounds 3ai, 3aiii, 3bii, 4bi, 4bii, and 6bi, which were found not to be selective between normal and tumor cell lines. The IC50 value of the tridentate half-sandwich complex 5bi (86 ± 9 μM) showed comparable anti-proliferative activity with the referenced commercial anti-cancer drug, 5-fluorouracil (87 ± 15 μM). The pincer (SNS) osmium complexes 6ci (36 ± 10 μM) and 6civ (40 ± 4 μM) were twice as effective as the reference drug 5-fluorouracil at the respective dose concentrations. However, the analogous pincer (SNS) ruthenium complex 5civ was ineffective and did not show anti-proliferative activity, even at a higher concentration of 147 ± 1 μM. These findings imply that the higher stability of the chelating (SS) and the pincer (SNS) ligand architectures in the complexes improves the biological (anti-proliferative) activity of the complexes by reducing the chance of ligand dissociation under physiological conditions. In general, the pincer (SNS) osmium complexes were found to be more cytotoxic than their ruthenium analogues, suggesting that the anti-proliferative activity of the imidazole-2-thione-Ru/Os complexes depends on the ligand's spatial coordination, the nature of the metal center, and the charge of the metal complex ions.
Collapse
Affiliation(s)
- David O Ywaya
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Halliru Ibrahim
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Holger B Friedrich
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Muhammad D Bala
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Lynette Soobramoney
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
38
|
Wang H, Fan X, Xie PP, Yang S, Pigeon P, Xiong Y, Gai S, Qi X, Wang J, Zhang Q, Li W, Qian H, McGlinchey MJ, Jaouen G, Zheng C, Wang Y. Deciphering the Diversified Metabolic Behavior of Hydroxyalkyl Ferrocidiphenols as Anticancer Complexes. J Med Chem 2024; 67:1209-1224. [PMID: 38156614 DOI: 10.1021/acs.jmedchem.3c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Ferrocidiphenols possessing appropriate substituents in the aliphatic chain have very promising anticancer properties, but a systematic approach to deciphering their diversified metabolic behavior has so far been lacking. Herein, we show that a series of novel ferrocidiphenols bearing different hydroxyalkyl substituents exhibit strong anticancer activity as revealed in a range of in vitro and in vivo experiments. Moreover, they display diversified oxidative transformation profiles very distinct from those of previous complexes, shown by the use of chemical and enzymatic methods and in cellulo and in vivo metabolism studies. In view of this phenomenon, unprecedented chemo-evolutionary sequences that connect all the ferrocidiphenol-related intermediates and analogues have been established. In addition, a comprehensive density functional theory (DFT) study has been performed to decipher the metabolic diversification profiles of these complexes and demonstrate the delicate modulation of carbenium ions by the ferrocenyl moiety, via either α- or β-positional participation.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Xuejing Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shuang Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Pascal Pigeon
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Sorbonne Université, UMR 8232 CNRS, IPCM, 4 place Jussieu, F-75005 Paris, France
| | - Ying Xiong
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Susu Gai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Jing Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Qianer Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Wei Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Huimei Qian
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Michael J McGlinchey
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 C1P1, Ireland
| | - Gérard Jaouen
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Sorbonne Université, UMR 8232 CNRS, IPCM, 4 place Jussieu, F-75005 Paris, France
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| |
Collapse
|
39
|
D’Amato A, Mariconda A, Iacopetta D, Ceramella J, Catalano A, Sinicropi MS, Longo P. Complexes of Ruthenium(II) as Promising Dual-Active Agents against Cancer and Viral Infections. Pharmaceuticals (Basel) 2023; 16:1729. [PMID: 38139855 PMCID: PMC10747139 DOI: 10.3390/ph16121729] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Poor responses to medical care and the failure of pharmacological treatment for many high-frequency diseases, such as cancer and viral infections, have been widely documented. In this context, numerous metal-based substances, including cisplatin, auranofin, various gold metallodrugs, and ruthenium complexes, are under study as possible anticancer and antiviral agents. The two Ru(III) and Ru(II) complexes, namely, BOLD-100 and RAPTA-C, are presently being studied in a clinical trial and preclinical studies evaluation, respectively, as anticancer agents. Interestingly, BOLD-100 has also recently demonstrated antiviral activity against SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Over the last years, much effort has been dedicated to discovering new dual anticancer-antiviral agents. Ru-based complexes could be very suitable in this respect. Thus, this review focuses on the most recent studies regarding newly synthesized Ru(II) complexes for use as anticancer and/or antiviral agents.
Collapse
Affiliation(s)
- Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| |
Collapse
|
40
|
Tran DN, Hoang TTH, Nandanwar S, Ho VTTX, Pham VT, Vu HD, Nguyen XH, Nguyen HT, Nguyen TV, Nguyen TKV, Tran DL, Park M, Lee S, Pham TC. Dual anticancer and antibacterial activity of fluorescent naphthoimidazolium salts. RSC Adv 2023; 13:36430-36438. [PMID: 38099251 PMCID: PMC10719908 DOI: 10.1039/d3ra06555c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Cancer has emerged as a significant global health challenge, ranking as the second leading cause of death worldwide. Moreover, cancer patients frequently experience compromised immune systems, rendering them susceptible to bacterial infections. Combining anticancer and antibacterial properties in a single drug could lead to improved overall treatment outcomes and patient well-being. In this context, the present study focused on a series of hydrophilic naphthoimidazolium salts with donor groups (NI-R), aiming to create dual-functional agents with antibacterial and anticancer activities. Among these compounds, NI-TPA demonstrated notable antibacterial activity, particularly against drug-resistant bacteria, with MIC value of 7.8 μg mL-1. Furthermore, NI-TPA exhibited the most potent cytotoxicity against four different cancer cell lines, with an IC50 range of 0.67-2.01 μg mL-1. The observed high cytotoxicity of NI-TPA agreed with molecular docking and dynamic simulation studies targeting c-Met kinase protein. Additionally, NI-TPA stood out as the most promising candidate for two-photo excitation, fluorescence bioimaging, and localization in lysosomes. The study findings open new avenues for the design and development of imidazolium salts that could be employed in phototheranostic applications for cancer treatment and bacterial infections.
Collapse
Affiliation(s)
- Dung Ngoc Tran
- Faculty of Chemistry, Hanoi National University of Education Hanoi Vietnam
| | | | - Sondavid Nandanwar
- Eco-friendly New Materials Research Center, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon City Republic of Korea
| | | | - Van Thong Pham
- R&D Center, Vietnam Education and Technology Transfer JSC Cau Giay Hanoi Vietnam
| | - Huy Duc Vu
- Department of Radiology, School of Medicine, Daegu Catholic University Daegu 42472 Korea
| | - Xuan Ha Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Huy Trung Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Trang Van Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thuy Kieu Van Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University Busan 48513 Korea
| | - Dai Lam Tran
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Myeongkee Park
- Department of Chemistry, Pukyong National University Busan 48513 Korea
| | - Songyi Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University Busan 48513 Korea
- Department of Chemistry, Pukyong National University Busan 48513 Korea
| | - Thanh Chung Pham
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
41
|
Wang Y, Mesdom P, Purkait K, Saubaméa B, Burckel P, Arnoux P, Frochot C, Cariou K, Rossel T, Gasser G. Ru(ii)/Os(ii)-based carbonic anhydrase inhibitors as photodynamic therapy photosensitizers for the treatment of hypoxic tumours. Chem Sci 2023; 14:11749-11760. [PMID: 37920359 PMCID: PMC10619633 DOI: 10.1039/d3sc03932c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Photodynamic therapy (PDT) is a medical technique for the treatment of cancer. It is based on the use of non-toxic molecules, called photosensitizers (PSs), that become toxic when irradiated with light and produce reactive oxygen specious (ROS) such as singlet oxygen (1O2). This light-induced toxicity is rather selective since the physician only targets a specific area of the body, leading to minimal side effects. Yet, a strategy to improve further the selectivity of this medical technique is to confine the delivery of the PS to cancer cells only instead of spreading it randomly throughout the body prior to light irradiation. To address this problem, we present here novel sulfonamide-based monopodal and dipodal ruthenium and osmium polypyridyl complexes capable of targeting carbonic anhydrases (CAs) that are a major target in cancer therapy. CAs are overexpressed in the membrane or cytoplasm of various cancer cells. We therefore anticipated that the accumulation of our complexes in or outside the cell prior to irradiation would improve the selectivity of the PDT treatment. We show that our complexes have a high affinity for CAs, accumulate in cancer cells overexpressing CA cells and importantly kill cancer cells under both normoxic and hypoxic conditions upon irradiation at 540 nm. More importantly, Os(ii) compounds still exhibit some phototoxicity under 740 nm irradiation under normoxic conditions. To our knowledge, this is the first description of ruthenium/osmium-based PDT PSs that are CA inhibitors for the selective treatment of cancers.
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Pierre Mesdom
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Kallol Purkait
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Bruno Saubaméa
- Cellular and Molecular Imaging Facility, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité F-75006 Paris France
| | - Pierre Burckel
- Institut de Physique du Globe de Paris, Biogéochimie à; l'Anthropocène des Eléments et Contaminants Emergents 75005 Paris France
| | | | | | - Kevin Cariou
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Thibaud Rossel
- Institute of Chemistry, University of Neuchâtel Avenue de Bellevaux 51 2000 Neuchâtel Switzerland
| | - Gilles Gasser
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| |
Collapse
|
42
|
Levina A, Uslan C, Murakami H, Crans DC, Lay PA. Substitution Kinetics, Albumin and Transferrin Affinities, and Hypoxia All Affect the Biological Activities of Anticancer Vanadium(V) Complexes. Inorg Chem 2023; 62:17804-17817. [PMID: 37858311 DOI: 10.1021/acs.inorgchem.3c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Limited stability of most transition-metal complexes in biological media has hampered their medicinal applications but also created a potential for novel cancer treatments, such as intratumoral injections of cytotoxic but short-lived anticancer drugs. Two related V(V) complexes, [VO(Hshed)(dtb)] (1) and [VO(Hshed)(cat)] (2), where H2shed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, H2dtb = 3,5-di-tert-butylcatechol, and H2cat = 1,2-catechol, decomposed within minutes in cell culture medium at 310 K (t1/2 = 43 and 9 s for 1 and 2, respectively). Despite this, both complexes showed high antiproliferative activities in triple-negative human breast cancer (MDA-MB-231) cells, but the mechanisms of their activities were radically different. Complex 1 formed noncovalent adducts with human serum albumin, rapidly entered cells via passive diffusion, and was nearly as active in a short-term treatment (IC50 = 1.9 ± 0.2 μM at 30 min) compared with a long-term treatment (IC50 = 1.3 ± 0.2 μM at 72 h). The activity of 1 decreased about 20-fold after its decomposition in cell culture medium for 30 min at 310 K. Complex 2 showed similar activities (IC50 ≈ 12 μM at 72 h) in both fresh and decomposed solutions and was inactive in a short-term treatment. The activity of 2 was mainly due to the reactions among V(V) decomposition products, free catechol, and O2 in cell culture medium. As a result, the activity of 1 was less sensitive than that of 2 to the effects of hypoxic conditions that are characteristic of solid tumors and to the presence of apo-transferrin that acts as a scavenger of V(V/IV) decomposition products in blood serum. In summary, complex 1, but not 2, is a suitable candidate for further development as an anticancer drug delivered via intratumoral injections. These results demonstrate the importance of fine-tuning the ligand properties for the optimization of biological activities of metal complexes.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Canan Uslan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Heide Murakami
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Debbie C Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
43
|
Bresciani G, Vančo J, Funaioli T, Zacchini S, Malina T, Pampaloni G, Dvořák Z, Trávníček Z, Marchetti F. Anticancer Potential of Diruthenium Complexes with Bridging Hydrocarbyl Ligands from Bioactive Alkynols. Inorg Chem 2023; 62:15875-15890. [PMID: 37713240 PMCID: PMC10548421 DOI: 10.1021/acs.inorgchem.3c01731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Indexed: 09/16/2023]
Abstract
Diruthenacyclopentenone complexes of the general composition [Ru2Cp2(CO)2{μ-η1:η3-CH═C(C(OH)(R))C(═O)}] (2a-c; Cp = η5-C5H5) were synthesized in 94-96% yields from the reactions of [Ru2Cp2(CO)2{μ-η1:η3-C(Ph)═C(Ph)C(═O)}] (1) with 1-ethynylcyclopentanol, 17α-ethynylestradiol, and 17-ethynyltestosterone, respectively, in toluene at reflux. Protonation of 2a-c by HBF4 afforded the corresponding allenyl derivatives [Ru2Cp2(CO)3{μ-η1:η2-CH═C═R}]BF4 (3a-c) in 85-93% yields. All products were thoroughly characterized by elemental analysis, mass spectrometry, and IR, UV-vis, and nuclear magnetic resonance spectroscopy. Additionally, 2a and 3a were investigated by cyclic voltammetry, and the single-crystal diffraction method was employed to establish the X-ray structures of 2b and 3a. The cytotoxicity in vitro of 2b and 3a-c was evaluated against nine human cancer cell lines (A2780, A2780R, MCF-7, HOS, A549, PANC-1, Caco-2, PC-3, and HeLa), while the selectivity was assessed on normal human lung fibroblast (MRC-5). Overall, complexes exert stronger cytotoxicity than cisplatin, and 3b (comprising 17α-estradiol derived ligand) emerged as the best-performing complex. Inductively coupled plasma mass spectrometry cellular uptake studies in A2780 cells revealed a higher level of internalization for 3b and 3c compared to 2b, 3a, and the reference compound RAPTA-C. Experiments conducted on A2780 cells demonstrated a noteworthy impact of 3a and 3b on the cell cycle, leading to the majority of the cells being arrested in the G0/G1 phase. Moreover, 3a moderately induced apoptosis and oxidative stress, while 3b triggered autophagy and mitochondrial membrane potential depletion.
Collapse
Affiliation(s)
- Giulio Bresciani
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Ján Vančo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Tiziana Funaioli
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University
of Bologna, Dipartimento di Chimica Industriale
“Toso Montanari”, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Tomáš Malina
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Guido Pampaloni
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Zdeněk Dvořák
- Department
of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779
00 Olomouc, Czech
Republic
| | - Zdeněk Trávníček
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Fabio Marchetti
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| |
Collapse
|
44
|
Wang YP, Duan XH, Huang YH, Hou YJ, Wu K, Zhang F, Pan M, Shen J, Su CY. Radio- and Photosensitizing Os(II)-Based Nanocage for Combined Radio-/Chemo-/X-ray-Induced Photodynamic Therapies, NIR Imaging, and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43479-43491. [PMID: 37694454 DOI: 10.1021/acsami.3c08503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integration of clinical imaging and collaborative multimodal therapies into a single nanomaterial for multipurpose diagnosis and treatment is of great interest to theranostic nanomedicine. Here, we report a rational design of a discrete Os-based metal-organic nanocage Pd6(OsL3)828+ (MOC-43) as a versatile theranostic nanoplatform to meet the following demands simultaneously: (1) synergistic treatments of radio-, chemo-, and X-ray-induced photodynamic therapies (X-PDT) for breast cancer, (2) NIR imaging for cancer cell tracking and tumor-targeting, and (3) anticancer drug transport through a host-guest strategy. The nanoscale MOC-43 incorporates high-Z Os-element to interact with X-ray irradiation for dual radiosensitization and photosensitization, showing efficient energy transfer to endogenous oxygen in cancer cells to enhance X-PDT efficacy. It also features intrinsic NIR emission originating from metal-to-ligand charge transfer (MLCT) as an excellent imaging probe. Meanwhile, its 12 pockets can capture and concentrate low-water-soluble molecules for anticancer drug delivery. These multifunctions are implemented and demonstrated by micellization of coumarin-loaded cages with DSPE-PEG2000 into coumarin ⊂ MOC-43 nanoparticles (CMNPs) for efficient subcellular endocytosis and uptake. The cancer treatments in vitro/in vivo show promising antitumor performance, providing a conceptual protocol to combine cage-cargo drug transport with diagnosis and treatment for collaborative cancer theranostics by virtue of multifunction synergism on a single-nanomaterial platform.
Collapse
Affiliation(s)
- Ya-Ping Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Hui Duan
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ya-Jun Hou
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
45
|
Křikavová R, Romanovová M, Jendželovská Z, Majerník M, Masaryk L, Zoufalý P, Milde D, Moncol J, Herchel R, Jendželovský R, Nemec I. Impact of the central atom and halido ligand on the structure, antiproliferative activity and selectivity of half-sandwich Ru(II) and Ir(III) complexes with a 1,3,4-thiadiazole-based ligand. Dalton Trans 2023; 52:12717-12732. [PMID: 37610172 DOI: 10.1039/d3dt01696j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Half-sandwich complexes [Ru(η6-pcym)(L1)X]PF6 (1, 3) and [Ir(η5-Cp*)(L1)X]PF6 (2, 4) featuring a thiadiazole-based ligand L1 (2-(furan-2-yl)-5-(pyridin-2-yl)-1,3,4-thiadiazole) were synthesized and characterized by varied analytical methods, including single-crystal X-ray diffraction (X = Cl or I, pcym = p-cymene, Cp* = pentamethylcyclopentadienyl). The structures of the molecules were analysed and interpreted using computational methods such as Density Functional Theory (DFT) and Quantum Theory of Atoms in Molecules (QT-AIM). A 1H NMR spectroscopy study showed that complexes 1-3 exhibited hydrolytic stability while 4 underwent partial iodido/chlorido ligand exchange in phosphate-buffered saline. Moreover, 1-4 demonstrated the ability to oxidize NADH (reduced nicotinamide adenine dinucleotide) to NAD+ with Ir(III) complexes 2 and 4 displaying higher catalytic activity compared to their Ru(II) analogues. None of the complexes interacted with reduced glutathione (GSH). Additionally, 1-4 exhibited greater lipophilicity than cisplatin. In vitro biological analyses were performed in healthy cell lines (CCD-18Co colon and CCD-1072Sk foreskin fibroblasts) as well as in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian cancer cell lines. The results indicated that Ir(III) complexes 2 and 4 had no effect on human fibroblasts, demonstrating their selectivity. In contrast, complexes 1 and 4 exhibited moderate inhibitory effects on the metabolic and proliferation activities of the cancer cells tested (selectivity index SI > 3.4 for 4 and 2.6 for cisplatin; SI = IC50(A2780)/IC50(CCD-18Co)), including the cisplatin-resistant cancer cell line. Based on these findings, it is possible to emphasize that mainly complex 4 could represent a further step in the development of selective and highly effective anticancer agents, particularly against resistant tumour types.
Collapse
Affiliation(s)
- Radka Křikavová
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Michaela Romanovová
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Zuzana Jendželovská
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Martin Majerník
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Lukáš Masaryk
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Pavel Zoufalý
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Jan Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Rastislav Jendželovský
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
46
|
Mrkvicová A, Peterová E, Nemec I, Křikavová R, Muthná D, Havelek R, Kazimírová P, Řezáčová M, Štarha P. Rh(III) and Ru(II) complexes with phosphanyl-alkylamines: inhibition of DNA synthesis induced by anticancer Rh complex. Future Med Chem 2023; 15:1583-1602. [PMID: 37750220 DOI: 10.4155/fmc-2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Aim: This investigation was designed to synthesize half-sandwich Rh(III) and Ru(II) complexes and study their antiproliferative activity in human cancer cell lines. Materials & methods: Nine compounds were prepared and tested by various assays for their anticancer activity and mechanism of action. Results: Hit Rh(III) complex 6 showed low-micromolar potency in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian carcinoma cell lines, promising selectivity toward these cancer cells over normal lung fibroblasts and an unprecedented mechanism of action in the treated cells. DNA synthesis was decreased and CDKN1A expression was upregulated, but p21 expression was not induced. Conclusion: Rh complex 6 showed high antiproliferative activity, which is induced through a p21-independent mechanism of action.
Collapse
Affiliation(s)
- Alena Mrkvicová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Eva Peterová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Radka Křikavová
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Darina Muthná
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Petra Kazimírová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
47
|
Łomzik M, Błauż A, Głodek M, Makal A, Tchoń D, Ayine-Tora DM, Hartinger C, Rychlik B, Plażuk D. Organometallic Ru, Os, Rh and Ir half-sandwich conjugates of ispinesib - impact of the organometallic group on the antimitotic activity. Dalton Trans 2023; 52:11859-11874. [PMID: 37464882 DOI: 10.1039/d3dt01217d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Antimitotic agents are among the most important drugs used in anticancer therapy. Kinesin spindle protein (KSP) was proposed as a promising target for new antimitotic drugs. Herein, we report the synthesis of Ru, Os, Rh, and Ir half-sandwich complexes with the KSP inhibitor ispinesib and its (S)-enantiomer. Conjugation of the organometallic moiety with ispinesib and its (S)-enantiomer resulted in a significantly increased cytotoxicity of up to 5.6-fold compared to the parent compounds, with IC50 values in the nanomolar range. The most active derivatives were the ispinesib Ru and Rh conjugates which were able to generate reactive oxygen species (ROS), which may at least partially explain their high cytotoxicity. At the same time, the Os and Ir derivatives acted as KSP inhibitors with no effects on ROS generation.
Collapse
Affiliation(s)
- Michał Łomzik
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| | - Andrzej Błauż
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Marta Głodek
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| | - Anna Makal
- Laboratory for Structural and Biochemical Research (LBSBio), Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Daniel Tchoń
- Laboratory for Structural and Biochemical Research (LBSBio), Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warszawa, Poland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Christian Hartinger
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Błażej Rychlik
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Damian Plażuk
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
48
|
Swaminathan S, Karvembu R. Dichloro Ru(II)- p-cymene-1,3,5-triaza-7-phosphaadamantane (RAPTA-C): A Case Study. ACS Pharmacol Transl Sci 2023; 6:982-996. [PMID: 37470017 PMCID: PMC10353064 DOI: 10.1021/acsptsci.3c00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 07/21/2023]
Abstract
The use of organometallic compounds to treat various phenotypes of cancer has attracted increased interest in recent decades. Organometallic compounds, which are transitional between conventional inorganic and organic materials, have outstanding and one-of-a-kind features that offer fresh insight into the development of inorganic medicinal chemistry. The therapeutic potential of ruthenium(II)-arene RAPTA-type compounds is being thoroughly investigated, specifically owing to the excellent antimetastatic property of the initial candidate RAPTA-C. This review gives a thorough analysis of this complex and its evolution as a potential anticancer drug candidate. The numerous mechanistic investigations of RAPTA-C are discussed, and they are connected to the macroscopic biological characteristics that have been found. The "multitargeted" complex described here target enzymes, peptides, and intracellular proteins in addition to DNA that allow it to specifically target cancer cells. Understanding these may allow researchers to find specific targets and tune a new-generation organometallic complex accordingly.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
- Center
for Computational Modeling, Chennai Institute
of Technology (CIT), Chennai 600069, India
| | - Ramasamy Karvembu
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| |
Collapse
|
49
|
Hou Z, Lu Y, Zhang B, Motiur Rahman AFM, Zhao Y, Xi N, Wang N, Wang J. Investigation of the Relationship between Electronic Structures and Bioactivities of Polypyridyl Ru(II) Complexes. Molecules 2023; 28:5035. [PMID: 37446696 DOI: 10.3390/molecules28135035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Ruthenium (Ru)-based organometallic drugs have gained attention as chemotherapeutic and bioimaging agents due to their fewer side effects and excellent physical optical properties. Tuning the electronic structures of Ru complexes has been proven to increase the cytotoxicity of cancer cells and the luminescent efficiency of the analytical probes. However, the relationship between electronic structures and bioactivities is still unclear due to the potential enhancement of both electron donor and acceptor properties. Thus, we investigated the relationship between the electronic structures of Ru(II) complexes and cytotoxicity by optimizing the electron-withdrawing (complex 1), electron-neutral (complex 2), and electron-donating (complex 3) ligands through DFT calculations, bioactivities tests, and docking studies. Our results indicated that it was not sufficient to consider only either the effect of electron-withdrawing or electron-donating effects on biological activities instead of the total electronic effects. Furthermore, these complexes with electron-donating substituents (complex 3) featured unique "off-on" luminescent emission phenomena caused by the various "HOMO-LUMO" distributions when they interacted with DNA, while complex with electron-withdrawing substituent showed an "always-on" signature. These findings offer valuable insight into the development of bifunctional chemotherapeutic agents along with bioimaging ability.
Collapse
Affiliation(s)
- Zhiying Hou
- Institute of Drug Discovery Technology (IDDT), Ningbo University, Ningbo 315211, China
| | - Yang Lu
- Institute of Drug Discovery Technology (IDDT), Ningbo University, Ningbo 315211, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yufen Zhao
- Institute of Drug Discovery Technology (IDDT), Ningbo University, Ningbo 315211, China
| | - Ning Xi
- Institute of Drug Discovery Technology (IDDT), Ningbo University, Ningbo 315211, China
| | - Ning Wang
- Institute of Drug Discovery Technology (IDDT), Ningbo University, Ningbo 315211, China
| | - Jinhui Wang
- Institute of Drug Discovery Technology (IDDT), Ningbo University, Ningbo 315211, China
| |
Collapse
|
50
|
Riaz Z, Lee BYT, Stjärnhage J, Movassaghi S, Söhnel T, Jamieson SMF, Shaheen MA, Hanif M, Hartinger CG. Anticancer Ru and Os complexes of N-(4-chlorophenyl)pyridine-2-carbothioamide: Substitution of the labile chlorido ligand with phosphines. J Inorg Biochem 2023; 241:112115. [PMID: 36731369 DOI: 10.1016/j.jinorgbio.2022.112115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Half-sandwich MII(cym)Cl (cym = η6-p-cymene; M = Ru, Os) complexes of pyridinecarbothioamide (PCA) ligands have demonstrated potential as orally active anticancer agents. In order to investigate the impact of the substitution of the labile chlorido ligand with phosphorous donor ligands on the antiproliferative properties, the triphenylphosphine (PPh3) and 1,3,5-triaza-7-phophaadamantane (pta) analogues were prepared and characterized by spectroscopic techniques and the molecular structures of several complexes were determined by X-diffraction analysis. Interestingly, the molecular structures contained the PCA ligand deprotonated, presumably driven by the reduction in overall charge of the complex. Density Functional Theory (DFT) calculations suggested minor energy differences between the protonated and deprotonated forms. The aqueous stability and the reactivity with the amino acids l-histidine and l-cysteine were investigated by 1H NMR spectroscopy of representative examples. The most potent anticancer agents featured Ru or Os centers and a PPh3 ligand and showed IC50 values in the submicromolar range against four cancer cell lines. This suggests that the antiproliferative activity was mainly dependent on the lipophilic properties of the phosphine ligand with PPh3 having a significantly higher clog P value than pta.
Collapse
Affiliation(s)
- Zahid Riaz
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; University of Sargodha, Department of Chemistry, Sargodha 40100, Pakistan
| | - Betty Y T Lee
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Julia Stjärnhage
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | - Sanam Movassaghi
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Muhammad Hanif
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Christian G Hartinger
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|