1
|
Wu J, Xin Q, Wang S, Zhang X, Jiang C. Aqueous extracts of Elsholtzia ciliata and Hovenia dulcis ameliorate loperamide-induced constipation in mice by promoting intestinal peristalsis and barrier function and the abundance of intestinal beneficial bacteria. Front Microbiol 2025; 16:1531232. [PMID: 40432966 PMCID: PMC12106309 DOI: 10.3389/fmicb.2025.1531232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Objective The aims of the present study were to determine the efficacy of edible traditional Chinese medicines (ETCMs) in treating constipation, verify their laxative effects, and conduct preliminary investigations into their mechanisms of action. Methods ICR mice were treated with loperamide to induce constipation, and various fecal parameters, including fecal volume, water content, and intestinal transport function, were measured in these constipation model mice to screen for ETCMs with laxative properties. The mechanism of action was preliminarily explored by examining changes in the intestinal mucosal structure, protein expression levels, and alterations in intestinal flora composition. Results In ICR mice with loperamide-induced constipation, Elsholtzia ciliata aqueous extract (ECAE) and Hovenia dulcis aqueous extract (HDAE) significantly ameliorated constipation symptoms, mitigated colonic pathological tissue damage, significantly increased the expression levels of proteins associated with the promotion of intestinal peristalsis [Stem Cell Factor Receptor (c-Kit) and Stem Cell Factor (SCF)] and the maintenance of the intestinal barrier [Zonula Occludens-1 (ZO-l), Occludin and Claudin-l], and promoted beneficial intestinal bacterial colonization. Conclusion ECAE and HDAE ameliorated constipation in mice, and their mechanism of action may be related to the increased abundance of intestinal bacteria such as Turicibacter, Olsenella, and Odoribacter, which contribute to higher butyrate production. This increase in butyric acid reduces inflammation, improves intestinal barrier function, and increases the abundance of beneficial intestinal bacteria.
Collapse
Affiliation(s)
- Junnan Wu
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Shuo Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xu Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Chunping Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
2
|
Li C, Lu Y, Zhang Z, Huang L, Wang Z. Online PGC-LC-MS analysis of colonic mucin O-glycans in ovalbumin-induced food allergy in Balb/c mice by treatment with sea cucumber chondroitin sulfate polysaccharide. Int J Biol Macromol 2025; 307:141808. [PMID: 40054794 DOI: 10.1016/j.ijbiomac.2025.141808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
The highly sulfated polysaccharide sea cucumber chondroitin sulfate (SCCS) can alleviate intestinal damage and display strong anti-food-allergic activity. The O-glycopattern levels in colonic mucin are closely related to the its protective effect on function of the intestinal barrier. However, the effect of the SCCS on colonic mucin O-glycan has not been investigated. In this study, ovalbumin (OVA)-sensitized allergic mice and SCCS treatment were used. Mouse colonic mucin O-glycome was released and analyzed through reductive β-elimination combined with PGC-LC-MS. A total of presumptive 20 neutral and 28 acidic O-glycan structures were identified, in which the core 2 type acidic O-glycan structure is predominant in Balb/c female mice. Treatment with OVA and SCCS did not change the numbers of colon mucin O-glycan type, but the expression level of total O-glycosylation was more abundant in the SCCS group mice than in the OVA group (1.8-fold), especially for acidic O-glycans (co-modified by fucose and sulfate groups). Furthermore, supplementation with SCCS reversed most of the O-glycan decreasing trend, which may be associated with a return to healthy levels of gut microbiota. In conclusion, our results demonstrate that SCCS could restore colonic mucin O-glycosylation levels and intestinal homeostasis and contribute to enhancing intestinal barrier function.
Collapse
Affiliation(s)
- Cheng Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Yu Lu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Linjuan Huang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Li X, Xu S, Chen B, Gao P, Lv Y, Shang Q, Yu G, Li G. In Vitro Digestion and Gut Microbiota Fermentation of the Anticancer Marine Drug BG136: Stability and Biotransformation Investigation. Mar Drugs 2025; 23:156. [PMID: 40278277 PMCID: PMC12028602 DOI: 10.3390/md23040156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
BG136, a β-1,3/1,6-glucan derived from Durvillaea antarctica, is an injectable anticancer drug and has entered Phase II clinical trials. Rational oral formulation design is a pivotal focus for our future drug development research; therefore, elucidating the gastrointestinal fate of BG136 becomes imperative. This study investigated the stability and biotransformation of BG136 via in vitro digestion and gut microbiota fermentation. The results confirmed BG136's structural integrity, resistance to degradation in a highly acid environment and by gastrointestinal tract enzymes. In contrast, BG136 was degraded by intestinal bacteria into mid-size fragments along with smaller oligosaccharides. Additionally, the biotransformation process notably elevated total short-chain fatty acids (SCFAs) to 38.37 ± 3.29 mM, representing a 59.4% increase versus controls (24.08 ± 2.29 mM), with propionic acid exhibiting the most substantial increase. Meanwhile, the process was accompanied by significant microbial regulation, including an increase in beneficial genera (Lactobacillus, Enterococcus) and a reduction in Lachnoclostridium populations. Overall, these findings systematically map the oral bioavailability challenges and prebiotic potential of BG136, highlighting its microbiota-modulating capacity through species-specific ecological regulation, providing insights into oral drug development for BG136.
Collapse
Affiliation(s)
- Xintong Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Shuying Xu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Baiyuan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Pengcheng Gao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Youjing Lv
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Qingsen Shang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Ren P, Liu M, Wei B, Tang Q, Wang Y, Xue C. Fucoidan exerts antitumor effects by regulating gut microbiota and tryptophan metabolism. Int J Biol Macromol 2025; 300:140334. [PMID: 39870263 DOI: 10.1016/j.ijbiomac.2025.140334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Fucoidan, a water-soluble polysaccharide derived from marine organisms, has garnered significant attention for its ability to regulate gut microbiota and its anti-tumor properties. However, the existence of a correlation between the anti-tumor effect of fucoidan and its regulation of the gut microbiota remains unknown. In pursuit of this objective, we culled the gut microbiota of mice with broad-spectrum antibiotics to generate pseudo-sterile tumor-bearing mice. Subsequently, fecal microbial transplants were introduced into the pseudo-sterile tumor-bearing mice. The antitumor effects of fucoidan were found to be dependent on the gut microbiota. Fucoidan promoted the proliferation of Akkermansia, Bifidobacterium and Lactobacillus, which have immunomodulatory effects. Furthermore, through regulation of gut microbiota, fucoidan influenced the metabolic process of tryptophan and facilitated its conversion to indole-3-acetic acid. In addition, fucoidan decreased the kynurenine/tryptophan ratio in serum, increased the proportion of CD8+ T cells, and suppressed the expression level of IDO1 in tumor tissues. Our results confirm that fucoidan enhances anti-tumor immune responses and subsequently exhibits anti-tumor effects by modulating the gut microbiota. Our research contributes to the comprehension of the mechanism of anti-tumor effects of fucoidan and facilitates the development of fucoidan as a dietary supplement for cancer patients.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Meng Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Biqian Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China.
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| |
Collapse
|
5
|
Sun Y, Yao J, Gao R, Hao J, Liu Y, Liu S. Interactions of non-starch polysaccharides with the gut microbiota and the effect of non-starch polysaccharides with different structures on the metabolism of the gut microbiota: A review. Int J Biol Macromol 2025; 296:139664. [PMID: 39798752 DOI: 10.1016/j.ijbiomac.2025.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Humans consume large amounts of non-starch polysaccharides(NPs) daily. Some NPs, not absorbed by the body, proceed to the intestines. An increasing number of studies reveal a close relationship between NPs and gut microbiota(GM) that impact the human body. This review not only describes in detail the structures of several common NPs and their effects on GM, but also elucidates the degradation mechanisms of NPs in the intestine. The purpose of this review is to elucidate how NPs interact with GM in the intestine, which can provide valuable information for further studies of NPs.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Jiaxuan Yao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Running Gao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Junyu Hao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China.
| |
Collapse
|
6
|
Li C, Han T, Zhong P, Zhang Y, Zhao T, Wang S, Wang X, Tian Y, Gong G, Liu Y, Huang L, Lu Y, Wang Z. α2,6-linked sialylated oligosaccharides riched in goat milk alleviate food allergy by regulating the gut flora and mucin O-glycosylation. Carbohydr Polym 2025; 350:123049. [PMID: 39647952 DOI: 10.1016/j.carbpol.2024.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
The nutritious goat milk has low allergenicity. Oligosaccharides represent one of the crucial functional constituents in goat milk, which are structurally similar to human milk oligosaccharides (HMOs). Currently, the anti-allergic activity of GMOs has not been reported. In this study, GMOs were efficiently separated into neutral (NGMOs) and sialylated (SGMOs) fractions, following by qualitative and quantitative analysis at the isomer level using online LC-MS/MS. Fifteen NGMOs and 28 SGMOs were detected in goat milk, with 10 SGMOs reported for the first time. Distinctly, α2,6-linked SGMOs were 3.9 times more abundant in goat milk than in bovine milk, with the total relative content of 6'SL, 3'SLN and 6'NGL in SGMOs approach to 60%, which is more similar to HMOs. Orally administering GMOs, especially α2,6-linked sialylated oligosaccharides, significantly alleviated food allergy in ovalbumin-induced BALB/c mice. SGMOs restored the balance of Lachnospiraceae, Erysipelotrichaceae, and Bacteroidaceae, reconstructed the intestinal mucosal barrier, especially restored the levels of fucosylation, sialylation, and sulfation of mucin O-glycans, increased the expression of four core type 2 O-glycans (F1H2N2, F2H2N2, S1F2H2N2, and A1F1H2N2) significantly. This is the first comprehensive study of the anti-allergic activity of GMOs, and the results lay the foundation for the development of GMOs-based natural anti-allergic components.
Collapse
Affiliation(s)
- Cheng Li
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianjiao Han
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Peiyun Zhong
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuyang Zhang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tong Zhao
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shukai Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yang Tian
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
7
|
Oliyaei N, Zekri S, Iraji A, Oliyaei A, Tanideh R, Mussin NM, Tamadon A, Tanideh N. Health benefits of algae and marine-derived bioactive metabolites for modulating ulcerative colitis symptoms. J Funct Foods 2025; 125:106690. [DOI: 10.1016/j.jff.2025.106690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
|
8
|
Zhang Q, Liang D, Zhang C, Ye L, Sun P, Zhu H, Zhao Y, Li Y, Guan Y, Zhang H. Integrated Microbiome and Metabolome Analysis Reveals Correlations Between Gut Microbiota Components and Metabolic Profiles in Mice With Mitoxantrone-Induced Cardiotoxicity. Drug Des Devel Ther 2025; 19:439-455. [PMID: 39867867 PMCID: PMC11766154 DOI: 10.2147/dddt.s479682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Purpose Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice. Methods MTX cumulative dose of 6 mg/kg was administered to healthy Kunming male mice to trigger cardiotoxicity, with 1 mg/kg twice weekly for a duration of 3 weeks. Plasma CK-MB and LDH levels were determined, and the heart tissue histopathology was assessed, followed by utilizing an integrated liquid chromatography-mass spectrometry (LC-MS)-based heart metabolomics study alongside the 16S ribosomal RNA (rRNA) sequencing method to assess MTX impact on GM and CM profiles in mice, establishing associations between GM and CM profiles through the Pearson correlation coefficient calculation. Results MTX caused CK-MB and LDH level elevations and cardiotoxicity in our mouse model. MTX primarily affected the processes of protein digestion and absorption, mineral absorption, membrane transport, production of aminoacyl-transfer RNA (tRNA), metabolism of nucleotides, lipids, and amino acids, as well as autophagy. Additionally, MTX increased Romboutsia, Enterococcus, and Turicibacter abundances and lowered norank_f__Muribaculaceae, Alistipes, Odoribacter, norank_f__Lachnospiraceae, norank_f__Ruminococcaceae, norank_f__Oscillospiraceae, unclassified_f__Ruminococcaceae, NK4A214_group, Colidextribacter, norank_f__norank_o__Clostridia_vadinBB60_group, Rikenella, and Anaerotruncus abundances. The correlation analyses showcased variations in the abundance of diverse flora, such as Romboutsia, Enterococcus, Turicibacter, and norank_f__Muribaculaceae, which were related to MTX-induced cardiac injury. Conclusion Our study supports the claim that MTX provokes cardiotoxicity by modifying CM and GM profiles. Our results offer new possibilities for controlling MTX-triggered cardiotoxicity.
Collapse
Affiliation(s)
- Qing Zhang
- College of Clinical Medicine, Jining Medical University, Jining, 272013, People’s Republic of China
| | - Deshuai Liang
- Department of Pharmacy, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| | - Chengfang Zhang
- Department of Clinical Laboratory, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| | - Ling Ye
- Department of Hematology, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| | - Ping Sun
- Department of Hematology, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| | - Hongli Zhu
- Department of Hematology, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| | - Yongqin Zhao
- Department of Hematology, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| | - Yuewen Li
- Department of Hematology, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| | - Yun Guan
- Department of Hematology, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| | - Haiguo Zhang
- Department of Hematology, Jining NO. 1 People’s Hospital, Jining, 272000, People’s Republic of China
| |
Collapse
|
9
|
Wei B, Ren P, Qin W, Wang D, Wang Y, Chang Y, Wang Y, Xue C, Tang Q. Sulfated fucans from algae Saccharina japonica promotes intestinal stem cell-mediated intestinal development in juvenile mouse by modulating the gut microbiota. Int J Biol Macromol 2024; 281:136207. [PMID: 39362431 DOI: 10.1016/j.ijbiomac.2024.136207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Intestinal development has a crucial role in the absorption of nutrients and the ability to resist infections in the early stages of life. This study utilized a 3-week-old C57BL/6 mice model to evaluate the beneficial impacts of sulfated fucans from Saccharina japonica (SJ-FUC) on the growth and development of the intestines. SJ-FUC enhanced the dimensions of the intestine, specifically the length, height of villi, and depth of the crypts. Additionally, it raised the mRNA expression of ZO-1 and Occludin, hence enhancing the structural integrity of the intestinal epithelium. SJ-FUC significantly increased mRNA expression of Lyz1, Muc2, and Math1, which resulted in the promotion of intestinal epithelial development. Furthermore, SJ-FUC augmented the mRNA levels of the ISC markers (Lgr5, Olfm4, and Ascl2). Our further research uncovered that SJ-FUC has a positive impact on the growth of beneficial bacteria, such as Akkermansia, Dubosiella, and Lactobacillus, which in turn promotes epithelial development of the intestine. In summary, our research indicates that SJ-FUC has a beneficial impact on the growth of the intestines in young mice. This is achieved by enhancing the stemness of intestinal stem cells (ISCs) and promoting the formation of the intestinal epithelium through the regulation of gut bacteria.
Collapse
Affiliation(s)
- Biqian Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wanting Qin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Dehua Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yinfeng Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
10
|
Kou R, Mi F, Peng C, Ding X, Meng C, Liu F, Xiong L. Structural characterization and immunomodulatory activity of polysaccharides from the lateral roots of Aconitum carmichaelii. Int J Biol Macromol 2024; 282:136935. [PMID: 39490860 DOI: 10.1016/j.ijbiomac.2024.136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Two polysaccharides, named FPS1-1 and FPS1-2, were separated from the neutral polysaccharides of the lateral roots of Aconitum carmichaelii, a widely used traditional Chinese medicine (Fuzi in Chinese). The monosaccharide composition analysis indicated that both FPS1-1 and FPS1-2 were glucans. However, further physicochemical analysis of FPS1-1 and FPS1-2 revealed distinct properties between the two glucans. FPS1-1 had a molecular weight (Mw) of 106.23 kDa with a spherical conformation, while FPS1-2 had a lower Mw of 19.23 kDa with a random coil conformation. The structure of FPS1-2 was further determined as a glucan whose backbone structure was composed of →4)-α-D-Glcp-(1→. The immunological activities of two polysaccharides were evaluated by a cyclophosphamide (CTX)-induced immunodeficiency model in mice. The result showed that FPS1-2 could restore CTX-induced immunosuppression by modulating CD4+ T cells differentiation and promoting cytokine secretion. Notably, FPS1-2 could modulate the colonic short-chain fatty acid (SCFA) levels and reverse the gut microbial dysbiosis induced by CTX. These findings reveal the potential benefits of Fuzi polysaccharides and provide evidences for developing immunologically functional products from Fuzi polysaccharides.
Collapse
Affiliation(s)
- Renbo Kou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fuxin Mi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xingjie Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunwang Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Zhao Y, Zhang Z, Tang A, Zeng Z, Zheng W, Luo Y, Huang Y, Dai X, Lu W, Fan L, Shen L. Cow Placenta Extract Ameliorates Cyclophosphamide-Induced Intestinal Damage by Enhancing the Intestinal Barrier, Improving Immune Function, and Restoring Intestinal Microbiota. Vet Sci 2024; 11:505. [PMID: 39453097 PMCID: PMC11512425 DOI: 10.3390/vetsci11100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Immunosuppression undermines intestinal barrier integrity. Cow placenta extract (CPE) primarily consists of active peptides with immunomodulatory and antioxidant effects. This study aimed to examine the preventive effect of CPE against intestinal damage induced by cyclophosphamide (Cy) in immunosuppressed mice. Thirty-six mice were randomly allocated into three groups: control group (C), model group (M), and treatment group (CPE). The mice in the CPE group were provided with 1500 mg/kg/day of CPE via gavage. In the last 3 days, mice in the groups M and CPE received intraperitoneal injections of 80 mg/kg/day of Cy. The results showed that CPE improved intestinal barrier function by decreasing serum d-Lactate (D-LA) levels and diamine oxidase (DAO) activity, while elevating the relative expression of Occludin, zonula occludens-1 (ZO-1), and mucin-2 (MUC-2) mRNA. Additionally, CPE improved the immune organ index and elevated the levels of secretory immunoglobulin A (sIgA), superoxide dismutase (SOD), interleukin-1beta (IL-1β), interleukin-4 (IL-4), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in the intestine, thereby enhancing intestinal mucosal immune function. Furthermore, CPE improved the diversity of intestinal microbiota and increased the abundance of Candidatus_Saccharimonas, Psychrobacter, and Enterorhabdus, which promoted the proper functioning of the intestines. These findings suggest that CPE effectively ameliorates Cy-induced intestinal damage by enhancing the intestinal barrier, improving immune function, and restoring intestinal microbiota.
Collapse
Affiliation(s)
- Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Anguo Tang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Yixin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Xinyi Dai
- Party School of the Communist Party of China Yaan Municipal Committee, Yaan 625014, China;
| | - Wei Lu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| |
Collapse
|
12
|
Li Y, Wang Z, Bai LL, Li YZ, Jiang YJ, Xu TL, Wu Y, Zhao X. Positive Intervention of Distinct Peptides in Clostridioides difficile Infection in a Mouse Model. Commun Biol 2024; 7:1172. [PMID: 39294333 PMCID: PMC11410834 DOI: 10.1038/s42003-024-06850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
Clostridioides difficile infection (CDI) is a common healthcare-associated infection and the leading cause of gastroenteritis-related deaths worldwide. To investigate the effects of peptide composition of different protein products on CDI, we analyzed and compared the peptide sequences and compositions from Engraulis japonicus and Glycine max using Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). An animal model of CDI was also established to investigate the potential therapeutic effects of these peptides in vivo. The peptide compositions of E. japonicus and G. max differed, with only 11% of the peptide sequences being identical. Oral administration of the tested peptides could reduce intestinal inflammation, repair the intestinal barrier, increase the proportion of beneficial bacteria, and reduce the proportion of harmful bacteria, providing a therapeutic effect against CDI. However, the peptides may differ considerably in some aspects. E. japonicus peptides were superior to G. max peptides in promoting colon epithelial cell proliferation and repairing tight intestinal cell junctions. Interestingly, the two sources of peptides have different effects on the cecal microbiome. E. japonicus peptides can effectively restore the diversity and richness of intestinal microbiota, while G. max peptides have poor regulatory effects on the intestinal microbiota structure. Overall, E. japonicus peptides showed better results than G. max peptides in treating CDI. This study supports the potential treatment of CDI with natural peptides and promotes the development of specialty foods for CDI enteritis. Clostridioides difficile infection (CDI) is a common healthcare-associated infection and the leading cause of gastroenteritis-related deaths worldwide. To investigate the effects of peptide composition of different protein products on CDI, we analyzed and compared the peptide sequences and compositions from Engraulis japonicus and Glycine max using Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). An animal model of CDI was also established to investigate the potential therapeutic effects of these peptides in vivo. The peptide compositions of E. japonicus and G. max differed, with only 11% of the peptide sequences being identical. Oral administration of the tested peptides could reduce intestinal inflammation, repair the intestinal barrier, increase the proportion of beneficial bacteria, and reduce the proportion of harmful bacteria, providing a therapeutic effect against CDI. However, the peptides may differ considerably in some aspects. E. japonicus peptides were superior to G. max peptides in promoting colon epithelial cell proliferation and repairing tight intestinal cell junctions. Interestingly, the two sources of peptides have different effects on the cecal microbiome. E. japonicus peptides can effectively restore the diversity and richness of intestinal microbiota, while G. max peptides have poor regulatory effects on the intestinal microbiota structure.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Technology, Ocean University China, Qingdao, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhan Wang
- Endoscopy Center, Qingdao Central Medical Group, Qingdao, China
| | - Lu Lu Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhe Li
- College of Food Science and Technology, Ocean University China, Qingdao, China
| | - Ya Jun Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Te Long Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Xue Zhao
- College of Food Science and Technology, Ocean University China, Qingdao, China.
| |
Collapse
|
13
|
Zhou T, Wu J, Khan A, Hu T, Wang Y, Salama ES, Su S, Han H, Jin W, Li X. A probiotic Limosilactobacillus fermentum GR-3 mitigates colitis-associated tumorigenesis in mice via modulating gut microbiome. NPJ Sci Food 2024; 8:61. [PMID: 39242568 PMCID: PMC11379937 DOI: 10.1038/s41538-024-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Bacterial therapy for colorectal cancer (CRC) represents a burgeoning frontier. The probiotic Limosilactobacillus fermentum GR-3, derived from traditional food "Jiangshui", exhibited superior antioxidant capacity by producing indole derivatives ICA and IPA. In an AOM/DSS-induced CRC mouse model, GR-3 treatment alleviated weight loss, colon shortening, rectal bleeding and intestinal barrier disruption by reducing oxidative stress and inflammation. GR-3 colonization in distant colon induced apoptosis and reduced tumor incidence by 51.2%, outperforming the control strain and vitamin C. The beneficial effect of GR-3 on CRC was associated with gut microbiome modulation, increasing SCFA producer Lachnospiraceae NK4A136 group and suppressing pro-inflammatory strain Bacteroides. Metagenomic and metabolic analyses revealed that GR-3 intervention upregulated antioxidant genes (xseA, ALDH) and butyrate synthesis gene (bcd), while increasing beneficial metabolites (SCFAs, ICA, IPA, VB12 and VD3) and reducing harmful secondary bile acids. Overall, GR-3 emerges as a promising candidate in CRC therapy, offering effective gut microbiome remediation.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Shaochen Su
- Healthy Examination & Management Center, First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
14
|
Xu Y, Du H, Chen Y, Ma C, Zhang Q, Li H, Xie Z, Hong Y. Targeting the gut microbiota to alleviate chemotherapy-induced toxicity in cancer. Crit Rev Microbiol 2024; 50:564-580. [PMID: 37439132 DOI: 10.1080/1040841x.2023.2233605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/22/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Despite ongoing breakthroughs in novel anticancer therapies, chemotherapy remains a mainstream therapeutic modality in different types of cancer. Unfortunately, chemotherapy-related toxicity (CRT) often leads to dose limitation, and even results in treatment termination. Over the past few years, accumulating evidence has indicated that the gut microbiota is extensively engaged in various toxicities initiated by chemotherapeutic drugs, either directly or indirectly. The gut microbiota can now be targeted to reduce the toxicity of chemotherapy. In the current review, we summarized the clinical relationship between the gut microbiota and CRT, as well as the critical role of the gut microbiota in the occurrence and development of CRT. We then summarized the key mechanisms by which the gut microbiota modulates CRT. Furthermore, currently available strategies to mitigate CRT by targeting the gut microbiota were summarized and discussed. This review offers a novel perspective for the mitigation of diverse chemotherapy-associated toxic reactions in cancer patients and the future development of innovative drugs or functional supplements to alleviate CRT via targeting the gut microbiota.
Collapse
Affiliation(s)
- Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuchun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
15
|
Wang H, Wei W, Liu F, Wang M, Zhang Y, Du S. Effects of fucoidan and synbiotics supplementation during bismuth quadruple therapy of Helicobacter pylori infection on gut microbial homeostasis: an open-label, randomized clinical trial. Front Nutr 2024; 11:1407736. [PMID: 39010853 PMCID: PMC11246856 DOI: 10.3389/fnut.2024.1407736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background The eradication regimen for Helicobacter pylori (H. pylori) infection can induce gut dysbiosis. In this open-label, prospective, and randomized clinical trial, we aimed to assess the effects of fucoidan supplementation on the eradication rate and gut microbial homeostasis in the context of quadruple therapy, as well as to investigate the combined effects of fucoidan and synbiotics supplementations. Methods Eighty patients with H. pylori infection were enrolled and randomly assigned to one of four treatment groups: the QT (a 2-week quadruple therapy alone), QF (quadruple therapy plus a 6-week fucoidan supplementation), QS (quadruple therapy plus a 6-week synbiotics supplementation), and QFS (quadruple therapy with a 6-week fucoidan and synbiotics supplementation), with 20 patients in each group. The QT regimen included rabeprazole, minocycline, amoxicillin, and bismuth potassium citrate. The synbiotics supplementation contained three strains of Bifidobacterium, three strains of Lactobacillus, along with three types of dietary fiber. All of the patients underwent 13C-urea breath test (13C-UBT) at baseline and at the end of the 6th week after the initiation of the interventions. Fresh fecal samples were collected at baseline and at the end of the 6th week for gut microbiota analysis via 16S rRNA gene sequencing. Results The eradication rates among the four groups showed no significant difference. In the QT group, a significant reduction in α-diversity of gut microbiota diversity and a substantial shift in microbial composition were observed, particularly an increase in Escherichia-Shigella and a decrease in the abundance of genera from the Lachnospiraceae and Ruminococcaceae families. The Simpson index was significantly higher in the QF group than in the QT group. Neither the QS nor QFS groups exhibited significant changes in α-diversity or β-diversity. The QFS group was the only one that did not show a significant increase in the relative abundance of Escherichia-Shigella, and the relative abundance of Klebsiella significantly decreased in this group. Conclusion The current study provided supporting evidence for the positive role of fucoidan and synbiotics supplementation in the gut microbiota. The combined use of fucoidan and synbioticss might be a promising adjuvant regimen to mitigate gut dysbiosis during H. pylori eradication therapy.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Wei Wei
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
16
|
Rahmatnejad E, Habibi H, Torshizi MAK, Seidavi A, Hosseinian A. Effects of the algae derivatives on performance, intestinal histomorphology, ileal microflora, and egg yolk biochemistry of laying Japanese quail. Poult Sci 2024; 103:103605. [PMID: 38471233 PMCID: PMC11067761 DOI: 10.1016/j.psj.2024.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
We examined the effect of the Persian Gulf algae derivates, phycocyanin (PC) and fucoidan (FUC), on production performance, egg quality, intestinal histomorphology, ileal microflora, and egg yolk biochemistry of laying Japanese quail. A total of 250 six-wk-old Japanese quails with an average body weight of 215 ± 10 g were allocated to 5 treatments, 5 replicates and 10 birds in each replicate in a completely randomized design. The treatment groups received PC (from Spirulina platensis) and FUC (from brown seaweed) in their drinking water while control groups did not. Treatment groups received PC and FUC at 20 or 40 mg/L levels (denoted as PC20, PC40, FUC20, and FUC40, respectively). All birds were fed the same diet. All treatments significantly improved the percentage of hen day egg production (HDEP) (P = 0.002), egg mass (P = 0.002), and feed conversion ratio (FCR) (P = 0.022) but no difference was noted in egg weight (EW) and feed intake (FI). Different levels of PC and FUC significantly increased the thickness of eggshells (P = 0.022); however, the weight of the digestive tract (liver, spleen, proventriculus, gizzard, and pancreas) and oviduct was not affected. Algal derivates improved the villus height (P = 0.007) and crypt depth (P = 0.007) of the duodenum, as well as, the villus height (P = 0.005) and crypt depth (P = 0.026) of the jejunum. Both algal derivates positively affected the intestinal microflora (populations of Lactobacillus (P = 0.017), Coliform (P = 0.005), and Clostridium (P = 0.000)) whereas aerobic bacteria were unaffected. Yolk cholesterol P = 0.012) and yolk malondialdehyde P = 0.050) content were significantly reduced in experimental treatments compared to the control group. In conclusion, our results showed that the treatment of laying Japanese quails with algal derivates positively affects quail performance, intestinal morphology, intestinal microflora, and yolk cholesterol and malondialdehyde. Additional studies exploring optimal dosages and mechanisms of action is warranted to fully understand the scope of the algae derivates in poultry production.
Collapse
Affiliation(s)
- Enayat Rahmatnejad
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran
| | - Hassan Habibi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran.
| | | | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Hosseinian
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran
| |
Collapse
|
17
|
Tang P, Ren G, Zou H, Liu S, Zhang J, Ai Z, Hu Y, Cui L, Nan B, Zhang Z, Wang Y. Ameliorative effect of total ginsenosides from heat-treated fresh ginseng against cyclophosphamide-induced liver injury in mice. Curr Res Food Sci 2024; 8:100734. [PMID: 38708102 PMCID: PMC11066594 DOI: 10.1016/j.crfs.2024.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 04/06/2024] [Indexed: 05/07/2024] Open
Abstract
This study evaluated the effect of heat treatment on the conversion of ginsenoside and the ameliorative effect of heat-treated total ginsenoside (HG) from fresh ginseng on cyclophosphamide (CTX)-induced liver injury. LC-MS analysis revealed that the content of rare ginsenosides increased markedly after heat treatment. HG significantly attenuated CTX-induced hepatic histopathological injury in mice. Western blotting analysis showed that untreated total ginsenoside (UG) and HG regulated the Nrf2/HO-1 and TLR4/MAPK pathways. Importantly, these results may be relevant to the modulation of the intestinal flora. UG and HG significantly increased the short-chain fatty acids (SCFAs)-producing bacteria Lactobacillus and reduced the LPS-producing bacteria Bacteroides and Parabacteroides. These changes in intestinal flora affected the levels of TNF-α, LPS and SCFAs. In short, UG and HG alleviated CTX-induced liver injury by regulating the intestinal flora and the LPS-TLR4-MAPK pathway, and HG was more effective. HG has the potential to be a functional food that can alleviate chemical liver injury.
Collapse
Affiliation(s)
- Ping Tang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Guangquan Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- International Football Education School, Jilin Agricultural University, Changchun, China
| | - Hongyang Zou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Sitong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Junshun Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Zhiyi Ai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yue Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Linlin Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Zhicheng Zhang
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- International Football Education School, Jilin Agricultural University, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Ye J, Fan H, Shi R, Song G, Wu X, Wang D, Xia B, Zhao Z, Zhao B, Liu X, Wang Y, Dai X. Dietary lipoic acid alleviates autism-like behavior induced by acrylamide in adolescent mice: the potential involvement of the gut-brain axis. Food Funct 2024; 15:3395-3410. [PMID: 38465655 DOI: 10.1039/d3fo05078e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Consuming fried foods has been associated with an increased susceptibility to mental health disorders. Nevertheless, the impact of alpha-lipoic acid (α-LA, LA) on fried food-induced autism-like behavior remains unclear. This study aimed to explore how LA affects autism-related behavior and cognitive deficits caused by acrylamide in mice, a representative food hazard found in fried foods. This improvement was accomplished by enhanced synaptic plasticity, increased neurotrophin expression, elevated calcium-binding protein D28k, and restored serotonin. Additionally, LA substantially influenced the abundance of bacteria linked to autism and depression, simultaneously boosted short-chain fatty acid (SCFA) levels in fecal samples, and induced changes in serum amino acid concentrations. In summary, these findings suggested that exposure to acrylamide in adolescent mice could induce the development of social disorders in adulthood. LA showed promise as a nutritional intervention strategy to tackle emotional disorders during adolescence.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ge Song
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China.
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zhenting Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
19
|
Song Y, Sun M, Ma F, Xu D, Mu G, Jiao Y, Yu P, Tuo Y. Lactiplantibacillus plantarum DLPT4 Protects Against Cyclophosphamide-Induced Immunosuppression in Mice by Regulating Immune Response and Intestinal Flora. Probiotics Antimicrob Proteins 2024; 16:321-333. [PMID: 36715883 DOI: 10.1007/s12602-022-10015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 01/31/2023]
Abstract
In this study, the strain Lactiplantibacillus plantarum DLPT4 was investigated for the immunostimulatory activity in cyclophosphamide (CTX)-induced immunosuppressed BALB/c mice. L. plantarum DLPT4 was administered to BALB/c mice by oral gavage for 30 days, and CTX was injected intraperitoneally from the 25th to the 27th days. Intraperitoneal injection of CTX caused damage to the thymic cortex and intestines, and the immune dysfunction of the BALB/c mice. L. plantarum DLPT4 oral administration exerted immunoregulating effects evidenced by increasing serum immunoglobulin (IgA, IgG, and IgM) levels and reducing the genes expression of pro-inflammatory factors (IL-6, IL-1β, and TNF-α) of the CTX-induced immunosuppressed mice. The results of the metagenome-sequencing analysis showed that oral administration of L. plantarum DLPT4 could regulate the intestinal microbial community of the immunosuppressed mice by changing the ratio of Lactiplantibacillus and Bifidobacterium. Meanwhile, the abundance of carbohydrate enzyme (CAZyme), immune diseases metabolic pathways, and AP-1/MAPK signaling pathways were enriched in the mice administrated with L. plantarum DLPT4. In conclusion, oral administration of L. plantarum DLPT4 ameliorated symptoms of CTX-induced immunosuppressed mice by regulating gut microbiota, influencing the abundance of carbohydrate esterase in the intestinal flora, and enhancing immune metabolic activity. L. plantarum DLPT4 could be a potential probiotic to regulate the immune response.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Dongxue Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yang Jiao
- College of Life Science and Engineering of Hexi University, Zhangye, 734000, People's Republic of China
| | - Ping Yu
- High Change (Shenyang) Child-Food Products Co, Ltd, Shenyang, 110011, People's Republic of China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| |
Collapse
|
20
|
Yin H, Li R, Liu J, Sun Y, Zhao L, Mou J, Yang J. Fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus alleviate the intestinal barrier injury and oxidative stress damage in vitro and in vivo. Carbohydr Polym 2024; 328:121722. [PMID: 38220325 DOI: 10.1016/j.carbpol.2023.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
This study aimed to investigate the alleviative effects of fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus (fCSSc) on the intestinal barrier injury and oxidative stress damage in vitro and in vivo. The results showed that fCS-Sc protected the intestinal barrier and improved the antioxidant function in H2O2 damaged Caco-2 cells via up-regulating the tight junction proteins and activating Keap1-Nrf2-ARE antioxidant pathway. Furthermore, administration fCS-Sc could ameliorate the weight loss and spleen index decrease in Cyclophosphamide (Cy) treated mice, improve the expressions of ZO-1, Claudin-1, Nrf2, SOD, and NQO-1 in Cy damaged colon tissue, showing significant protective effects against intestinal barrier damage and oxidative stress in vivo. fCS-Sc intervention also alleviated the gut microbiota disorder though increasing the richness and diversity of intestinal bacteria, regulating the structural composition of gut microbiota. fCS-Sc promoted the relative abundance of beneficial microbiota and inhibited the growth of harmful bacteria. This study provided a theoretical basis for the application of fCS-Sc as a prebiotic in chemotherapy.
Collapse
Affiliation(s)
- Huanan Yin
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Rui Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jing Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yanying Sun
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, China
| | - Lei Zhao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jiaojiao Mou
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, China.
| | - Jie Yang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China; Innovative Drug Research and Development Center, Weifang Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
21
|
Zhong L, Hu Q, Zhan Q, Zhao M, Zhao L. Oat protein isolate- Pleurotus ostreatus β-glucan conjugate nanoparticles bound to β-carotene effectively alleviate immunosuppression by regulating gut microbiota. Food Funct 2024; 15:1867-1883. [PMID: 38236028 DOI: 10.1039/d3fo05158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Individuals with immune disorders cannot establish an adequate defense to pathogens, leading to gut microbiota dysbiosis. β-Carotene can regulate immune response, but its bioavailability in vivo is very low. Herein, we developed a glycosylated oat protein-based nanoparticle to improve the application of β-carotene for mitigating cyclophosphamide-induced immunosuppression and gut microbiota imbalance in mice. The results showed that the nanoparticles facilitated a conversion of β-carotene to retinol or retinyl palmitate into the systemic circulation, leading to an increased bioavailability of β-carotene. The encapsulated β-carotene bolstered humoral immunity by elevating immunoglobulin levels, augmenting splenic T lymphocyte subpopulations, and increasing splenic cytokine concentrations in immunosuppressed mice. This effect was accompanied by the alleviation of pathological features observed in the spleen. In addition, the encapsulated β-carotene restored the abnormal gut microbiota associated with immunosuppression, including Erysipelotrichaceae, Akkermansia, Bifidobacterium and Roseburia. This study suggested that nanoparticles loaded with β-carotene have great potential for therapeutic intervention in human immune disorders by specifically targeting the gut microbiota.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, P.R. China.
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
22
|
Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, Wang Y, Zheng Y, Khan A, Han H, Li X. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes 2024; 10:6. [PMID: 38245564 PMCID: PMC10799920 DOI: 10.1038/s41522-024-00479-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
23
|
Tian Z, Qiao X, Wang Z, Li X, Pan Y, Wei X, Lv Z, Li P, Du Q, Wei W, Yan L, Chen S, Xu C, Feng Y, Zhou R. Cisplatin and doxorubicin chemotherapy alters gut microbiota in a murine osteosarcoma model. Aging (Albany NY) 2024; 16:1336-1351. [PMID: 38231481 PMCID: PMC10866425 DOI: 10.18632/aging.205428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
The gut microbiota is closely associated with tumor progression and treatment in a variety of cancers. However, the alteration of the gut microbiota during the progression and chemotherapy of osteosarcoma remains poorly understood. This study aimed to explore the relationship between dysbiosis in the gut microbiota during osteosarcoma growth and chemotherapy treatment. We used BALB/c nude mice to establish osteosarcoma xenograft tumor models and administered cisplatin (CDDP) or doxorubicin (DOX) intraperitonially once every 2 days for a total of 5 times to establish effective chemotherapy models. Fecal samples were collected and processed for 16S rRNA sequencing to analyze the composition of the gut microbiota. We observed that the abundances of Colidextribacter, Lachnospiraceae_NK4A136_group, Lachnospiraceae_UCG-010, Lachnospiraceae_UCG-006, and Lachnoclostridium decreased, and the abundances of Alloprevotella and Enterorhabdus increased in the osteosarcoma mouse model group compared to those in the control group. In addition, genera, such as Lachnoclostridium and Faecalibacterium were more abundant in chemotherapy-treated mice than those in saline-treated mice. Additionally, we observed that alterations in some genera, including Lachnoclostridium and Colidextribacter in the osteosarcoma animal model group returned to normal after CDDP or DOX treatment. Furthermore, the function of the gut microbiota was inferred through PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), which indicated that metabolism-related microbiota was highly enriched and significantly different in each group. These results indicate correlations between dysbiosis of the gut microbiota and osteosarcoma growth and chemotherapy treatment with CDDP or DOX and may provide novel avenues for the development of potential adjuvant therapies.
Collapse
Affiliation(s)
- Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaochen Qiao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Zhichao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, P.R. China
| | - Xiaoyan Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Yongchun Pan
- Department of Orthopedics, The Third People’s Hospital of Datong City, Datong, Shanxi 037006, P.R. China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Pengcui Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Qiujing Du
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, P.R. China
| | - Wenhao Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Lei Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Song Chen
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
24
|
Tang P, Ren G, Zou H, Liu S, Zhang J, Ai Z, Hu Y, Cui L, Nan B, Zhang Z, Wang Y. Ameliorative effect of total ginsenosides from heat-treated fresh ginseng against cyclophosphamide-induced liver injury in mice. Curr Res Food Sci 2024; 8:100734. [DOI: https:/doi.org/10.1016/j.crfs.2024.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025] Open
|
25
|
Song W, Wang Y, Li G, Xue S, Zhang G, Dang Y, Wang H. Modulating the gut microbiota is involved in the effect of low-molecular-weight Glycyrrhiza polysaccharide on immune function. Gut Microbes 2023; 15:2276814. [PMID: 37948152 PMCID: PMC10653635 DOI: 10.1080/19490976.2023.2276814] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Low molecular weight (6.5 kDa) Glycyrrhiza polysaccharide (GP) exhibits good immunomodulatory activity, however, the mechanism underlying GP-mediated regulation of immunity and gut microbiota remains unclear. In this study, we aimed to reveal the mechanisms underlying GP-mediated regulation of immunity and gut microbiota using cyclophosphamide (CTX)-induced immunosuppressed and intestinal mucosal injury models. GP reversed CTX-induced intestinal structural damage and increased the number of goblet cells, CD4+, CD8+ T lymphocytes, and mucin content, particularly by maintaining the balance of helper T lymphocyte 1/helper T lymphocyte 2 (Th1/Th2). Moreover, GP alleviated immunosuppression by down-regulating extracellular regulated protein kinases/p38/nuclear factor kappa-Bp50 pathways and increasing short-chain fatty acids level and secretion of cytokines, including interferon-γ, interleukin (IL)-4, IL-2, IL-10, IL-22, and transforming growth factor-β3 and immunoglobulin (Ig) M, IgG and secretory immunoglobulin A. GP treatment increased the total species and diversity of the gut microbiota. Microbiota analysis showed that GP promoted the proliferation of beneficial bacteria, including Muribaculaceae_unclassified, Alistipes, Lachnospiraceae_NK4A136_group, Ligilactobacillus, and Clostridia_vadinBB60_group, and reduced the abundance of Proteobacteria and CTX-derived bacteria (Clostridiales_unclassified, Candidatus_Arthromitus, Firmicutes_unclassified, and Clostridium). The studies of fecal microbiota transplantation and the pseudo-aseptic model conformed that the gut microbiota is crucial in GP-mediated immunity regulation. GP shows great potential as an immune enhancer and a natural medicine for treating intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Wangdi Song
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yunyun Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Gongcheng Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Shengnan Xue
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Genlin Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanyan Dang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, China
| |
Collapse
|
26
|
Yan H, Li Y, Li S, Wu D, Xu Y, Hu J. Phosphatidylserine-functionalized liposomes-in-microgels for delivering genistein to effectively treat ulcerative colitis. J Mater Chem B 2023; 11:10404-10417. [PMID: 37877170 DOI: 10.1039/d3tb00812f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Ulcerative colitis (UC) is an inflammatory disease involving ulcers in the colon and rectum. The conventional treatments for UC still have many limitations, such as non-specific release, adverse effects and low absorption, resulting in the poor bioavailability of therapeutic agents. To address these challenges, targeting delivery systems are required to specifically deliver drugs to the colonic site with controlled release. Herein, we present a novel microgel oral delivery system, loaded with liposome nanoparticles (Li NPs) containing a natural anti-inflammatory compound genistein (Gen) into alginate microgels, thereby achieving the targeted release of Gen in the colonic region and ameliorating UC symptoms. Initially, Gen was loaded into phosphatidylserine (PS)-functionalized Li NPs to form Gen@Li NPs with an average size of 245.9 ± 9.6 nm. In vitro assessments confirmed that Gen@Li NPs efficiently targeted macrophages and facilitated the internalization of Gen into cells. To prevent rapid degradation in the harsh gastrointestinal tract, Gen@Li NPs were further encapsulated into alginate microgels through electric spraying technology, forming Gen@Li microgels. In vivo distribution tests demonstrated that Gen@Li microgels possessed long-term retention in the colon and gradual release characteristics compared to Gen@Li NPs. Furthermore, in vivo experiments confirmed that Gen@Li microgels significantly alleviated UC symptoms in mice induced by dextran sulfate sodium salt (DSS) mainly through reducing the expression levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and promoting colonic mucosal barrier repair through upregulation of mucosal protein expression. This study shed light on the potential of utilizing oral administration of natural compounds for UC treatment.
Collapse
Affiliation(s)
- Huijia Yan
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Yanfei Li
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Sihui Li
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Di Wu
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Yu Xu
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Jiangning Hu
- Research Group of Nutrition and Health, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
27
|
Wang D, Dong Y, Xie Y, Xiao Y, Ke C, Shi K, Zhou Z, Tu J, Qu L, Liu Y. Atractylodes lancea Rhizome Polysaccharide Alleviates Immunosuppression and Intestinal Mucosal Injury in Mice Treated with Cyclophosphamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37861444 DOI: 10.1021/acs.jafc.3c05173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Plant-derived polysaccharides, such as Atractylodes lancea rhizome polysaccharide (ALP), are good immune regulators. However, the immune regulatory mechanism of the ALP is unknown. This study aimed to evaluate the effects of ALP on the intestinal mucosal barrier and intestinal mucosal immunity of immunosuppressed mice. We also compared the activity of raw Atractylodes lancea rhizome polysaccharide (SALP) with wheat bran processed bran-fried Atractylodes lancea rhizome polysaccharide (FALP; both at 1.2 g/kg/d for mice). Our results showed that ALP effectively increased the immune organ index and blood cell count, stimulated the secretion of cytokines, and promoted the expression of occludin and zonula occludens-1 (ZO-1). ALP also promoted the expression of T cells and the secretion of sIgA. Furthermore, ALP alleviated the gut microbiota disorder in Cy-treated mice and increased the relative abundances of Lactobacillus and Faecalibaculum. ALP reversed the decrease in the level of SCFAs and promoted the expression of G protein-coupled receptor 43 (GPR43). To our knowledge, this study was the first to explore how the ALP protects the intestinal mucosal barrier and enhances intestinal mucosal immunity by alleviating the gut microbiota imbalance and metabolic disorders of SCFAs. FALP was more therapeutic than SALP, suggesting that FALP could be developed as a promising functional food component.
Collapse
Affiliation(s)
- Dongpeng Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Dong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ying Xie
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yangxin Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kun Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| |
Collapse
|
28
|
Yan C, Qu H, Li X, Feng B. Holothurian Wall Hydrolysate Ameliorates Cyclophosphamide-Induced Immunocompromised Mice via Regulating Immune Response and Improving Gut Microbiota. Int J Mol Sci 2023; 24:12583. [PMID: 37628768 PMCID: PMC10454611 DOI: 10.3390/ijms241612583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Some biologically active compounds isolated from sea cucumbers stimulate the body's immune response by activating immune cells. Immune function is closely related to the integrity intestinal barrier and balanced gut microbiota. However, it is unknown whether the daily administration of holothurian wall hydrolysate (HWH) ameliorated intestinal dysbiosis and barrier injury induced by immunodeficiency. This study aimed to investigate the immunomodulatory effect and the underlying mechanism of HWH in cyclophosphamide (CTX)-induced immunocompromised mice. BALB/c mice received CTX (80 mg/kg, intraperitoneally) once a day for 3 days to induce immunodeficiency, and then they received the oral administration of HWH (80 or 240 mg/kg) or levamisole hydrochloride (LH, 40 mg/kg, positive control), respectively, once a day for 7 days. We utilized 16S rRNA sequencing for microbial composition alterations, histopathological analysis for splenic and colonic morphology, Western blotting for expressions of tight junction proteins (TJs), and quantitative real-time (qRT)-PCR for measurements of pro-inflammatory cytokines. HWH attenuated the immune organ damage induced by CTX, increased the secretions of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, and promoted the recovery of goblet cells and the production of TJs (claudin-1, occludin, and ZO-1) in the colon of the immunocompromised mice. Moreover, HWH promoted the growth of beneficial microorganisms such as Lactobacillus, Lachnospiraceae, Christensenellaceae, and Bifidobacterium, while it suppressed the populations of Ruminococcus, Staphylococcus, and Streptococcus. These results demonstrate that HWH elicits intestinal mucosal immunity, repairs the damage to intestinal mucosal integrity, and normalizes the imbalanced intestinal microbial profiles in immunocompromised mice. It may be helpful to identify the biological activities of HWH to support its potential use in new prebiotics, immunomodulatory agents, and medical additives for intestinal repair.
Collapse
Affiliation(s)
| | | | - Xinli Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (C.Y.); (H.Q.)
| | - Bin Feng
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (C.Y.); (H.Q.)
| |
Collapse
|
29
|
Liang Z, Hao Y, Yang L, Yuan P, Kang W, Liang T, Gu B, Dong B. The potential of Klebsiella and Escherichia-Shigella and amino acids metabolism to monitor patients with postmenopausal osteoporosis in northwest China. BMC Microbiol 2023; 23:199. [PMID: 37495941 PMCID: PMC10373412 DOI: 10.1186/s12866-023-02927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Intestinal flora has been proposed to mediate the occurrence of postmenopausal osteoporosis (PMO). However, the mechanism by which microbes and their metabolites interactively promote PMO remains unknown. METHODS This study aimed to investigate changes in the intestinal flora and associated metabolites, and their role in PMO. 16S rRNA gene sequencing and metabolomics were performed to obtain postmenopausal women with osteopenia (lower bone mass, LBM), postmenopausal women with osteoporosis (OST), and healthy women as the control group. RESULTS We identified taxa-specific and metabolite differences in the intestinal flora of the participants of this study. The pathogenic bacteria Klebsiella (0.59% and 0.71%, respectively) and Escherichia-Shigella (2.72% and 4.30%, respectively) were enriched in the LBM and OST groups (p < 0.05). Some short-chain fatty acid (SCFAs) producing bacteria, Lactobacillus, Akkermansia, Prevotella, Alistipes, and Butyricicoccus, were reduced in patients with LBM and OST compared to the control. Moreover, fecal metabolomic analyses suggested that the metabolites of indole-3-acetic acid and 7-ketodeoxycholic acid were altered in the LBM and OST groups compared to the control (p < 0.05). Enrichment analysis suggested that valine, leucine, and isoleucine biosynthesis; aromatic amino acid biosynthesis; and phenylalanine metabolism were significantly associated with the identified microbiota biomarkers and OST. Moreover, metabolite marker signatures distinguished patients in the OST from those in the control group with an area under the curve (AUC) of 0.978 and 1.00 in the negative and positive ion modes, respectively. Finally, we also found that the fecal level of interleukin-10 (IL-10) in the OST group was significantly lower than that in the control group and LBM group (p < 0.05), while tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly higher in the OST group than that in the control group (p < 0.05). CONCLUSIONS This study provides robust evidence connecting the intestinal flora and fecal metabolomics with PMO. Integrated metabolite and microbiota analyses demonstrated that in addition to dysregulated bacteria, indole-3-acetic acid, 7-ketodeoxycholic acid, and other metabolites can be used for the distinguish of LBM and PMO.
Collapse
Affiliation(s)
- Zhuang Liang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Yuqi Hao
- Department of Internal Medicine, Ordos Traditional Chinese Medicine Hospital, Ordos, 017000, Inner Mongolia, China
| | - Lei Yang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Puwei Yuan
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Wulin Kang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Tingting Liang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China.
| | - Bo Dong
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
30
|
Zhao Z, Xu X, Chang Y, Xu Y, Zhou X, Su H, Cui X, Wan X, Mao G. Protective effect of mussel polysaccharide on cyclophosphamide-induced intestinal oxidative stress injury via Nrf2-Keap1 signaling pathway. Food Sci Nutr 2023; 11:4233-4245. [PMID: 37457170 PMCID: PMC10345665 DOI: 10.1002/fsn3.3453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 07/18/2023] Open
Abstract
The hard-shelled mussel (Mytilus coruscus) has been used as a traditional Chinese medicine and health food in China for centuries. Polysaccharides from mussel has been reported to have multiple biological functions, however, it remains unclear whether mussel polysaccharide (MP) exerts protective effects in intestinal functions, and the underlying mechanisms of action remain unclear. The aim of this study was to investigate the protective effects and mechanism of MP on intestinal oxidative injury in mice. In this study, 40 male BALB/C mice were used, with 30 utilized to produce an animal model of intestinal oxidative injury with intraperitoneal injection of cyclophosphamide (Cy) for four consecutive days. The protective effects of two different doses of MP (300 and 600 mg/kg) were assessed by investigating the change in body weight, visceral index, and observing colon histomorphology. Moreover, the underlying molecular mechanisms were investigated by measuring the antioxidant enzymes and related signaling molecules through ELISA, real-time PCR, and western blot methods. The results showed that MP pretreatment effectively protected the intestinal from Cy-induced injury: improved the colon tissue morphology and villus structure, increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, and reduced malondialdehyde (MDA) content in serum and colon tissues. Meanwhile, MP also significantly increased the expression levels of SOD, GSH-Px, heme oxygenase-1 (HO-1), and nuclear factor E2-related factor 2 (Nrf2) mRNA in colon tissues. Further, western blot results showed that the expression of Nrf2 protein was significantly upregulated while kelch-like ECH-associated protein 1 (Keap1) was significantly downregulated by MP in the colonic tissues. This study indicates that MP can ameliorate Cy-induced oxidative stress injury in mice, and Nrf2-Keap1 signaling pathway may mediate these protective effects.
Collapse
Affiliation(s)
- Zhen‐Lei Zhao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| | - Xiao‐Gang Xu
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| | - Yun‐Chuang Chang
- College of Biological and Food EngineeringHubei Minzu UniversityEnshiChina
| | - Yi‐Peng Xu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC)Zhejiang Cancer Hospital, Chinese Academy of SciencesHangzhouChina
| | - Xu‐Qiang Zhou
- College of Life ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Hui‐Li Su
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| | - Xiao‐Hua Cui
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| | - Xiao‐Qing Wan
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| | - Gen‐Xiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| |
Collapse
|
31
|
Du Y, Tu Y, Zhou Z, Hong R, Yan J, Zhang GW. Effects of organic and inorganic copper on cecal microbiota and short-chain fatty acids in growing rabbits. Front Vet Sci 2023; 10:1179374. [PMID: 37275607 PMCID: PMC10235478 DOI: 10.3389/fvets.2023.1179374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Copper (Cu) is an essential trace element for the growth of rabbits. This study aimed to investigate the effects of different Cu sources on intestinal microorganisms and short-chain fatty acids (SCFAs) in growing rabbits. Methods The experimental animals were randomly divided into four experimental groups, each group comprised eight replicates, with six rabbits (half male and half female) per replicate. And they were fed diets was composed by mixing the basal diet with 20 mg/kg Cu from one of the two inorganic Cu (cupric sulfate and dicopper chloride trihydroxide) or two organic Cu (cupric citrate and copper glycinate). Cecal contents of four rabbits were collected from four experimental groups for 16S rDNA gene amplification sequencing and gas chromatography analysis. Results Our results indicate that the organic Cu groups were less variable than the inorganic Cu groups. Compared with the inorganic Cu groups, the CuCit group had a significantly higher relative abundance of Rikenella Tissierella, Lachnospiraceae_NK3A20_group, Enterococcus, and Paeniclostridium, while the relative abundance of Novosphingobium and Ruminococcus were significantly lower (p < 0.05). The SCFAs level decreased in the organic Cu groups than in the inorganic Cu groups. Among the SCFAs, the butyric acid level significantly decreased in the CuCit group than in the CuSO4 and CuCl2 groups. The relative abundance of Rikenella and Turicibacter genera was significantly negatively correlated with the butyric acid level in the CuCit group compared with both inorganic Cu groups. These results revealed that the organic Cu (CuCit) group had an increased abundance of Rikenella, Enterococcus, Lachnospiraceae_NK3A20_group, and Turicibacter genera in the rabbit cecum. Discussion In summary, this study found that organic Cu and inorganic Cu sources had different effects on cecal microbiota composition and SCFAs in rabbits. The CuCit group had the unique higher relative abundance of genera Rikenella and Lachnospiraceae_NK3A20_group, which might be beneficial to the lower incidence of diarrhea in rabbits.
Collapse
Affiliation(s)
- Yanan Du
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Tu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Rui Hong
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiayou Yan
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Liyanage NM, Nagahawatta DP, Jayawardena TU, Jeon YJ. The Role of Seaweed Polysaccharides in Gastrointestinal Health: Protective Effect against Inflammatory Bowel Disease. Life (Basel) 2023; 13:life13041026. [PMID: 37109555 PMCID: PMC10143107 DOI: 10.3390/life13041026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a prominent global public health issue. Anti-inflammatory medications, immunosuppressants, and biological therapies are currently used as treatments. However, they are often unsuccessful and have negative consequences on human health. Thus, there is a tremendous demand for using natural substances, such as seaweed polysaccharides, to treat IBD's main pathologic treatment targets. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae, and fucoidan in brown algae. These are effective candidates for drug development and functional nutrition products. Algal polysaccharides treat IBD through therapeutic targets, including inflammatory cytokines, adhesion molecules, intestinal epithelial cells, and intestinal microflora. This study aimed to systematically review the potential therapeutic effects of algal polysaccharides on IBD while providing the theoretical basis for a nutritional preventive mechanism for IBD and the restoration of intestinal health. The results suggest that algal polysaccharides have significant potential in complementary IBD therapy and further research is needed for fully understanding their mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- N M Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - D P Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
33
|
Tian B, Liu R, Xu T, Cai M, Mao R, Huang L, Yang K, Zeng X, Peilong S. Modulating effects of Hericium erinaceus polysaccharides on the immune response by regulating gut microbiota in cyclophosphamide-treated mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3050-3064. [PMID: 36546454 DOI: 10.1002/jsfa.12404] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The gut microbiota (GM) is recognized as a significant contributor to the immune system. In the present study, the effects of Hericium erinaceus polysaccharides (HEP) on immunoregulation and GM in cyclophosphamide (CTX)-treated mice were investigated to elucidate the attenuate of immunosuppression by modulating GM. RESULTS The results revealed that HEP significantly improved the body weight and immune organ index in immunodeficient mice (P < 0.05). They significantly increased operational taxonomic units (OTUs) (P < 0.05), adjusted the α and β diversity of the GM, and the bacterial community structure was more similar to that of control group. Taxonomic composition analysis found that HEP increased the abundance of Alistipse, uncultured_bacterium_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, uncultured_bacterium_f_Lachnospiracea, uncultured_bacterium_f_Ruminococcaceae and Ruminococcaceae_UCG-014, and decreased Lactobacillus, Bacteroides, and Alloprevotella, suggesting that HEP can improve the GM structure and inhibit CTX-induced GM dysregulation. Moreover, HEP increased short-chain fatty acid (SCFA)-producing bacteria, recovered SCFA levels, alleviated immunosuppression caused by CTX, enhanced the serum immune cytokine factors, and upregulated TLR4/NF-κB pathway key proteins (TLR4, NF-κB p65) at mRNA and protein levels. CONCLUSION Hericium erinaceus polysaccharides effectively regulated GM and enhancement of intestinal immune function, so they have the potential to be developed as functional ingredients or foods to modulate immune responses. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Renjian Liu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Tianrui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Rongliang Mao
- Changshan Haofeng Agricultural Development Co. LTD, Quzhou, China
| | - Liangshui Huang
- Research Institute of Changshan Tianle Edible Fungus, Quzhou, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sun Peilong
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- China Key Laboratory of Food Macromolecular Resource Processing Technology for Light Industry, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
34
|
Su Y, Cheng S, Ding Y, Wang L, Sun M, Man C, Zhang Y, Jiang Y. A comparison of study on intestinal barrier protection of polysaccharides from Hericium erinaceus before and after fermentation. Int J Biol Macromol 2023; 233:123558. [PMID: 36746300 DOI: 10.1016/j.ijbiomac.2023.123558] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The intestinal barrier protects the host from harmful substances. This paper investigated two polysaccharides extracted from the Hericium erinaceus before and after fermentation (HEP and FHEP). The effects of two polysaccharides on the intestinal barrier were investigated in cell and mice models. The results showed that polysaccharides had a protective effect against acrylamide-induced injury in IEC-6 cell. Compared with HEP, FHEP significantly increased TEER and paracellular permeability (P < 0.05). Both polysaccharides the expression of alter tight junction (TJ) and mucin (MUC) as observed in cell Western Bolt (WB). Polysaccharides also enhance the intestinal barrier function in mice by improving cyclophosphamide induced cytokines level, TJ and MUC expression, and gut microbiota. The results showed that FHEP significantly increased IgA, IgG, and IgM levels while decreasing TNF-, IL-1, and IL-6 levels (P < 0.05). The immunohistochemical results showed that both polysaccharides significantly increased the expression of occludin, ZO-1, ZO-2, claudin-3, claudin-4, MUC2 and decreased claudin-2. In parallel, polysaccharides could alter the composition of the gut microbiota, indicating that increased in Bacteriodetes, Firmicutes and decreased in Klebsiella and Shigella. This work provides important views on the protective effect of fermented polysaccharides on the intestinal barrier, and provides a potential mechanism for the beneficial health properties of these biomacromolecules.
Collapse
Affiliation(s)
- Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yixin Ding
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linge Wang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingshuang Sun
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
35
|
Cui Y, Zhang L, Liu Y, Liu W, Shi W, Bao Y. Compound small peptide of Chinese medicine alleviates cyclophosphamide induced immunosuppression in mice by Th17/Treg and jejunum intestinal flora. Front Microbiol 2023; 14:1039287. [PMID: 37056742 PMCID: PMC10089124 DOI: 10.3389/fmicb.2023.1039287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this study was to explore the efficacy of Compound small peptide of Chinese medicine (CSPCM) on cyclophosphamide (CTX) induced immunosuppression in mice. The 100 male Kunming mice were divided into 5 groups: group A (control group), group B (model group), group C (100 mg/kg.bw CSPCM), group D (200 mg/kg.bw CSPCM) and group E (400 mg/kg.bw CSPCM). At 1–3 days, mice of group B, C, D and E were intraperitoneally injected with 80 mg/kg.bw CTX. The results showed that compared with group A, the immune organ index, body weight change, RORγ T gene expression, RORγ T protein expression, CD3+ cell number, Th17 number and Alpha index, white blood cell count, lymphocyte count and monocyte count were significantly decreased in group B (p < 0.05), while Foxp3 gene expression, Foxp3 protein expression and Treg cell number were significantly increased (p < 0.05), CSPCM has a good therapeutic effect on the above abnormalities caused by CTX. CTX caused the decrease of intestinal flora richness and the abnormal structure of intestinal flora, and CSPCM could change the intestinal flora destroyed by CTX to the direction of intestinal flora of healthy mice. On the whole, CSPCM has a good therapeutic effect on CTX-induced immunosuppression in mice, which is reflected in the index of immune organs, the number of T lymphocytes and Th17 cells increased, the number of Treg cells decreased and the structure of intestinal flora was reconstructed.
Collapse
Affiliation(s)
- Yuqing Cui
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Lu Zhang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wei Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wanyu Shi
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Pharmacoefficacy Laboratory, Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, China
- *Correspondence: Wanyu Shi,
| | - Yongzhan Bao
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Pharmacoefficacy Laboratory, Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, China
- Yongzhan Bao,
| |
Collapse
|
36
|
Cai C, Cheng W, Shi T, Liao Y, Zhou M, Liao Z. Rutin alleviates colon lesions and regulates gut microbiota in diabetic mice. Sci Rep 2023; 13:4897. [PMID: 36966186 PMCID: PMC10039872 DOI: 10.1038/s41598-023-31647-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
Diabetes is a common metabolic disorder that has become a major health problem worldwide. In this study, we investigated the role of rutin in attenuating diabetes and preventing diabetes-related colon lesions in mice potentially through regulation of gut microbiota. The rutin from tartary buckwheat as analyzed by HPLC was administered intragastrically to diabetic mice, and then the biochemical parameters, overall community structure and composition of gut microbiota in diabetic mice were assayed. The results showed that rutin lowered serum glucose and improved serum total cholesterol, low-density lipoprotein, high-density lipoprotein, triglyceride concentrations, tumor necrosis factor-α, interleukin-6, and serum insulin in diabetic mice. Notably, rutin obviously alleviated colon lesions in diabetic mice. Moreover, rutin also significantly regulated gut microbiota dysbiosis and enriched beneficial microbiota, such as Akkermansia (p < 0.05). Rutin selectively increased short-chain fatty acid producing bacteria, such as Alistipes (p < 0.05) and Roseburia (p < 0.05), and decreased the abundance of diabetes-related gut microbiota, such as Escherichia (p < 0.05) and Mucispirillum (p < 0.05). Our data suggested that rutin exerted an antidiabetic effect and alleviated colon lesions in diabetic mice possibly by regulating gut microbiota dysbiosis, which might be a potential mechanism through which rutin alleviates diabetes-related symptoms.
Collapse
Affiliation(s)
- Cifeng Cai
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Wenwen Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Tiantian Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Yueling Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China.
| |
Collapse
|
37
|
Tian B, Wang P, Xu T, Cai M, Mao R, Huang L, Sun P, Yang K. Ameliorating effects of Hericium erinaceus polysaccharides on intestinal barrier injury in immunocompromised mice induced by cyclophosphamide. Food Funct 2023; 14:2921-2932. [PMID: 36892225 DOI: 10.1039/d2fo03769f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Hericium erinaceus is a kind of large fungus with rich nutrition and its polysaccharides exhibit various biological activities. In recent years, widespread interest has been focused on maintaining or improving intestinal health through the consumption of edible fungi. Studies have shown that hypoimmunity can damage the intestinal barrier, which in turn seriously affects human health. The aim of this work was to investigate the ameliorative effects of Hericium erinaceus polysaccharides (HEPs) on intestinal barrier damage in cyclophosphamide (CTX)-induced immunocompromised mice. The results showed that the HEP effectively increased the levels of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), and total superoxide dismutase (T-SOD), and decreased malondialdehyde (MDA) content in the liver tissues of mice. In addition, the HEP restored the immune organ index, increased the serum levels of IL-2 and IgA, augmented the mRNA expression levels of intestinal Muc2, Reg3γ, occludin and ZO-1, and reduced intestinal permeability in mice. It was further confirmed by an immunofluorescence assay that the HEP enhanced the expression level of intestinal tight junction proteins to protect the intestinal mucosal barrier. These results suggested that the HEP could reduce intestinal permeability and enhance intestinal immune functions by increasing antioxidant capacity, tight junction proteins and immune-related factors in CTX-induced mice. In conclusion, the HEP effectively ameliorated CTX-induced intestinal barrier damage in immunocompromised mice, which provides a new application direction for the HEP as a natural immunopotentiator with antioxidant function.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Peiyi Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Tianrui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Rongliang Mao
- Changshan Haofeng Agricultural Development Co. Ltd, Quzhou 324207, China
| | - Liangshui Huang
- Research Institute of Changshan Tianle Edible Fungus, Quzhou 324200, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| |
Collapse
|
38
|
Zhang M, Li A, Yang Q, Li J, Zheng L, Wang G, Sun Y, Huang Y, Zhang M, Song Z, Liu L. Matrine alleviates depressive-like behaviors via modulating microbiota-gut-brain axis in CUMS-induced mice. J Transl Med 2023; 21:145. [PMID: 36829227 PMCID: PMC9951532 DOI: 10.1186/s12967-023-03993-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The realization of the "microbiota-gut-brain" axis plays a critical role in neuropsychiatric disorders, particularly depression, is advancing rapidly. Matrine is a natural bioactive compound, which has been found to possess potential antidepressant effect. However, the underlying mechanisms of regulation of the "microbiota-gut-brain" axis in the treatment of depression by oral matrine remain elusive. METHODS Its antidepressant effects were initially evaluated by behavioral tests and relative levels of monoamine neurotransmitters, and matrine has been observed to attenuate the depression-like behavior and increase neurotransmitter content in CUMS-induced mice. Subsequently, studies from the "gut" to "brain" were conducted, including detection of the composition of gut microbiota by 16S rRNA sequencing; the metabolomics detection of gut metabolites and the analysis of differential metabolic pathways; the assessment of relative levels of diamine oxidase, lipopolysaccharide, pro-inflammatory cytokines, and brain-derived neurotrophic factor (BDNF) by ELISA kits or immunofluorescence. RESULTS Matrine could regulate the disturbance of gut microbiota and metabolites, restore intestinal permeability, and reduce intestinal inflammation, thereby reducing the levels of pro-inflammatory cytokines in peripheral blood circulation and brain regions, and ultimately increase the levels of BDNF in brain. CONCLUSION Matrine may ameliorate CUMS-induced depression in mice by modulating the "microbiota-gut-brain" axis.
Collapse
Affiliation(s)
- Ming Zhang
- grid.27446.330000 0004 1789 9163National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China ,grid.411407.70000 0004 1760 2614Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Aoqiang Li
- grid.411407.70000 0004 1760 2614Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qifang Yang
- grid.27446.330000 0004 1789 9163National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Jingyi Li
- grid.27446.330000 0004 1789 9163National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- grid.27446.330000 0004 1789 9163National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Guannan Wang
- grid.27446.330000 0004 1789 9163National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Ying Sun
- grid.27446.330000 0004 1789 9163National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yanxin Huang
- grid.27446.330000 0004 1789 9163National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Muqing Zhang
- grid.35403.310000 0004 1936 9991School of Molecular & Cellular Biology, University of Illinois Urbana Champaign, Urbana, IL USA
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| |
Collapse
|
39
|
Guo J, Wang P, Cui Y, Hu X, Chen F, Ma C. Protective Effects of Hydroxyphenyl Propionic Acids on Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet. Nutrients 2023; 15:nu15041043. [PMID: 36839401 PMCID: PMC9959022 DOI: 10.3390/nu15041043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Gut microbiota imbalances lead to the pathogenesis of non-alcoholic fatty liver disease (NAFLD), which is primarily accompanied by hepatic steatosis. Hydroxyphenyl propionic acids (HPP) have shown great potential in inhibiting lipid accumulation but their protective effects concerning NAFLD and intestinal microbiota have remained unclear. In this paper, we investigated the efficacies of 3-HPP and 4-HPP on hepatic steatosis and gut flora in mice fed a high-fat diet (HFD). We found that 3-HPP and 4-HPP administration decreased body weight and liver index, ameliorated dyslipidemia, and alleviated hepatic steatosis. Furthermore, 3-HPP and 4-HPP enhanced the multiformity of gut microbiota; improved the relative abundance of GCA-900066575, unidentified_Lachnospiraceae, and Lachnospiraceae_UCG-006 at genus level; increased concentration of acetic acid, propionic acid and butanoic acid in faeces; and reduced systemic endotoxin levels in NAFLD mice. Moreover, 4-HPP upregulated the relative abundance of genera Rikenella and downregulated the relative abundance of Faecalibaculum. Furthermore, 3-HPP and 4-HPP regulated lipid metabolism and ameliorated gut dysbiosis in NAFLD mice and 4-HPP was more effective than 3-HPP.
Collapse
Affiliation(s)
- Jingling Guo
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pan Wang
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yifan Cui
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chen Ma
- Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-158-4777-3782
| |
Collapse
|
40
|
Chimonanthus nitens Oliv Polysaccharides Modulate Immunity and Gut Microbiota in Immunocompromised Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6208680. [PMID: 36846714 PMCID: PMC9946750 DOI: 10.1155/2023/6208680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
To investigate the immunomodulatory activities of Chimonanthus nitens Oliv polysaccharides (COP1), an immunosuppressive mouse model was generated by cyclophosphamide (CY) administration and then treated with COP1. The results demonstrated that COP1 ameliorated the body weight and immune organ (spleen and thymus) index of mice and improved the pathological changes of the spleen and ileum induced by CY. COP1 strongly stimulated the production of inflammatory cytokines (IL-10, IL-12, IL-17, IL-1β, and TNF-α) of the spleen and ileum by promoting the mRNA expressions. Furthermore, COP1 had immunomodulatory activity by increasing several transcription factors (JNK, ERK, and P38) in the mitogen-activated protein kinase (MAPK) signaling pathway. Related to the above immune stimulatory effects, COP1 positively affected the production of short-chain fatty acids (SCFAs) and the expression of ileum tight junction (TJ) protein (ZO-1, Occludin-1, and Claudin-1), upregulated the level of secretory immunoglobulin A (SIgA) in the ileum and microbiota diversity and composition, and improved intestinal barrier function. This study suggests that COP1 may provide an alternative strategy for alleviating chemotherapy-induced immunosuppression.
Collapse
|
41
|
Wu X, Huang X, Ma W, Li M, Wen J, Chen C, Liu L, Nie S. Bioactive polysaccharides promote gut immunity via different ways. Food Funct 2023; 14:1387-1400. [PMID: 36633119 DOI: 10.1039/d2fo03181g] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Numerous kinds of bioactive polysaccharides are identified as having intestinal immunomodulatory activity; however, the ways in which the different polysaccharides work differ. Therefore, we selected nine representative bioactive polysaccharides, including xanthan gum, inulin, guar gum, arabinogalactan, carrageenan, glucomannan, araboxylan, xylan, and fucoidan, and compared their intestinal immunomodulatory mechanisms. A cyclophosphamide (CTX)-induced immunosuppressed model was used in this experiment, and the effects of these polysaccharides on the number of T cells in the intestinal mucosa, expression of transcription factors and inflammatory factors, intestinal metabolome and gut microbiota were compared and discussed. The results revealed that the nine polysaccharides promote intestinal immunity in different ways. In detail, guar gum, inulin and glucomannan better alleviated immune suppression in intestinal mucosal T cells. Inulin improved the intestinal microenvironment by significantly upregulating the abundance of Lactobacillus and Monoglobus and promoted short chain fatty acid (SCFA) production. Fucoidan and carrageenan promoted the colonization of the beneficial bacteria Rikenella and Roseburia. In addition, fucoidan, inulin and carrageenan inhibited the colonization of harmful bacteria Helicobacter, upregulated the abundance of Clostridia_UCG-014 and alleviated the accumulation of amino acids, bile acids and indoles in the large intestine. In conclusion, our study uncovered the different intestinal immunomodulatory mechanisms of the different polysaccharides and provided a guideline for the development of superior intestinal immunomodulatory polysaccharides.
Collapse
Affiliation(s)
- Xincheng Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Wanning Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Liandi Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides in Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
42
|
Elgohary R, Salama A, Omara EA. Protective Effects of Cannabis sativa on chemotherapy-induced nausea in a rat: Involvement of CB1 receptors. Fundam Clin Pharmacol 2023; 37:137-146. [PMID: 35861135 DOI: 10.1111/fcp.12821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023]
Abstract
Cyclophosphamide is an anticancer and immunosuppressive agent used in the treatment of various malignancies but causing gastrointestinal distress. Cannabis sativa and its derivatives have been used for the treatment of human gastrointestinal disorders. A purpose of this study was to investigate the effect of C. sativa on nausea induced by cyclophosphamide in rats. The rats were divided into four groups (eight animals per group): Group 1: Normal control (saline i.p.). Group 2: Rats received cyclophosphamide (200 mg/kg i.p.) 3 consecutive days. Group 3 and 4: Rats received cyclophosphamide (200 mg/kg i.p.) across Days 1-7, and C. sativa (20 and 40 mg/kg s.c.) was administered on cyclophosphamide days 4-7. We examined intake of kaolin, normal food and changes in body weight, as an indicator of the emetic stimulus. Oxidative stress markers, antioxidant enzymes status, serotonin (5-HT), dopamine, noradrenaline and CB1R levels were evaluated in the intestinal homogenate. Moreover, histopathological study was performed. Results showed that C. sativa ameliorates cyclophosphamide-induced emesis by increasing in body weight and normal diet intake with a decrease in kaolin diet intake after 7 days. Moreover, C. sativa significantly decreases (serotonin) 5-HT, dopamine and noradrenaline, as well as decreasing oxidative stress and inflammation. Administration of C. sativa significantly increased the expression of CB1R in intestinal homogenate. Treatment with C. sativa also improved the histological feature of an intestinal tissue. These results suggested that C. sativa possess antiemetic, antioxidant and anti-inflammatory effects in chemotherapy-induced nausea in rats by activating CB1R.
Collapse
Affiliation(s)
- Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Enayat A Omara
- Pathology Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
43
|
Ma W, Li W, Yu S, Bian H, Wang Y, Jin Y, Zhang Z, Ma Q, Huang L. Immunomodulatory effects of complex probiotics on the immuno-suppressed mice induced by cyclophosphamide. Front Microbiol 2023; 14:1055197. [PMID: 36778877 PMCID: PMC9911820 DOI: 10.3389/fmicb.2023.1055197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Previous studies have reported the beneficial effects of Bifidobacterium animalis subsp. lactis XLTG11, Lacticaseibacillus casei Zhang, and Lactiplantibacillus plantarum P8, respectively. However, studies on the immunomodulatory enhancing effects of three complex probiotics have not been conducted. The aim of our study is to investigate the immunomodulatory effects of complex probiotics effect on the immunosuppressed mice induced by cyclophosphamide (CTX). Methods An immunocompromised mouse model was established by intraperitoneal injection of cyclophosphamide, which was gavage of different doses of complex probiotics and levamisole hydrochloride. The splenic and thymic indices, intestinal barrier, leukocyte and lymphocyte counts, percentage of splenic lymphocyte subpopulations, cytokine levels, and gut microbiota were determined. Results Results showed that the complex probiotics significantly elevated the spleen and thymus indices, increased the villi and crypt depth and the goblet cells. The leukocyte and lymphocyte counts and the percentage of splenic lymphocyte subpopulations in the CTX-treated mice were significantly elevated by the complex probiotics. In addition, the cytokines (IL-6, IL-10, IL-1β, and IFN-γ) were significantly increased after complex probiotic treatment. The complex probiotics restored the gut microbiota structure to the pattern of the control group by reducing the ratio of Firmicutes/Bacteroidetes and enhancing the relative abundances of specific microbiota that produced short-chain fatty acids. Discussion This study provides theoretical support for the immunity-enhancing function of the complex probiotics as well as a pharmacological basis for its further development and utilization.
Collapse
|
44
|
Lo EKK, Wang X, Lee PK, Wong HC, Lee JCY, Gómez-Gallego C, Zhao D, El-Nezami H, Li J. Mechanistic insights into zearalenone-accelerated colorectal cancer in mice using integrative multi-omics approaches. Comput Struct Biotechnol J 2023; 21:1785-1796. [PMID: 36915382 PMCID: PMC10006464 DOI: 10.1016/j.csbj.2023.02.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Zearalenone (ZEA), a secondary metabolite of Fusarium fungi found in cereal-based foods, promotes the growth of colon, breast, and prostate cancer cells in vitro. However, the lack of animal studies hinders a deeper mechanistic understanding of the cancer-promoting effects of ZEA. This study aimed to determine the effect of ZEA on colon cancer progression and its underlying mechanisms. Through integrative analyses of transcriptomics, metabolomics, metagenomics, and host phenotypes, we investigated the impact of a 4-week ZEA intervention on colorectal cancer in xenograft mice. Our results showed a twofold increase in tumor weight with the 4-week ZEA intervention. ZEA exposure significantly increased the mRNA and protein levels of BEST4, DGKB, and Ki67 and the phosphorylation levels of ERK1/2 and AKT. Serum metabolomic analysis revealed that the levels of amino acids, including histidine, arginine, citrulline, and glycine, decreased significantly in the ZEA group. Furthermore, ZEA lowered the alpha diversity of the gut microbiota and reduced the abundance of nine genera, including Tuzzerella and Rikenella. Further association analysis indicated that Tuzzerella was negatively associated with the expression of BEST4 and DGKB genes, serum uric acid levels, and tumor weight. Additionally, circulatory hippuric acid levels positively correlated with tumor weight and the expression of oncogenic genes, including ROBO3, JAK3, and BEST4. Altogether, our results indicated that ZEA promotes colon cancer progression by enhancing the BEST4/AKT/ERK1/2 pathway, lowering circulatory amino acid concentrations, altering gut microbiota composition, and suppressing short chain fatty acids production.
Collapse
Affiliation(s)
- Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Xiuwan Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Pui-Kei Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ho-Ching Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Danyue Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China.,Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China.,School of Data Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Liu JP, Wang J, Zhou SX, Huang DC, Qi GH, Chen GT. Ginger polysaccharides enhance intestinal immunity by modulating gut microbiota in cyclophosphamide-induced immunosuppressed mice. Int J Biol Macromol 2022; 223:1308-1319. [PMID: 36395935 DOI: 10.1016/j.ijbiomac.2022.11.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
In this study, the immunity-enhancing effect of ginger polysaccharides UGP1 and UGP2 on CTX-induced immunosuppressed mice was evaluated. The results showed that ginger polysaccharide could effectively alleviate the symptoms of weight loss and dietary intake reduction induced by CTX, increase fecal water content, reduce fecal pH, and protect immune organs of immunosuppressed mice. In addition, ginger polysaccharides also stimulated the secretion of cytokines IL-2, IL-4, TNF-α and immunoglobulin Ig-G in the serum of mice, increased the expression of Occludin and Claudin-1, and restored the level of short-chain fatty acids in the intestine to improve immune deficiency. Furthermore, ginger polysaccharides significantly reduced the relative abundance ratio of the Firmicutes and Bacteroidetes in mice and increased the relative abundance of Verrucomicrobia and Bacteroidetes at the phylum level. At the family level, ginger polysaccharides increased the relative abundance of beneficial bacteria such as Muribaculaceae, Bacteroidaceae and Lactobacillaceae, and decreased the relative abundance of harmful bacteria such as Rikenellaceae and Lachnospiraceae. Spearman correlation analysis indicated that ginger polysaccharides could enhance intestinal immunity by modulating gut microbiota associated with immune function. These results indicated that ginger polysaccharides have the potential to be a functional food ingredients or a natural medicine for the treatment of intestinal barrier injury.
Collapse
Affiliation(s)
- Jun-Ping Liu
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China
| | - Jie Wang
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China
| | - Si-Xuan Zhou
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China
| | - De-Chun Huang
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China
| | - Guo-Hong Qi
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China.
| | - Gui-Tang Chen
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
46
|
Yuan Y, Liu S, Ding X, Li Y, Zhang X, Song H, Qi X, Zhang Z, Guo K, Sun T. Early intestinal microbiota changes in aged and adult mice with sepsis. Front Cell Infect Microbiol 2022; 12:1061444. [PMID: 36636721 PMCID: PMC9831679 DOI: 10.3389/fcimb.2022.1061444] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The mortality rate associated with sepsis in elderly individuals is higher than that in younger individuals. The intestinal microbiota has been demonstrated to play an important role in the occurrence and development of sepsis. The purpose of this study was to investigate the differences in the intestinal microbiota between aged and adult mice with sepsis. METHODS Thirty male C57BL mice were randomly divided into two groups: 15 in the adult group (AD group) and 15 in the age group (Age group). All the mice underwent caecal ligation and puncture to induce sepsis. Mice faeces were collected, and analysed using 16S rRNA sequencing. The liver and colon tissues were collected. RESULTS There were significant differences in intestinal microbiota composition between the two groups. Compared with adult sepsis mice, the diversity of intestinal microbiota in the aged group was significantly reduced and the structure of dominant intestinal microbiota was changed. In the Age group, the microbiota associated with inflammatory factors increased, and the microbiota associated with the production of SCFAs (Ruminiclostridium, Prevotellaceae_UCG-001, Rikenella, Parabacteroides, Oscillibacter, Odoribacter, Muribaculum, Lachnoclostridium, Intestinimonas, Faecalibaculum, Anaerotruncus, Alloprevotella and Absiella) decreased. The metabolic pathways related to the microbiota also changed. Moreover, the proportion of inflammatory factors in Age group was higher than that in AD group. CONCLUSION Our results showed that there were significant differences in the abundance and structure of microbiota between aged and adult sepsis mice, Aged sepsis mice have more severe intestinal microbiota destruction and liver tissue inflammation than adult sepsis mice.
Collapse
Affiliation(s)
- Yangyang Yuan
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Shaohua Liu
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Ying Li
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Zhang
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Heng Song
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueyan Qi
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Zihao Zhang
- Sanquan College Of Xinxiang Medical University, Xinxiang, China
| | - Kaiyuan Guo
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| |
Collapse
|
47
|
Yao S, Yang X, Wu W, Jiang Q, Deng S, Zheng B, Chen L, Chen Y, Xiang X. Effect of Paecilomyces cicadae polysaccharide Pc0-1 on cyclophosphamide-induced immunosuppression and regulation of intestinal flora in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Yin Z, Gong Y, Liu Y, He Y, Yao C, Huang W, Mai K, Ai Q. Fucoidan Improves Growth, Digestive Tract Maturation, and Gut Microbiota in Large Yellow Croaker ( Larimichthys crocea) Larvae. Nutrients 2022; 14:4504. [PMID: 36364770 PMCID: PMC9654794 DOI: 10.3390/nu14214504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 08/10/2024] Open
Abstract
The early life period is considered an essential period for gut microbial colonization. Manipulating gut microbiota interventions during early life periods has been proven to be a promising method to boost healthy growth. Therefore, the aim of the present study was to investigate the effects of dietary fucoidan (Fuc) on the growth, digestive tract maturation, and gut microbiota of large yellow croaker (Larimichthys crocea) larvae. Four diets were formulated with different levels of Fuc (0.00%, 0.50%, 1.00%, and 2.00%). Results showed that dietary Fuc significantly improved the growth performance of larvae. Meanwhile, dietary Fuc promoted digestive tract maturation. Dietary 1.00% Fuc significantly improved intestinal morphology. Dietary Fuc upregulated the expression of intestinal cell proliferation and differentiation related-genes and intestinal barrier related-genes. Dietary 2.00% Fuc significantly increased the activities of brush border membranes enzymes and lipase while inhibiting α-amylase. Furthermore, dietary Fuc maintained healthy intestinal micro-ecology. In detail, dietary 1.00% and 2.00% Fuc altered the overall structure of the gut microbiota and increased the relative abundance of Bacteroidetes while decreasing the relative abundance of opportunistic pathogens and facultative anaerobe. In conclusion, appropriate dietary Fuc (1.00-2.00%) could improve the growth of large yellow croaker larvae by promoting digestive tract maturation and maintaining an ideal intestinal micro-ecology.
Collapse
Affiliation(s)
- Zhaoyang Yin
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ye Gong
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yongtao Liu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuliang He
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Chuanwei Yao
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wenxing Huang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
49
|
Wang Z, Yang L, Tang H, Zhang K, Chen Q, Liu C, Guo Y, Li M, Guo Z, Li B. In vivo evidence of the prevents DSS-induced colitis of Lactiplantibacillus plantarum L15. Front Microbiol 2022; 13:1028919. [PMID: 36274719 PMCID: PMC9583153 DOI: 10.3389/fmicb.2022.1028919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Ulcerative colitis (UC) is challenging to treat and severely impacts patients and families. A previous study reported immunomodulatory and reduction of pro-inflammatory properties for the Lactiplantibacillus plantarum L15. This study aimed to analyze the preventive properties and mechanistic actions in an in vivo colitis model. The histopathological alteration, inflammation cytokines, and intestinal barrier function were analyzed. Subsequently, the cecal gut microbiota contents and products from different groups were detected. Finally, gene expressions related to the NF-κB signaling process were evaluated. L. plantarum L15 significantly decreased disease activity index (DAI), myeloperoxidase activity (MPO), pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) level, and increased weight change, colon length, and production of inflammation-suppressing cytokines. Furthermore, this strain supplementation substantially increased ZO-1, Occludin, and Claudin-1, and MUC2 mRNA expression levels with a corresponding decrease in serum lipopolysaccharide and D-lactic acid contents. In addition, L. plantarum L15 improved gut microbiota composition and increased short-chain fatty acid (SCFAs) in the colon content, which significantly reduced the transfer of NF-κB p65 to the nucleus. Our findings provide a theoretical basis for L. plantarum L15 as a preventive candidate for UC.
Collapse
Affiliation(s)
- Zengbo Wang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liu Yang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hongwei Tang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingxue Chen
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Caihua Liu
- Food College, Northeast Agricultural University, Harbin, China
| | - Yanan Guo
- Food College, Northeast Agricultural University, Harbin, China
| | - Minghao Li
- Food College, Northeast Agricultural University, Harbin, China
| | - Zengwang Guo
- Food College, Northeast Agricultural University, Harbin, China
- *Correspondence: Zengwang Guo, ; Bailiang Li,
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- *Correspondence: Zengwang Guo, ; Bailiang Li,
| |
Collapse
|
50
|
|