1
|
Rejinold NS, Jin GW, Choy JH. Insight into Preventing Global Dengue Spread: Nanoengineered Niclosamide for Viral Infections. NANO LETTERS 2024; 24:14541-14551. [PMID: 39194045 PMCID: PMC11583367 DOI: 10.1021/acs.nanolett.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Millions of cases of dengue virus (DENV) infection yearly from Aedes mosquitoes stress the need for effective antivirals. No current drug effectively combats dengue efficiently. Transient immunity and severe risks highlight the need for broad-spectrum antivirals targeting all serotypes of DENV. Niclosamide, an antiparasitic, shows promising antiviral activity against the dengue virus, but enhancing its bioavailability is challenging. To overcome this issue and enable niclosamide to address the global dengue problem, nanoengineered niclosamides can be the solution. Not only does it address cost issues but also with its broad-spectrum antiviral effects nanoengineered niclosamide offers hope in addressing the current health crisis associated with DENV and will play a crucial role in combating other arboviruses as well.
Collapse
Affiliation(s)
- N. Sanoj Rejinold
- Intelligent
Nanohybrid Materials Laboratory (INML), College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Institute
of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic
of Korea
| | - Geun-woo Jin
- R&D
Center, Hyundai Bioscience Co. LTD., Seoul 03759, Republic
of Korea
| | - Jin-Ho Choy
- Intelligent
Nanohybrid Materials Laboratory (INML), College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Division
of Natural Sciences, The National Academy
of Sciences, Seoul 06579, Republic of Korea
- Tokyo
Tech World Research Hub Initiative (WRHI), Institute of Innovative
Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
2
|
Wiggins R, Woo J, Mito S. Optimizing Niclosamide for Cancer Therapy: Improving Bioavailability via Structural Modification and Nanotechnology. Cancers (Basel) 2024; 16:3548. [PMID: 39456642 PMCID: PMC11506536 DOI: 10.3390/cancers16203548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Inhibition of multiple cancer-related pathways has made niclosamide a promising candidate for the treatment of various cancers. However, its clinical application has been significantly limited by poor bioavailability. This review will discuss current findings on improving niclosamide bioavailability through modification of its chemical structure and utilization of novel nanotechnologies, like electrospraying and supercritical fluids, to improve drug delivery. For example, niclosamide derivatives, such as o-alkylamino-tethered niclosamide derivates, niclosamide ethanolamine salt, and niclosamide piperazine salt, have demonstrated increased water solubility without compromising anticancer activity in vitro. Additionally, this review briefly discusses recent findings on the first pass metabolism of niclosamide in vivo, the role of cytochrome P450-mediated hydroxylation, UDP-glucuronosyltransferase mediated glucuronidation, and how enzymatic inhibition could enhance niclosamide bioavailability. Ultimately, there is a need for researchers to synthesize, evaluate, and improve upon niclosamide derivatives while experimenting with the employment of nanotechnologies, such as targeted delivery and nanoparticle modification, as a way to improve drug administration. Researchers should strive to improve drug-target accuracy, its therapeutic index, and increase the drug's efficacy as an anti-neoplastic agent.
Collapse
Affiliation(s)
| | | | - Shizue Mito
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA; (R.W.); (J.W.)
| |
Collapse
|
3
|
Jug M, Laffleur F, Millotti G. Revisiting Niclosamide Formulation Approaches - a Pathway Toward Drug Repositioning. Drug Des Devel Ther 2024; 18:4153-4182. [PMID: 39308694 PMCID: PMC11416123 DOI: 10.2147/dddt.s473178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Niclosamide (NIC), an anthelmintic drug, has garnered recent attention for its potential as an antiviral, antibacterial, and chemotherapeutic agent, among other applications. Repurposing NIC presents a current trend, offering significant time and cost savings compared to developing entirely new therapeutic chemical entities. However, its drawback lies in poor solubility, resulting in notably low oral bioavailability. This review consolidates efforts to overcome this limitation by summarizing twelve categories of formulations, spanning derivatives, amorphous solid dispersions, co-crystals, nanocrystals, micelles, nanohybrids, lipid nanoparticles and emulsions, cyclodextrins, polymeric nanoparticles, dry powders for inhalation, 3D printlets, and nanofibers. These formulations cover oral, injectable, inhalable and potentially (trans)dermal routes of administration. Additionally, we present a comprehensive overview of NIC characteristics, including physico-chemical properties, metabolism, safety, and pharmacokinetics. Moreover, we identify gaps in formulation and administration pathways that warrant further investigation to address NIC poor bioavailability.
Collapse
Affiliation(s)
- Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, 10 000, Croatia
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | - Gioconda Millotti
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Pula, 52100, Croatia
| |
Collapse
|
4
|
Yang Z, Li H, Yang B, Liu Y. Albumin-Based Microneedles for Spatiotemporal Delivery of Temozolomide and Niclosamide to Resistant Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44518-44527. [PMID: 39145481 DOI: 10.1021/acsami.4c09394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Standard therapy includes maximal surgical resection, radiotherapy, and adjuvant temozolomide (TMZ) administration. However, the rapid development of TMZ resistance and the impermeability of the blood-brain barrier (BBB) significantly hinder the therapeutic efficacy. Herein, we developed spatiotemporally controlled microneedle patches (BMNs) loaded with TMZ and niclosamide (NIC) to overcome GBM resistance. We found that hyaluronic acid (HA) increased the viscosity of bovine serum albumin (BSA) and evidenced that concentrations of BSA/HA exert an impact degradation rates exposure to high-temperature treatment, showing that the higher BSA/HA concentrations result in slower drug release. To optimize drug release rates and ensure synergistic antitumor effects, a 15% BSA/HA solution constituting the bottoms of BMNs was chosen to load TMZ, showing sustained drug release for over 28 days, guaranteeing long-term DNA damage in TMZ-resistant cells (U251-TR). Needle tips made from 10% BSA/HA solution loaded with NIC released the drug within 14 days, enhancing TMZ's efficacy by inhibiting the activity of O6-methylguanine-DNA methyltransferase (MGMT). BMNs exhibit superior mechanical properties, bypass the BBB, and gradually release the drug into the tumor periphery, thus significantly inhibiting tumor proliferation and expanding median survival in mice. The on-demand delivery of BMNs patches shows a strong translational potential for clinical applications, particularly in synergistic GBM treatment.
Collapse
Affiliation(s)
- Zhipeng Yang
- Institute of Biomedical Engineering and Technology, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | - Haoyuan Li
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Biao Yang
- Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yanjie Liu
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| |
Collapse
|
5
|
Fernandes Q, Therachiyil L, Khan AQ, Bedhiafi T, Korashy HM, Bhat AA, Uddin S. Shrinking the battlefield in cancer therapy: Nanotechnology against cancer stem cells. Eur J Pharm Sci 2023; 191:106586. [PMID: 37729956 DOI: 10.1016/j.ejps.2023.106586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Cancer remains one of the leading causes of mortality worldwide, presenting a significant healthcare challenge owing to the limited efficacy of current treatments. The application of nanotechnology in cancer treatment leverages the unique optical, magnetic, and electrical attributes of nanomaterials to engineer innovative, targeted therapies. Specifically, manipulating nanomaterials allows for enhanced drug loading efficiency, improved bioavailability, and targeted delivery systems, reducing the non-specific cytotoxic effects characteristic of conventional chemotherapies. Furthermore, recent advances in nanotechnology have demonstrated encouraging results in specifically targeting CSCs, a key development considering the role of these cells in disease recurrence and resistance to treatment. Despite these breakthroughs, the clinical approval rates of nano-drugs have not kept pace with research advances, pointing to existing obstacles that must be addressed. In conclusion, nanotechnology presents a novel, powerful tool in the fight against cancer, particularly in targeting the elusive and treatment-resistant CSCs. This comprehensive review delves into the intricacies of nanotherapy, explicitly targeting cancer stem cells, their markers, and associated signaling pathways.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, Qatar University, Doha, Qatar; Translational Cancer Research Facility, Hamad Medical Corporation, National Center for Cancer Care and Research, PO. Box 3050, Doha, Qatar
| | - Lubna Therachiyil
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Abdul Q Khan
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar
| | - Takwa Bedhiafi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- College of Medicine, Qatar University, Doha, Qatar; Academic Health System, Hamad Medical Corporation, Dermatology Institute, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602, India.
| |
Collapse
|
6
|
Guo Y, Liu S, Jing D, Liu N, Luo X. The construction of elastin-like polypeptides and their applications in drug delivery system and tissue repair. J Nanobiotechnology 2023; 21:418. [PMID: 37951928 PMCID: PMC10638729 DOI: 10.1186/s12951-023-02184-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are thermally responsive biopolymers derived from natural elastin. These peptides have a low critical solution temperature phase behavior and can be used to prepare stimuli-responsive biomaterials. Through genetic engineering, biomaterials prepared from ELPs can have unique and customizable properties. By adjusting the amino acid sequence and length of ELPs, nanostructures, such as micelles and nanofibers, can be formed. Correspondingly, ELPs have been used for improving the stability and prolonging drug-release time. Furthermore, ELPs have widespread use in tissue repair due to their biocompatibility and biodegradability. Here, this review summarizes the basic property composition of ELPs and the methods for modulating their phase transition properties, discusses the application of drug delivery system and tissue repair and clarifies the current challenges and future directions of ELPs in applications.
Collapse
Affiliation(s)
- Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Shiwei Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Dan Jing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Nianzu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
7
|
Ramírez-Hernández M, Norambuena J, Hu H, Thomas B, Tang C, Boyd JM, Asefa T. Repurposing Anthelmintics: Rafoxanide- and Copper-Functionalized SBA-15 Carriers against Methicillin-Resistant Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17459-17469. [PMID: 36975176 DOI: 10.1021/acsami.2c19899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The development of materials that can more efficiently administer antimicrobial agents in a controlled manner is urgently needed due to the rise in microbial resistance to traditional antibiotics. While new classes of antibiotics are developed and put into widespread usage, existing, inexpensive compounds can be repurposed to fight bacterial infections. Here, we present the synthesis of amine-functionalized SBA-15 mesoporous silica nanomaterials with physisorbed rafoxanide (RFX), a commonly used salicylanilide anthelmintic, and anchored Cu(II) ions that exhibit enhanced antimicrobial efficacy against the pathogenic bacterium Staphylococcus aureus. The synthesized nanomaterials are structurally characterized by a combination of physicochemical, thermal, and optical methods. Additionally, release studies are carried out in vitro to determine the effects of pH and the synthetic sequence used to produce the materials on Cu(II) ion release. Our results indicate that SBA-15 mesoporous silica nanocarriers loaded with Cu(II) and RFX exhibit 10 times as much bactericidal action against wild-type S. aureus as the nanocarrier loaded with only RFX. Furthermore, the synthetic sequence used to produce the nanomaterials could significantly affect (enhance) their bactericidal efficacy.
Collapse
Affiliation(s)
- Maricely Ramírez-Hernández
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, New Jersey 08901, United States
| | - Hongnan Hu
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Belvin Thomas
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Chaoyun Tang
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen 518060, China
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, New Jersey 08901, United States
| | - Tewodros Asefa
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
8
|
The challenge of repurposing niclosamide: Considering pharmacokinetic parameters, routes of administration, and drug metabolism. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Wang Z, Ren J, Du J, Wang H, Liu J, Wang G. Niclosamide as a Promising Therapeutic Player in Human Cancer and Other Diseases. Int J Mol Sci 2022; 23:16116. [PMID: 36555754 PMCID: PMC9782559 DOI: 10.3390/ijms232416116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Niclosamide is an FDA-approved anthelmintic drug for the treatment of parasitic infections. However, over the past few years, increasing evidence has shown that niclosamide could treat diseases beyond parasitic diseases, which include metabolic diseases, immune system diseases, bacterial and viral infections, asthma, arterial constriction, myopia, and cancer. Therefore, we systematically reviewed the pharmacological activities and therapeutic prospects of niclosamide in human disease and cancer and summarized the related molecular mechanisms and signaling pathways, indicating that niclosamide is a promising therapeutic player in various human diseases, including cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
10
|
Recombinant protein polymers as carriers of chemotherapeutic agents. Adv Drug Deliv Rev 2022; 190:114544. [PMID: 36176240 DOI: 10.1016/j.addr.2022.114544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
Chemotherapy is the standard of care for the treatment of cancer and infectious diseases. However, its use is associated with severe toxicity and resistance arising mainly due to non-specificity, resulting in disease progression. The advancement in recombinant technology has led to the synthesis of genetically engineered protein polymers like Elastin-like polypeptide (ELP), Silk-like polypeptide (SLP), hybrid protein polymers with specific sequences to impart precisely controlled properties and to target proteins that have provided satisfactory preclinical outcomes. Such protein polymers have been exploited for the formulation and delivery of chemotherapeutics for biomedical applications. The use of such polymers has not only solved the limitation of conventional chemotherapy but has also improved the therapeutic index of typical drug delivery systems. This review, therefore, summarizes the development of such advanced recombinant protein polymers designed to deliver chemotherapeutics and also discusses the key challenges associated with their current usage and their application in the future.
Collapse
|
11
|
Gupta DS, Bharate SS. Techniques for analytical estimation of COVID-19 clinical candidate, niclosamide in pharmaceutical and biomedical samples. SEPARATION SCIENCE PLUS 2022; 5:SSCP371. [PMID: 36249323 PMCID: PMC9538213 DOI: 10.1002/sscp.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/09/2022]
Abstract
Niclosamide is a well-known broad-spectrum antiparasitic drug used for human as well as veterinary tapeworm infections. Recently, it attracted attention as an antiviral agent for treating coronavirus disease 2019. It is administered orally in humans to treat tapeworm infections. Furthermore, it is a registered pesticide and molluscicide to control infections in the aquaculture industry. Its chronic environmental exposure has potential toxicities when such contaminated seafood is consumed. Therefore, monitoring its residual concentration in food products (seafood, water, water waste, etc.) and pharmaceuticals (active pharmaceutical ingredients, bulk drugs, and formulations) is imperative. The present review critically investigates the sophisticated techniques employed for analyzing niclosamide, its degradation products, and metabolites in various samples and matrices. The future scope for green analytical methods, green sample extraction and preparation is also deliberated.
Collapse
Affiliation(s)
- Deepank S. Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology ManagementSVKM's NMIMSV.L. Mehta Road, Vile Parle (W)Mumbai400056India
| | - Sonali S. Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology ManagementSVKM's NMIMSV.L. Mehta Road, Vile Parle (W)Mumbai400056India
| |
Collapse
|
12
|
Bhanushali JS, Dhiman S, Nandi U, Bharate SS. Molecular interactions of niclosamide with hydroxyethyl cellulose in binary and ternary amorphous solid dispersions for synergistic enhancement of water solubility and oral pharmacokinetics in rats. Int J Pharm 2022; 626:122144. [PMID: 36029996 DOI: 10.1016/j.ijpharm.2022.122144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
The cellulose-based polymers are extensively employed in oral formulations for addressing ADMET issues of API. Herein, we report the synergistic effect of hydroxyethyl cellulose in solubility/dissolution enhancement of BCS class II, anthelmintic drug niclosamide. The low solubility and poor oral bioavailability are the primary reasons for its high daily dose. The amorphous solid dispersions (ASDs) developed herein demonstrated reproducible solubility and dissolution enhancement in smaller-to-pilot batches. The significant boost in niclosamide solubility in HEC-based binary SD was rationalized as a result of intermolecular H-bonding as indicated by in-silico studies and further supported by characterization data. HEC is plausibly inhibiting the precipitation of drug and thereby enabling high dissolution and permeation across the membrane. The comparative oral pharmacokinetics in Wistar rats at 25 mg/kg provided 4.4-fold higher plasma exposure of niclosamide in SD formulation SB-ASD-N2 over the plain drug. The results presented herein warrant validation of this ASD under clinical settings. Teaser Amorphous solid dispersions of niclosamide.
Collapse
Affiliation(s)
- Jigar S Bhanushali
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sumit Dhiman
- PK-PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Utpal Nandi
- PK-PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
13
|
Kang L, Han T, Cong H, Yu B, Shen Y. Recent research progress of biologically active peptides. Biofactors 2022; 48:575-596. [PMID: 35080058 DOI: 10.1002/biof.1822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
With the rapid development of molecular biology and biochemical technology, great progress has been made in the study of peptides. Peptides are easy to digest and absorb, with lowering of blood pressure and cholesterol, improving immunity, regulating hormones, antibacterial, and antiviral effects. Peptides also have physiological regulation and biological metabolism functions with applications in the fields of feed production and biomedical research. In the future, the research focus of bioactive peptides will focus on their efficient preparation and application. This article introduces a comprehensive review of the types, synthesis, functionalization, and bio-related applications of bioactive peptides. For this aim, we introduced in detail various biopeptides and then presented the production methods of bioactive peptides, such as enzymatic synthesis, microbial fermentation, chemical synthesis, and others. The applications of bioactive peptides for anticancers, immune therapy, antibacterial, and other applications have been introduced and discussed. And discussed the development prospects of biologically active peptides.
Collapse
Affiliation(s)
- Linlin Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
15
|
Guo Y, Zhu H, Xiao Y, Guo H, Lin M, Yuan Z, Yang X, Huang Y, Zhang Q, Bai Y. The anthelmintic drug niclosamide induces GSK-β-mediated β-catenin degradation to potentiate gemcitabine activity, reduce immune evasion ability and suppress pancreatic cancer progression. Cell Death Dis 2022; 13:112. [PMID: 35115509 PMCID: PMC8814035 DOI: 10.1038/s41419-022-04573-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
Niclosamide, a cell-permeable salicylanilide, was approved by the Food and Drug Administration for its anthelmintic efficiency. A growing body of evidence in recent years suggests that niclosamide exhibits potential tumor-suppressive activity. However, the role and molecular mechanism of niclosamide in pancreatic cancer remain unclear. In this study, niclosamide inhibited proliferation of pancreatic cancer cells (PCCs), induced apoptosis via the mitochondrial-mediated pathway, and suppressed cell migration and invasion by antagonizing epithelial-to-mesenchymal transition. Also, niclosamide inhibited tumor growth and metastasis in pancreatic cancer xenograft mouse models. Mechanistically, niclosamide exerted these therapeutic effects via targeting β-catenin. Niclosamide did not reduce β-catenin mRNA expression in PCCs, but significantly downregulated its protein level. Moreover, niclosamide induced β-catenin phosphorylation and protein degradation. Interestingly, niclosamide also induced GSK-3β phosphorylation, which is involved in the ubiquitination degradation of β-catenin. Pharmacological activation of β-catenin by methyl vanillate and β-catenin overexpression abolished the inhibitory effects of niclosamide. Furthermore, niclosamide potentiated the antitumor effect of the chemotherapy drug gemcitabine and reduced the ability of cancer immune evasion by downregulating the expression levels of PD-L1, which is involved in T cell immunity. Thus, our study indicated that niclosamide induces GSK-β-mediated β-catenin degradation to potentiate gemcitabine activity, reduce immune evasion ability, and suppress pancreatic cancer progression. Niclosamide may be a potential therapeutic candidate for pancreatic cancer.
Collapse
Affiliation(s)
- Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Miaomiao Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Human Genetic Resource Bank, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Youze Huang
- Department of Laboratory Medicine, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, 325000, China
| | - Qiyu Zhang
- Department for Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Center for Health Assessment, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
16
|
Genetically encoded elastin-like polypeptide nanoparticles for drug delivery. Curr Opin Biotechnol 2021; 74:146-153. [PMID: 34920210 DOI: 10.1016/j.copbio.2021.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022]
Abstract
Small molecule drugs suffer from poor in vivo half-life, rapid degradation, and systemic off-target toxicity. To address these issues, researchers have developed nanoparticles that significantly enhance the delivery of many drugs while reducing their toxicity and improving targeting to specific organs. Recombinantly synthesized biomaterials such as elastin-like polypeptides (ELPs) have unique attributes that greatly facilitate the rational design of nanoparticles for drug delivery. These attributes include biocompatibility, precise control over amino acid sequence design, and stimuli-responsive self-assembly into nanostructures that can be loaded with a range of drugs to enhance their pharmacokinetics and pharmacodynamics, significantly improving their therapeutic efficacy over the free drugs. This review summarizes recent developments in genetically encoded, self-assembling ELP nanoparticles and their applications for drug delivery.
Collapse
|
17
|
Jenkins IC, Milligan JJ, Chilkoti A. Genetically Encoded Elastin-Like Polypeptides for Drug Delivery. Adv Healthc Mater 2021; 10:e2100209. [PMID: 34080796 DOI: 10.1002/adhm.202100209] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/14/2021] [Indexed: 12/19/2022]
Abstract
Elastin-like polypeptides (ELPs) are thermally responsive biopolymers that consist of a repeated amino acid motif derived from human tropoelastin. These peptides exhibit temperature-dependent phase behavior that can be harnessed to produce stimuli-responsive biomaterials, such as nanoparticles or injectable drug delivery depots. As ELPs are genetically encoded, the properties of ELP-based biomaterials can be controlled with a precision that is unattainable with synthetic polymers. Unique ELP architectures, such as spherical or rod-like micelles or injectable coacervates, can be designed by manipulating the ELP amino acid sequence and length. ELPs can be loaded with drugs to create controlled, intelligent drug delivery systems. ELPs are biodegradable, nonimmunogenic, and tolerant of therapeutic additives. These qualities make ELPs exquisitely well-suited to address current challenges in drug delivery and have spurred the development of ELP-based therapeutics to treat diseases-such as cancer and diabetes-and to promote wound healing. This review focuses on the use of ELPs in drug delivery systems.
Collapse
Affiliation(s)
- Irene C. Jenkins
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| | - Joshua J. Milligan
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| |
Collapse
|
18
|
Ruan Y, Ogana H, Gang E, Kim HN, Kim YM. Wnt Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:107-121. [PMID: 33123996 DOI: 10.1007/978-3-030-47189-7_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dysregulated Wnt signaling plays a central role in initiation, progression, and metastasis in many types of human cancers. Cancer development and resistance to conventional cancer therapies are highly associated with the tumor microenvironment (TME), which is composed of numerous stable non-cancer cells, including immune cells, extracellular matrix (ECM), fibroblasts, endothelial cells (ECs), and stromal cells. Recently, increasing evidence suggests that the relationship between Wnt signaling and the TME promotes the proliferation and maintenance of tumor cells, including leukemia. Here, we review the Wnt pathway, the role of Wnt signaling in different components of the TME, and therapeutic strategies for targeting Wnt signaling.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Eunji Gang
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Wnt/β-Catenin Signaling Pathway as Chemotherapeutic Target in Breast Cancer: An Update on Pros and Cons. Clin Breast Cancer 2020; 20:361-370. [DOI: 10.1016/j.clbc.2020.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
|
20
|
Chauhan DS, Prasad R, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Comprehensive Review on Current Interventions, Diagnostics, and Nanotechnology Perspectives against SARS-CoV-2. Bioconjug Chem 2020; 31:2021-2045. [PMID: 32680422 PMCID: PMC7425040 DOI: 10.1021/acs.bioconjchem.0c00323] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has dramatically challenged the healthcare system of almost all countries. The authorities are struggling to minimize the mortality along with ameliorating the economic downturn. Unfortunately, until now, there has been no promising medicine or vaccine available. Herein, we deliver perspectives of nanotechnology for increasing the specificity and sensitivity of current interventional platforms toward the urgent need of quickly deployable solutions. This review summarizes the recent involvement of nanotechnology from the development of a biosensor to fabrication of a multifunctional nanohybrid system for respiratory and deadly viruses, along with the recent interventions and current understanding about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Deepak S. Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| |
Collapse
|
21
|
Dodd RD, Scherer A, Huang W, McGivney GR, Gutierrez WR, Laverty EA, Ashcraft KA, Stephens VR, Yousefpour P, Saha S, Knepper-Adrian V, Floyd W, Chen M, Ma Y, Mastria EM, Cardona DM, Eward WC, Chilkoti A, Kirsch DG. Tumor Subtype Determines Therapeutic Response to Chimeric Polypeptide Nanoparticle-based Chemotherapy in Pten-deleted Mouse Models of Sarcoma. Clin Cancer Res 2020; 26:5036-5047. [PMID: 32718998 PMCID: PMC7641033 DOI: 10.1158/1078-0432.ccr-19-2597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Nanoparticle-encapsulated drug formulations can improve responses to conventional chemotherapy by increasing drug retention within the tumor and by promoting a more effective antitumor immune response than free drug. New drug delivery modalities are needed in sarcomas because they are often chemoresistant cancers, but the rarity of sarcomas and the complexity of diverse subtypes makes it challenging to investigate novel drug formulations. EXPERIMENTAL DESIGN New drug formulations can be tested in animal models of sarcomas where the therapeutic response of different formulations can be compared using mice with identical tumor-initiating mutations. Here, using Cre/loxP and CRISPR/Cas9 techniques, we generated two distinct mouse models of Pten-deleted soft-tissue sarcoma: malignant peripheral nerve sheath tumor (MPNST) and undifferentiated pleomorphic sarcoma (UPS). We used these models to test the efficacy of chimeric polypeptide doxorubicin (CP-Dox), a nanoscale micelle formulation, in comparison with free doxorubicin. RESULTS The CP-Dox formulation was superior to free doxorubicin in MPNST models. However, in UPS tumors, CP-Dox did not improve survival in comparison with free doxorubicin. While CP-Dox treatment resulted in elevated intratumoral doxorubicin concentrations in MPNSTs, this increase was absent in UPS tumors. In addition, elevation of CD8+ T cells was observed exclusively in CP-Dox-treated MPNSTs, although these cells were not required for full efficacy of the CP nanoparticle-based chemotherapy. CONCLUSIONS These results have important implications for treating sarcomas with nanoparticle-encapsulated chemotherapy by highlighting the tumor subtype-dependent nature of therapeutic response.
Collapse
Affiliation(s)
- Rebecca D Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa.
| | - Amanda Scherer
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Wesley Huang
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Gavin R McGivney
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Wade R Gutierrez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Emily A Laverty
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Kathleen A Ashcraft
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | | | - Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - Warren Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
| | - Mark Chen
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
| | - Yan Ma
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Eric M Mastria
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
| | - Diana M Cardona
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - William C Eward
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - David G Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina.
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
22
|
Gajos-Michniewicz A, Czyz M. WNT Signaling in Melanoma. Int J Mol Sci 2020; 21:E4852. [PMID: 32659938 PMCID: PMC7402324 DOI: 10.3390/ijms21144852] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
WNT-signaling controls important cellular processes throughout embryonic development and adult life, so any deregulation of this signaling can result in a wide range of pathologies, including cancer. WNT-signaling is classified into two categories: β-catenin-dependent signaling (canonical pathway) and β-catenin-independent signaling (non-canonical pathway), the latter can be further divided into WNT/planar cell polarity (PCP) and calcium pathways. WNT ligands are considered as unique directional growth factors that contribute to both cell proliferation and polarity. Origin of cancer can be diverse and therefore tissue-specific differences can be found in WNT-signaling between cancers, including specific mutations contributing to cancer development. This review focuses on the role of the WNT-signaling pathway in melanoma. The current view on the role of WNT-signaling in cancer immunity as well as a short summary of WNT pathway-related drugs under investigation are also provided.
Collapse
Affiliation(s)
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92–215 Lodz, Poland;
| |
Collapse
|
23
|
Valcourt DM, Dang MN, Wang J, Day ES. Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and Notch Signaling Pathways in Cancer. Ann Biomed Eng 2020; 48:1864-1884. [PMID: 31686312 PMCID: PMC7196499 DOI: 10.1007/s10439-019-02399-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
The Wnt, Hedgehog, and Notch signaling pathways play a crucial role in early development and the maintenance of adult tissues. When dysregulated, these developmental signaling pathways can drive the formation and progression of cancer by facilitating cell survival, proliferation, and stem-like behavior. While this makes these pathways promising targets for therapeutic intervention, their pharmacological inhibition has been challenging due to the substantial complexity that exists within each pathway and the complicated crosstalk that occurs between the pathways. Recently, several small molecule inhibitors, ribonucleic acid (RNA) molecules, and antagonistic antibodies have been developed that can suppress these signaling pathways in vitro, but many of them face systemic delivery challenges. Nanoparticle-based delivery vehicles can overcome these challenges to enhance the performance and anti-cancer effects of these therapeutic molecules. This review summarizes the mechanisms by which the Wnt, Hedgehog, and Notch signaling pathways contribute to cancer growth, and discusses various nanoparticle formulations that have been developed to deliver small molecules, RNAs, and antibodies to cancer cells to inhibit these signaling pathways and halt tumor progression. This review also outlines some of the challenges that these nanocarriers must overcome to achieve therapeutic efficacy and clinical translation.
Collapse
Affiliation(s)
- D M Valcourt
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - M N Dang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - J Wang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - E S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA.
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA.
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, DE, 19713, USA.
| |
Collapse
|
24
|
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive biopolymers derived from human elastin. Their unique properties—including lower critical solution temperature phase behavior and minimal immunogenicity—make them attractive materials for a variety of biomedical applications. ELPs also benefit from recombinant synthesis and genetically encoded design; these enable control over the molecular weight and precise incorporation of peptides and pharmacological agents into the sequence. Because their size and sequence are defined, ELPs benefit from exquisite control over their structure and function, qualities that cannot be matched by synthetic polymers. As such, ELPs have been engineered to assemble into unique architectures and display bioactive agents for a variety of applications. This review discusses the design and representative biomedical applications of ELPs, focusing primarily on their use in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Anastasia K. Varanko
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jonathan C. Su
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
25
|
Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: Phytochemical based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153243. [PMID: 32535482 DOI: 10.1016/j.phymed.2020.153243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Wnt signaling pathway plays a major role during development like gastrulation, axis formation, organ development and organization of body plan development. Wnt signaling aberration has been linked with various disease conditions like osteoporosis, colon cancer, hair follicle tumor, Leukemia, and Alzheimer's disease. Phytochemicals like flavonoid, glycosides, polyphenols, have been reported to directly target the markers of Wnt signaling in different disease models. PURPOSE The study deals in detail about the different phytochemical targeting key players of Wnt signaling pathway in diseases like Cancer, Osteoporosis, and Alzheimer's disease. We have focused on the Pharmacological basis of disease alleviation by phytochemical specifically targeting the Wnt signaling markers in this study. METHODS The study focused on the published articles from the preclinical rodent and invitro cell line studies related to Wnt signaling and Phytochemicals related to Cancer, Alzheimer's and Osteoporosis. The electronic databases Scopus, Web of Science and Pubmed database were used for the systematic search of literatures from 2005 up to 2019 using keywords Canonical Wnt signaling pathway, Cancer, Alzheimer's disease, Osteoporosis, Phytochemicals. The focus was to identify the target specific modulation of Wnt signaling mediated by phytochemicals. RESULTS Approximately 30 phytochemicals of different class have been identified to modulate Wnt signaling pathway acting through Axin, β-catenin translocation, GSK-3β, AKT, Wif-1 in various experimental studies. The down regulation of Wnt signaling is observed in Cancer mostly colorectal cancer, breast cancer mediated through mutations in APC and Axin genes. Different class of Phytochemicals such as flavonoid, glycosides, polyphenol, alkaloids etc. have been found to target Wnt signaling markers and alleviate Cancer. Similarly, Up regulation of Wnt signaling has been reported in Osteoporosis and neurodegenerative disease like Alzheimer's disease. CONCLUSION This review highlights the possibility of the Phytochemicals to target Wnt markers and its potential to either activate or deactivate the Wnt signaling pathway. It also describes the challenges in proper targeting of Wnt signaling and the potential risk and consequences of either up regulation or down regulation of the signaling pathway. This article highlights the possibility of Wnt signaling pathway as a therapeutic option in different diseases.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
26
|
Reddy GB, Kerr DL, Spasojevic I, Tovmasyan A, Hsu DS, Brigman BE, Somarelli JA, Needham D, Eward WC. Preclinical Testing of a Novel Niclosamide Stearate Prodrug Therapeutic (NSPT) Shows Efficacy Against Osteosarcoma. Mol Cancer Ther 2020; 19:1448-1461. [PMID: 32371588 DOI: 10.1158/1535-7163.mct-19-0689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/17/2019] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
Therapeutic advances for osteosarcoma have stagnated over the past several decades, leading to an unmet clinical need for patients. The purpose of this study was to develop a novel therapy for osteosarcoma by reformulating and validating niclosamide, an established anthelminthic agent, as a niclosamide stearate prodrug therapeutic (NSPT). We sought to improve the low and inefficient clinical bioavailability of oral dosing, especially for the relatively hydrophobic classes of anticancer drugs. Nanoparticles were fabricated by rapid solvent shifting and verified using dynamic light scattering and UV-vis spectrophotometry. NSPT efficacy was then studied in vitro for cell viability, cell proliferation, and intracellular signaling by Western blot analysis; ex vivo pulmonary metastatic assay model; and in vivo pharmacokinetic and lung mouse metastatic model of osteosarcoma. NSPT formulation stabilizes niclosamide stearate against hydrolysis and delays enzymolysis; increases circulation in vivo with t 1/2 approximately 5 hours; reduces cell viability and cell proliferation in human and canine osteosarcoma cells in vitro at 0.2-2 μmol/L IC50; inhibits recognized growth pathways and induces apoptosis at 20 μmol/L; eliminates metastatic lesions in the ex vivo lung metastatic model; and when injected intravenously at 50 mg/kg weekly, it prevents metastatic spread in the lungs in a mouse model of osteosarcoma over 30 days. In conclusion, niclosamide was optimized for preclinical drug delivery as a unique prodrug nanoparticle injected intravenously at 50 mg/kg (1.9 mmol/L). This increased bioavailability of niclosamide in the blood stream prevented metastatic disease in the mouse. This chemotherapeutic strategy is now ready for canine trials, and if successful, will be targeted for human trials in patients with osteosarcoma.
Collapse
Affiliation(s)
| | - David L Kerr
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Ivan Spasojevic
- Duke Cancer Institute, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | | | - David S Hsu
- Duke Cancer Institute, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - Brian E Brigman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina.,Duke Cancer Institute, Durham, North Carolina
| | - Jason A Somarelli
- Duke Cancer Institute, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - David Needham
- Duke Cancer Institute, Durham, North Carolina.,Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina.,School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - William C Eward
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina. .,Duke Cancer Institute, Durham, North Carolina
| |
Collapse
|
27
|
Hatamipour M, Jaafari MR, Momtazi-Borojeni AA, Ramezani M, Sahebkar A. Nanoliposomal Encapsulation Enhances In Vivo Anti-Tumor Activity of Niclosamide against Melanoma. Anticancer Agents Med Chem 2020; 19:1618-1626. [PMID: 31284876 DOI: 10.2174/1871520619666190705120011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 05/21/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Niclosamide is an FDA-approved and old anti-helminthic drug used to treat parasitic infections. Recent studies have shown that niclosamide has broad anti-tumor effects relevant to the treatment of cancer. However, this drug has a low aqueous solubility hindering its systemic use. Herein, we report the preparation and characterization of niclosamide nanoliposomes and their in vivo anti-tumor effects. METHODS Nanoliposomes were prepared using thin-film method and the drug was encapsulated with a remote loading method. The nanoliposomes were investigated by the observation of morphology, analysis of particle size and zeta potential. Additionally, qualitative and quantitative analyses were performed using HPLC. We assessed the in vitro cytotoxicity of the nanoliposomal niclosamide on B16F10 melanoma cells. Inhibition of tumor growth was investigated in C57BL/6 mice bearing B16F0 melanoma cancer. RESULTS Analytical results indicated that the nanoliposomal system is a homogeneous and stable colloidal dispersion of niclosamide particles. Atomic force microscopy images and particle size analysis revealed that all niclosamide particles had a spherical shape with a diameter of approximately 108nm. According to in vitro and in vivo studies, nanoliposomal niclosamide exhibited a better anti-tumor activity against B16F10 melanoma tumor compared with free niclosamide. CONCLUSION Nanoliposomal encapsulation enhanced the aqueous solubility of niclosamide and improved its anti-tumor properties.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Saha S, Banskota S, Roberts S, Kirmani N, Chilkoti A. Engineering the Architecture of Elastin-Like Polypeptides: From Unimers to Hierarchical Self-Assembly. ADVANCED THERAPEUTICS 2020; 3:1900164. [PMID: 34307837 PMCID: PMC8297442 DOI: 10.1002/adtp.201900164] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Well-defined tunable nanostructures formed through the hierarchical self-assembly of peptide building blocks have drawn significant attention due to their potential applications in biomedical science. Artificial protein polymers derived from elastin-like polypeptides (ELPs), which are based on the repeating sequence of tropoelastin (the water-soluble precursor to elastin), provide a promising platform for creating nanostructures due to their biocompatibility, ease of synthesis, and customizable architecture. By designing the sequence and composition of ELPs at the gene level, their physicochemical properties can be controlled to a degree that is unmatched by synthetic polymers. A variety of ELP-based nanostructures are designed, inspired by the self-assembly of elastin and other proteins in biological systems. The choice of building blocks determines not only the physical properties of the nanostructures, but also their self-assembly into architectures ranging from spherical micelles to elongated nanofibers. This review focuses on the molecular determinants of ELP and ELP-hybrid self-assembly and formation of spherical, rod-like, worm-like, fibrillar, and vesicle architectures. A brief discussion of the potential biomedical applications of these supramolecular assemblies is also included.
Collapse
Affiliation(s)
- Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Samagya Banskota
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
29
|
Yadav N, Parveen S, Banerjee M. Potential of nano-phytochemicals in cervical cancer therapy. Clin Chim Acta 2020; 505:60-72. [PMID: 32017926 DOI: 10.1016/j.cca.2020.01.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
Abstract
Cervical cancer is common among women with a recurrence rate of 35% despite surgery, radiation, and chemotherapy. Patients receiving chemotherapy or radiotherapy routinely experience several side effects including toxicity, non-targeted damage of tissues, hair loss, neurotoxicity, multidrug resistance (MDR), nausea, anemia and neutropenia. Phytochemicals can interfere with almost every stage of carcinogenesis to prevent cancer development. Many natural compounds are known to activate/deactivate multiple redox-sensitive transcription factors that modulate tumor signaling pathways. Polyphenols have been found to be promising agents against cervical cancer. However, applications of phytochemicals as a therapeutic drug are limited due to low oral bioavailability, poor aqueous solubility and requirement of high doses. Nano-sized phytochemicals (NPCs) are promising anti-cancer agents as they are required in minute quantities which lowers overall treatment costs. Several phytochemicals, including quercetin, lycopene, leutin, curcumin, green tea polyphenols and others have been packaged as nanoparticles and proven to be useful in nano-chemoprevention and nano-chemotherapy. Nanoparticles have high biocompatibility, biodegradability and stability in biological environment. Nano-scale drug delivery systems are excellent source for enhanced drug specificity, improved absorption rates, reduced drug degradation and systemic toxicity. The present review discusses current knowledge in the involvement of phytochemical nanoparticles in cervical cancer therapy over conventional chemotherapy.
Collapse
Affiliation(s)
- Neera Yadav
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Shama Parveen
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| |
Collapse
|
30
|
Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020; 160:136-169. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The clinical success of polypeptides as polymeric drugs, covered by the umbrella term "polymer therapeutics," combined with related scientific and technological breakthroughs, explain their exponential growth in the development of polypeptide-drug conjugates as therapeutic agents. A deeper understanding of the biology at relevant pathological sites and the critical biological barriers faced, combined with advances regarding controlled polymerization techniques, material bioresponsiveness, analytical methods, and scale up-manufacture processes, have fostered the development of these nature-mimicking entities. Now, engineered polypeptides have the potential to combat current challenges in the advanced drug delivery field. In this review, we will discuss examples of polypeptide-drug conjugates as single or combination therapies in both preclinical and clinical studies as therapeutics and molecular imaging tools. Importantly, we will critically discuss relevant examples to highlight those parameters relevant to their rational design, such as linking chemistry, the analytical strategies employed, and their physicochemical and biological characterization, that will foster their rapid clinical translation.
Collapse
Affiliation(s)
- Tetiana Melnyk
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Snežana Đorđević
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
31
|
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 2020; 156:133-187. [PMID: 32871201 PMCID: PMC7456198 DOI: 10.1016/j.addr.2020.08.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
32
|
Nanovectors Design for Theranostic Applications in Colorectal Cancer. JOURNAL OF ONCOLOGY 2019; 2019:2740923. [PMID: 31662751 PMCID: PMC6791220 DOI: 10.1155/2019/2740923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a diffused disease with limited therapeutic options, none of which are often curative. Based on the molecular markers and targets expressed by the affected tissues, numerous novel approaches have been developed to study and treat this disease. In particular, the field of nanotechnology offers an astonishingly wide array of innovative nanovectors with high versatility and adaptability for both diagnosis and therapy (the so called “theranostic platforms”). However, such complexity can make the selection of a specific nanocarrier model to study a perplexing endeavour for the biomedical scientist or clinician not familiar with this field of inquiry. This review offers a comprehensive overview of this wide body of knowledge, in order to outline the essential requirements for the clinical viability evaluation of a nanovector model in CRC. In particular, the differences among the foremost designs, their specific advantages, and technological caveats will be treated, never forgetting the ultimate endpoint for these systems development: the clinical practice.
Collapse
|
33
|
Ma R, Ma ZG, Gao JL, Tai Y, Li LJ, Zhu HB, Li L, Dong DL, Sun ZJ. Injectable pegylated niclosamide (polyethylene glycol-modified niclosamide) for cancer therapy. J Biomed Mater Res A 2019; 108:30-38. [PMID: 31433913 DOI: 10.1002/jbm.a.36788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
Niclosamide is an antihelminthic drug. Recent studies show that niclosamide exerts antitumor activity through inhibiting multiple signals including Wnt/β-catenin, mTORC1, signal transducer and activator of transcription 3, NF-κB, notch signals; however, the insolubility and poor bioavailability limits its potential clinic use, the aim of the present work is to synthesize an injectable pegylated niclosamide (polyethylene glycol-modified niclosamide) and investigate its antitumor activity in vitro and in vivo. The pegylated niclosamide (mPEG5000-Nic) was synthesized and the chemical structure was identified by Fourier transform infrared spectra and 1 H nuclear magnetic resonance spectra. The antitumor activity was evaluated in CT26 and HCT116 colon cancer cells in vitro and nude mouse xenograft model of CT26 cells in vivo. The water solubility of niclosamide in mPEG5000-Nic was significantly increased. Niclosamide could be released from mPEG5000-Nic nanoparticles in PBS solution. mPEG5000-Nic inhibited the cell viability of CT26 and HCT116 cells in vitro. No animal death was observed in mice with intraperitoneal injection of mPEG5000-Nic (equivalent to 1000 mg/kg niclosamide) within 24 hr, indicating that mPEG5000-Nic was less toxic. In nude mouse, xenograft model of CT26 colon carcinoma, intraperitoneal injection of mPEG5000-Nic (equivalent to niclosamide 50 mg/kg) inhibited tumor growth but had no effect on animal body weight and heart, liver, kidney, and lung weight in vivo. Meanwhile, in the same model, intraperitoneal injection of the positive clinic drug 5-fluorouracil not only inhibited the tumor growth, but also reduced the animal body weight. Our study demonstrates that pegylated niclosamide is novel niclosamide delivery system with clinical perspective for cancer therapy.
Collapse
Affiliation(s)
- Rui Ma
- Center for Biomedical Materials and Engineering, Institute of Materials Processing and Intelligent Manufacturing, Harbin Engineering University, Harbin, People's Republic of China
| | - Zhen-Gang Ma
- Center for Biomedical Materials and Engineering, Institute of Materials Processing and Intelligent Manufacturing, Harbin Engineering University, Harbin, People's Republic of China
| | - Jin-Lai Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, People's Republic of China
| | - Yu Tai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, People's Republic of China
| | - Lan-Jun Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, People's Republic of China
| | - Hai-Bin Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, People's Republic of China
| | - Li Li
- Center for Biomedical Materials and Engineering, Institute of Materials Processing and Intelligent Manufacturing, Harbin Engineering University, Harbin, People's Republic of China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, People's Republic of China
| | - Zhi-Jie Sun
- Center for Biomedical Materials and Engineering, Institute of Materials Processing and Intelligent Manufacturing, Harbin Engineering University, Harbin, People's Republic of China
| |
Collapse
|
34
|
Hatamipour M, Jaafari MR, Momtazi-Borojeni AA, Ramezani M, Sahebkar A. Evaluation of the Anti-Tumor Activity of Niclosamide Nanoliposomes Against Colon Carcinoma. Curr Mol Pharmacol 2019; 13:245-250. [PMID: 31433764 DOI: 10.2174/1874467212666190821142721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Niclosamide is an established anti-helminthic drug, which has recently been shown to inhibit the growth of various cancer cells. To exploit the potential anti-tumor activity of this drug for systemic use, the problem of low aqueous solubility should be addressed. The present study tested the in vivo anti-tumor effects of a recently developed nanoliposomal preparation of niclosamide in an experimental model of colon carcinoma. METHODS The cytotoxicity of nanoliposomal niclosamide on CT26 colon carcinoma cells was evaluated using the MTT test. Inhibition of tumor growth was investigated in BALB/c mice bearing CT26 colon carcinoma cells. The animals were randomly divided into 4 groups including: 1) untreated control, 2) liposomal doxorubicin (15 mg/kg; single intravenous dose), 3) liposomal niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks), and 4) free niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks). To study therapeutic efficacy, tumor size and survival were monitored in 2-day intervals for 40 days. RESULTS In vitro results indicated that nanoliposomal and free niclosamide could exert cytotoxic effects with IC50 values of 4.5 and 2.5 μM, respectively. According to in vivo studies, nanoliposomal niclosamide showed a higher growth inhibitory activity against CT26 colon carcinoma cells compared with free niclosamide as revealed by delayed tumor growth and prolongation of survival. CONCLUSION Nnaoliposomal encapsulation enhanced anti-tumor properties of niclosamide in an experimental model of colon carcinoma.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Mashhad, Iran,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical
Sciences, Mashhad, Iran
| | | | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical
Sciences, Mashhad, Iran,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Barbosa EJ, Löbenberg R, de Araujo GLB, Bou-Chacra NA. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur J Pharm Biopharm 2019; 141:58-69. [PMID: 31078739 DOI: 10.1016/j.ejpb.2019.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Drug repositioning may be defined as a process when new biological effects for known drugs are identified, leading to recommendations for new therapeutic applications. Niclosamide, present in the Model List of Essential Medicines, from the World Health Organization, has been used since the 1960s for tapeworm infection. Several preclinical studies have been shown its impressive anticancer effects, which led to clinical trials for colon and prostate cancer. Despite high expectations, proof of efficacy and safety are still required, which are associated with diverse biopharmaceutical challenges, such as the physicochemical properties of the drug and its oral absorption, and their relationship with clinical outcomes. Nanostructured systems are innovative drug delivery strategies, which may provide interesting pharmaceutical advantages for this candidate. The aim of this review is to discuss challenges involving niclosamide repositioning for cancer diseases, and the opportunities of therapeutic benefits from nanosctrutured system formulations containing this compound.
Collapse
Affiliation(s)
- Eduardo José Barbosa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nádia Araci Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Yousefpour P, Ahn L, Tewksbury J, Saha S, Costa SA, Bellucci JJ, Li X, Chilkoti A. Conjugate of Doxorubicin to Albumin-Binding Peptide Outperforms Aldoxorubicin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804452. [PMID: 30756483 PMCID: PMC8114561 DOI: 10.1002/smll.201804452] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/11/2019] [Indexed: 05/21/2023]
Abstract
Short circulation time and off-target toxicity are the main challenges faced by small-molecule chemotherapeutics. To overcome these shortcomings, an albumin-binding peptide conjugate of chemotherapeutics is developed that binds specifically to endogenous albumin and harnesses its favorable pharmacokinetics and pharmacodynamics for drug delivery to tumors. A protein-G-derived albumin-binding domain (ABD) is conjugated with doxorubicin (Dox) via a pH-sensitive linker. One to two Dox molecules are conjugated to ABD without loss of aqueous solubility. The albumin-binding ABD-Dox conjugate exhibits nanomolar affinity for human and mouse albumin, and upon administration in mice, shows a plasma half-life of 29.4 h, which is close to that of mouse albumin. Additionally, 2 h after administration, ABD-Dox exhibits an approximately 4-fold higher concentration in the tumor than free Dox. Free Dox clears quickly from the tumor, while ABD-Dox maintains a steady concentration in the tumor for at least 72 h, so that its relative accumulation at 72 h is ≈120-fold greater than that of free Dox. The improved pharmacokinetics and biodistribution of ABD-Dox result in enhanced therapeutic efficacy in syngeneic C26 colon carcinoma and MIA PaCa-2 pancreatic tumor xenografts, compared with free Dox and aldoxorubicin, an albumin-reactive Dox prodrug currently in clinical development.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Lucie Ahn
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joel Tewksbury
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Simone A Costa
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joseph J Bellucci
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
37
|
Niclosamide-induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. Biochem J 2019; 476:535-546. [PMID: 30635359 DOI: 10.1042/bcj20180385] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
The Wnt signaling pathway, known for regulating genes critical to normal embryonic development and tissue homeostasis, is dysregulated in many types of cancer. Previously, we identified that the anthelmintic drug niclosamide inhibited Wnt signaling by promoting internalization of Wnt receptor Frizzled 1 and degradation of Wnt signaling pathway proteins, Dishevelled 2 and β-catenin, contributing to suppression of colorectal cancer growth in vitro and in vivo Here, we provide evidence that niclosamide-mediated inhibition of Wnt signaling is mediated through autophagosomes induced by niclosamide. Specifically, niclosamide promotes the co-localization of Frizzled 1 or β-catenin with LC3, an autophagosome marker. Niclosamide inhibition of Wnt signaling is attenuated in autophagosome-deficient ATG5-/- MEF cells or cells expressing shRNA targeting Beclin1, a critical constituent of autophagosome. Treatment with the autophagosome inhibitor 3MA blocks niclosamide-mediated Frizzled 1 degradation. The sensitivity of colorectal cancer cells to growth inhibition by niclosamide is correlated with autophagosome formation induced by niclosamide. Niclosamide inhibits mTORC1 and ULK1 activities and induces LC3B expression in niclosamide-sensitive cell lines, but not in the niclosamide-resistant cell lines tested. Interestingly, niclosamide is a less effective inhibitor of Wnt-responsive genes (β-catenin, c-Myc, and Survivin) in the niclosamide-resistant cells than in the niclosamide-sensitive cells, suggesting that deficient autophagy induction by niclosamide compromises the effect of niclosamide on Wnt signaling. Our findings provide a mechanistic understanding of the role of autophagosomes in the inhibition of Wnt signaling by niclosamide and may provide biomarkers to assist selection of patients whose tumors are likely to respond to niclosamide.
Collapse
|
38
|
Tam J, Hamza T, Ma B, Chen K, Beilhartz GL, Ravel J, Feng H, Melnyk RA. Host-targeted niclosamide inhibits C. difficile virulence and prevents disease in mice without disrupting the gut microbiota. Nat Commun 2018; 9:5233. [PMID: 30531960 PMCID: PMC6286312 DOI: 10.1038/s41467-018-07705-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile is the leading cause of nosocomial diarrhea and colitis in the industrialized world. Disruption of the protective gut microbiota by antibiotics enables colonization by multidrug-resistant C. difficile, which secrete up to three different protein toxins that are responsible for the gastrointestinal sequelae. Oral agents that inhibit the damage induced by toxins, without altering the gut microbiota, are urgently needed to prevent primary disease and break the cycle of antibiotic-induced disease recurrence. Here, we show that the anthelmintic drug, niclosamide, inhibits the pathogenesis of all three toxins by targeting a host process required for entry into colonocytes by each toxin. In mice infected with an epidemic strain of C. difficile, expressing all three toxins, niclosamide reduced both primary disease and recurrence, without disrupting the diversity or composition of the gut microbiota. Given its excellent safety profile, niclosamide may address an important unmet need in preventing C. difficile primary and recurrent diseases. Clostridium difficile causes diarrhea and colitis by producing up to three different protein toxins. Here, Tam et al. show that an anthelmintic drug, niclosamide, inhibits the pathogenesis of all three toxins by targeting a host process required for toxin entry into host cells, without disrupting the gut microbiota.
Collapse
Affiliation(s)
- John Tam
- Molecular Medicine, Hospital for Sick Children, 686 Bay St., Toronto, ON, M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kevin Chen
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Greg L Beilhartz
- Molecular Medicine, Hospital for Sick Children, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Roman A Melnyk
- Molecular Medicine, Hospital for Sick Children, 686 Bay St., Toronto, ON, M5G 0A4, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
39
|
Wu CL, Chen CL, Huang HS, Yu DS. A new niclosamide derivatives-B17 can inhibit urological cancers growth through apoptosis-related pathway. Cancer Med 2018; 7:3945-3954. [PMID: 29953738 PMCID: PMC6089145 DOI: 10.1002/cam4.1635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/04/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
The incidence and mortality rate of urological cancers is increasing yearly. Niclosamide has been repurposed as an anti‐cancer drug in recent years. Synthesized derivative of niclosamide was testified for its anti‐cancer activity in urological cancers. MTT assay was used to measure the cytotoxicity effect of niclosamide and its derivatives in urological cancer cell lines. Migratory ability was monitored by scratch migration assay. Apoptosis and cell cycle changes were analyzed by annexin V and PI staining. The apoptosis‐related signal proteins were evaluated by western blotting. T24 had the best drug sensitivity with the lowest IC50 in niclosamide and B17 treatment than DU145 and Caki‐1 cells. After niclosamide and B17 treatment, the mitotic cells were decreased, but apoptotic bodies and morphology changes were not prominent in T24, Caki‐1, and DU145 cells. The migratory ability was inhibited in niclosamide treatment than control group on Caki‐1 cells and niclosamide and B17 treatment than control group on DU145 cells. Early apoptosis cells were increased after niclosamide and B17 treatment than control group without cell cycle changes in T24, Caki‐1, and DU145 cells. Programmed cell death was activated majorly through PAPR and bcl‐2 in T24 and caspase‐3 in Caki‐1 cells, respectively. Niclosamide and B17 derivative had good ability in inhibition proliferation and migratory ability in T24, Caki‐1, and DU145 cells without prominent morphology and apoptotic body changes. UCC cells are more sensitive to niclosamide and B17 treatment. Early apoptosis was induced after niclosamide and B17 treatment through different mechanisms in T24, Caki‐1, and DU145 cells.
Collapse
Affiliation(s)
- Chia-Lun Wu
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Liang Chen
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Dah-Shyong Yu
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
40
|
Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers (Basel) 2018; 10:polym10010031. [PMID: 30966075 PMCID: PMC6415012 DOI: 10.3390/polym10010031] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology plays a significant role in drug development. As carriers, polymeric nanoparticles can deliver vaccine antigens, proteins, and drugs to the desired site of action. Polymeric nanoparticles with lower cytotoxicity can protect the delivered antigens or drugs from degradation under unfavorable conditions via a mucosal administration route; further, the uptake of nanoparticles by antigen-presenting cells can increase and induce potent immune responses. Additionally, nanomaterials are widely used in vaccine delivery systems because nanomaterials can make the vaccine antigen long-acting. This review focuses on some biodegradable polymer materials such as natural polymeric nanomaterials, chemically synthesized polymer materials, and biosynthesized polymeric materials, and points out the advantages and the direction of research on degradable polymeric materials. The application and future perspectives of polymeric materials as delivery carriers and vaccine adjuvants in the field of drugs and vaccines are presented. With the increase of knowledge and fundamental understandings of polymer-based nanomaterials, means of integrating some other attractive properties, such as slow release, target delivery, and alternative administration methods and delivery pathways are feasible. Polymer-based nanomaterials have great potential for the development of novel vaccines and drug systems for certain needs, including single-dose and needle-free deliveries of vaccine antigens and drugs in the future.
Collapse
|