1
|
Song B, Zhang E, Shi Y, Zhu H, Wang W, Gallagher SJ, Cao Z. A Paintable, Scalable, and Durable Zwitterionic Hydrogel Coating for Enhanced Marine Antifouling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3464-3474. [PMID: 39893696 DOI: 10.1021/acs.langmuir.4c04595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Marine biofouling has been a severe challenge since the increase of maritime trade, significantly impacting the efficiency of ships by increasing drag, fuel consumption, hull corrosion, and even problems related to navigational safety and biological invasions. Commercial antifouling coatings have been developed for many years, but a satisfactory solution has yet to be found due to problems, such as high toxicity, environmental pollution, or high costs. Zwitterionic materials, with their superhydrophilic properties, demonstrate excellent resistance to nonspecific adhesion alongside good biocompatibility, making them promising candidates for marine antifouling applications. However, their superhydrophilic nature makes it difficult to anchor onto hydrophobic substrates, limiting their use. In this study, we presented a paintable, scalable, and durable antifouling coating system made by zwitterionic hydrogel (PSDA-Z), which was covalently attached to substrates through an acrylated epoxy resin primer coat and maintained antifouling performance even after 3 months of high-speed water shearing, high-pressure sandpaper abrasion, and sharp scratching. This PSDA-Z could also easily be applied on various substrates without specific treatments, including epoxy resin, poly(vinyl chloride) (PVC), polyurethane (PU), and wood. More importantly, this coating system achieved excellent antifouling performance comparable to self-polishing coatings (SPCs), the current industry standard in marine antifouling coating, in the Atlantic Ocean field tests for 3 months, suggesting its promise as an effective and ecofriendly alternative for marine antifouling applications.
Collapse
Affiliation(s)
- Boyi Song
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Wei Wang
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Sheu-Jane Gallagher
- Repela Tech, LLC, 2222 W Grand River Ave, Ste A, Okemos, Michigan 48864, United States
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Kanwal S, Aziz UBA, Quaas E, Achazi K, Klinger D. Sulfonium-based polymethacrylamides for antimicrobial use: influence of the structure and composition. Biomater Sci 2025; 13:993-1009. [PMID: 39801426 DOI: 10.1039/d4bm01247j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
We are facing a shortage of new antibiotics to fight against increasingly resistant bacteria. As an alternative to conventional small molecule antibiotics, antimicrobial polymers (AMPs) have great potential. These polymers contain cationic and hydrophobic groups and disrupt bacterial cell membranes through a combination of electrostatic and hydrophobic interactions. While most examples focus on ammonium-based cations, sulfonium groups are recently emerging to broaden the scope of polymeric therapeutics. Here, main-chain sulfonium polymers exhibit good antimicrobial activity. In contrast, the potential of side-chain sulfonium polymers remains less explored with structure-activity relationships still being limited. To address this limitation, we thoroughly investigated key factors influencing antimicrobial activity in side-chain sulfonium-based AMPs. For this, we combined sulfonium cations with different hydrophobic (aliphatic/aromatic) and hydrophilic polyethylene glycol (PEG) groups to create a library of polymers with comparable chain lengths. For all compositions, we additionally examined the position of cationic and hydrophobic groups on the polymer backbone, i.e., we systematically compared same center and different center structures. Bactericidal tests against Gram-positive and Gram-negative bacteria suggest that same center polymers are more active than different center polymers of similar clog P. Ultimately, sulfonium-based AMPs show superior bactericidal activity and selectivity when compared to their quaternary ammonium cationic analogues.
Collapse
Affiliation(s)
- Sidra Kanwal
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| | | | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
3
|
Nair DP, Asby S, de Lucena FS, Pfeifer CS. An introduction to antibacterial materials in composite restorations. JADA FOUNDATIONAL SCIENCE 2024; 3:100038. [PMID: 39868358 PMCID: PMC11759481 DOI: 10.1016/j.jfscie.2024.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The longevity of direct esthetic restorations is severely compromised because of, among other things, a loss of function that comes from their susceptibility to biofilm-mediated secondary caries, with Streptococcus mutans being the most prevalent associated pathogen. Strategies to combat biofilms range from dental compounds that can disrupt multispecies biofilms in the oral cavity to approaches that specifically target caries-causing bacteria such as S mutans. One strategy is to include those antibacterial compounds directly in the material so they can be available long-term in the oral cavity and localized at the margin of the restorations, in which many of the failures initiate. Many antibacterial compounds have already been proposed for use in dental materials, including but not limited to phenolic compounds, antimicrobial peptides, quaternary ammonium compounds, and nanoparticles. In general, the goal of incorporating them directly into the material is to increase their availability in the oral cavity past the fleeting effect they would otherwise have in mouth rinses. This review focuses specifically on natural compounds, of which polyphenols are the most abundant category. The authors examined attempts at using these either as pretreatment or incorporated directly into restorative material as a step toward fulfilling a long-recognized need for restorations that can combat or prevent secondary caries formation. Repeatedly restoring failed restorations comes with the loss of more tooth structure along with increasingly complex and costly dental procedures, which is detrimental to not only oral health but also systemic health.
Collapse
Affiliation(s)
- Devatha P Nair
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO
| | - Sarah Asby
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO
| | - Fernanda S de Lucena
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR
| | - Carmem S Pfeifer
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR
| |
Collapse
|
4
|
Liu JH, Chen XL, Yang HM, Yin YR, Kurniawan A, Zhou CH. Thermosensitive curcumin/silver/montmorillonite-F127 hydrogels with synergistic photodynamic/photothermal/silver ions antibacterial activity. J Mater Chem B 2024; 12:6874-6885. [PMID: 38912877 DOI: 10.1039/d4tb00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Bacterial infections and the emergence of super-resistant bacteria pose a significant risk to human health. Effective sterilization to prevent the development of bacterial drug resistance remains a challenge. Herein, curcumin/silver/montmorillonite (Cur/Ag/Mt) was prepared through a green chemical reduction method with montmorillonite as the carrier, curcumin as the reducing agent and the capping agent, and citric acid as the structure guide agent. Then, a novel dual light-responsive and thermosensitive Pluronic F127-based hydrogel (CAM-F) was prepared by encapsulating Cur/Ag/Mt within the F127 hydrogel. The Cur/Ag/Mt showed strong absorption in the near-infrared region that efficiently converts light into heat for photothermal therapy when the molar ratio of curcumin to silver nitrate was 2 : 1. Specifically, triangular silver nanoparticles reduced by curcumin were immobilized on the Mt layers, which could enhance photodynamic therapy by the metal-enhanced singlet oxygen and metal-enhanced fluorescence mechanisms. Upon combining 405 nm and 808 nm laser irradiation, the CAM-F hydrogel could simultaneously generate reactive oxygen species, increase the local temperature, and sustain the release of Ag+, thus displaying excellent bactericidal performance against Gram-negative and Gram-positive bacteria. The antibacterial rates of CAM-F hydrogels were 99.26 ± 0.95% and 99.95 ± 0.98% for Escherichia coli and Staphylococcus aureus, respectively. The findings suggest the potential of the CAM-F hydrogel as a stable, biologically safe, and broad-spectrum antimicrobial material. The thermosensitive CAM-F hydrogels for synergetic phototherapy may provide a promising strategy for solving clinical problems caused by pathogenic infections.
Collapse
Affiliation(s)
- Jia Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Xiao Lan Chen
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Hui Min Yang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, China
| | - Yu Rong Yin
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Alfin Kurniawan
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
5
|
Liu X, Yu L, Wei J, Huang Y, Yang L, Ning J, Su Q, Li H, Xin J, Jia K. Mussel-Inspired Antimicrobial and Antifouling Coating Constructed by the Combination of Zwitterionic Copolymers and Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8654-8664. [PMID: 38588599 DOI: 10.1021/acs.langmuir.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Biofouling and bacterial infections are significant challenges in biomedical devices. In this study, a biocompatible dual-functional coating with antimicrobial and antifouling properties is developed by co-depositing the zwitterionic copolymer and silver nanoparticles via a dopamine-assisted strategy. Inspired by mussel adhesion, the coating exhibits substrate-independent adhesion as a result of the formation of irreversible covalent bonds. The zwitterionic copolymer in the dual coating plays a crucial role in improving surface wettability and reducing protein adsorption and platelet and bacterial adhesion, thereby improving its antifouling property significantly. The silver nanoparticles reduced by self-polymerized polydopamine without the addition of any chemical reductants can effectively improve the antimicrobial activity. Furthermore, as the zwitterion content in the zwitterion polymer increases, the antibacterial and antifouling properties of the coating can be further advanced. The simple and effective approach presented here provides a promising pathway for constructing potent antibacterial and antifouling surfaces, demonstrating great potential for clinical applications in implanted materials.
Collapse
Affiliation(s)
- Xingxing Liu
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Longfei Yu
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Jiafeng Wei
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Yinyin Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Lan Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Junhua Ning
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Qiuping Su
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Huanling Li
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Jinlan Xin
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Kangle Jia
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| |
Collapse
|
6
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
7
|
Cao Y, Liu M, Han M, Ji S. Multi-arm ε-polylysines exhibit broad-spectrum antifungal activities against Candida species. Biomater Sci 2023; 11:7588-7597. [PMID: 37823351 DOI: 10.1039/d3bm01233f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Invasive fungal infections pose a crucial threat to public health and are an under-recognized component of antimicrobial resistance, which is an emerging crisis worldwide. Here we designed and synthesized a panel of multi-arm ε-polylysines (ε-mPLs, nR-Km) with a precise number of n = 3-6 arms of ε-oligo(L-lysine)s and a precise arm length of m = 3-7 ε-lysine residues. ε-mPLs have good biocompatibility and exhibited broad-spectrum antifungal activities towards Aspergillus, Mucorales and Candida species, and their antifungal activities increased with residue arm length. Among these ε-mPLs, 3R-K7 showed high antifungal activity against C. albicans with a MIC value of as low as 24 μg mL-1 (only 1/16th that of ε-PL) and also exhibited similar antifungal activity towards the clinically isolated multi-drug resistant (MDR) C. albicans strain. Furthermore, 3R-K7 could inhibit the formation of C. albicans biofilms and kill the cells within mature C. albicans biofilms. Mechanistic studies proved that 3R-K7 killed fungal cells by entering the cells to generate reactive oxygen species (ROS) and induce cell apoptosis. An in vivo study showed that 3R-K7 significantly increased the survival rate of mice in a systemic murine candidiasis model, demonstrating that ε-mPL has great potential as a new antifungal agent.
Collapse
Affiliation(s)
- Yuanqiao Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Miaomiao Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Shengxiang Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
8
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
9
|
Lin C, Ma Z, Gao Y, Le M, Shi Z, Qi D, Ma JC, Cui ZK, Wang L, Jia YG. Main-Chain Cationic Bile Acid Polymers Mimicking Facially Amphiphilic Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37400427 DOI: 10.1021/acsami.3c06424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Antibiotic-resistant bacterial infections have led to an increased demand for antibacterial agents that do not contribute to antimicrobial resistance. Antimicrobial peptides (AMPs) with the facially amphiphilic structures have demonstrated remarkable effectiveness, including the ability to suppress antibiotic resistance during bacterial treatment. Herein, inspired by the facially amphiphilic structure of AMPs, the facially amphiphilic skeletons of bile acids (BAs) are utilized as building blocks to create a main-chain cationic bile acid polymer (MCBAP) with macromolecular facial amphiphilicity via polycondensation and a subsequent quaternization. The optimal MCBAP displays an effective activity against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli, fast killing efficacy, superior bactericidal stability in vitro, and potent anti-infectious performance in vivo using the MRSA-infected wound model. MCBAP shows the low possibility to develop drug-resistant bacteria after repeated exposure, which may ascribe to the macromolecular facial amphiphilicity promoting bacterial membrane disruption and the generation of reactive oxygen species. The easy synthesis and low cost of MCBAP, the superior antimicrobial performance, and the therapeutic potential in treating MRSA infection altogether demonstrate that BAs are a promising group of building blocks to mimic the facially amphiphilic structure of AMPs in treating MRSA infection and alleviating antibiotic resistance.
Collapse
Affiliation(s)
- Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zunwei Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yunpeng Gao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Mengqi Le
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Dawei Qi
- MediCity Research Laboratory, University of Turku, Turku 20520, Finland
| | - Jian-Chao Ma
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Kai Cui
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Shen X, Rao Y, Wang J, Niu X, Wang Y, Chen W, Liu F, Guo L, Chen H. Biocompatible cationic polypeptoids with antibacterial selectivity depending on hydrophobic carbon chain length. J Mater Chem B 2023. [PMID: 37326556 DOI: 10.1039/d3tb00643c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The overuse of antibiotics has triggered a new infection crisis and natural antimicrobial peptides (AMPs) have been extensively studied as an alternative to fight microorganisms. Polypeptoids, or polypeptide-biomimetics, offer similar properties to polypeptides and a highly tunable structure that has been synthesized by various methods such as ring opening polymerization (ROP) using N-carboxyanhydride monomers. Simultaneous high antibacterial activity and biocompatibility of a structure by efficient synthesis is desired in the application of those materials. Herein, a series of cationic polypeptoids (PNBs) with variable side chain lengths was obtained by introducing positive charges to the main chain in one step and preserving the backbone structure, namely polypeptoids (PNBM, PNBE, PNBB) with different end groups (methyl (M), ethyl (E), butyl (B)). To address the issue of infection in interventional biomedical implants, we report cost-effective modified polyurethane (PU) films (PU-PNBM, PU-PNBE, PU-PNBB) as physical-biological synergistic antibacterial surfaces that overcome problems such as steric hindrance and the solubility of the materials. Antibacterial selectivity was achieved by regulating the different side chain lengths. When methyl and ethyl were used as hydrophobic side chains, they can only selectively kill Gram-positive Staphylococcus aureus. PNBB, the most hydrophobic and with a butyl side chain can kill both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus and inhibit the growth of bacterial biofilms. Effective in both solution and modified substrate, its biocompatibility is not compromised while the antibacterial properties are substantially improved. Furthermore, PU-PNBB films demonstrated their potential in vivo antimicrobial efficiency in a model of S. aureus infection established on mouse skin. The synthesis route and the surface modification strategies are convenient, providing a solution to the problem of poor biocompatibility in antimicrobial surface applications and a strategy for the use of peptide polymers for targeted therapy after specific infections in the biomedical field.
Collapse
Affiliation(s)
- Xiran Shen
- Research School of Polymeric Materials, School of Material Science & Engineering, Jiangsu University, Zhenjiang, 202113, P. R. China.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yu Rao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jinghong Wang
- Jiangsu Biosurf Biotech Co., Ltd, Suzhou 215123, P. R. China
- The SIP Biointerface Engineering Research Institute, Suzhou 215123, P. R. China
| | - Xiaomeng Niu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wentao Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China.
| | - Li Guo
- Research School of Polymeric Materials, School of Material Science & Engineering, Jiangsu University, Zhenjiang, 202113, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
11
|
Zhang L, Yang Y, Xiong YH, Zhao YQ, Xiu Z, Ren HM, Zhang K, Duan S, Chen Y, Xu FJ. Infection-responsive long-term antibacterial bone plates for open fracture therapy. Bioact Mater 2023; 25:1-12. [PMID: 36713134 PMCID: PMC9860072 DOI: 10.1016/j.bioactmat.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The infections in open fracture induce high morbidity worldwide. Thus, developing efficient anti-infective orthopedic devices is of great significance. In this work, we designed a kind of infection-responsive long-term antibacterial bone plates. Through a facile and flexible volatilization method, a multi-aldehyde polysaccharide derivative, oxidized sodium alginate, was crosslinked with multi-amino compounds, gentamycin and gelatin, to fabricate a uniform coating on Ti bone plates via Schiff base reaction, which was followed by a secondary crosslinking process by glutaraldehyde. The double-crosslinked coating was stable under normal condition, and could responsively release gentamycin by the triggering of the acidic microenvironment caused by bacterial metabolism, owning to the pH-responsiveness of imine structure. The thickness of the coating was ranging from 22.0 μm to 63.6 μm. The coated bone plates (Ti-GOGs) showed infection-triggered antibacterial properties (>99%) and high biocompatibility. After being soaked for five months, it still possessed efficient antibacterial ability, showing its sustainable antibacterial performance. The in vivo anti-infection ability was demonstrated by an animal model of infection after fracture fixation (IAFF). At the early stage of IAFF, Ti-GOGs could inhibit the bacterial infection (>99%). Subsequently, Ti-GOGs could promote recovery of fracture of IAFF. This work provides a convenient and universal strategy for fabrication of various antibacterial orthopedic devices, which is promising to prevent and treat IAFF.
Collapse
Affiliation(s)
- Lujiao Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yurun Yang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yan-Hua Xiong
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zongpeng Xiu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui-Min Ren
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Corresponding author.
| | - Ying Chen
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
- Corresponding author.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Corresponding author.
| |
Collapse
|
12
|
Egghe T, Morent R, Hoogenboom R, De Geyter N. Substrate-independent and widely applicable deposition of antibacterial coatings. Trends Biotechnol 2023; 41:63-76. [PMID: 35863949 DOI: 10.1016/j.tibtech.2022.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
Antibacterial coatings are regarded as a necessary tool to prevent implant-related infections. Substrate-independent and widely applicable coating techniques are gaining significant interest to synthesize different types of antibacterial films, which can be relevant from a fundamental and application-oriented perspective. Plasma polymer- and polydopamine-based antibacterial coatings represent the most widely studied and versatile approaches among these coating techniques. Both single- and dual-functional antibacterial coatings can be fabricated with these approaches and a variety of dual-functional antibacterial coating strategies can still be explored in future work. These coatings can potentially be used for a wide range of different implants (material, shape, and size). However, for most implants, significantly more fundamental knowledge needs to be gained before these coatings can find real-life use.
Collapse
Affiliation(s)
- Tim Egghe
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Xu Q, Dai X, Yang L, Liu X, Li Y, Gao F. ε-Polylysine-Based Macromolecules with Catalase-Like Activity to Accelerate Wound Healing by Clearing Bacteria and Attenuating Inflammatory Response. ACS Biomater Sci Eng 2022; 8:5018-5026. [PMID: 36256969 DOI: 10.1021/acsbiomaterials.2c00986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Wound healing has remained a critical challenge due to its susceptibility to bacterial infection and the unique biological inflammatory response. Safe and effective therapeutics are still lacking. Biodegradable macromolecules (ε-polylysine-g-ferrocene, EPL-g-Fc) were developed to accelerate wound healing by combating bacterial infection and attenuating inflammatory responses. The biodegradable macromolecules were prepared via a Schiff-based reaction between ferrocene carboxaldehyde (Fc) and ε-polylysine (EPL). Through the synergistic combination of positive-charged EPL and π-π stacked Fc, the macromolecules possess excellent antibacterial activities. EPL-g-Fc with catalase-like activity could modulate the oxidative microenvironment in mammalian cells and zebrafish by catalyzing H2O2 into H2O and O2. EPL-g-Fc could alleviate inflammatory response in vitro. Furthermore, the macromolecules could accelerate bacteria-infected wound healing in vivo. This work provides a versatile strategy for repairing bacteria-infected wounds by eliminating bacteria, modulating oxidative microenvironment, and alleviating inflammatory response.
Collapse
Affiliation(s)
- Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, P. R. China
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, P. R. China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, P. R. China
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, P. R. China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, P. R. China
| |
Collapse
|
14
|
Clapperton A, Babi J, Tran H. A Field Guide to Optimizing Peptoid Synthesis. ACS POLYMERS AU 2022; 2:417-429. [PMID: 36536890 PMCID: PMC9756346 DOI: 10.1021/acspolymersau.2c00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/19/2022]
Abstract
N-Substituted glycines (peptoids) are a class of peptidomimetic molecules used as materials for health, environmental, and drug delivery applications. Automated solid-phase synthesis is the most widely used approach for preparing polypeptoids, with a range of published protocols and modifications for selected synthetic targets. Simultaneously, emerging solution-phase syntheses are being leveraged to overcome limitations in solid-phase synthesis and access high-molecular weight polypeptoids. This Perspective aims to outline strategies for the optimization of both solid- and solution-phase synthesis, provide technical considerations for robotic synthesizers, and offer an outlook on advances in synthetic methodologies. The solid-phase synthesis sections explore steps for protocol optimization, accessing complex side chains, and adaptation to robotic synthesizers; the sections on solution-phase synthesis cover the selection of initiators, side chain compatibility, and strategies for controlling polymerization efficiency and scale. This text acts as a "field guide" for researchers aiming to leverage the flexibility and adaptability of peptoids in their research.
Collapse
Affiliation(s)
- Abigail
Mae Clapperton
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Jon Babi
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Helen Tran
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada,Department
of Chemical Engineering, University of Toronto, 200 College St, Toronto, Toronto, ON M5S
3E5, Canada,
| |
Collapse
|
15
|
Chug M, Brisbois EJ. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS MATERIALS AU 2022; 2:525-551. [PMID: 36124001 PMCID: PMC9479141 DOI: 10.1021/acsmaterialsau.2c00040] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Xu Z, Wang T, Liu J. Recent Development of Polydopamine Anti-Bacterial Nanomaterials. Int J Mol Sci 2022; 23:ijms23137278. [PMID: 35806281 PMCID: PMC9266540 DOI: 10.3390/ijms23137278] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Polydopamine (PDA), as a mussel-inspired material, exhibits numerous favorable performance characteristics, such as a simple preparation process, prominent photothermal transfer efficiency, excellent biocompatibility, outstanding drug binding ability, and strong adhesive properties, showing great potential in the biomedical field. The rapid development of this field in the past few years has engendered substantial progress in PDA antibacterial materials. This review presents recent advances in PDA-based antimicrobial materials, including the preparation methods and antibacterial mechanisms of free-standing PDA materials and PDA-based composite materials. Furthermore, the urgent challenges and future research opportunities for PDA antibacterial materials are discussed.
Collapse
Affiliation(s)
- Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China;
| | - Tingting Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Correspondence: (T.W.); (J.L.)
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China;
- Correspondence: (T.W.); (J.L.)
| |
Collapse
|
17
|
Liu G, Sun X, Li X, Wang Z. The Bioanalytical and Biomedical Applications of Polymer Modified Substrates. Polymers (Basel) 2022; 14:826. [PMID: 35215740 PMCID: PMC8878960 DOI: 10.3390/polym14040826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/11/2023] Open
Abstract
Polymers with different structures and morphology have been extensively used to construct functionalized surfaces for a wide range of applications because the physicochemical properties of polymers can be finely adjusted by their molecular weights, polydispersity and configurations, as well as the chemical structures and natures of monomers. In particular, the specific functions of polymers can be easily achieved at post-synthesis by the attachment of different kinds of active molecules such as recognition ligand, peptides, aptamers and antibodies. In this review, the recent advances in the bioanalytical and biomedical applications of polymer modified substrates were summarized with subsections on functionalization using branched polymers, polymer brushes and polymer hydrogels. The review focuses on their applications as biosensors with excellent analytical performance and/or as nonfouling surfaces with efficient antibacterial activity. Finally, we discuss the perspectives and future directions of polymer modified substrates in the development of biodevices for the diagnosis, treatment and prevention of diseases.
Collapse
Affiliation(s)
- Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China; (G.L.); (X.L.)
| | - Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Xiaodong Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China; (G.L.); (X.L.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| |
Collapse
|
18
|
Yu L, Li K, Zhang J, Jin H, Saleem A, Song Q, Jia Q, Li P. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:366-393. [PMID: 35072444 DOI: 10.1021/acsabm.1c01132] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial resistance caused by the overuse of antibiotics and the shelter of biofilms has evolved into a global health crisis, which drives researchers to continuously explore antimicrobial molecules and strategies to fight against drug-resistant bacteria and biofilm-associated infections. Cationic antimicrobial peptides (AMPs) are considered to be a category of potential alternative for antibiotics owing to their excellent bactericidal potency and lesser likelihood of inducing drug resistance through their distinctive antimicrobial mechanisms. In this review, the hitherto reported plentiful action modes of AMPs are systematically classified into 15 types and three categories (membrane destructive, nondestructive membrane disturbance, and intracellular targeting mechanisms). Besides natural AMPs, cationic polypeptides, synthetic polymers, and biopolymers enable to achieve tunable antimicrobial properties by optimizing their structures. Subsequently, the applications of these cationic antimicrobial agents at the biointerface as contact-active surface coatings and multifunctional wound dressings are also emphasized here. At last, we provide our perspectives on the development of clinically significant cationic antimicrobials and related challenges in the translation of these materials.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jing Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Haoyu Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
19
|
You K, Gao B, Wang M, Wang X, Okoro KC, Rakhimbekzoda A, Feng Y. Versatile polymer-based strategies for antibacterial drug delivery systems and antibacterial coatings. J Mater Chem B 2022; 10:1005-1018. [DOI: 10.1039/d1tb02417e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human health damage and economic losses due to bacterial infections are very serious worldwide. Excessive use of antibiotics has caused an increase in bacterial resistance. Fortunately, various non-antibiotic antibacterial materials...
Collapse
|
20
|
Park S, Kim M, Park J, Choi W, Hong J, Lee DW, Kim BS. Mussel-Inspired Multiloop Polyethers for Antifouling Surfaces. Biomacromolecules 2021; 22:5173-5184. [PMID: 34818000 DOI: 10.1021/acs.biomac.1c01124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the widespread use of polymers for antifouling coatings, the effect of the polymeric topology on the antifouling property has been largely underexplored. Unlike conventional brush polymers, a loop conformation often leads to strong steric stabilization of surfaces and antifouling and lubricating behavior owing to the large excluded volume and reduced chain ends. Herein, we present highly antifouling multiloop polyethers functionalized with a mussel-inspired catechol moiety with varying loop dimensions. Specifically, a series of polyethers with varying catechol contents were synthesized via anionic ring-opening polymerization by using triethylene glycol glycidyl ether (TEG) and catechol-acetonide glycidyl ether (CAG) to afford poly(TEG-co-CAG)n. The versatile adsorption and antifouling effects of multiloop polyethers were evaluated using atomic force microscopy and a quartz crystal microbalance with dissipation. Furthermore, the crucial role of the loop dimension in the antifouling properties was analyzed via a surface force apparatus and a cell attachment assay. This study provides a new platform for the development of versatile antifouling polymers with varying topologies.
Collapse
Affiliation(s)
- Suebin Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinwoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
21
|
Gautam B, Ali SA, Chen JT, Yu HH. Hybrid "Kill and Release" Antibacterial Cellulose Papers Obtained via Surface-Initiated Atom Transfer Radical Polymerization. ACS APPLIED BIO MATERIALS 2021; 4:7893-7902. [PMID: 35006770 DOI: 10.1021/acsabm.1c00817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infectious diseases triggered by bacteria cause a severe risk to human health. To counter this issue, surfaces coated with antibacterial materials have been widely used in daily life to kill these bacteria. The substrates enabled with a hybrid kill and release strategy can be employed not only to kill the bacteria but also to wash them using external stimuli (temperature, pH, etc.). Utilizing this concept, we develop thermoresponsive antibacterial-cellulose papers to exhibit hybrid kill and release properties. Thermoresponsive copolymers [p(NIPAAm-co-AEMA)] are grafted on cellulose papers using a surface-initiated atom transfer radical polymerization approach for bacterial debris release. Later for antibacterial properties, silver nanoparticles (AgNPs) are immobilized on thermoresponsive copolymer-grafted cellulose papers using electrostatic interactions. We confirm the thermoresponsive copolymer grafting and AgNP coating by attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Thermoresponsiveness and reusability of the modified cellulose papers are confirmed through water contact angle measurements. The interaction potency between AgNPs and modified cellulose is validated by inductively coupled plasma atomic emission spectroscopy analysis. Gram-negative bacteria Escherichia coli (E. coli DH5-α) is used to demonstrate antibacterial hybrid kill and release performance. Agar-diffusion testing demonstrates the antibacterial nature of the modified cellulose papers. The fluorescence micrograph reveals that modified cellulose papers can effectively release almost all the dead bacterial debris from their surfaces after thermal stimulus wash. The modified cellulose paper surfaces are expected to have wide applications in the field of exploring more antibacterial and smart surfaces.
Collapse
Affiliation(s)
- Bhaskarchand Gautam
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | - Syed Atif Ali
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | | |
Collapse
|
22
|
Li W, Thian ES, Wang M, Wang Z, Ren L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100368. [PMID: 34351704 PMCID: PMC8498904 DOI: 10.1002/advs.202100368] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Healthcare-acquired infections as well as increasing antimicrobial resistance have become an urgent global challenge, thus smart alternative solutions are needed to tackle bacterial infections. Antibacterial materials in biomedical applications and hospital hygiene have attracted great interest, in particular, the emergence of surface design strategies offer an effective alternative to antibiotics, thereby preventing the possible development of bacterial resistance. In this review, recent progress on advanced surface modifications to prevent bacterial infections are addressed comprehensively, starting with the key factors against bacterial adhesion, followed by varying strategies that can inhibit biofilm formation effectively. Furthermore, "super antibacterial systems" through pre-treatment defense and targeted bactericidal system, are proposed with increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies to resist healthcare-associated infections are discussed, with promising prospects of developing novel antimicrobial materials.
Collapse
Affiliation(s)
- Wenlong Li
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Eng San Thian
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
| | - Miao Wang
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zuyong Wang
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Lei Ren
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
23
|
Jiang N, Zhang D. Solution Self-Assembly of Coil-Crystalline Diblock Copolypeptoids Bearing Alkyl Side Chains. Polymers (Basel) 2021; 13:3131. [PMID: 34578031 PMCID: PMC8473287 DOI: 10.3390/polym13183131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Polypeptoids, a class of synthetic peptidomimetic polymers, have attracted increasing attention due to their potential for biotechnological applications, such as drug/gene delivery, sensing and molecular recognition. Recent investigations on the solution self-assembly of amphiphilic block copolypeptoids highlighted their capability to form a variety of nanostructures with tailorable morphologies and functionalities. Here, we review our recent findings on the solutions self-assembly of coil-crystalline diblock copolypeptoids bearing alkyl side chains. We highlight the solution self-assembly pathways of these polypeptoid block copolymers and show how molecular packing and crystallization of these building blocks affect the self-assembly behavior, resulting in one-dimensional (1D), two-dimensional (2D) and multidimensional hierarchical polymeric nanostructures in solution.
Collapse
Affiliation(s)
- Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Donghui Zhang
- Macromolecular Studies Group, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
24
|
Lan S, Zhang J, Li J, Guo Y, Sheng X, Dong A. An N-Halamine/Graphene Oxide-Functionalized Electrospun Polymer Membrane That Inactivates Bacteria on Contact and by Releasing Active Chlorine. Polymers (Basel) 2021; 13:polym13162784. [PMID: 34451322 PMCID: PMC8400313 DOI: 10.3390/polym13162784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of antibiotic-resistant "superbugs" in recent decades has led to widespread illness and death and is a major ongoing public health issue. Since traditional antimicrobials and antibiotics are in many cases showing limited or no effectiveness in fighting some emerging pathogens, there is an urgent need to develop and explore novel antibacterial agents that are both powerful and reliable. Combining two or more antibiotics or antimicrobials has become a hot topic in antibacterial research. In this contribution, we report on using a simple electrospinning technique to create an N-halamine/graphene oxide-modified polymer membrane with excellent antibacterial activity. With the assistance of advanced techniques, the as-obtained membrane was characterized in terms of its chemical composition, morphology, size, and the presence of active chlorine. Its antibacterial properties were tested with Escherichia coli (E. coli) as the model bacteria, using the colony-counting method. Interestingly, the final N-halamine/graphene oxide-based antibacterial fibrous membrane inactivated E. coli both on contact and by releasing active chlorine. We believe that the synergistic antimicrobial action of our as-fabricated fibrous membrane should have great potential for utilization in water disinfection, air purification, medical and healthcare products, textile products, and other antibacterial-associated fields.
Collapse
Affiliation(s)
- Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (J.Z.); (J.L.); (Y.G.)
| | - Jinghua Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (J.Z.); (J.L.); (Y.G.)
| | - Jie Li
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (J.Z.); (J.L.); (Y.G.)
| | - Yanan Guo
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (J.Z.); (J.L.); (Y.G.)
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (J.Z.); (J.L.); (Y.G.)
- Correspondence: (X.S.); (A.D.)
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- Correspondence: (X.S.); (A.D.)
| |
Collapse
|
25
|
Song Q, Zhao R, Liu T, Gao L, Su C, Ye Y, Chan SY, Liu X, Wang K, Li P, Huang W. One-step vapor deposition of fluorinated polycationic coating to fabricate antifouling and anti-infective textile against drug-resistant bacteria and viruses. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 418:129368. [PMID: 33746567 PMCID: PMC7962519 DOI: 10.1016/j.cej.2021.129368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 05/17/2023]
Abstract
The ongoing pandemic caused by the novel coronavirus has turned out to be one of the biggest threats to the world, and the increase of drug-resistant bacterial strains also threatens the human health. Hence, there is an urgent need to develop novel anti-infective materials with broad-spectrum anti-pathogenic activity. In the present study, a fluorinated polycationic coating was synthesized on a hydrophilic and negatively charged polyester textile via one-step initiated chemical vapor deposition of poly(dimethyl amino methyl styrene-co-1H,1H,2H,2H-perfluorodecyl acrylate) (P(DMAMS-co-PFDA), PDP). The surface characterization results of SEM, FTIR, and EDX demonstrated the successful synthesis of PDP coating. Contact angle analysis revealed that PDP coating endowed the polyester textile with the hydrophobicity against the attachment of different aqueous foulants such as blood, coffee, and milk, as well as the oleophobicity against paraffin oil. Zeta potential analysis demonstrated that the PDP coating enabled a transformation of negative charge to positive charge on the surface of polyester textile. The PDP coating exhibited excellent contact-killing activity against both gram-negative Escherichia coli and gram-positive methicillin-resistant Staphylococcus aureus, with the killing efficiency of approximate 99.9%. In addition, the antiviral capacity of PDP was determined by a green fluorescence protein (GFP) expression-based method using lentivirus-EGFP as a virus model. The PDP coating inactivated the negatively charged lentivirus-EGFP effectively. Moreover, the coating showed good biocompatibility toward mouse NIH 3T3 fibroblast cells. All the above properties demonstrated that PDP would be a promising anti-pathogenic polymeric coating with wide applications in medicine, hygiene, hospital, etc., to control the bacterial and viral transmission and infection.
Collapse
Affiliation(s)
- Qing Song
- Ningbo Institute, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ruixiang Zhao
- Ningbo Institute, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Tong Liu
- Sichuan Tengli Agri-Tech Co. Ltd., Deyang 618200, China
| | - Lingling Gao
- Ningbo Institute, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Cuicui Su
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yumin Ye
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Siew Yin Chan
- Ningbo Institute, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xinyue Liu
- Ningbo Institute, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ke Wang
- Ningbo Institute, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Ningbo Institute, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Ningbo Institute, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
26
|
Contact lenses coated with hybrid multifunctional ternary nanocoatings (Phytomolecule-coated ZnO nanoparticles:Gallic Acid:Tobramycin) for the treatment of bacterial and fungal keratitis. Acta Biomater 2021; 128:262-276. [PMID: 33866034 DOI: 10.1016/j.actbio.2021.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Contact lenses are widely used for visual corrections. However, while wearing contact lenses, eyes typically face discomforts (itching, irritation, burning, etc.) due to foreign object sensation, lack of oxygen permeability, and tear film disruption as opposed to a lack of wetting agents. Eyes are also prone to ocular infections such as bacterial keratitis (BK) and fungal keratitis (FK) and inflammatory events such as contact lens-related acute red eye (CLARE), contact lens peripheral ulcer (CLPU), and infiltrative keratitis (IK) caused by pathogenic bacterial and fungal strains that contaminate contact lenses. Therefore, a good design of contact lenses should adequately address the need for wetting, the supply of antioxidants, and antifouling and antimicrobial efficacy. Here, we developed multifunctional gallic acid (GA), phytomolecules-coated zinc oxide nanoparticles (ZN), and phytomolecules-coated zinc oxide nanoparticles + gallic acid + tobramycin (ZGT)-coated contact lenses using a sonochemical technique. The coated contact lenses exhibited significant antibacterial (>log10 5.60), antifungal, and antibiofilm performance against BK-causing multidrug resistant bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia. coli) and FK-related pathogenic fungal strains (Candida albicans, Aspergillus fumigatus, and Fusarium solani). The gallic acid, tobramycin, and phytomolecules-coated zinc oxide nanoparticles have different functionalities (-OH, -NH2, -COOH, -COH, etc.) that enhanced wettability of the coated contact lenses as compared to that of uncoated ones and further enabled them to exhibit remarkable antifouling property by prohibiting adhesion of platelets and proteins. The coated contact lenses also showed significant antioxidant activity by scavenging DPPH and good cytocompatibility to human corneal epithelial cells and keratinocytes cell lines. STATEMENT OF SIGNIFICANCE: • Multifunctional coated lenses were developed with an efficient sonochemical approach. • Lens surface was modified with nanocoatings of ZnO nanoparticles, gallic acid, and tobramycin. • This synergistic combination endowed the lenses with remarkable antimicrobial activity. • Coated lenses also showed noteworthy antifouling and biofilm inhibition activities. • Coated lenses showed good antioxidant, biocompatibility, and wettability characteristics.
Collapse
|
27
|
Yao Q, Borjihan Q, Qu H, Guo Y, Zhao Z, Qiao L, Li T, Dong A, Liu Y. Cow dung-derived biochars engineered as antibacterial agents for bacterial decontamination. J Environ Sci (China) 2021; 105:33-43. [PMID: 34130837 DOI: 10.1016/j.jes.2020.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Disposal of the pollutants arising from farming cattle and other livestock threatens the environment and public safety in diverse ways. Herein, we report on the synthesis of engineered biochars using cow dung as raw material, and investigating these biochars as antibacterial agents for water decontamination. By coating the biochars with N-halamine polymer and loading them with active chlorine (i.e., Cl+), we were able to regulate them on demand by tuning the polymer coating and bleaching conditions. The obtained N-halamine-modified biochars were found to be extremely potent against Escherichia coli and Staphylococcus aureus. We also investigated the possibility of using these N-halamine-modified biochars for bacterial decontamination in real-world applications. Our findings indicated that a homemade filter column packed with N-halamine-modified biochars removed pathogenic bacteria from mining sewage, dairy sewage, domestic sewage, and artificial seawater. This proposed strategy could indicate a new way for utilizing livestock pollutants to create on-demand decontaminants.
Collapse
Affiliation(s)
- Quanfu Yao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, China
| | - Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Qu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Yixuan Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ziying Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Long Qiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ting Li
- College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
28
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
29
|
Ramburrun P, Pringle NA, Dube A, Adam RZ, D'Souza S, Aucamp M. Recent Advances in the Development of Antimicrobial and Antifouling Biocompatible Materials for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3167. [PMID: 34207552 PMCID: PMC8229368 DOI: 10.3390/ma14123167] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
The risk of secondary bacterial infections resulting from dental procedures has driven the design of antimicrobial and antifouling dental materials to curb pathogenic microbial growth, biofilm formation and subsequent oral and dental diseases. Studies have investigated approaches based primarily on contact-killing or release-killing materials. These materials are designed for addition into dental resins, adhesives and fillings or as immobilized coatings on tooth surfaces, titanium implants and dental prosthetics. This review discusses the recent developments in the different classes of biomaterials for antimicrobial and antifouling dental applications: polymeric drug-releasing materials, polymeric and metallic nanoparticles, polymeric biocides and antimicrobial peptides. With modifications to improve cytotoxicity and mechanical properties, contact-killing and anti-adhesion materials show potential for incorporation into dental materials for long-term clinical use as opposed to short-lived antimicrobial release-based coatings. However, extended durations of biocompatibility testing, and adjustment of essential biomaterial features to enhance material longevity in the oral cavity require further investigations to confirm suitability and safety of these materials in the clinical setting. The continuous exposure of dental restorative and regenerative materials to pathogenic microbes necessitates the implementation of antimicrobial and antifouling materials to either replace antibiotics or improve its rational use, especially in the day and age of the ever-increasing problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Poornima Ramburrun
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Nadine A Pringle
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Admire Dube
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Razia Z Adam
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
| | - Sarah D'Souza
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Marique Aucamp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
30
|
Narayanan KB, Park GT, Han SS. Biocompatible, antibacterial, polymeric hydrogels active against multidrug-resistant Staphylococcus aureus strains for food packaging applications. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Xue J, Yao C, Li N, Su Y, Xu L, Hou S. Construction of polydopamine-coated three-dimensional graphene-based conductive network platform for amperometric detection of dopamine. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Cheng Q, Asha AB, Liu Y, Peng YY, Diaz-Dussan D, Shi Z, Cui Z, Narain R. Antifouling and Antibacterial Polymer-Coated Surfaces Based on the Combined Effect of Zwitterions and the Natural Borneol. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9006-9014. [PMID: 33576614 DOI: 10.1021/acsami.0c22658] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development and application of natural antibacterial materials have always been the focus of biomedical research. Borneol as a natural antibacterial compound has received extensive attention. However, the hydrophobicity caused by its unique structure limits its application range to a certain extent. In this study, we combine zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) with a complex bicyclic monoterpene structure borneol compound and prepare an excellent antifouling and antibacterial surface via the Schiff-base bond. The prepared coating has excellent hydrophilicity verified by the contact angle (CA), and its polymer layer is confirmed by X-ray photoelectron spectroscopy (XPS). The zwitterion MPC and borneol moieties in the copolymer play a coordinating role, relying on super hydration and the special stereochemical structure to prevent protein adsorption and inhibit bacterial adhesion, respectively, which are demonstrated by bovine serum albumin (BSA) adsorption and antibacterial activity test. Moreover, the water-soluble borneol derivative as the antibacterial surfaces we designed here was biocompatible toward MRC-5 (lung fibroblasts), as showed by in vitro cytotoxicity assays. Such results indicate the potential application of the as-prepared hydrophilic surfaces in the biomedical materials.
Collapse
Affiliation(s)
- Qiuli Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Anika Benozir Asha
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Zuosen Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhanchen Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| |
Collapse
|
33
|
Soria‐Carrera H, Franco‐Castillo I, Romero P, Martín S, Fuente JM, Mitchell SG, Martín‐Rapún R. On‐POM Ring‐Opening Polymerisation of
N
‐Carboxyanhydrides. Angew Chem Int Ed Engl 2021; 60:3449-3453. [DOI: 10.1002/anie.202013563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III 28029 Madrid Spain
| | - Isabel Franco‐Castillo
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III 28029 Madrid Spain
| | - Pilar Romero
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- Departamento de Química Física Facultad de Ciencias Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Jesús M. Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III 28029 Madrid Spain
| | - Scott G. Mitchell
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III 28029 Madrid Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III 28029 Madrid Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
34
|
Soria‐Carrera H, Franco‐Castillo I, Romero P, Martín S, Fuente JM, Mitchell SG, Martín‐Rapún R. On‐POM Ring‐Opening Polymerisation of
N
‐Carboxyanhydrides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III 28029 Madrid Spain
| | - Isabel Franco‐Castillo
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III 28029 Madrid Spain
| | - Pilar Romero
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- Departamento de Química Física Facultad de Ciencias Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Jesús M. Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III 28029 Madrid Spain
| | - Scott G. Mitchell
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III 28029 Madrid Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina Instituto de Salud Carlos III 28029 Madrid Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
35
|
Ghosh S, Amariei G, Mosquera MEG, Rosal R. Conjugated polymer nanostructures displaying highly photoactivated antimicrobial and antibiofilm functionalities. J Mater Chem B 2021; 9:4390-4399. [PMID: 34018538 DOI: 10.1039/d1tb00469g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work reports the use of conjugated polymer nanostructures (CPNs) as photoactivated antimicrobial compounds against Gram-positive and Gram-negative microorganisms. Two representative CPNs of polythiophene (PEDOT) and polyaniline (PANI) were prepared as nanofibres with an average diameter of 40 nm and length in the micrometer range. Both CPNs exhibited strong antimicrobial activity under UVA irradiation with the same fluence rate as the UVA component of the solar spectrum. The effect was tested using the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. The reduction of colony forming units (CFUs) reached >6 log for PEDOT concentrations as low as 33 ng mL-1. For PEDOT nanofibers, a complete inhibition of S. aureus and E. coli growth was reached at 883 ng mL-1 and 333 ng mL-1 respectively. The photoactivation effect of PANI nanofibres on S. aureus and E. coli was also high, with a CFU reduction of about 7 log and 4 log respectively for an exposure concentration of 33 ng mL-1. The antimicrobial activity was only high under light irradiation and was almost negligible for bulk PEDOT and PANI. The effect of polymeric nanofibers could be attributed to the photoinduced generation of reactive oxygen species, which may induce cell membrane damage, eventually leading to bacterial impairment and inhibition of their biofilm forming capacity. CPN PEDOT and PANI coatings were able to keep surfaces free of bacterial attachment and growth even after 20 h of previous contact with exponentially growing cultures in the dark. PEDOT and PANI CPNs demonstrated good cytocompatibility with human fibroblasts and the absence of hemolytic activity. The materials demonstrated advantages in terms of broad antibacterial spectrum, biofilm inhibition, and the absence of acute toxicity for biomedical applications.
Collapse
Affiliation(s)
- Srabanti Ghosh
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain. and Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata-700032, India.
| | - Georgiana Amariei
- Department of Chemical Engineering, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Marta E G Mosquera
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain.
| | - Roberto Rosal
- Department of Chemical Engineering, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
36
|
Huo J, Jia Q, Huang H, Zhang J, Li P, Dong X, Huang W. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem Soc Rev 2021; 50:8762-8789. [PMID: 34159993 DOI: 10.1039/d1cs00074h] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Due to the emerging bacterial resistance and the protection of tenacious biofilms, it is hard for the single antibacterial modality to achieve satisfactory therapeutic effects nowadays. In recent years, photothermal therapy (PTT)-derived multimodal synergistic treatments have received wide attention and exhibited cooperatively enhanced bactericidal activity. PTT features spatiotemporally controllable generation of hyperthermia that could eradicate bacteria without inducing resistance. The synergy of it with other treatments, such as chemotherapy, photo-dynamic/catalytic therapy (PDT/PCT), immunotherapy, and sonodynamic therapy (SDT), could lower the introduced laser density in PTT and avoid undesired overheating injury of normal tissues. Simultaneously, by heat-induced improvement of the bacterial membrane permeability, PTT is conducive for accelerated intracellular permeation of chemotherapeutic drugs as well as reactive oxygen species (ROS) generated by photosensitizers/sonosensitizers, and could promote infiltration of immune cells. Thereby, it could solve the currently existing sterilization deficiencies of other combined therapeutic modes, for example, bacterial resistance for chemotherapy, low drug permeability for PDT/PCT/SDT, adverse immunoreactions for immunotherapy, etc. Admittedly, PTT-derived synergistic treatments are becoming essential in fighting bacterial infection, especially those caused by antibiotic-resistant strains. This review firstly presents the classical and newly reported photothermal agents (PTAs) in brief. Profoundly, through the introduction of delicately designed nanocomposite platforms, we systematically discuss the versatile photothermal-derived multimodal synergistic therapy with the purpose of sterilization application. At the end, challenges to PTT-derived combinational therapy are presented and promising synergistic bactericidal prospects are anticipated.
Collapse
Affiliation(s)
- Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Han Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jing Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China and School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
37
|
Ren L, Chen J, Lu Q, Han J, Wu H. Anti-biofouling nanofiltration membrane constructed by in-situ photo-grafting bactericidal and hydrophilic polymers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Kimmins SD, Hanay SB, Murphy R, O'Dwyer J, Ramalho J, Ryan EJ, Kearney CJ, O'Brien FJ, Cryan SA, Fitzgerald-Hughes D, Heise A. Antimicrobial and degradable triazolinedione (TAD) crosslinked polypeptide hydrogels. J Mater Chem B 2021; 9:5456-5464. [PMID: 34048521 DOI: 10.1039/d1tb00776a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydrogels are perfectly suited to support cell and tissue growth in advanced tissue engineering applications as well as classical wound treatment scenarios. Ideal hydrogel materials for these applications should be easy to produce, biocompatible, resorbable and antimicrobial. Here we report the fabrication of degradable covalent antimicrobial lysine and tryptophan containing copolypeptide hydrogels, whereby the hydrogel properties can be independently modulated by the copolypeptide monomer ratio and chiral composition. Well-defined statistical copolypeptides comprising different overall molecular weights as well as ratios of l- and d-lysine and tryptophan at ratios of 35 : 15, 70 : 30 and 80 : 20 were obtained by N-carboxyanhydride (NCA) polymerisation and subsequently crosslinked by the selective reaction of bifunctional triazolinedione (TAD) with tryptophan. Real-time rheology was used to monitor the crosslinking reaction recording the fastest increase and overall modulus for copolypeptides with the higher tryptophan ratio. Water uptake of cylindrical hydrogel samples was dependent on crosslinking ratio but found independent of chiral composition, while enzymatic degradation proceeded significantly faster for samples containing more l-amino acids. Antimicrobial activity on a range of hydrogels containing different polypeptide chain lengths, lysine/tryptophan composition and l/d enantiomers was tested against reference laboratory strains of Gram-negative Escherichia coli (E. coli; ATCC25922) and Gram-positive, Staphylococcus aureus (S. aureus; ATCC25923). log reductions of 2.8-3.4 were recorded for the most potent hydrogels. In vitro leachable cytotoxicity tests confirmed non-cytotoxicity as per ISO guidelines.
Collapse
Affiliation(s)
- Scott D Kimmins
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland. and Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330, Curauma, Placilla, Valparaíso, Chile
| | - Saltuk B Hanay
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| | - Robert Murphy
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| | - Joanne O'Dwyer
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Jessica Ramalho
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| | - Emily J Ryan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Department of Biomedical Engineering, University of Massachusetts Amherst, MA, USA and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland
| | - Cathal J Kearney
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Department of Biomedical Engineering, University of Massachusetts Amherst, MA, USA and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland and Centre for Research in Medical Devices (CURAM), RCSI University of Medicine and Health Sciences, Dublin 2, and National University or Ireland, Galway, Ireland
| | - Sally-Ann Cryan
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicines, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland and Centre for Research in Medical Devices (CURAM), RCSI University of Medicine and Health Sciences, Dublin 2, and National University or Ireland, Galway, Ireland
| | - Deirdre Fitzgerald-Hughes
- Department of Clinical Microbiology, RCSI University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland. and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland and Centre for Research in Medical Devices (CURAM), RCSI University of Medicine and Health Sciences, Dublin 2, and National University or Ireland, Galway, Ireland
| |
Collapse
|
39
|
Tang Q, Cao S, Ma T, Xiang X, Luo H, Borovskikh P, Rodriguez RD, Guo Q, Qiu L, Cheng C. Engineering Biofunctional Enzyme‐Mimics for Catalytic Therapeutics and Diagnostics. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202007475] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qing Tang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Tian Ma
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Xi Xiang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Pavel Borovskikh
- Martin‐Luther‐University Halle‐Wittenberg Universitätsplatz 10 Halle (Saale) 06108 Germany
| | | | - Quanyi Guo
- Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Li Qiu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| |
Collapse
|
40
|
Pan F, Aaron Lau KH, Messersmith PB, Lu JR, Zhao X. Interfacial Assembly Inspired by Marine Mussels and Antifouling Effects of Polypeptoids: A Neutron Reflection Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12309-12318. [PMID: 32970448 PMCID: PMC7586401 DOI: 10.1021/acs.langmuir.0c02247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Polypeptoid-coated surfaces and many surface-grafted hydrophilic polymer brushes have been proven efficient in antifouling-the prevention of nonspecific biomolecular adsorption and cell attachment. Protein adsorption, in particular, is known to mediate subsequent cell-surface interactions. However, the detailed antifouling mechanism of polypeptoid and other polymer brush coatings at the molecular level is not well understood. Moreover, most adsorption studies focus only on measuring a single adsorbed mass value, and few techniques are capable of characterizing the hydrated in situ layer structure of either the antifouling coating or adsorbed proteins. In this study, interfacial assembly of polypeptoid brushes with different chain lengths has been investigated in situ using neutron reflection (NR). Consistent with past simulation results, NR revealed a common two-step structure for grafted polypeptoids consisting of a dense inner region that included a mussel adhesive-inspired oligopeptide for grafting polypeptoid chains and a highly hydrated upper region with very low polymer density (molecular brush). Protein adsorption was studied with human serum albumin (HSA) and fibrinogen (FIB), two common serum proteins of different sizes but similar isoelectric points (IEPs). In contrast to controls, we observed higher resistance by grafted polypeptoid against adsorption of the larger FIB, especially for longer chain lengths. Changing the pH to close to the IEPs of the proteins, which generally promotes adsorption, also did not significantly affect the antifouling effect against FIB, which was corroborated by atomic force microscopy imaging. Moreover, NR enabled characterization of the in situ hydrated layer structures of the polypeptoids together with proteins adsorbed under selected conditions. While adsorption on bare SiO2 controls resulted in surface-induced protein denaturation, this was not observed on polypeptoids. Our current results therefore highlight the detailed in situ view that NR may provide for characterizing protein adsorption on polymer brushes as well as the excellent antifouling behavior of polypeptoids.
Collapse
Affiliation(s)
- Fang Pan
- School
of Pharmacy, Changzhou University, Changzhou 213164, China
- School
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
| | - King Hang Aaron Lau
- Department
of Pure & Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Phillip B. Messersmith
- Department
of Materials Science and Engineering, Department of Bioengineering, University of California−Berkeley, Berkeley California 94720, United States
| | - Jian R. Lu
- School
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
| | - Xiubo Zhao
- School
of Pharmacy, Changzhou University, Changzhou 213164, China
- Department
of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K.
| |
Collapse
|
41
|
Liu L, Shi H, Yu H, Yan S, Luan S. Correction: The recent advances in surface antibacterial strategies for biomedical catheters. Biomater Sci 2020; 8:4638. [PMID: 32780075 DOI: 10.1039/d0bm90065f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for 'The recent advances in surface antibacterial strategies for biomedical catheters' by Lin Liu et al., Biomater. Sci., 2020, DOI: 10.1039/d0bm00659a.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Huan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and National Engineering Laboratory of Medical Implantable Devices & Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai 264210, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
42
|
Song B, Zhang E, Han X, Zhu H, Shi Y, Cao Z. Engineering and Application Perspectives on Designing an Antimicrobial Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21330-21341. [PMID: 32011846 PMCID: PMC7534184 DOI: 10.1021/acsami.9b19992] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Infections, contaminations, and biofouling resulting from micro- and/or macro-organisms remained a prominent threat to the public health, food industry, and aqua-/marine-related applications. Considering environmental and drug resistance concerns as well as insufficient efficacy on biofilms associated with conventional disinfecting reagents, developing an antimicrobial surface potentially improved antimicrobial performance by directly working on the microbes surrounding the surface area. Here we provide an engineering perspective on the logic of choosing materials and strategies for designing antimicrobial surfaces, as well as an application perspective on their potential impacts. In particular, we analyze and discuss requirements and expectations for specific applications and provide insights on potential misconnection between the antimicrobial solution and its targeted applications. Given the high translational barrier for antimicrobial surfaces, future research would benefit from a comprehensive understanding of working mechanisms for potential materials/strategies, and challenges/requirements for a targeted application.
Collapse
Affiliation(s)
- Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| |
Collapse
|
43
|
Gao Q, Feng T, Huang D, Liu P, Lin P, Wu Y, Ye Z, Ji J, Li P, Huang W. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomater Sci 2020; 8:278-289. [PMID: 31691698 DOI: 10.1039/c9bm01396b] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Titanium (Ti)-based implants often suffer from detrimental bacterial adhesion and inefficient healing, so it is crucial to design a dual-functional coating that prevents bacterial infection and enhances bioactivity for a successful implant. Herein, we successfully devised a cationic polypeptide (Pep)-functionalized biomimetic nanostructure coating with superior activity, which could not only kill pathogenic bacteria rapidly and inhibit biofilm formation for up to two weeks, but also promote in situ hydroxyapatite (HAp) formation. Specifically, a titania (TiO2) nanospike coating (TNC) was fabricated by alkaline hydrothermal treatment firstly, followed by immobilization of rationally synthesized Pep via robust coordinative interactions, named TNPC. This coating was able to effectively kill (>99.9%) both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria, while being non-toxic to murine MC3T3-E1 osteoblastic cells. Furthermore, the in vivo infection studies denoted that the adherent bacteria numbers on the TNPC implants were significantly reduced by 6 orders of magnitude than those on the pure Ti implants (p < 0.001). Importantly, in the presence of cationic amino groups and residual Ti-OH groups, substantial HAp deposition on the TNPC surface in Kokubo's simulated body fluid (SBF) occurred after 14 days. Altogether, our results support the clinical potential of this biomimetic dual-functional coating as a new approach with desirable antibacterial properties and HAp-forming ability in orthopedic and dental applications.
Collapse
Affiliation(s)
- Qiang Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Son K, Ueda M, Taguchi K, Maruyama T, Takeoka S, Ito Y. Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. J Control Release 2020; 322:209-216. [PMID: 32194174 DOI: 10.1016/j.jconrel.2020.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/27/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Using polyethylene glycol (PEG) to functionalize liposomes improves their stealth properties and stability in blood. However, PEG is known to induce the accelerated blood clearance (ABC) phenomenon, which occurs for multiple doses owing to anti-PEG IgM being produced after the initial injection. In this study, as an alternative to PEG, polysarcosine (PSar) was selected owing to its low antigenicity and its highly dense chains with controllable lengths, similar to PEG. Furthermore, we directly evaluate the potential of PSar for avoiding the ABC phenomenon by comparing PSar with PEG on the same liposome platform, which has similar physicochemical properties such as hydrophobic region, membrane fluidity, and size. PEG- and PSar-liposomes were prepared and characterized for comparison. PSar-liposomes showed similar physicochemical properties to PEG-liposomes in terms of size control, zeta potential, membrane polarity, and fluidity; however, ELISA results showed noticeably lower levels and faster production speeds of both IgM and IgG for PSar-liposomes than for PEG-liposomes. In addition, a pharmacokinetics experiment with multiple injections showed that PSar-PE coating of liposomes may help to circumvent the ABC phenomenon.
Collapse
Affiliation(s)
- Kon Son
- RIKEN Cluster for Pioneering Research (CPR), Japan; School of Advanced Science and Engineering, Waseda University, Japan.
| | - Motoki Ueda
- RIKEN Cluster for Pioneering Research (CPR), Japan; RIKEN Center for Emergent Matter Science (CEMS), Japan.
| | - Kazuaki Taguchi
- Faculty of Pharmacy, Keio University, Japan; Faculty of Pharmaceutical Sciences, Sojo University, Japan.
| | - Toru Maruyama
- Graduate School of Pharmaceutical Science, Kumamoto University, Japan.
| | - Shinji Takeoka
- School of Advanced Science and Engineering, Waseda University, Japan.
| | - Yoshihiro Ito
- RIKEN Cluster for Pioneering Research (CPR), Japan; RIKEN Center for Emergent Matter Science (CEMS), Japan.
| |
Collapse
|
45
|
Zhang D, Xu X, Long X, Cheng K, Li J. Advances in biomolecule inspired polymeric material decorated interfaces for biological applications. Biomater Sci 2020; 7:3984-3999. [PMID: 31429424 DOI: 10.1039/c9bm00746f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the development of surface modification technology, interface properties have great effects on the interaction between biomedical materials and cells and biomolecules, which significantly affects the biocompatibility and functionality of materials. As an orderly and perfect system, biological organisms in nature effectively integrate all kinds of bio-interfaces with physiological functions, which shed light on the importance of biomolecules in organisms. It gives birth to a bio-inspiration strategy to design and fabricate smart materials with specific functionalities, e.g. osteogenic and chondrocytic induced materials inspired by bone sialoprotein and chondroitin sulfate. Through this mimicking approach, various functional materials were utilized to decorate the interfaces and further optimize the performance of biomedical materials, which would widely expand their applications. In this review, followed by a summary and brief introduction of surface modification methods, we highlight recent advances in the fabrication of functional polymeric materials inspired by a range of biomolecules for decorating interfaces. Then, the other applications of biomolecule inspired materials including tissue engineering, diagnosis and treatment of diseases and physiological function regulation are presented and the future outlook is discussed as well.
Collapse
Affiliation(s)
- Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | | | | | | | | |
Collapse
|
46
|
Song J, Liu H, Lei M, Tan H, Chen Z, Antoshin A, Payne GF, Qu X, Liu C. Redox-Channeling Polydopamine-Ferrocene (PDA-Fc) Coating To Confer Context-Dependent and Photothermal Antimicrobial Activities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8915-8928. [PMID: 31971763 DOI: 10.1021/acsami.9b22339] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial disinfection associated with medical device surfaces has been an increasing need, and surface modification strategies such as antibacterial coatings have gained great interest. Here, we report the development of polydopamine-ferrocene (PDA-Fc)-functionalized TiO2 nanorods (Ti-Nd-PDA-Fc) as a context-dependent antibacterial system on implant to combat bacterial infection and hinder biofilm formation. In this work, two synergistic antimicrobial mechanisms of the PDA-Fc coating are proposed. First, the PDA-Fc coating is redox-active and can be locally activated to release antibacterial reactive oxygen species (ROS), especially ·OH in response to the acidic microenvironment induced by bacteria colonization and host immune responses. The results demonstrate that redox-based antimicrobial activity of Ti-Nd-PDA-Fc offers antibacterial efficacy of over 95 and 92% against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), respectively. Second, the photothermal effect of PDA can enhance the antibacterial capability upon near-infrared (NIR) irradiation, with over 99% killing efficacy against MRSA and E. coli, and even suppress the formation of biofilm through both localized hyperthermia and enhanced ·OH generation. Additionally, Ti-Nd-PDA-Fc is biocompatible when tested with model pre-osteoblast MC-3T3 E1 cells and promotes cell adhesion and spreading presumably due to its nanotopographical features. The MRSA-infected wound model also indicates that Ti-Nd-PDA-Fc with NIR irradiation can effectively eliminate bacterial infection and suppress host inflammatory responses. We believe that this study demonstrates a simple means to create biocompatible redox-active coatings that confer context-dependent antibacterial activities to implant surfaces.
Collapse
Affiliation(s)
- Jialin Song
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhanyi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Artem Antoshin
- Institute for Regenerative Medicine , Sechenov University , 8-2 Trubetskaya Street , Moscow 119991 , Russia
| | - Gregory F Payne
- Department of Bioengineering , Institute for Biosystems and Biotechnology Research and Fischell , 5115 Plant Sciences Building, College Park , Maryland 20742 , United States
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
47
|
Gao Q, Li X, Yu W, Jia F, Yao T, Jin Q, Ji J. Fabrication of Mixed-Charge Polypeptide Coating for Enhanced Hemocompatibility and Anti-Infective Effect. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2999-3010. [PMID: 31845798 DOI: 10.1021/acsami.9b19335] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Medical catheters are prone to fouling by protein adsorption and platelet adhesion/activation due to their hydrophobic surface, resulting in bacterial adhesion/biofilm formation, associated infection, and thrombosis. Hence, an ultralow-fouling and exceptional infection-resistant coating on devices is urgently needed. Herein, we synthesized mussel-inspired cationic polypeptide (cPep) and mixed-charge polypeptide (mPep) via an N-carboxyanhydride ring opening polymerization method. In the view of the chemical structure, in addition to the catechol group of levodopa, the cationic group of l-lysine (K), and the hydrophobic group of l-phenylalanine (F), the mPep, comparing with cPep, contains the anionic group of l-glutamic acid (E) since the negatively charge amino acid sequence is newly introduced, so as to guarantee its bactericidal ability, low toxicity, and surface self-deposition. Both cPep and mPep coatings are conveniently obtained by a dopamine-assisted codeposition technique. Compared with the cPep coating, the mPep coating has a similar antibacterial activity level (>99%) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Meanwhile, it is demonstrated that the mPep coating has most effective antibiofilm activity (>3 days) and protein/platelet-resistant ability in vitro, as well as improving hemocompatibility. Furthermore, the mPep-coated silicone catheter induces no inflammatory response and significantly lowers the bacterial cell number with 6 log reduction in a mouse model of infection. Consequently, the rationally designed mPep with a simple coating technique has great potential in combating against medical catheter-related clinical infections.
Collapse
Affiliation(s)
- Qiang Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xu Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Weijiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Tiantian Yao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
48
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
49
|
Wu Y, Xia G, Zhang W, Chen K, Bi Y, Liu S, Zhang W, Liu R. Structural design and antimicrobial properties of polypeptides and saccharide–polypeptide conjugates. J Mater Chem B 2020; 8:9173-9196. [DOI: 10.1039/d0tb01916j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development and progress of antimicrobial polypeptides and saccharide–polypeptide conjugates in regards to their structural design, biological functions and antimicrobial mechanism.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Guixue Xia
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Weiwei Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Kang Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yufang Bi
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Shiqi Liu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Wenjing Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
| |
Collapse
|
50
|
Jiang L, Zhu W, Qian H, Wang C, Chen Y, Liu P. Fabrication of PMPC/PTM/PEGDA micropatterns onto polypropylene films behaving with dual functions of antifouling and antimicrobial activities. J Mater Chem B 2019; 7:5078-5088. [PMID: 31432877 DOI: 10.1039/c9tb00927b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymer materials with high biocompatibility and versatile functions are urgently required in the biomedical field. The hydrophobic surface and inert traits of polymer materials usually encounter severe biofouling and bacterial infection which hinder the potential application of polymers as biomedical materials. Although many antifouling or antimicrobial coatings have been developed for modification of biomedical devices/implants, few can simultaneously fulfill the requirements for antimicrobial and antifouling activities. Herein, we constructed bifunctional micropatterns with antifouling and antimicrobial properties onto polypropylene (PP) films using argon plasma activation treatment, photomask technique and UV-initiated graft polymerization method. Different sizes of PMPC/PTM/PEGDA micropatterns were fabricated on PP films to yield patterned PP-PMPC/PTM/PEGDA as evidenced by infrared (IR) spectroscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), where PMPC is poly(2-methacryloyloxyethyl phosphorylcholine) for enhancement of hydrophilicity and biocompatibility, PTM is poly(methacryloyloxyethyltrimethylammonium chloride) for contribution to antimicrobial activity and PEGDA is poly(ethylene glycol diacrylate) as the crosslinker. The surface hydrophilicity of patterned PP-PMPC/PTM/PEGDA was characterized by the static water contact angle test. The results showed that the PP sample with a micropattern with the size of 5 μm exhibited the best hydrophilicity. For biological assays of patterned PP-PMPC/PTM/PEGDA, the micropattern size at 5 μm performed the best for both antiplatelet adhesion and antimicrobial activities. We anticipate that this work could provide a new method for building bifunctional biomedical materials to promote the application of PP in biomedical fields.
Collapse
Affiliation(s)
- Liu Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wancheng Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Huaming Qian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|