1
|
Cao Z, Liu J, Yang X. Deformable nanocarriers for enhanced drug delivery and cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230037. [PMID: 39439489 PMCID: PMC11491306 DOI: 10.1002/exp.20230037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/28/2024] [Indexed: 10/25/2024]
Abstract
Recently, the field of nanomedicine has witnessed substantial advancements in the development of nanocarriers for targeted drug delivery, emerges as promising platforms to enhance therapeutic efficacy and minimize adverse effects associated with conventional chemotherapy. Notably, deformable nanocarriers have garnered considerable attention due to their unique capabilities of size changeable, tumor-specific aggregation, stimuli-triggered disintegration, and morphological transformations. These deformable nanocarriers present significant opportunities for revolutionizing drug delivery strategies, by responding to specific stimuli or environmental cues, enabling achieved various functions at the tumor site, including size-shrinkage nanocarriers enhance drug penetration, aggregative nanocarriers enhance retention effect, disintegrating nanocarriers enable controlled drug release, and shape-changing nanocarriers improve cellular uptake, allowing for personalized treatment approaches and combination therapies. This review provides an overview of recent developments and applications of deformable nanocarriers for enhancing tumor therapy, underscores the diverse design strategies employed to create deformable nanocarriers and elucidates their remarkable potential in targeted tumor therapy.
Collapse
Affiliation(s)
- Ziyang Cao
- Department of General SurgeryGuangzhou First People's Hospitalthe Second Affiliated HospitalSouth China University of TechnologyGuangzhouPeople's Republic of China
- Center for Medical Research on Innovation and TranslationInstitute of Clinical MedicineSchool of MedicineGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouPeople's Republic of China
| | - Jing Liu
- School of ChemistryChemical Engineering and Biotechnology Nanyang Technological UniversitySingaporeSingapore
| | - Xianzhu Yang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdongPeople's Republic of China
| |
Collapse
|
2
|
Sun X, Wu L, Du L, Xu W, Han M. Targeting the organelle for radiosensitization in cancer radiotherapy. Asian J Pharm Sci 2024; 19:100903. [PMID: 38590796 PMCID: PMC10999375 DOI: 10.1016/j.ajps.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024] Open
Abstract
Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenhong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Jeong DI, Kim HJ, Lee SY, Kim S, Huh JW, Ahn JH, Karmakar M, Kim HJ, Lee K, Lee J, Ko HJ, Cho HJ. Hydrogel design to overcome thermal resistance and ROS detoxification in photothermal and photodynamic therapy of cancer. J Control Release 2024; 366:142-159. [PMID: 38145660 DOI: 10.1016/j.jconrel.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (-)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.
Collapse
Affiliation(s)
- Da In Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Jin Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song Yi Lee
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sungyun Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Won Huh
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mrinmoy Karmakar
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han-Jun Kim
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - KangJu Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
4
|
Xiao W, Zhao L, Sun Y, Yang X, Fu Q. Stimuli-Responsive Nanoradiosensitizers for Enhanced Cancer Radiotherapy. SMALL METHODS 2024; 8:e2301131. [PMID: 37906050 DOI: 10.1002/smtd.202301131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Radiotherapy (RT) has been a classical therapeutic method of cancer for several decades. It attracts tremendous attention for the precise and efficient treatment of local tumors with stimuli-responsive nanomaterials, which enhance RT. However, there are few systematic reviews summarizing the newly emerging stimuli-responsive mechanisms and strategies used for tumor radio-sensitization. Hence, this review provides a comprehensive overview of recently reported studies on stimuli-responsive nanomaterials for radio-sensitization. It includes four different approaches for sensitized RT, namely endogenous response, exogenous response, dual stimuli-response, and multi stimuli-response. Endogenous response involves various stimuli such as pH, hypoxia, GSH, and reactive oxygen species (ROS), and enzymes. On the other hand, exogenous response encompasses X-ray, light, and ultrasound. Dual stimuli-response combines pH/enzyme, pH/ultrasound, and ROS/light. Lastly, multi stimuli-response involves the combination of pH/ROS/GSH and X-ray/ROS/GSH. By elaborating on these responsive mechanisms and applying them to clinical RT diagnosis and treatment, these methods can enhance radiosensitive efficiency and minimize damage to surrounding normal tissues. Finally, this review discusses the additional challenges and perspectives related to stimuli-responsive nanomaterials for tumor radio-sensitization.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Lin Zhao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yang Sun
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
5
|
Cui Y, Han J, Li H, Ma X, Tang Y, Deng Y, Wang D, Huang D, Li J, Liu Z. Ultrasound mediated gold nanoclusters-capped gas vesicles for enhanced fluorescence imaging. Photodiagnosis Photodyn Ther 2023; 43:103737. [PMID: 37549816 DOI: 10.1016/j.pdpdt.2023.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The intercellular tight junction inhibits tumor imaging efficiency of nanomaterials, and enhanced cellular drug delivery with efficient detection is an important tool for tumor diagnosis. Herein, we fabricate fluorescence gold nanoclusters (Au NCs) decorated gas vesicles (GV-Au) for ultrasound (US)-mediated enhanced cellular delivery and imaging, in which GVs are living cell derived protein bubbles. GV-Au is rod-shaped sack-like structure around 230 nm, and displays improved stability and fluorescence ability compared with free Au NCs. Flow cytometry assay confirms the intracellular localization of Au NCs and GV-Au with a respective 2.20-fold enhanced cellular uptake post US treatment. Confocal images reveal the efficient cellular uptake of GV-Au under US impact, indicating that GV-Au is suitable for cellular and in vivo fluorescence imaging. Our strategy provides a new idea for efficient fluorescence imaging by penetrating cell membranes at the presence of US treatment.
Collapse
Affiliation(s)
- Yutong Cui
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China
| | - Jiani Han
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China
| | - Yong Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Denggao Huang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Recent advances on organelle specific Ru(II)/Ir(III)/Re(I) based complexes for photodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Farjadian F, Ghasemi S, Akbarian M, Hoseini-Ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022; 10:952675. [PMID: 36186605 PMCID: PMC9515617 DOI: 10.3389/fchem.2022.952675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles offer numerous advantages in various fields of science, particularly in medicine. Over recent years, the use of nanoparticles in disease diagnosis and treatments has increased dramatically by the development of stimuli-responsive nano-systems, which can respond to internal or external stimuli. In the last 10 years, many preclinical studies were performed on physically triggered nano-systems to develop and optimize stable, precise, and selective therapeutic or diagnostic agents. In this regard, the systems must meet the requirements of efficacy, toxicity, pharmacokinetics, and safety before clinical investigation. Several undesired aspects need to be addressed to successfully translate these physical stimuli-responsive nano-systems, as biomaterials, into clinical practice. These have to be commonly taken into account when developing physically triggered systems; thus, also applicable for nano-systems based on nanomaterials. This review focuses on physically triggered nano-systems (PTNSs), with diagnostic or therapeutic and theranostic applications. Several types of physically triggered nano-systems based on polymeric micelles and hydrogels, mesoporous silica, and magnets are reviewed and discussed in various aspects.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| |
Collapse
|
8
|
Wang Q, Ye J, Wang J, Liu M, Li C, Lv W, Liu S, Niu N, Xu J, Fu Y. Tumor-responsive nanomedicine based on Ce 3+-modulated up-/downconversion dual-mode emission for NIR-II imaging-guided dynamic therapy. J Mater Chem B 2022; 10:3824-3833. [PMID: 35502611 DOI: 10.1039/d2tb00626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemodynamic therapy (CDT) and photodynamic therapy (PDT) based on intratumoral generation of reactive oxygen species (ROS) have been playing crucial roles in conquering tumors. However, the above therapeutic methods are still constrained by the overexpressed tumor glutathione (GSH) and intrinsic tumor resistance to conventional organic photosensitizers. Herein, lanthanide-doped nanoparticles (LDNPs) were coated with inorganic bimetallic copper and manganese silicate nanospheres (CMSNs) and modified with sodium alginate (SA) for second near-infrared (NIR-II, 1000-1700 nm) imaging-guided CDT and PDT. Interestingly, cross-relaxation (CR) pathways between Ce3+ and Ho3+ and CR between Ce3+ and Er3+ are fully exploited to enable dual-mode upconversion (UC) and NIR-II downconversion (DC) emissions of LDNPs under 980 nm laser excitation. UC emission can induce CMSNs to produce toxic singlet oxygen (1O2) for PDT, and the released Mn2+ and Cu+ ions caused by GSH-induced degradation of CMSNs can react with endogenous H2O2 to produce hydroxyl radical (˙OH) for CDT. Significantly, the ultrabright NIR-II DC emission endows the systems with exceptional optical imaging capabilities. All results affirm the potency of such an "all in one" theranostic nanomedicine integrating PDT, CDT and remarkable NIR-II imaging abilities accompanied by the function of modulating tumor microenvironment in cancer theranostics.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jikun Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Mengting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Wubin Lv
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Na Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China. .,Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China. .,Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China.,Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
9
|
Wen C, Yin F, Cheng Y, Yu H, Sun YQ, Yin XB. Construction of NaYF 4 Library for Morphology-Controlled Multimodality Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103206. [PMID: 34608755 DOI: 10.1002/smll.202103206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Morphology and size of the nanoparticles are highly related to the properties; establishing a library to summarize the relationship between the morphology/size and property is very helpful for associated applications. However, the NaYF4 library and thus the correlation between the morphology and property are still absent. Here NaYF4 library is presented and their morphologies and structures are illustrated at atomic scale for the first time. How about the crystal formation affects the morphology is further used to guide the property. Through rational doping, upconversion luminescence, magnetic resonance (MR) and computed tomography are investigated with the nanoprisms, nanoflowers, and nanoplates as models to reveal the effect of the size and morphology. The difference of the properties provides strong evidence on the importance of the library. In particular, the "imperfect structure" of nanoflower is observed on atomic scale and enhances the MR response. The different upconversion intensity ratio for the emissions at 475 and 693 nm is observed from doped NaYF4 with different morphology. Thus, controllable fabrication of NaYF4 with desired morphology is indispensable to achieve the optimal properties as the guidance on how to choose matrix from the library to meet the specific applications.
Collapse
Affiliation(s)
- Cong Wen
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fangfei Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue Cheng
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua Yu
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Qing Sun
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Guedes G, Wang S, Fontana F, Figueiredo P, Lindén J, Correia A, Pinto RJB, Hietala S, Sousa FL, Santos HA. Dual-Crosslinked Dynamic Hydrogel Incorporating {Mo 154 } with pH and NIR Responsiveness for Chemo-Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007761. [PMID: 34382257 PMCID: PMC11468987 DOI: 10.1002/adma.202007761] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Polyoxometalates are an emerging class of molecular clusters, with well-defined structures and chemical compositions that are produced through simple, low-cost, and highly reproducible methods. In particular, the wheel-shaped cluster {Mo154 } is a promising photothermal agent due to its intervalence charge transfer transitions. However, its toxicity hinders its systemic administration, being the development of a localized delivery system still incipient. Herein, an injectable and self-healing hydrogel of easy preparation and administration is developed, incorporating both {Mo154 } and doxorubicin for synergistic photothermal and chemotherapy applications. The hydrogel is composed of benzylaldehyde functionalized polyethylene glycol, poly(N-isopropylacrylamide) functionalized chitosan and {Mo154 }. The gelation occurs within 60 s at room temperature, and the dual crosslinking by Schiff base and electrostatic interactions generates a dynamic network, which enables self-healing after injection. Moreover, the hydrogel delivers chemotherapeutic drugs, with a release triggered by dual near infra-red (NIR) radiation and pH changes. This stimuli-responsive release system along with the photothermal conversion ability of the hydrogel allows the simultaneous combination of photothermal and chemotherapy. This synergic system efficiently ablates the cancer tumor in vivo with no systemic toxicity. Overall, this work paves the way for the development of novel {Mo154 }-based systems, incorporated in self-healing and injectable hydrogels for dual chemo-photothermal therapy.
Collapse
Affiliation(s)
- Gabriela Guedes
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Chemistry DepartmentUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
- CICECO‐Aveiro Institute of MaterialsUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Shiqi Wang
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Flavia Fontana
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Patrícia Figueiredo
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Jere Lindén
- Faculty of Veterinary MedicineFinnish Centre for Laboratory Animal Pathology (FCLAP)/HiLIFEUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Alexandra Correia
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Ricardo J. B. Pinto
- Chemistry DepartmentUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
- CICECO‐Aveiro Institute of MaterialsUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Sami Hietala
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Filipa L. Sousa
- Chemistry DepartmentUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
- CICECO‐Aveiro Institute of MaterialsUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
11
|
Recent advances of redox-responsive nanoplatforms for tumor theranostics. J Control Release 2021; 332:269-284. [DOI: 10.1016/j.jconrel.2021.02.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023]
|
12
|
Zha S, Chau H, Chau WY, Chan LS, Lin J, Lo KW, Cho WC, Yip YL, Tsao SW, Farrell PJ, Feng L, Di JM, Law G, Lung HL, Wong K. Dual-Targeting Peptide-Guided Approach for Precision Delivery and Cancer Monitoring by Using a Safe Upconversion Nanoplatform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002919. [PMID: 33717845 PMCID: PMC7927616 DOI: 10.1002/advs.202002919] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/12/2020] [Indexed: 05/04/2023]
Abstract
Using Epstein-Barr virus (EBV)-induced cancer cells and HeLa cells as a comparative study model, a novel and safe dual-EBV-oncoproteins-targeting pH-responsive peptide engineering, coating, and guiding approach to achieve precision targeting and treatment strategy against EBV-associated cancers is introduced. Individual functional peptide sequences that specifically bind to two overexpressed EBV-specific oncoproteins, EBNA1 (a latent cellular protein) and LMP1 (a transmembrane protein), are engineered in three different ways and incorporated with a pH-sensitive tumor microenvironment (TME)-cleavable linker onto the upconversion nanoparticles (UCNP) NaGdF4:Yb3+, Er3+@NaGdF4 (UCNP-P n , n = 5, 6, and 7). A synergistic combination of the transmembrane LMP1 targeting ability and the pH responsiveness of UCNP-P n is found to give specific cancer differentiation with higher cellular uptake and accumulation in EBV-infected cells, thus a lower dose is needed and the side effects and health risks from treatment would be greatly reduced. It also gives responsive UC signal enhancement upon targeted dual-protein binding and shows efficacious EBV cancer inhibition in vitro and in vivo. This is the first example of simultaneous imaging and inhibition of two EBV latent proteins, and serves as a blueprint for next-generation peptide-guided precision delivery nanosystem for the safe monitoring and treatment against one specific cancer.
Collapse
Affiliation(s)
- Shuai Zha
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Ho‐Fai Chau
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Wai Yin Chau
- Department of BiologyHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Lai Sheung Chan
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130000P. R. China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational OncologyThe Chinese University of Hong KongKowloonHong Kong SAR000000P. R. China
| | - William Chi‐Shing Cho
- Department of Clinical OncologyQueen Elizabeth HospitalKowloonHong Kong SAR000000P. R. China
| | - Yim Ling Yip
- School of Biomedical SciencesThe University of Hong KongKowloonHong Kong SAR000000P. R. China
| | - Sai Wah Tsao
- School of Biomedical SciencesThe University of Hong KongKowloonHong Kong SAR000000P. R. China
| | - Paul J. Farrell
- Section of VirologyImperial College Faculty of MedicineNorfolk PlaceLondonW12 0BZUK
| | - Liang Feng
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR000000P. R. China
| | - Jin Ming Di
- Department of UrologyThe Third Affiliated Hospital of Sun Yat‐sen University600# Tianhe RoadGuangzhou510630P. R. China
| | - Ga‐Lai Law
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR000000P. R. China
| | - Hong Lok Lung
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| |
Collapse
|
13
|
Zuo C, Guo Y, Li J, Peng Z, Bai S, Yang S, Wang D, Chen H, Xie G. A nanoprobe for fluorescent monitoring of microRNA and targeted delivery of drugs. RSC Adv 2021; 11:8871-8878. [PMID: 35423397 PMCID: PMC8695329 DOI: 10.1039/d1ra00154j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Multifunctional nano-materials that can be used to monitor the expression of specific biomarkers and serve as vehicles for controlled drug delivery are highly desirable. Herein, we report a new DNA-hybrid-gated core–shell upconversion nanoprobe (UCNP@MOF/DOX) for fluorescence analysis of microRNA-21 (miR-21), which also triggers the release of drug loaded in the probes for on-demand anti-cancer treatment. The nanoprobe is built on the merits of ultraviolet-visible light of upconversion nanoparticles (UCNPs) excited by near-infrared (NIR) and extraordinary loading capability of metal–organic frameworks (MOFs) for drug delivery. Controlled release of doxorubicin (DOX) from the nanoprobe by miR-21 underwent the following two-stage kinetics: a fast release stage specifically triggered by miR-21 and proportional to miR-21 concentration and a slow stage observed in both gated and ungated nanoprobes due to collapse of the UIO-66-NH2 coatings via ligand exchange with phosphates. In addition, the nanoprobe showed good selectivity, a linear response towards miR-21 ranging from 4 nM to 500 nM, and a limit of detection in 4 nM, which precluded unintended payload leakage due to low-abundance endogenous miR-21 expression in normal cells. Moreover, based on a dual-targeted delivery system constituted by AS1411-mediated recognition and responsive release of DOX, a specific cytotoxic efficacy was observed in MCF-7 cells. The present work provides a smart and robust nanoprobe for real-time detection of miRNA and dual-responsive drug delivery in tumor cells. A DNA-hybrid-gated core–shell upconversion nanoprobe is prepared for both fluorescent monitoring of miR-21 and on-demand delivery of DOX. It showed good selectivity towards miR-21 and demonstrated specific cytotoxic efficacy towards MCF-7 cells.![]()
Collapse
Affiliation(s)
- Chen Zuo
- Key Laboratory of Laboratory Medical Diagnostics
- Ministry of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
| | - Yongcan Guo
- Department of Laboratory Medicine
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
- Luzhou
- P. R. China
| | - Junjie Li
- Key Laboratory of Laboratory Medical Diagnostics
- Ministry of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
| | - Zhiping Peng
- Department of Radiological Medicine and Oncology
- College of Basic Medicine
- Chongqing Medical University
- Chongqing
- P. R. China
| | - Shulian Bai
- Key Laboratory of Laboratory Medical Diagnostics
- Ministry of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
| | - Shuangshuang Yang
- Key Laboratory of Laboratory Medical Diagnostics
- Ministry of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
| | - Ding Wang
- Key Laboratory of Laboratory Medical Diagnostics
- Ministry of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
| | - Hui Chen
- Department of Laboratory Medicine
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing
- P. R. China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics
- Ministry of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
14
|
Gu M, Jiang L, Hao L, Lu J, Liu Z, Lei Z, Li Y, Hua C, Li W, Li X. A novel theranostic nanoplatform for imaging-guided chemo-photothermal therapy in oral squamous cell carcinoma. J Mater Chem B 2021; 9:6006-6016. [PMID: 34282440 DOI: 10.1039/d1tb01136g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is highly malignant and invasive, and current treatments are limited due to serious side effects and unsatisfactory outcomes. Here, we reported the terbium ion-doped hydroxyapatite (HATb) nanoparticle as a luminescent probe to encapsulate both the near-infrared (NIR) photothermal agent polydopamine (PDA) and anticancer doxorubicin (DOX) for imaging-guided chemo-photothermal therapy. The morphology, crystal structure, fluorescence, and composition of HATb-PDA-DOX were characterized. HATb-PDA showed a high DOX loading capacity. A theranostic nanoplatform showed pH/NIR responsive release properties and better antitumor outcomes in OSCC cells than monomodal chemotherapy or photothermal therapy, while keeping side effects at a minimum. Also, the luminescence signal was confirmed to be tracked and the increase of the red/green (R/G) ratio caused by the DOX release could be used to monitor the DOX release content. Furthermore, HATb-PDA-DOX plus NIR treatment synergistically promoted in vitro cell death through the overproduction of reactive oxygen species (ROS), cell cycle arrest, and increased cell apoptosis. Overall, this work presents an innovative strategy in designing a multifunctional nano-system for imaging-guided cancer treatment.
Collapse
Affiliation(s)
- Mengqin Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. and Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zixue Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yijun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chengge Hua
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xiyu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. and Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Zhou B, Guo Z, Lin Z, Jiang BP, Shen XC. Stimuli-Responsive Nanomaterials for Smart Tumor-Specific Phototherapeutics. ChemMedChem 2020; 16:919-931. [PMID: 33345434 DOI: 10.1002/cmdc.202000831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Phototherapy, a type of photoresponsive regulation of biological activities, together with additional stimuli-responsive features, offers significant potential for enhancing the precision and efficacy of cancer treatments. To achieve tumor-specific therapeutics, numerous studies have focused on the development of smart phototherapeutic nanomaterials (PNMs) that can respond to endogenous pathological characteristics (e. g., mild acidity, the overproduction of glutathione, the overproduction of hydrogen peroxide, the overexpression of specific surface receptors, etc.) present in the tumor and/or exogenous stimuli. Such responsiveness can effectively improve the physicochemical properties, cellular uptake, tumor-targeting performance, and pharmacokinetic profile of PNMs. Herein, we will systematically discuss recent advances in this field. Moreover, potential challenges and future directions in the development of stimuli-responsive PNMs are also presented to support the development of this emerging cutting-edge research area.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhengxi Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhaoxin Lin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
16
|
Paliwal SR, Kenwat R, Maiti S, Paliwal R. Nanotheranostics for Cancer Therapy and Detection: State of the Art. Curr Pharm Des 2020; 26:5503-5517. [PMID: 33200696 DOI: 10.2174/1381612826666201116120422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Nanotheranostics, an approach of combining both diagnosis and therapy, is one of the latest advances in cancer therapy particularly. Nanocarriers designed and derived from inorganic materials such as like gold nanoparticles, silica nanoparticles, magnetic nanoparticles and carbon nanotubes have been explored for tremendous applications in this area. Similarly, nanoparticles composed of some organic material alone or in combination with inorganic nano-cargos have been developed pre-clinically and possess excellent features desired. Photothermal therapy, MRI, simultaneous imaging and delivery, and combination chemotherapy with a diagnosis are a few of the known methods exploring cancer therapy and detection at organ/tissue/molecular/sub-cellular level. This review comprises an overview of the recent reports meant for nano theranostics purposes. Targeted cancer nanotheranostics have been included for understating tumor micro-environment or cell-specific targeting approach employed. A brief account of various strategies is also included for the readers highlighting the mechanism of cancer therapy.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilapsur, CG, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| |
Collapse
|
17
|
Tan YY, Yap PK, Xin Lim GL, Mehta M, Chan Y, Ng SW, Kapoor DN, Negi P, Anand K, Singh SK, Jha NK, Lim LC, Madheswaran T, Satija S, Gupta G, Dua K, Chellappan DK. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact 2020; 329:109221. [PMID: 32768398 DOI: 10.1016/j.cbi.2020.109221] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
Cancer continues to be one of the most challenging diseases to be treated and is one of the leading causes of deaths around the globe. Cancers account for 13% of all deaths each year, with cancer-related mortality expected to rise to 13.1 million by the year 2030. Although, we now have a large library of chemotherapeutic agents, the problem of non-selectivity remains the biggest drawback, as these substances are toxic not only to cancerous cells, but also to other healthy cells in the body. The limitations with chemotherapy and radiation have led to the discovery and development of novel strategies for safe and effective treatment strategies to manage the menace of cancer. Researchers have long justified and have shed light on the emergence of nanotechnology as a potential area for cancer therapy and diagnostics, whereby, nanomaterials are used primarily as nanocarriers or as delivery agents for anticancer drugs due to their tumor targeting properties. Furthermore, nanocarriers loaded with chemotherapeutic agents also overcome biological barriers such as renal and hepatic clearances, thus improving therapeutic efficacy with lowered morbidity. Theranostics, which is the combination of rationally designed nanomaterials with cancer-targeting moieties, along with protective polymers and imaging agents has become one of the core keywords in cancer research. In this review, we have highlighted the potential of various nanomaterials for their application in cancer therapy and imaging, including their current state and clinical prospects. Theranostics has successfully paved a path to a new era of drug design and development, in which nanomaterials and imaging contribute to a large variety of cancer therapies and provide a promising future in the effective management of various cancers. However, in order to meet the therapeutic needs, theranostic nanomaterials must be designed in such a way, that take into account the pharmacokinetic and pharmacodynamics properties of the drug for the development of effective carcinogenic therapy.
Collapse
Affiliation(s)
- Yoke Ying Tan
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Pui Khee Yap
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Griselda Loo Xin Lim
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, 302017, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, NSW, 2308, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Li M, Zhao G, Su WK, Shuai Q. Enzyme-Responsive Nanoparticles for Anti-tumor Drug Delivery. Front Chem 2020; 8:647. [PMID: 32850662 PMCID: PMC7406800 DOI: 10.3389/fchem.2020.00647] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
The past few decades have seen great progress in the exploration of nanoparticles (NPs) as novel tools for cancer treatments and diagnosis. Practical and reliable application of nanoparticle-based technology in clinical transformation remains nevertheless an ongoing challenge. The design, preparation, and evaluation of various smart NPs with specific physicochemical responses in tumor-related physiological conditions have been of great interests in both academic and clinical research. Of particular, smart enzyme-responsive nanoparticles can predictively and selectively react with specific enzymes expressed in tumor tissues, leading to targeted delivery of anti-tumor drugs, reduced systemic toxicity, and improved therapeutic effect. In addition, NPs interact with internal enzymes usually under mild conditions (low temperature, aqueous media, neutral or close to neutral pH) with high efficiency. In this review, recent advances in the past 5 years in enzyme-responsive nanoparticles for anti-tumor drug delivery are summarized and discussed. The following contents are divided based on the different action sites of enzymes toward NPs, notably hydrophobic core, cleavable/uncleavable linker, hydrophilic crown, and targeting ligand. Enzyme-engaged destruction of any component of these delicate nanoparticle structures could result in either targeting drug delivery or controlled drug release.
Collapse
Affiliation(s)
- Mengqian Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Guangkuo Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Wei-Ke Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
19
|
Xu J, Zhou J, Chen Y, Yang P, Lin J. Lanthanide-activated nanoconstructs for optical multiplexing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213328] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
He C, Yu L, Ding L, Yao H, Chen Y, Hao Y. Lysine demethylase KDM3A regulates nanophotonic hyperthermia resistance generated by 2D silicene in breast cancer. Biomaterials 2020; 255:120181. [PMID: 32569864 DOI: 10.1016/j.biomaterials.2020.120181] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) is the most common malignant disease affecting women's health worldwide. The benefits from conventional therapeutic modalities are severely limited. An increasing number of promising photothermal materials have been recently developed and introduced into the therapeutic regimens of BC, but the underlying biological mechanism remains unclear. Silicon-based materials have enjoyed many popularities in the biomedical field owing to their desirable biocompatibility, biodegradability and versatility. Herein, we introduced two dimensional (2D) silicene nanosheets (SNSs) into the BC treatment and achieved profound photothermal-ablation efficacy. Importantly, this work reveals the underlying biological mechanism and regulation factors of photonic hyperthermia in BC. The RNA sequencing and immunoblot demonstrated that photothermia enhanced apoptosis in BC by activating caspase 3 and caspase 7. Importantly, knockdown of lysine demethylase KDM3A sensitized BC to photothermia epigenetically. It has been revealed that KDM3A could erase p53K372me1 and suppress the anti-cancer functions of p53, leading to the downregulation of pro-apoptotic proteins-PUMA and NOXA verified by Co-IP and ChIP-qPCR assays. Therefore, our results not only import near infrared light (NIR) induced photothermal ablation generated by SNSs-BSA into the BC treatment, but also clarify the underlying mechanism and regulation factors for further photothermal performance optimization and clinical translation.
Collapse
Affiliation(s)
- Chao He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Luodan Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Li Ding
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Heliang Yao
- Analysis & Testing Center for Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
21
|
Ovais M, Mukherjee S, Pramanik A, Das D, Mukherjee A, Raza A, Chen C. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000055. [PMID: 32227413 DOI: 10.1002/adma.202000055] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 05/12/2023]
Abstract
Tailoring personalized cancer nanomedicines demands detailed understanding of the tumor microenvironment. In recent years, smart upconversion nanoparticles with the ability to exploit the unique characteristics of the tumor microenvironment for precise targeting have been designed. To activate upconversion nanoparticles, various bio-physicochemical characteristics of the tumor microenvironment, namely, acidic pH, redox reactants, and hypoxia, are exploited. Stimuli-responsive upconversion nanoparticles also utilize the excessive presence of adenosine triphosphate (ATP), riboflavin, and Zn2+ in tumors. An overview of the design of stimulus-responsive upconversion nanoparticles that precisely target and respond to tumors via targeting the tumor microenvironment and intracellular signals is provided. Detailed understanding of the tumor microenvironment and the personalized design of upconversion nanoparticles will result in more effective clinical translation.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, 6500 Main St Ste 1030, Houston, TX, 77030, USA
| | - Arindam Pramanik
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Devlina Das
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, 641004, India
| | - Anubhab Mukherjee
- Department of Formulation, R&D, Aavishkar Oral Strips Pvt. Ltd., Cherlapally, Hyderabad, 500051, India
| | - Abida Raza
- NILOP Nanomedicine Research Laboratories (NNRL), National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences Lehtrar Road, Islamabad, 45650, Pakistan
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Yi JT, Pan QS, Liu C, Hu YL, Chen TT, Chu X. An intelligent nanodevice based on the synergistic effect of telomerase-triggered photodynamic therapy and gene-silencing for precise cancer cell therapy. NANOSCALE 2020; 12:10380-10389. [PMID: 32373890 DOI: 10.1039/d0nr02096f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of intelligent and precise cancer therapy systems that enable accurate diagnosis and specific elimination of cancer cells while protecting normal cells to improve the safety and effectiveness of the treatment is still a challenge. Herein, we report a novel activatable nanodevice for precise cancer therapy. The nanodevice is constructed by adsorbing a DNA duplex probe onto MnO2 nanosheets. After cellular uptake, the DNA duplex probe undergoes telomerase-triggered conformation switching, resulting in a Ce6 "turn-on" signal for the identification of cancer cells. Furthermore, Deoxyribozyme (DNAzyme) is activated to catalyse the cleavage of survivin mRNA, actualizing a precise synergistic therapy in cancer cells involving photodynamic therapy and gene-silencing. The MnO2 nanosheets provide Mn2+ for the DNAzyme and relieve hypoxia to improve the efficiency of the photodynamic therapy. Live cell studies reveal that this nanodevice can diagnose cancer cells and specifically eliminate them without harming normal cells, so making the treatment safer and more effective. The developed DNA-MnO2 nanodevice provides a valuable and general platform for precise cancer therapy.
Collapse
Affiliation(s)
- Jin-Tao Yi
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Guedes G, Wang S, Santos HA, Sousa FL. Polyoxometalate Composites in Cancer Therapy and Diagnostics. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gabriela Guedes
- Chemistry Department and CICECO-Aveiro Institute of Materials; University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P.O.Box 56) 00014 Helsinki Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P.O.Box 56) 00014 Helsinki Finland
| | - Hélder A. Santos
- Helsinki Institute of Life Science; University of Helsinki; Viikinkaari 5 E (P.O.Box 56) 00014 Helsinki Finland
| | - Filipa L. Sousa
- Chemistry Department and CICECO-Aveiro Institute of Materials; University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
24
|
Jiang M, Liu X, Chen Z, Li J, Liu S, Li S. Near-Infrared-Detached Adhesion Enabled by Upconverting Nanoparticles. iScience 2020; 23:100832. [PMID: 31986480 PMCID: PMC6994296 DOI: 10.1016/j.isci.2020.100832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Achieving efficient and biocompatible detachment between adhered wet materials (i.e., tissues and hydrogels) is a major challenge. Recently, photodetachable topological adhesion has shown great promise as a strategy for conquering this hurdle. However, this photodetachment was triggered by UV light with poor biocompatibility and penetration capacity. This study describes near-infrared (NIR) light-detached topological adhesion based on polyacrylic acid coated upconverting nanoparticles (UCNP@PAA) and a photodetachable adhesive (termed Cell-Fe). Cell-Fe is a coordinated topological adhesive consisting of carboxymethylcellulose and Fe3+ that can be photodecomposed by UV light. To prepare a substrate for NIR-detached topological adhesion, UCNP@PAA and Cell-Fe were mixed and brushed on the surface of the model adherent. The UCNP@PAA can harvest NIR light and convert it into UV light, triggering the decomposition of the Cell-Fe and inducing the detachment. This NIR-detached topological adhesion is also feasible in deep tissue because of the ability of NIR light to penetrate tissue.
Collapse
Affiliation(s)
- Mingyue Jiang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P.R. China
| | - Xue Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P.R. China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P.R. China.
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P.R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P.R. China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P.R. China.
| |
Collapse
|
25
|
Cheng YJ, Hu JJ, Qin SY, Zhang AQ, Zhang XZ. Recent advances in functional mesoporous silica-based nanoplatforms for combinational photo-chemotherapy of cancer. Biomaterials 2020; 232:119738. [DOI: 10.1016/j.biomaterials.2019.119738] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
|
26
|
Kong X, Wan G, Li B, Wu L. Recent advances of polyoxometalates in multi-functional imaging and photothermal therapy. J Mater Chem B 2020; 8:8189-8206. [DOI: 10.1039/d0tb01375g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recent advances of polyoxometalate clusters in terms of near infrared photothermal properties for targeted tumor therapy have been summarized while the combined applications with various bio-imaging techniques and chemotherapies are reviewed.
Collapse
Affiliation(s)
- Xueping Kong
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Guofeng Wan
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
27
|
Ling D, Li H, Xi W, Wang Z, Bednarkiewicz A, Dibaba ST, Shi L, Sun L. Heterodimers made of metal–organic frameworks and upconversion nanoparticles for bioimaging and pH-responsive dual-drug delivery. J Mater Chem B 2020; 8:1316-1325. [DOI: 10.1039/c9tb02753j] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An ingenious method was developed to grow metal–organic frameworks on the surface of UCNPs, resulting in the UCMOFs@D@5 nanosystem for bioimaging and pH-responsive dual-drug delivery.
Collapse
Affiliation(s)
- Danping Ling
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
- Research Center of Nano Science and Technology, and School of Material Science and Engineering
| | - Haihong Li
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Wensong Xi
- Institute of Nanochemistry and Nanobiology
- Shanghai University
- Shanghai 200444
- China
| | - Zhuo Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Lab of Hainan Province
- Hainan University
- Haikou 570228
- China
| | - Artur Bednarkiewicz
- Department of Spectroscopy of Excited States
- Institute of Low Temperature and Structure Research
- Polish Academy of Science
- 50-422 Wrocław
- Poland
| | | | - Liyi Shi
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
- Research Center of Nano Science and Technology, and School of Material Science and Engineering
| | - Lining Sun
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
- Research Center of Nano Science and Technology, and School of Material Science and Engineering
| |
Collapse
|
28
|
Zhao J, Sun S, Li X, Zhang W, Gou S. Enhancing Photodynamic Therapy Efficacy of Upconversion-Based Nanoparticles Conjugated with a Long-Lived Triplet Excited State Iridium(III)-Naphthalimide Complex: Toward Highly Enhanced Hypoxia-Inducible Factor-1. ACS APPLIED BIO MATERIALS 2019; 3:252-262. [DOI: 10.1021/acsabm.9b00774] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shuchen Sun
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoyan Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Zhang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
29
|
Hong E, Liu L, Bai L, Xia C, Gao L, Zhang L, Wang B. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110097. [DOI: 10.1016/j.msec.2019.110097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 07/14/2019] [Accepted: 08/15/2019] [Indexed: 01/26/2023]
|
30
|
Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Song D, Chi S, Li X, Wang C, Li Z, Liu Z. Upconversion System with Quantum Dots as Sensitizer: Improved Photoluminescence and PDT Efficiency. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41100-41108. [PMID: 31618568 DOI: 10.1021/acsami.9b16237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Upconversion nanoparticles (UCNPs) are prospective platforms for bioimaging and phototherapy, but a critical bottleneck is the limited brightness due to the faint absorptivity of lanthanide ions and the low quantum yield. To circumvent this problem, we herein propose our strategy to reconstruct the energy cascade of UCNPs using semiconductor quantum dots (QDs) as light sensitizer of Nd3+/Yb3+ codoped UCNPs. Ag2Se QDs with strong absorption at 808 nm acted as efficient antenna and transferred their energy to Yb3+ via a resonance energy transfer process, significantly enhancing the luminescence of UCNPs. This nanocomposite was then combined with Rose Bengal and applied for photodynamic therapy. Both in vitro and in vivo studies revealed the introduction of QDs improved the therapeutic performance remarkably. Our study suggests Ag2Se QDs with excellent photophysical properties can be promising agents to overcome the shortcomings of UCNPs and further strengthen their applications.
Collapse
Affiliation(s)
- Dan Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Siyu Chi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xin Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Caixia Wang
- College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Zhen Li
- College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
32
|
Wu J, Du S, Wang Y. Photosensitizer coated upconversion nanoparticles for triggering reactive oxygen species under 980 nm near-infrared excitation. J Mater Chem B 2019; 7:7306-7313. [PMID: 31670352 DOI: 10.1039/c9tb01629e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rare-earth-based upconversion nanotechnology has recently shown great promise for photodynamic therapy (PDT). NaGd(MoO4)2-based materials have a scheelite structure with good thermal and chemical stability, and excellent up-conversion luminescence properties after co-doping rare earth ions (Tm3+ and Yb3+), which can effectively excite the photosensitizer to generate reactive oxygen species (ROS). In this work, Tm3+ and Yb3+ co-doped NaGd(MoO4)2 upconversion nanoparticles (UCNPs) are prepared by the sol-gel method and further complexed with photosensitizer MC540 (UCNPs@MC540). The prepared UCNPs showed a tetragonal phase and revealed nanoparticles with an average size of 150 nm. Under 980 nm excitation, the UCNPs exhibited a dominant blue emission band (1G4→3H6) of Tm3+, while the optimum doping concentration was identified at 1% Tm3+ and 20% Yb3+. In addition, the blue emissions of Tm3+ simultaneously activate the MC540 composited on the surface of the nanoparticles to produce a large amount of singlet oxygen (1O2), which is detected by DCFH-DA. Moreover, UCNPs@MC540 also shows strong emission at around 800 nm near-infrared. The results show that the UCNPs@MC540 materials have potential application prospects in PDT and biological imaging.
Collapse
Affiliation(s)
- Jinhua Wu
- Department of Materials Science, School of Physical Science and Technology, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Shanshan Du
- Department of Materials Science, School of Physical Science and Technology, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yuhua Wang
- Department of Materials Science, School of Physical Science and Technology, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
33
|
Chen L, Xu S, Li W, Ren T, Yuan L, Zhang S, Zhang XB. Tumor-acidity activated surface charge conversion of two-photon fluorescent nanoprobe for enhanced cellular uptake and targeted imaging of intracellular hydrogen peroxide. Chem Sci 2019; 10:9351-9357. [PMID: 32110299 PMCID: PMC7017867 DOI: 10.1039/c9sc03781k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Elevated levels of intracellular hydrogen peroxide (H2O2) are closely related to the development of cancers. Specific imaging of H2O2 in tumor sites would be significant not only for cancer diagnosis but also for gaining a deep understanding of the role of H2O2 in cancer. However, traditional fluorescent probes based only on responses to overexpression levels of H2O2 in cancer cells are insufficient to distinguish cancer cells from other unhealthy or healthy cells in complex biological systems. Herein, we developed a smart, two-photon fluorescent GC-NABP nanoprobe with pH-dependent surface charge conversion for tumor-targeted imaging of H2O2. The nanoprobe was constructed by the self-assembly of amphiphilic GC-NABP, which was synthesized by grafting the hydrophobic, H2O2-responsive and two-photon fluorophore, NABP, onto hydrophilic biopolymer glycol chitosan (GC). Taking advantage of pH-titratable amino groups on GC, the nanoprobe had the capability of surface charge conversion from negative at physiologic pH to positive in the acidic tumor microenvironment. The positive charge of the nanoprobe promoted electrostatic interactions with cell membranes, leading to enhanced cellular uptake in acidic environment. Upon cellular uptake, the high level of H2O2 in tumor cells triggered boronate deprotections of the nanoprobe, generating a "turn-on" fluorescence emission for H2O2 imaging. The nanoprobe exhibited good sensitivity and selectivity to H2O2 with a detection limit down to 110 nM in vitro. The results from flow cytometry and two-photon fluorescence imaging of H2O2 in living cells and tissues evidenced the enhanced cellular uptake and targeted imaging of intracellular H2O2 in acidic environment. Compared to control nanoparticles that lack pH sensitivity, our nanoprobe showed enhanced accumulation in tumor sites and was applied to targeted imaging of H2O2 in a tumor-bearing mouse model. This work demonstrates that the nanoprobe GC-NABP holds great promise for tumor-specific imaging of cellular H2O2, providing a potential tool to explore the role of H2O2 in tumor sites.
Collapse
Affiliation(s)
- Lanlan Chen
- Collaborative Innovation Center of Tumor Marker Detection Technology , Equipment and Diagnosis-Therapy Integration in Universities of Shandong , Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers , College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China . ;
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE , College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology , Equipment and Diagnosis-Therapy Integration in Universities of Shandong , Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers , College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China . ;
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| |
Collapse
|
34
|
Xu J, Gulzar A, Yang D, Gai S, He F, Yang P. Tumor self-responsive upconversion nanomedicines for theranostic applications. NANOSCALE 2019; 11:17535-17556. [PMID: 31553008 DOI: 10.1039/c9nr06450h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To date, malignant tumors continue to be the most lethal disease, causing more than 8.2 million deaths worldwide each year. In recent years, nanostructures based on rare-earth upconversion luminescent nanoparticles have shown significant advantages in the integration of multimodal imaging and therapy. Compared with normal tissues, the tumor microenvironment (TME) exhibits unique characteristics including high interstitial fluid pressure, abnormal blood vessels, a hypoxic and slightly acidic environment, and high levels of glutathione (GSH) and hydrogen peroxide (H2O2). According to these characteristics, increasing attention in the antitumor field has been given to designing nanomedicines with specific responses to the TME based on rare-earth upconversion nanoparticles (UCNPs) and to achieving efficient tumor diagnosis and treatment under the premise of reducing side effects. Nevertheless, a review that systematically summarizes TME-responsive upconversion nanomedicines (UCNMs) for realizing tumor self-enhanced theranostics has not been published to date. In this review, we summarize the recent progress made in UCNP-based nanotherapeutics by highlighting the increasingly developing trend of TME-responsive UCNMs. The general characteristics of the TME are introduced in detail and their utilization in designing TME-responsive UCNMs is systematically discussed. Based on NIR light-excited optical imaging, we discuss the superiority of UCNMs when applied in tumor theranostics with an emphasis on how to use them to realize TME-mediated multimodal imaging-guided therapy.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | | | | | | | | | | |
Collapse
|
35
|
Fu H, Huang Y, Lu H, An J, Liu DE, Zhang Y, Chen Q, Gao H. A theranostic saponin nano-assembly based on FRET of an aggregation-induced emission photosensitizer and photon up-conversion nanoparticles. J Mater Chem B 2019; 7:5286-5290. [PMID: 31460561 DOI: 10.1039/c9tb01248f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A photodynamic aggregation-induced emissive (AIE) fluorophore, characterized by near-infrared (NIR) emission, was created based on a fluorescence resonance energy transfer (FRET) donor of appreciable NIR up-conversion nanoparticles (UCNPs) and acceptor of immense fluorescence emissive AIEgen. Hence, the entrapment of the FRET couple into an amphiphilic saponin-based nanoscaled self-assembly demonstrated appealing theranostic functions in producing immense fluorescence emission and cytotoxic reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hao Fu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - Yongkang Huang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - Hongguang Lu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - Jinxia An
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - De-E Liu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - Yongxin Zhang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| | - Qixian Chen
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
36
|
Wang Y, Wang Q, Zhang C. Synthesis of Diamond‐Shaped Mesoporous Titania Nanobricks as pH‐Responsive Drug Delivery Vehicles for Cancer Therapy. ChemistrySelect 2019. [DOI: 10.1002/slct.201900992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanbing Wang
- Department of OrthopedicsThe Second Hospital of Jilin University No. 218 Ziqiang Street Changchun China
| | - Qi Wang
- Nuclear Medicine DepartmentThe First Hospital of Jilin University No. 71 Xinmin Street Changchun, Changchun China
| | - Chunmei Zhang
- Department of Cell BiologyCollege of Basic Medical SciencesJilin University No. 126 Xinmin Avenue Changchun China
| |
Collapse
|
37
|
Time-staggered delivery of erlotinib and doxorubicin by gold nanocages with two smart polymers for reprogrammable release and synergistic with photothermal therapy. Biomaterials 2019; 217:119327. [PMID: 31299626 DOI: 10.1016/j.biomaterials.2019.119327] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/13/2019] [Accepted: 06/29/2019] [Indexed: 01/08/2023]
Abstract
Photochemotherapy is currently an effective anticancer therapy. Recently, it has been reported that cancer cells pretreated with epidermal growth factor receptor (EGFR) inhibitor erlotinib (Erl) can significantly synergize its apoptosis against the DNA damaging agent doxorubicin (Dox). As a result, we designed two gold nanocages (Au NCs) microcontainers covered with different smart polymer shell-PAA (pH responsive) and p (NIPAM-co-AM) (temperature responsive) containing Erl and Dox respectively. The acidic tumor microenvironment and NIR light irradiation can selectively activate the release of Erl and Dox. Time staggered release of Erl and Dox and photothermal therapy enhance the apoptotic signaling pathways, resulting in improved tumor cell killing in both MCF-7 (low EGFR expression) and A431 (very high EGFR expression) tumor cells, but more efficient in the latter. The photochemotherapy strategy controls the order and duration of drug exposure precisely in spatial and temporal, and significantly improves the therapeutic efficacy against high EGFR expressed tumors.
Collapse
|
38
|
Zong L, Wang Z, Yu R. Lanthanide-Doped Photoluminescence Hollow Structures: Recent Advances and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804510. [PMID: 30680913 DOI: 10.1002/smll.201804510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Lanthanide-doped nanomaterials have attracted significant attention for their preeminent properties and widespread applications. Due to the unique characteristic, the lanthanide-doped photoluminescence materials with hollow structures may provide advantages including enhanced light harvesting, intensified electric field density, improved luminescent property, and larger drug loading capacity. Herein, the synthesis, properties, and applications of lanthanide-doped photoluminescence hollow structures (LPHSs) are comprehensively reviewed. First, different strategies for the engineered synthesis of LPHSs are described in detail, which contain hard, soft, self-templating methods and other techniques. Thereafter, the relationship between their structure features and photoluminescence properties is discussed. Then, niche applications including biomedicines, bioimaging, therapy, and energy storage/conversion are focused on and superiorities of LPHSs for these applications are particularly highlighted. Finally, keen insights into the challenges and personal prospects for the future development of the LPHSs are provided.
Collapse
Affiliation(s)
- Lingbo Zong
- Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zumin Wang
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ranbo Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
39
|
Serge Correales YE, Hazra C, Ullah S, Lima LR, Ribeiro SJL. Precisely tailored shell thickness and Ln 3+ content to produce multicolor emission from Nd 3+-sensitized Gd 3+-based core/shell/shell UCNPs through bi-directional energy transfer. NANOSCALE ADVANCES 2019; 1:1936-1947. [PMID: 36134241 PMCID: PMC9418845 DOI: 10.1039/c9na00006b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/20/2019] [Indexed: 05/12/2023]
Abstract
Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) have been paid great attention as multiplexing agents due to their numerous uses in biological and clinical applications such as bioimaging and magnetic resonance imaging (MRI), to name a few. To achieve efficient multicolor emission from UCNPs under single 808 nm excitation and avoid detrimental cross-relaxations between the Ln3+ activator ions (positioned in either the core and/or shell in the core/shell), it is essential to design an adequate nanoparticle architecture. Herein, we demonstrate the tailoring of multicolor upconversion luminescence (UCL) from Nd3+-sensitized Gd3+-based core/shell/shell UCNPs with an architecture represented as NaGdF4:Tm3+(0.75)/Yb3+(40)/Ca2+(7)/Nd3+(1)@NaGdF4:Ca2+(7)/Nd3+(30)@NaGdF4:Yb3+(40)/Ca2+(7)/Nd3+(1)/Er3+(X = 1, 2, 3, 5, 7) [hereafter named CSS (Er3+ = 1, 2, 3, 5 and 7 mol%)]. Such UCNPs can be excited at a single wavelength (∼808 nm) without generation of any local heat. Incorporation of substantial Nd3+-sensitizers with an appropriate concentration in the middle layer allows efficient harvesting of excitation light which migrates bi-directionally across the core/shell interfaces in sync to produce blue emission from Tm3+ (activator) ions in the core as well as green and red emission from Er3+ (activator) ions in the outermost shell. Introduction of Ca2+ lowers the local crystal field symmetry around Ln3+ ions and subsequently affects their intra 4f-4f transition probability, thus enhancing the upconversion efficiency of the UCNPs. By simple and precise control of the shell thickness along with tuning the content of Ln3+ ions in each domain, multicolor UCL can be produced, ranging from blue to white. We envision that our sub-20 nm sized Nd3+-sensitized Gd3+-based UCNPs are not only potential candidates for a variety of multiplexed biological applications (without impediment of any heating effect), but also can act as MRI contrast agents in clinical diagnosis.
Collapse
Affiliation(s)
- York E Serge Correales
- Institute of Chemistry, São Paulo State University, UNESP 14800-060 Araraquara SP Brazil
| | - Chanchal Hazra
- Institute of Chemistry, São Paulo State University, UNESP 14800-060 Araraquara SP Brazil
| | - Sajjad Ullah
- Institute of Chemical Sciences, University of Peshawar 25120 Peshawar Pakistan
| | - Laís R Lima
- Institute of Chemistry, São Paulo State University, UNESP 14800-060 Araraquara SP Brazil
| | - Sidney J L Ribeiro
- Institute of Chemistry, São Paulo State University, UNESP 14800-060 Araraquara SP Brazil
| |
Collapse
|
40
|
Dong S, Xu J, Jia T, Xu M, Zhong C, Yang G, Li J, Yang D, He F, Gai S, Yang P, Lin J. Upconversion-mediated ZnFe 2O 4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy. Chem Sci 2019; 10:4259-4271. [PMID: 31057754 PMCID: PMC6471739 DOI: 10.1039/c9sc00387h] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
ZnFe2O4, a semiconductor catalyst with high photocatalytic activity, is ultrasensitive to ultraviolet (UV) light and tumor H2O2 for producing reactive oxygen species (ROS). Thereby, ZnFe2O4 can be used for photodynamic therapy (PDT) from direct electron transfer and the newly defined chemodynamic therapy (CDT) from the Fenton reaction. However, UV light has confined applicability because of its high phototoxicity, low penetration, and speedy attenuation in the biotissue. Herein, an upconversion-mediated nanoplatform with a mesoporous ZnFe2O4 shell was developed for near-infrared (NIR) light enhanced CDT and PDT. The nanoplatform (denoted as Y-UCSZ) was comprised of upconversion nanoparticles (UCNPs), silica shell, and mesoporous ZnFe2O4 shell and was synthesized through a facile hydrothermal method. The UCNPs can efficiently transfer penetrable NIR photons to UV light, which can activate ZnFe2O4 for producing singlet oxygen thus promoting the Fenton reaction for ROS generation. Besides, Y-UCSZ possesses enormous internal space, which is highly beneficial for housing DOX (doxorubicin, a chemotherapeutic agent) to realize chemotherapy. Moreover, the T 2-weighted magnetic resonance imaging (MRI) effect from Fe3+ and Gd3+ ions in combination with the inherent upconversion luminescence (UCL) imaging and computed tomography (CT) from the UCNPs makes an all-in-one diagnosis and treatment system. Importantly, in vitro and in vivo assays authenticated excellent biocompatibility of the PEGylated Y-UCSZ (PEG/Y-UCSZ) and high anticancer effectiveness of the DOX loaded PEG/Y-UCSZ (PEG/Y-UCSZ&DOX), indicating its potential application in the cancer treatment field.
Collapse
Affiliation(s)
- Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Tao Jia
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Mengshu Xu
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Chongna Zhong
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Guixin Yang
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Jiarong Li
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China . ;
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130021 , P. R. China .
| |
Collapse
|
41
|
Xu J, Gulzar A, Yang P, Bi H, Yang D, Gai S, He F, Lin J, Xing B, Jin D. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
A biodegradable MnSiO3@Fe3O4 nanoplatform for dual-mode magnetic resonance imaging guided combinatorial cancer therapy. Biomaterials 2019; 194:151-160. [DOI: 10.1016/j.biomaterials.2018.12.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/30/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
|
43
|
Liu Y, Jia Q, Zhai X, Mao F, Jiang A, Zhou J. Rationally designed pure-inorganic upconversion nanoprobes for ultra-highly selective hydrogen sulfide imaging and elimination in vivo. Chem Sci 2019; 10:1193-1200. [PMID: 30774918 PMCID: PMC6349023 DOI: 10.1039/c8sc04464c] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022] Open
Abstract
Lung injury is a hydrogen sulfide (H2S)-associated complication with high mortality in acute pancreatitis (AP) cases. Herein, we used Prussian Blue (PB) as a H2S-responsive acceptor to develop a novel pure-inorganic upconversion nanoprobe for detecting and eliminating H2S, which can be used for diagnosing AP and alleviating lung injury. Upconversion nanoprobes with 5 nm PB shells were optimized to achieve outstanding in vitro H2S detection capacity (linear range: 0-150 μM, LOD: 50 nM), which met the in vivo serum H2S range, and thus were feasible for imaging H2S in vivo. More importantly, when combined with the traditional H2S synthetase inhibitor dl-PAG, the nanoprobes also served as a therapeutic agent that synergistically alleviated lung injury. As PB is an FDA-approved drug, our work proposes a potential clinical modality for the early diagnosis of AP, which will decrease lung injury-induced mortality and increase the survival rates of AP cases.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Qi Jia
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Xuejiao Zhai
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Fang Mao
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Anqi Jiang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Jing Zhou
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| |
Collapse
|
44
|
Wu X, Yan P, Ren Z, Wang Y, Cai X, Li X, Deng R, Han G. Ferric Hydroxide-Modified Upconversion Nanoparticles for 808 nm NIR-Triggered Synergetic Tumor Therapy with Hypoxia Modulation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:385-393. [PMID: 30556390 DOI: 10.1021/acsami.8b18427] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The efficacy of dynamic therapy for solid tumors suffers daunting challenges induced by tumor hypoxia. Herein, we report a biocompatible nanosystem containing Fe(OH)3-modified upconversion nanoparticles (UCNPs) for promoting synergetic chemo- and photodynamic therapy with the modulation of tumor hypoxia. In this system, UCNPs convert 808 nm near-infrared excitation to visible photon energy, which stimulates chlorin-e6 photosensitizers to generate toxic reactive oxygen species (ROS) by consumption of dissolved oxygen in cancer cells. Importantly, we employ Fe(OH)3 compounds to enable continuous oxygen generation in cancer cells and, meanwhile, induce extra ROS formation through the Fenton-like reaction. The system consequently improves the tumor treatment efficacy in vitro and in vivo. This study puts forward a novel combinatorial therapeutic platform for tumor microenvironment modulation and enhanced cancer therapy.
Collapse
Affiliation(s)
- Xiao Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Peijian Yan
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital , Zhejiang University , Hangzhou 310016 , P. R. China
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Yifan Wang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital , Zhejiang University , Hangzhou 310016 , P. R. China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital , Zhejiang University , Hangzhou 310016 , P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| |
Collapse
|
45
|
Liu S, Li W, Gai S, Yang G, Zhong C, Dai Y, He F, Yang P, Suh YD. A smart tumor microenvironment responsive nanoplatform based on upconversion nanoparticles for efficient multimodal imaging guided therapy. Biomater Sci 2019; 7:951-962. [DOI: 10.1039/c8bm01243a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A smart tumor microenvironment responsive theranostic nanoplatform USPDF for UCL/CT dual-mode imaging and combination of chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Wenting Li
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Guixin Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Chongna Zhong
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Yunlu Dai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Yung Doug Suh
- Research Center for Bio Platform Technology
- Korea Research Institute of Chemical Technology (KRICT)
- DaeJeon 305-600
- Korea
- School of Chemical Engineering
| |
Collapse
|
46
|
Li Y, Liu J, Qin X, Deng Y, Zhang J, Sun Y. Ultrafast synthesis of fluorine-18 doped bismuth based upconversion nanophosphors for tri-modal CT/PET/UCL imaging in vivo. Chem Commun (Camb) 2019; 55:7259-7262. [DOI: 10.1039/c9cc02677k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorine-18 doped bismuth upconversion luminescence (UCL) nanoprobe (18F-UNBOF) was quickly synthesized within 1 min at room temperature, and it could be utilized for computed tomography (CT), positron emission tomography (PET) and UCL imaging in vivo.
Collapse
Affiliation(s)
- Yuhao Li
- Institute of Bismuth Science & College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Jie Liu
- Institute of Bismuth Science & College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Xiaojia Qin
- Department of Research and Development & Department of Nuclear Medicine
- Shanghai Proton and Heavy Ion Center
- Fudan University Shanghai Cancer Center
- Shanghai 201321
- China
| | - Yong Deng
- Institute of Bismuth Science & College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Jianping Zhang
- Department of Research and Development & Department of Nuclear Medicine
- Shanghai Proton and Heavy Ion Center
- Fudan University Shanghai Cancer Center
- Shanghai 201321
- China
| | - Yun Sun
- Institute of Bismuth Science & College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
- Department of Research and Development & Department of Nuclear Medicine
| |
Collapse
|
47
|
Zhao H, Zhao L, Wang Z, Xi W, Dibaba ST, Wang S, Shi L, Sun L. Heterogeneous growth of palladium nanocrystals on upconversion nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00317g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Based on the heterogeneous growth of nano-palladium on UCNPs, a new kind of nanocomposite was developed that can be used for dual-imaging guided photothermal therapy. This smart strategy provides new insights for future development of materials based on the multicomponent nanocomposites.
Collapse
Affiliation(s)
- Huijun Zhao
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Lei Zhao
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Zhuo Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Lab of Hainan Province, Hainan University
- Haikou 570228
- China
| | - Wensong Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University
- Shanghai 200444
- China
| | - Solomon Tiruneh Dibaba
- Physics Department, International Centre for Quantum and Molecular Structures, Shanghai University
- Shanghai 200444
- China
| | - Shuhan Wang
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Liyi Shi
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Lining Sun
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
48
|
Meng J, Zhang Z, Zhang B, Gao Y, Li G, Fu Z, Zheng H. Preparation and spectroscopic study of a water-soluble NaYF4:Yb3+/Er3+@NaGdF4 crystal particle and its application in bioimaging. NEW J CHEM 2019. [DOI: 10.1039/c8nj05558k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Water-soluble, magnetic and up-conversion luminescent NaYF4:Yb3+/Er3+@NaGdF4 core–shell particles were prepared directly by the hydrothermal method.
Collapse
Affiliation(s)
- Jiajia Meng
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Zhenglong Zhang
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Baobao Zhang
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Ye Gao
- College of Life Sciences
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Guian Li
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Zhengkun Fu
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| | - Hairong Zheng
- School of Physics and Information Technology
- Shaanxi Normal University
- Xi’an 710119
- P. R. China
| |
Collapse
|
49
|
Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Emerging Strategies of Nanomaterial-Mediated Tumor Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802244. [PMID: 30156333 DOI: 10.1002/adma.201802244] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Indexed: 05/23/2023]
Abstract
Nano-radiosensitization has been a hot concept for the past ten years, and the nanomaterial-mediated tumor radiosensitization method is mainly focused on increasing intracellular radiation deposition by high atomic number (high Z) nanomaterials, particularly gold (Au)-mediated radiation enhancement. Recently, various new nanomaterial-mediated radiosensitive approaches have been successively reported, such as catalyzing reactive oxygen species (ROS) generation, consuming intracellular reduced glutathione (GSH), overcoming tumor hypoxia, and various synergistic radiotherapy ways. These strategies may open a new avenue for enhancing the radiotherapeutic effect and avoiding its side effects. Nevertheless, reviews systematically summarizing these newly emerging methods and their radiosensitive mechanisms are still rare. Therefore, the general strategies of nanomaterial-mediated tumor radiosensitization are comprehensively summarized, particularly aiming at introducing the emerging radiosensitive methods. The strategies are divided into three general parts. First, methods on account of the intrinsic radiosensitive properties of nanoradiosensitizers for radiosensitization are highlighted. Then, newly developed synergistic strategies based on multifunctional nanomaterials for enhancing radiotherapy efficacy are emphasized. Third, nanomaterial-mediated radioprotection approaches for increasing the radiotherapeutic ratio are discussed. Importantly, the clinical translation of nanomaterial-mediated tumor radiosensitization is also covered. Finally, further challenges and outlooks in this field are discussed.
Collapse
Affiliation(s)
- Jiani Xie
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Linji Gong
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhu
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Yong
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
50
|
Pan W, Shi M, Li Y, Chen Y, Li N, Tang B. A GSH-responsive nanophotosensitizer for efficient photodynamic therapy. RSC Adv 2018; 8:42374-42379. [PMID: 35558397 PMCID: PMC9092154 DOI: 10.1039/c8ra08549h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment modality, which depends on the reactive oxygen species (ROS) generated by a photosensitizer to kill cancer cells. The lack of selectivity and the over-production of glutathione (GSH) in cancer cells are the two major challenges for efficient and safe cancer PDT because they can cause harm to normal tissues and eliminate ROS in cancer cells. Herein, we report a GSH-responsive nanophotosensitizer based on CoOOH nanosheets for PDT of cancer. The nanophotosensitizer shows negligible photo-toxicity toward normal cells because of the quenching effect between CoOOH and photosensitizer Ce6. In the presence of overexpressed GSH, Ce6 molecules can be released into cancer cells because of GSH induced degradation of CoOOH nanosheets. In vivo experiments demonstrated that the tumor growth was efficiently inhibited by the CoOOH-based PDT strategy. The current nanophotosensitizer represents a promising smart platform to synergistically improve the therapeutic index and safety of PDT.
Collapse
Affiliation(s)
- Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China +86-531-86180017
| | - Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China +86-531-86180017
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China +86-531-86180017
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China +86-531-86180017
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China +86-531-86180017
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China +86-531-86180017
| |
Collapse
|