1
|
Fukuda R, Cira NJ. High-throughput, combinatorial droplet generation by sequential spraying. LAB ON A CHIP 2025; 25:1502-1511. [PMID: 39745247 DOI: 10.1039/d4lc00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Advancements in bulk and microfluidic emulsion methodologies have enabled highly efficient, high-throughput implementations of biochemical assays. Spray-based techniques offer rapid generation, droplet immobilization, and accessibility, but remain relatively underutilized, likely because they result in random and polydisperse droplets. However, the polydisperse characteristic can be leveraged; at sufficiently high droplet numbers, sequential sprays will generate mixed droplets which effectively populate a combinatorial space. In this paper, we present a method involving the sequential spraying and mixing of solutions encoded with fluorophores. This generates combinatorial droplets with quantifiable concentrations that can be imaged over time. To demonstrate the method's performance and utility, we use it to investigate synergistic and antagonistic pairwise antibiotic interactions.
Collapse
Affiliation(s)
- Rena Fukuda
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.
| | - Nate J Cira
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
2
|
Wu W, Mu Y. Microfluidic technologies for advanced antimicrobial susceptibility testing. BIOMICROFLUIDICS 2024; 18:031504. [PMID: 38855477 PMCID: PMC11162290 DOI: 10.1063/5.0190112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance is getting serious and becoming a threat to public health worldwide. The improper and excessive use of antibiotics is responsible for this situation. The standard methods used in clinical laboratories, to diagnose bacterial infections, identify pathogens, and determine susceptibility profiles, are time-consuming and labor-intensive, leaving the empirical antimicrobial therapy as the only option for the first treatment. To prevent the situation from getting worse, evidence-based therapy should be given. The choosing of effective drugs requires powerful diagnostic tools to provide comprehensive information on infections. Recent progress in microfluidics is pushing infection diagnosis and antimicrobial susceptibility testing (AST) to be faster and easier. This review summarizes the recent development in microfluidic assays for rapid identification and AST in bacterial infections. Finally, we discuss the perspective of microfluidic-AST to develop the next-generation infection diagnosis technologies.
Collapse
Affiliation(s)
- Wenshuai Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Mu
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Yan JD, Yang CY, Han A, Wu CC. A Label-Free Droplet Sorting Platform Integrating Dielectrophoretic Separation for Estimating Bacterial Antimicrobial Resistance. BIOSENSORS 2024; 14:218. [PMID: 38785691 PMCID: PMC11117925 DOI: 10.3390/bios14050218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Antimicrobial resistance (AMR) has become a crucial global health issue. Antibiotic-resistant bacteria can survive after antibiotic treatments, lowering drug efficacy and increasing lethal risks. A microfluidic water-in-oil emulsion droplet system can entrap microorganisms and antibiotics within the tiny bioreactor, separate from the surroundings, enabling independent assays that can be performed in a high-throughput manner. This study presents the development of a label-free dielectrophoresis (DEP)-based microfluidic platform to sort droplets that co-encapsulate Escherichia coli (E. coli) and ampicillin (Amp) and droplets that co-encapsulate Amp-resistant (AmpR) E. coli with Amp only based on the conductivity-dependent DEP force (FDEP) without the assistance of optical analyses. The 9.4% low conductivity (LC) Luria-Bertani (LB) broth diluted with 170 mM mannitol can maintain E. coli and AmpR E. coli growth for 3 h and allow Amp to kill almost all E. coli, which can significantly increase the LCLB conductivity by about 100 μS/cm. Therefore, the AmpR E. coli/9.4%LCLB/Amp where no cells are killed and the E. coli/9.4%LCLB/Amp-containing droplets where most of the cells are killed can be sorted based on this conductivity difference at an applied electric field of 2 MHz and 100 Vpp that generates positive FDEP. Moreover, the sorting ratio significantly decreased to about 50% when the population of AmpR E. coli was equal to or higher than 50% in droplets. The conductivity-dependent DEP-based sorting platform exhibits promising potential to probe the ratio of AmpR E. coli in an unknown bacterial sample by using the sorting ratio as an index.
Collapse
Affiliation(s)
- Jia-De Yan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ching-Chou Wu
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
4
|
Nalin F, Tirelli MC, Garstecki P, Postek W, Costantini M. Tuna-step: tunable parallelized step emulsification for the generation of droplets with dynamic volume control to 3D print functionally graded porous materials. LAB ON A CHIP 2023; 24:113-126. [PMID: 38047296 DOI: 10.1039/d3lc00658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We present tuna-step, a novel microfluidic module based on step emulsification that allows for reliable generation of droplets of different sizes. Until now, sizes of droplets generated with step emulsification were hard-wired into the geometry of the step emulsification nozzle. To overcome this, we incorporate a thin membrane underneath the step nozzle that can be actuated by pressure, enabling the tuning of the nozzle size on-demand. By controllably reducing the height of the nozzle, we successfully achieved a three-order-of-magnitude variation in droplet volume without adjusting the flow rates of the two phases. We developed and applied a new hydrophilic surface modification, that ensured long-term stability and prevented swelling of the device when generating oil-in-water droplets. Our system produced functionally graded soft materials with adjustable porosity and material content. By combining our microfluidic device with a custom 3D printer, we generated and extruded oil-in-water emulsions in an agarose gel bath, creating unique self-standing 3D hydrogel structures with porosity decoupled from flow rate and with composition gradients of external phases. We upscaled tuna-step by setting 14 actuatable nozzles in parallel, offering a step-emulsification-based single chip solution that can accommodate various requirements in terms of throughput, droplet volumes, flow rates, and surface chemistry.
Collapse
Affiliation(s)
- Francesco Nalin
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
| | - Maria Celeste Tirelli
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
| | - Witold Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA 02142, USA
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
| |
Collapse
|
5
|
Wu W, Suo Y, Zhao Q, Cai G, Liu Y, Jin W, Mu Y, Zhang B. Inoculum size-insensitive susceptibility determination of urine sample based on in-situ measurement of inducible enzyme activity after 20 min of antibiotic exposure. Anal Chim Acta 2023; 1282:341858. [PMID: 37923403 DOI: 10.1016/j.aca.2023.341858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The empirical antibiotic therapies for bacterial infections cause the emergence and propagation of multi-drug resistant bacteria, which not only impair the effectiveness of existing antibiotics but also raise healthcare costs. To reduce the empirical treatments, rapid antimicrobial susceptibility testing (AST) of causative microorganisms in clinical samples should be conducted for prescribing evidence-based antibiotics. However, most of culture-based ASTs suffer from inoculum effect and lack differentiation of target pathogen and commensals, hampering their adoption for evidence-based antibiotic prescription. Therefore, rapid ASTs which can specifically determine pathogens' susceptibilities, regardless of the bacterial load in clinical samples, are in urgent need. RESULTS We present a pathogen-specific and inoculum size-insensitive AST to achieve the reliable susceptibility determination on Escherichia coli (E. coli) in urine samples. The developed AST is featured with an 1 h sample-to-result workflow in a filter, termed on-filter AST. The AST results can be obtained by using an inducible enzymatic assay to in-situ measure the cell response of E. coli collected from urine after 20 min of antibiotic exposure. The calculated detection limit of our AST (1.95 × 104 CFU/mL) is much lower than the diagnosis threshold of urinary tract infections. The specific expression of the inducible enzyme enables on-filter AST to correctly profile the susceptibilities of target pathogen to multi-type antibiotics without the interference from commensals. We performed the on-filter AST on 1 mL urine samples with bacterial loads varying from 105 CFU/mL to 107 CFU/mL and compared the results to that of standard method, demonstrating its insensitivity to inoculum size. SIGNIFICANCE The developed AST is demonstrated to be of high sensitivity, specificity, and insensitive to inoculum size. With further developments for additional bacteria and clinical validation, on-filter AST is promising as a rapid and reliable surrogate of culture-based AST to promote the evidence-based prescription at the first visit and minimize the emergency of new multi-drug resistant microorganisms.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
| | - Qianbin Zhao
- Center of Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, Hebei University of Technology, Tianjin, 300131, China
| | - Gaozhe Cai
- School of Microelectronics, Shanghai University, Shanghai, 200444, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 102401, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China; Huzhou Institute of Zhejiang University, Huzhou, 313002, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China.
| | - Boran Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
6
|
Nikolic N, Anagnostidis V, Tiwari A, Chait R, Gielen F. Droplet-based methodology for investigating bacterial population dynamics in response to phage exposure. Front Microbiol 2023; 14:1260196. [PMID: 38075890 PMCID: PMC10703435 DOI: 10.3389/fmicb.2023.1260196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 02/12/2024] Open
Abstract
An alarming rise in antimicrobial resistance worldwide has spurred efforts into the search for alternatives to antibiotic treatments. The use of bacteriophages, bacterial viruses harmless to humans, represents a promising approach with potential to treat bacterial infections (phage therapy). Recent advances in microscopy-based single-cell techniques have allowed researchers to develop new quantitative methodologies for assessing the interactions between bacteria and phages, especially the ability of phages to eradicate bacterial pathogen populations and to modulate growth of both commensal and pathogen populations. Here we combine droplet microfluidics with fluorescence time-lapse microscopy to characterize the growth and lysis dynamics of the bacterium Escherichia coli confined in droplets when challenged with phage. We investigated phages that promote lysis of infected E. coli cells, specifically, a phage species with DNA genome, T7 (Escherichia virus T7) and two phage species with RNA genomes, MS2 (Emesvirus zinderi) and Qβ (Qubevirus durum). Our microfluidic trapping device generated and immobilized picoliter-sized droplets, enabling stable imaging of bacterial growth and lysis in a temperature-controlled setup. Temporal information on bacterial population size was recorded for up to 25 h, allowing us to determine growth rates of bacterial populations and helping us uncover the extent and speed of phage infection. In the long-term, the development of novel microfluidic single-cell and population-level approaches will expedite research towards fundamental understanding of the genetic and molecular basis of rapid phage-induced lysis and eco-evolutionary aspects of bacteria-phage dynamics, and ultimately help identify key factors influencing the success of phage therapy.
Collapse
Affiliation(s)
- Nela Nikolic
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
- Translational Research Exchange @ Exeter, University of Exeter, Exeter, United Kingdom
| | - Vasileios Anagnostidis
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Anuj Tiwari
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Remy Chait
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Fabrice Gielen
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Baranova AA, Tyurin AP, Korshun VA, Alferova VA. Sensing of Antibiotic-Bacteria Interactions. Antibiotics (Basel) 2023; 12:1340. [PMID: 37627760 PMCID: PMC10451291 DOI: 10.3390/antibiotics12081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Sensing of antibiotic-bacteria interactions is an important area of research that has gained significant attention in recent years. Antibiotic resistance is a major public health concern, and it is essential to develop new strategies for detecting and monitoring bacterial responses to antibiotics in order to maintain effective antibiotic development and antibacterial treatment. This review summarizes recent advances in sensing strategies for antibiotic-bacteria interactions, which are divided into two main parts: studies on the mechanism of action for sensitive bacteria and interrogation of the defense mechanisms for resistant ones. In conclusion, this review provides an overview of the present research landscape concerning antibiotic-bacteria interactions, emphasizing the potential for method adaptation and the integration of machine learning techniques in data analysis, which could potentially lead to a transformative impact on mechanistic studies within the field.
Collapse
Affiliation(s)
| | | | | | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.B.); (A.P.T.); (V.A.K.)
| |
Collapse
|
8
|
Needs SH, Pivetal J, Hayward J, Kidd SP, Lam H, Diep T, Gill K, Woodward M, Reis NM, Edwards AD. Moving microcapillary antibiotic susceptibility testing (mcAST) towards the clinic: unravelling kinetics of detection of uropathogenic E. coli, mass-manufacturing and usability for detection of urinary tract infections in human urine. SENSORS & DIAGNOSTICS 2023; 2:736-750. [PMID: 37216011 PMCID: PMC10197089 DOI: 10.1039/d2sd00138a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Innovation in infection based point-of-care (PoC) diagnostics is vital to avoid unnecessary use of antibiotics and the development of antimicrobial resistance. Several groups including our research team have in recent years successfully miniaturised phenotypic antibiotic susceptibility tests (AST) of isolated bacterial strains, providing validation that miniaturised AST can match conventional microbiological methods. Some studies have also shown the feasibility of direct testing (without isolation or purification), specifically for urinary tract infections, paving the way for direct microfluidic AST systems at PoC. As rate of bacteria growth is intrinsically linked to the temperature of incubation, transferring miniaturised AST nearer the patient requires building new capabilities in terms of temperature control at PoC, furthermore widespread clinical use will require mass-manufacturing of microfluidic test strips and direct testing of urine samples. This study shows for the first-time application of microcapillary antibiotic susceptibility testing (mcAST) directly from clinical samples, using minimal equipment and simple liquid handling, and with kinetics of growth recorded using a smartphone camera. A complete PoC-mcAST system was presented and tested using 12 clinical samples sent to a clinical laboratory for microbiological analysis. The test showed 100% accuracy for determining bacteria in urine above the clinical threshold (5 out of 12 positive) and achieved 95% categorical agreement for 5 positive urines tested with 4 antibiotics (nitrofurantoin, ciprofloxacin, trimethoprim and cephalexin) within 6 h compared to the reference standard overnight AST method. A kinetic model is presented for metabolization of resazurin, demonstrating kinetics of degradation of resazurin in microcapillaries follow those observed for a microtiter plate, with time for AST dependent on the initial CFU ml-1 of uropathogenic bacteria in the urine sample. In addition, we show for the first time that use of air-drying for mass-manufacturing and deposition of AST reagents within the inner surface of mcAST strips matches results obtained with standard AST methods. These results take mcAST a step closer to clinical application, for example as PoC support for antibiotic prescription decisions within a day.
Collapse
Affiliation(s)
- Sarah H Needs
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Jeremy Pivetal
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Jessica Hayward
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Stephen P Kidd
- Hampshire Hospitals NHS Foundation Trust Basingstoke and North Hampshire Hospital Basingstoke RG24 9NA UK
| | - HoYin Lam
- Hampshire Hospitals NHS Foundation Trust Basingstoke and North Hampshire Hospital Basingstoke RG24 9NA UK
| | - Tai Diep
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Kiran Gill
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Martin Woodward
- Department of Food and Nutrition Sciences, University of Reading Whiteknights Campus Reading RG6 6DX UK
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Biosensors, Biodevices and Bioelectronics (C3Bio), University of Bath Claverton Down Bath BA2 7AY UK +44(0)1225 383 369
- Capillary Film Technology (CFT) Daux Road Billingshurst RH14 9SJ UK
| | - Alexander D Edwards
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
- Capillary Film Technology (CFT) Daux Road Billingshurst RH14 9SJ UK
| |
Collapse
|
9
|
Li H, Hsieh K, Wong PK, Mach KE, Liao JC, Wang TH. Single-cell pathogen diagnostics for combating antibiotic resistance. NATURE REVIEWS. METHODS PRIMERS 2023; 3:6. [PMID: 39917628 PMCID: PMC11800871 DOI: 10.1038/s43586-022-00190-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/09/2025]
Abstract
Bacterial infections and antimicrobial resistance are a major cause for morbidity and mortality worldwide. Antimicrobial resistance often arises from antimicrobial misuse, where physicians empirically treat suspected bacterial infections with broad-spectrum antibiotics until standard culture-based diagnostic tests can be completed. There has been a tremendous effort to develop rapid diagnostics in support of the transition from empirical treatment of bacterial infections towards a more precise and personalized approach. Single-cell pathogen diagnostics hold particular promise, enabling unprecedented quantitative precision and rapid turnaround times. This Primer provides a guide for assessing, designing, implementing and applying single-cell pathogen diagnostics. First, single-cell pathogen diagnostic platforms are introduced based on three essential capabilities: cell isolation, detection assay and output measurement. Representative results, common analysis methods and key applications are highlighted, with an emphasis on initial screening of bacterial infection, bacterial species identification and antimicrobial susceptibility testing. Finally, the limitations of existing platforms are discussed, with perspectives offered and an outlook towards clinical deployment. This Primer hopes to inspire and propel new platforms that can realize the vision of precise and personalized bacterial infection treatments in the near future.
Collapse
Affiliation(s)
- Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Present address: School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL, USA
- These authors contributed equally: Hui Li, Kuangwen Hsieh
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally: Hui Li, Kuangwen Hsieh
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Kathleen E. Mach
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Ruszczak A, Jankowski P, Vasantham SK, Scheler O, Garstecki P. Physicochemical Properties Predict Retention of Antibiotics in Water-in-Oil Droplets. Anal Chem 2023; 95:1574-1581. [PMID: 36598882 PMCID: PMC9850403 DOI: 10.1021/acs.analchem.2c04644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Water-in-oil droplet microfluidics promises capacity for high-throughput single-cell antimicrobial susceptibility assays and investigation of drug resistance mechanisms. Every droplet must serve as an isolated environment with a controlled antibiotic concentration in such assays. While technologies for generation, incubation, screening, and sorting droplets mature, predictable retention of active molecules inside droplets remains a major outstanding challenge. Here, we analyzed 36 descriptors of the antibiotic molecules against experimental results on the cross-talk of antibiotics in droplets. We show that partition coefficient and fractional polar surface area are the key physicochemical properties that predict antibiotic retention. We verified the prediction by monitoring growth inhibition by antibiotic-loaded neighboring droplets. Our experiments also demonstrate that transfer of antibiotics between droplets is concentration- and distance-dependent. Our findings immediately apply to designing droplet antibiotic assays and give deeper insight into the retention of small molecules in water-in-oil emulsions.
Collapse
Affiliation(s)
- Artur Ruszczak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Paweł Jankowski
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Shreyas K. Vasantham
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ott Scheler
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia,
| | - Piotr Garstecki
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland,
| |
Collapse
|
11
|
Postek W, Pacocha N, Garstecki P. Microfluidics for antibiotic susceptibility testing. LAB ON A CHIP 2022; 22:3637-3662. [PMID: 36069631 DOI: 10.1039/d2lc00394e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise of antibiotic resistance is a threat to global health. Rapid and comprehensive analysis of infectious strains is critical to reducing the global use of antibiotics, as informed antibiotic use could slow down the emergence of resistant strains worldwide. Multiple platforms for antibiotic susceptibility testing (AST) have been developed with the use of microfluidic solutions. Here we describe microfluidic systems that have been proposed to aid AST. We identify the key contributions in overcoming outstanding challenges associated with the required degree of multiplexing, reduction of detection time, scalability, ease of use, and capacity for commercialization. We introduce the reader to microfluidics in general, and we analyze the challenges and opportunities related to the field of microfluidic AST.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA 02142, USA.
| | - Natalia Pacocha
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| |
Collapse
|
12
|
|
13
|
|
14
|
Postek W, Garstecki P. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations. Acc Chem Res 2022; 55:605-615. [PMID: 35119826 PMCID: PMC8892833 DOI: 10.1021/acs.accounts.1c00729] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibiotic-resistant bacteria are an increasing concern both in everyday life and specialized environments such as healthcare. As the rate of antibiotic-resistant infections rises, so do complications to health and the risk of disability and death. Urgent action is required regarding the discovery of new antibiotics and rapid diagnosis of the resistance profile of an infectious pathogen as well as a better understanding of population and single-cell distribution of the resistance level. High-throughput screening is the major affordance of droplet microfluidics. Droplet screens can be exploited both to look for combinations of drugs that could stop an infection of multidrug-resistant bacteria and to search for the source of resistance via directed-evolution experiments or the analysis of various responses to a drug by genetically identical bacteria. In droplet techniques that have been used in this way for over a decade, aqueous droplets containing antibiotics and bacteria are manipulated both within and outside of the microfluidic devices. The diagnostics problem was approached by producing a series of microfluidic systems with integrated dilution modules for automated preparation of antibiotic concentration gradients, achieving the speed that allowed for high-throughput combinatorial assays. We developed a method for automated emulsification of a series of samples that facilitated measuring the resistance levels of thousands of individual cells encapsulated in droplets and quantifying the inoculum effect, the dependence of resistance level on bacterial cell count. Screening of single cells encapsulated in droplets with varying antibiotic contents has revealed a distribution of resistance levels within populations of clonally identical cells. To be able to screen bacteria from clinical samples, a study of fluorescent dyes in droplets determined that a derivative of a popular viability marker is more suitable for droplet assays. We have developed a detection system that analyzes the growth or death state of bacteria with antibiotics for thousands of droplets per second by measuring the scattering of light hitting the droplets without labeling the cells or droplets. The droplet-based microchemostats enabled long-term evolution of resistance experiments, which will be integrated with high-throughput single-cell assays to better understand the mechanism of resistance acquisition and loss. These techniques underlie automated combinatorial screens of antibiotic resistance in single cells from clinical samples. We hope that this Account will inspire new droplet-based research on the antibiotic susceptibility of bacteria.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
15
|
Taylor D, Verdon N, Lomax P, Allen RJ, Titmuss S. Tracking the stochastic growth of bacterial populations in microfluidic droplets. Phys Biol 2022; 19:026003. [PMID: 35042205 PMCID: PMC7613235 DOI: 10.1088/1478-3975/ac4c9b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
Bacterial growth in microfluidic droplets is relevant in biotechnology, in microbial ecology, and in understanding stochastic population dynamics in small populations. However, it has proved challenging to automate measurement of absolute bacterial numbers within droplets, forcing the use of proxy measures for population size. Here we present a microfluidic device and imaging protocol that allows high-resolution imaging of thousands of droplets, such that individual bacteria stay in the focal plane and can be counted automatically. Using this approach, we track the stochastic growth of hundreds of replicateEscherichia colipopulations within droplets. We find that, for early times, the statistics of the growth trajectories obey the predictions of the Bellman-Harris model, in which there is no inheritance of division time. Our approach should allow further testing of models for stochastic growth dynamics, as well as contributing to broader applications of droplet-based bacterial culture.
Collapse
Affiliation(s)
- Daniel Taylor
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Nia Verdon
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Peter Lomax
- Scottish Microelectronics Centre, Alexander Crum Brown Road, King's Buildings, Edinburgh, EH9 3FF, United Kingdom
| | - Rosalind J Allen
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Simon Titmuss
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
16
|
Li H, Zhang P, Hsieh K, Wang TH. Combinatorial nanodroplet platform for screening antibiotic combinations. LAB ON A CHIP 2022; 22:621-631. [PMID: 35015012 PMCID: PMC9035339 DOI: 10.1039/d1lc00865j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The emergence and spread of multidrug resistant bacterial strains and concomitant dwindling of effective antibiotics pose worldwide healthcare challenges. To address these challenges, advanced engineering tools are developed to personalize antibiotic treatments by speeding up the diagnostics that is critical to prevent antibiotic misuse and overuse and make full use of existing antibiotics. Meanwhile, it is necessary to investigate novel antibiotic strategies. Recently, repurposing mono antibiotics into combinatorial antibiotic therapies has shown great potential for treatment of bacterial infections. However, widespread adoption of drug combinations has been hindered by the complexity of screening techniques and the cost of reagent consumptions in practice. In this study, we developed a combinatorial nanodroplet platform for automated and high-throughput screening of antibiotic combinations while consuming orders of magnitude lower reagents than the standard microtiter-based screening method. In particular, the proposed platform is capable of creating nanoliter droplets with multiple reagents in an automatic manner, tuning concentrations of each component, performing biochemical assays with high flexibility (e.g., temperature and duration), and achieving detection with high sensitivity. A biochemical assay, based on the reduction of resazurin by the metabolism of bacteria, has been characterized and employed to evaluate the combinatorial effects of the antibiotics of interest. In a pilot study, we successfully screened pairwise combinations between 4 antibiotics for a model Escherichia coli strain.
Collapse
Affiliation(s)
- Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Zhang P, Kaushik AM, Hsieh K, Li S, Lewis S, Mach KE, Liao JC, Carroll KC, Wang TH. A Cascaded Droplet Microfluidic Platform Enables High-Throughput Single Cell Antibiotic Susceptibility Testing at Scale. SMALL METHODS 2022; 6:e2101254. [PMID: 35041266 DOI: 10.1002/smtd.202101254] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 06/14/2023]
Abstract
The global threat of antibiotic resistance underscores critical but unmet needs for rapid antibiotic susceptibility testing (AST) technologies. To this end, droplet microfluidic-based single-cell AST offers promise by achieving unprecedented rapidity, but its potential for clinical use is marred by the capacity of testing one to few antibiotic conditions per device, which falls short from the required scale in clinically relevant scenarios. To lift the scalability constraint in rapid single-cell AST technologies, a new cascaded droplet microfluidic platform that can streamline bacteria/antibiotic mixing, single-cell encapsulation within picoliter droplets, incubation, and detection in a continuous, assembly-line-like workflow is developed. The scalability of the platform is demonstrated by generating 32 groups of ≈10 000 droplets with custom antibiotic conditions within a single device, from which a new statistics-based method is used to analyze the single cell data and produce clinically useful antibiograms with minimum inhibitory concentrations in ≈90 min for the first antibiotic, plus 2 min for each subsequent antibiotic condition. Potential clinical utility of this platform is demonstrated by testing three clinical isolates and eight urine specimens against four frequently used antibiotics, and 100% and 93.8% categorical agreements are achieved compared to laboratory-based results that became available after 48 h.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aniruddha M Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sixuan Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shawna Lewis
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kathleen E Mach
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
18
|
Zhang H, Yao Y, Hui Y, Zhang L, Zhou N, Ju F. A 3D-printed microfluidic gradient concentration chip for rapid antibiotic-susceptibility testing. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00173-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Amirifar L, Besanjideh M, Nasiri R, Shamloo A, Nasrollahi F, de Barros NR, Davoodi E, Erdem A, Mahmoodi M, Hosseini V, Montazerian H, Jahangiry J, Darabi MA, Haghniaz R, Dokmeci MR, Annabi N, Ahadian S, Khademhosseini A. Droplet-based microfluidics in biomedical applications. Biofabrication 2021; 14. [PMID: 34781274 DOI: 10.1088/1758-5090/ac39a9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e., passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications of droplet-based microfluidics in different biomedical applications are detailed. Finally, a general overview of the latest trends along with the perspectives and future potentials in the field are provided.
Collapse
Affiliation(s)
- Leyla Amirifar
- Mechanical Engineering, Sharif University of Technology, Tehran, Iran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Mohsen Besanjideh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Rohollah Nasiri
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | | | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Elham Davoodi
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Ahmet Erdem
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Hossein Montazerian
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Jamileh Jahangiry
- University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Nasim Annabi
- Chemical Engineering, UCLA, Los Angeles, Los Angeles, California, 90095, UNITED STATES
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| |
Collapse
|
20
|
Stucki A, Jusková P, Nuti N, Schmitt S, Dittrich PS. Synchronized Reagent Delivery in Double Emulsions for Triggering Chemical Reactions and Gene Expression. SMALL METHODS 2021; 5:e2100331. [PMID: 34927870 DOI: 10.1002/smtd.202100331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Indexed: 06/14/2023]
Abstract
Microfluidic methods for the formation of single and double emulsion (DE) droplets allow for the encapsulation and isolation of reactants inside nanoliter compartments. Such methods have greatly enhanced the toolbox for high-throughput screening for cell or enzyme engineering and drug discovery. However, remaining challenges in the supply of reagents into these enclosed compartments limit the applicability of droplet microfluidics. Here, a strategy is introduced for on-demand delivery of reactants in DEs. Lipid vesicles are used as reactant carriers, which are co-encapsulated in double emulsions and release their cargo upon addition of an external trigger, here the anionic surfactant sodium dodecyl sulfate (SDS). The reagent present inside the lipid vesicles stays isolated from the remaining content of the DE vessel until SDS enters the DE lumen and solubilizes the vesicles' lipid bilayer. The versatility of the method is demonstrated with two critical applications chosen as representative assays for high-throughput screening: the induction of gene expression in bacteria and the initiation of an enzymatic reaction. This method not only allows for the release of the lipid vesicle content inside DEs to be synchronized for all DEs but also for the release to be triggered at any desired time.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Petra Jusková
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Nicola Nuti
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| |
Collapse
|
21
|
Akiyama T, Kim M. Stochastic response of bacterial cells to antibiotics: its mechanisms and implications for population and evolutionary dynamics. Curr Opin Microbiol 2021; 63:104-108. [PMID: 34325154 DOI: 10.1016/j.mib.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/20/2022]
Abstract
The effectiveness of antibiotics against bacterial infections has been declining due to the emergence of resistance. Precisely understanding the response of bacteria to antibiotics is critical to maximizing antibiotic-induced bacterial eradication while minimizing the emergence of antibiotic resistance. Cell-to-cell heterogeneity in antibiotic susceptibility is observed across various bacterial species for a wide range of antibiotics. Heterogeneity in antibiotic susceptibility is not always due to the genetic differences. Rather, it can be caused by non-genetic mechanisms such as stochastic gene expression and biased partitioning upon cell division. Heterogeneous susceptibility leads to the stochastic growth and death of individual cells and stochastic fluctuations in population size. These fluctuations have important implications for the eradication of bacterial populations and the emergence of genotypic resistance.
Collapse
Affiliation(s)
- Tatsuya Akiyama
- Department of Physics, Emory University, Atlanta, GA, 30322, USA; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA, 30322, USA; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA; Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
22
|
Jusková P, Schmitt S, Kling A, Rackus DG, Held M, Egli A, Dittrich PS. Real-Time Respiration Changes as a Viability Indicator for Rapid Antibiotic Susceptibility Testing in a Microfluidic Chamber Array. ACS Sens 2021; 6:2202-2210. [PMID: 33900065 PMCID: PMC8240088 DOI: 10.1021/acssensors.1c00020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
Rapid identification of a pathogen and the measurement of its antibiotic susceptibility are key elements in the diagnostic process of bacterial infections. Microfluidic technologies offer great control over handling and manipulation of low sample volumes with the possibility to study microbial cultures on the single-cell level. Downscaling the dimensions of cultivation systems directly results in a lower number of bacteria required for antibiotic susceptibility testing (AST) and thus in a reduction of the time to result. The developed platform presented in this work allows the reading of pathogen resistance profiles within 2-3 h based on the changes of dissolved oxygen levels during bacterial cultivation. The platform contains hundreds of individual growth chambers prefilled with a hydrogel containing oxygen-sensing nanoprobes and different concentrations of antibiotic compounds. The performance of the developed platform is tested using quality control Escherichia coli strains (ATCC 25922 and ATCC 35218) in response to clinically relevant antibiotics. The results are in agreement with values given in reference guidelines and independent measurements using a clinical AST protocol. Finally, the platform is successfully used for the AST of an E. coli clinical isolate obtained from a patient blood culture.
Collapse
Affiliation(s)
- Petra Jusková
- Department
of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Steven Schmitt
- Department
of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - André Kling
- Department
of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Darius G. Rackus
- Department
of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Martin Held
- Department
of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Adrian Egli
- Clinical
Bacteriology and Mycology, University Hospital
Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Petra S. Dittrich
- Department
of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
23
|
Del Giudice F, D'Avino G, Maffettone PL. Microfluidic formation of crystal-like structures. LAB ON A CHIP 2021; 21:2069-2094. [PMID: 34002182 DOI: 10.1039/d1lc00144b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Crystal-like structures find application in several fields ranging from biomedical engineering to material science. For instance, droplet crystals are critical for high throughput assays and material synthesis, while particle crystals are important for particles and cell encapsulation, Drop-seq technologies, and single-cell analysis. Formation of crystal-like structures relies entirely on the possibility of manipulating with great accuracy the micrometer-size objects forming the crystal. In this context, microfluidic devices offer versatile tools for the precise manipulation of droplets and particles, thus enabling fabrication of crystal-like structures that form due to hydrodynamic interactions among droplets or particles. In this review, we aim at providing an holistic representation of crystal-like structure formation mediated by hydrodynamic interactions in microfluidic devices. We also discuss the physical origin of these hydrodynamic interactions and their relation to parameters such as device geometry, fluid properties, and flow conditions.
Collapse
Affiliation(s)
- Francesco Del Giudice
- System and Process Engineering Centre, College of Engineering, Fabian Way, Swansea, SA1 8EN, UK.
| | - Gaetano D'Avino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universitá degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universitá degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
24
|
Loffredo MR, Savini F, Bobone S, Casciaro B, Franzyk H, Mangoni ML, Stella L. Inoculum effect of antimicrobial peptides. Proc Natl Acad Sci U S A 2021; 118:e2014364118. [PMID: 34021080 PMCID: PMC8166072 DOI: 10.1073/pnas.2014364118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The activity of many antibiotics depends on the initial density of cells used in bacterial growth inhibition assays. This phenomenon, termed the inoculum effect, can have important consequences for the therapeutic efficacy of the drugs, because bacterial loads vary by several orders of magnitude in clinically relevant infections. Antimicrobial peptides are a promising class of molecules in the fight against drug-resistant bacteria because they act mainly by perturbing the cell membranes rather than by inhibiting intracellular targets. Here, we report a systematic characterization of the inoculum effect for this class of antibacterial compounds. Minimum inhibitory concentration values were measured for 13 peptides (including all-D enantiomers) and peptidomimetics, covering more than seven orders of magnitude in inoculated cell density. In most cases, the inoculum effect was significant for cell densities above the standard inoculum of 5 × 105 cells/mL, while for lower densities the active concentrations remained essentially constant, with values in the micromolar range. In the case of membrane-active peptides, these data can be rationalized by considering a simple model, taking into account peptide-cell association, and hypothesizing that a threshold number of cell-bound peptide molecules is required in order to cause bacterial killing. The observed effect questions the clinical utility of activity and selectivity determinations performed at a fixed, standardized cell density. A routine evaluation of the dependence of the activity of antimicrobial peptides and peptidomimetics on the inoculum should be considered.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Filippo Savini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Bruno Casciaro
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
25
|
Wu W, Zhang S, Zhang T, Mu Y. Immobilized Droplet Arrays in Thermosetting Oil for Dynamic Proteolytic Assays of Single Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6081-6090. [PMID: 33504155 DOI: 10.1021/acsami.0c21696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Matrix metalloproteinases (MMPs) play an important role in tumor progression. The study of dynamic MMPs activity at the single-cell level can dissect tumor heterogeneity in the time domain and facilitate finding out more efficient clinical solutions for tumor treatment. Due to the fluidity of the carrier oil, the existing droplet-based methods for single-cell MMP analysis rarely have the capability to track proteolytic assays in droplets continuously. Therefore, we describe a thermosetting oil for real-time monitoring of MMP assays in droplets, which can immobilize droplets by transforming into solid after droplet generation. The solidification of this oil can be accomplished in 33 min at 37 °C, basing on the hydrosilation of vinyl silicone oil and hydrosilicone oil without other inducers (e.g. UV, Ca2+). Through monitoring the MMP assays of single cells, the reaction rates can be calculated according to real-time fluorescent curves, showing significant cell heterogeneity in MMP activity. Moreover, the dynamic MMP activity reveals that some of the A549 cells transiently secrete MMP. In conclusion, the thermosetting oil enables immobilize droplets to achieve real-time monitoring of single-cell proteolytic activity without impairing the flexibility of droplet microfluidics and has a potential in other cell-based assays for providing dynamic information at high resolutions.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shan Zhang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tao Zhang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
26
|
Hengoju S, Tovar M, Man DKW, Buchheim S, Rosenbaum MA. Droplet Microfluidics for Microbial Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:129-157. [PMID: 32888037 DOI: 10.1007/10_2020_140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Droplet microfluidics has recently evolved as a prominent platform for high-throughput experimentation for various research fields including microbiology. Key features of droplet microfluidics, like compartmentalization, miniaturization, and parallelization, have enabled many possibilities for microbiology including cultivation of microorganisms at a single-cell level, study of microbial interactions in a community, detection and analysis of microbial products, and screening of extensive microbial libraries with ultrahigh-throughput and minimal reagent consumptions. In this book chapter, we present several aspects and applications of droplet microfluidics for its implementation in various fields of microbial biotechnology. Recent advances in the cultivation of microorganisms in droplets including methods for isolation and domestication of rare microbes are reviewed. Similarly, a comparison of different detection and analysis techniques for microbial activities is summarized. Finally, several microbial applications are discussed with a focus on exploring new antimicrobials and high-throughput enzyme activity screening. We aim to highlight the advantages, limitations, and current developments in droplet microfluidics for microbial biotechnology while envisioning its enormous potential applications in the future.
Collapse
Affiliation(s)
- Sundar Hengoju
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miguel Tovar
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - DeDe Kwun Wai Man
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - Stefanie Buchheim
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany.
| |
Collapse
|
27
|
Scheler O, Makuch K, Debski PR, Horka M, Ruszczak A, Pacocha N, Sozański K, Smolander OP, Postek W, Garstecki P. Droplet-based digital antibiotic susceptibility screen reveals single-cell clonal heteroresistance in an isogenic bacterial population. Sci Rep 2020; 10:3282. [PMID: 32094499 PMCID: PMC7039976 DOI: 10.1038/s41598-020-60381-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/07/2020] [Indexed: 12/05/2022] Open
Abstract
Since antibiotic resistance is a major threat to global health, recent observations that the traditional test of minimum inhibitory concentration (MIC) is not informative enough to guide effective antibiotic treatment are alarming. Bacterial heteroresistance, in which seemingly susceptible isogenic bacterial populations contain resistant sub-populations, underlies much of this challenge. To close this gap, here we developed a droplet-based digital MIC screen that constitutes a practical analytical platform for quantifying the single-cell distribution of phenotypic responses to antibiotics, as well as for measuring inoculum effect with high accuracy. We found that antibiotic efficacy is determined by the amount of antibiotic used per bacterial colony forming unit (CFU), not by the absolute antibiotic concentration, as shown by the treatment of beta-lactamase-carrying Escherichia coli with cefotaxime. We also noted that cells exhibited a pronounced clustering phenotype when exposed to near-inhibitory amounts of cefotaxime. Overall, our method facilitates research into the interplay between heteroresistance and antibiotic efficacy, as well as research into the origin and stimulation of heterogeneity by exposure to antibiotics. Due to the absolute bacteria quantification in this digital assay, our method provides a platform for developing reference MIC assays that are robust against inoculum-density variations.
Collapse
Affiliation(s)
- Ott Scheler
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia.
| | - Karol Makuch
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Pawel R Debski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michal Horka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Artur Ruszczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Natalia Pacocha
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Krzysztof Sozański
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Witold Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
28
|
Zhang R, Ye Z, Gao M, Gao C, Zhang X, Li L, Gui L. Liquid metal electrode-enabled flexible microdroplet sensor. LAB ON A CHIP 2020; 20:496-504. [PMID: 31840725 DOI: 10.1039/c9lc00995g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study presented a flexible liquid metal-based microdroplet capacitive sensor that would simply and accurately measure the speed and length of droplets flowing in microchannels. A pair of coplanar U-shaped electrodes was used to form a capacitance through droplet microchannels. Liquid metal was injected into polydimethylsiloxane (PDMS) channels to form the U-shaped electrodes. The sensor would generate a multi-plateau capacitance waveform as a droplet passes through the sensing area, and each plateau period corresponds to the droplet position in the sensing area. The droplet speed and length would be directly calculated from the multi-plateau capacitance waveform. The errors for the capacitive result relative to the real value were <7.2% for length and <2.8% for speed. Moreover, the sensor still maintained excellent performance for droplet length and speed measurement even though the microfluidic chip was bent to 96°. We have demonstrated that the capacitive sensor would be used for sweat rate monitoring.
Collapse
Affiliation(s)
- Renchang Zhang
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidu District, Beijing 10019, China. and University of Chinese Academy of Sciences, 19 Yuquan road, Shijingshan District, Beijing 100039, China
| | - Zi Ye
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidu District, Beijing 10019, China. and University of Chinese Academy of Sciences, 19 Yuquan road, Shijingshan District, Beijing 100039, China
| | - Meng Gao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidu District, Beijing 10019, China.
| | - Chang Gao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidu District, Beijing 10019, China. and University of Chinese Academy of Sciences, 19 Yuquan road, Shijingshan District, Beijing 100039, China
| | - Xudong Zhang
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidu District, Beijing 10019, China. and University of Chinese Academy of Sciences, 19 Yuquan road, Shijingshan District, Beijing 100039, China
| | - Lei Li
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidu District, Beijing 10019, China.
| | - Lin Gui
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidu District, Beijing 10019, China. and University of Chinese Academy of Sciences, 19 Yuquan road, Shijingshan District, Beijing 100039, China
| |
Collapse
|
29
|
Nanosensors-Assisted Quantitative Analysis of Biochemical Processes in Droplets. MICROMACHINES 2020; 11:mi11020138. [PMID: 31991863 PMCID: PMC7074628 DOI: 10.3390/mi11020138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/24/2023]
Abstract
Here, we present a miniaturized lab-on-a-chip detecting system for an all-electric and label-free analysis of the emulsion droplets incorporating the nanoscopic silicon nanowires-based field-effect transistors (FETs). We specifically focus on the analysis of β-galactosidase e.g., activity, which is an important enzyme of the glycolysis metabolic pathway. Furthermore, the efficiency of the synthesis and action of β-galactosidase can be one of the markers for several diseases, e.g., cancer, hyper/hypoglycemia, cell senescence, or other disruptions in cell functioning. We measure the reaction and reaction kinetics-associated shift of the source-to-drain current Isd in the system, which is caused by the change of the ionic strength of the microenvironment. With these results, we demonstrate that the ion-sensitive FETs are able to sense the interior of the aqueous reactors; thus, the conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward a sensitive, optics-less analysis of biochemical processes.
Collapse
|
30
|
Kao YT, Kaminski TS, Postek W, Guzowski J, Makuch K, Ruszczak A, von Stetten F, Zengerle R, Garstecki P. Gravity-driven microfluidic assay for digital enumeration of bacteria and for antibiotic susceptibility testing. LAB ON A CHIP 2020; 20:54-63. [PMID: 31774415 DOI: 10.1039/c9lc00684b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The alarming dynamics of antibiotic-resistant infections calls for the development of rapid and point-of-care (POC) antibiotic susceptibility testing (AST) methods. Here, we demonstrated the first completely stand-alone microfluidic system that allowed the execution of digital enumeration of bacteria and digital antibiograms without any specialized microfluidic instrumentation. A four-chamber gravity-driven step emulsification device generated ∼2000 monodisperse 2 nanoliter droplets with a coefficient of variation of 8.9% of volumes for 95% of droplets within less than 10 minutes. The manual workload required for droplet generation was limited to the sample preparation, the deposition into the sample inlet of the chip and subsequent orientation of the chip vertically without an additional pumping system. The use of shallow chambers imposing a 2D droplet arrangement provided superior stability of the droplets against coalescence and minimized the leakage of the reporter viability dye between adjacent droplets during long-term culture. By using resazurin as an indicator of the growth of bacteria, we were also able to reduce the assay time to ∼5 hours compared to 20 hours using the standard culture-based test.
Collapse
Affiliation(s)
- Yu-Ting Kao
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. and Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Witold Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Karol Makuch
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Artur Ruszczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Felix von Stetten
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Roland Zengerle
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|