1
|
Shi X, Pu H, Shi LL, He TC, Chen J. Advancing transistor-based point-of-care (POC) biosensors: additive manufacturing technologies and device integration strategies for real-life sensing. NANOSCALE 2025; 17:9804-9833. [PMID: 40171618 DOI: 10.1039/d4nr04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Infectious pathogens pose a significant threat to public health and healthcare systems, making the development of a point-of-care (POC) detection platform for their early identification a key focus in recent decades. Among the numerous biosensors developed over the years, transistor-based biosensors, particularly those incorporating nanomaterials, have emerged as promising candidates for POC detection, given their unique electronic characteristics, compact size, broad dynamic range, and real-time biological detection capabilities with limits of detection (LODs) down to zeptomolar levels. However, the translation of laboratory-based biosensors into practical applications faces two primary challenges: the cost-effective and scalable fabrication of high-quality transistor sensors and functional device integration. This review is structured into two main parts. The first part examines recent advancements in additive manufacturing technologies-namely in screen printing, inkjet printing, aerosol jet printing, and digital light processing-and evaluates their applications in the mass production of transistor-based biosensors. While additive manufacturing offers significant advantages, such as high quality, cost-effectiveness, rapid prototyping, less instrument reliance, less material waste, and adaptability to diverse surfaces, challenges related to uniformity and yield remain to be addressed before these technologies can be widely adopted for large-scale production. The second part focuses on various functional integration strategies to enhance the practical applicability of these biosensors, which is essential for their successful translation from laboratory research to commercialization. Specifically, it provides a comprehensive review of current miniaturized lab-on-a-chip systems, microfluidic manipulation, simultaneous sampling and detection, wearable implementation, and integration with the Internet of Things (IoT).
Collapse
Affiliation(s)
- Xiaoao Shi
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Haihui Pu
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Junhong Chen
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Kocaman Kabil F, Oral AY. Harnessing Thermoelectric Power in Self-Healing Wearables: A Review. ACS OMEGA 2025; 10:6337-6350. [PMID: 40028077 PMCID: PMC11865998 DOI: 10.1021/acsomega.4c10781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Wearable thermoelectric generators are sustainable devices that generate electricity from body heat to provide a continuous power supply for electronic devices. In healthcare, they are particularly valuable for powering wireless devices that transmit vital health signals, where maintaining an uninterrupted power source is a significant challenge. However, these generators are prone to failure over time or due to mechanical damage caused by mechanical stress or environmental factors, which can lead to the loss of critical healthcare data. To address these issues, the integration of self-healing capabilities alongside flexibility and longevity is essential for their reliable operation. To our knowledge, this review is one of the first to look in depth at self-healing materials specifically designed for wearable thermoelectric generators. It explores the latest innovations and applications in this field highlighting how these materials can improve the reliability and lifetime of such systems.
Collapse
Affiliation(s)
| | - Ahmet Yavuz Oral
- Department
of Material Science and Engineering, Gebze
Technical University, Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
3
|
Liang Z, Shu R, Xu C, Wang Y, Shang H, Mao J, Ren Z. Substrate-Free Inorganic-Based Films for Thermoelectric Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416394. [PMID: 39663748 DOI: 10.1002/adma.202416394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Indexed: 12/13/2024]
Abstract
The development of highly integrated electronic components and the Internet of Things demands efficient thermal management and uninterrupted energy harvesting, which provides exciting opportunities for thermoelectric (TE) technology since it allows direct conversion between electricity and thermal energy. The improved output performance of TE devices has traditionally been driven by advancements in inorganic materials. Recently, there has been growing interest in studying substrate-free inorganic-based TE thin films because they provide improved adherence to curved surfaces and offer a more compact size compared to the corresponding rigid form of these materials. This review begins by summarizing various methods for fabricating freestanding inorganic-based TE films, including leveraging the intrinsic plasticity of certain materials, exfoliating layered-structure materials, using sacrificial substrates, and creating composites with flexible components such as polymers and carbon-based materials. A key challenge in achieving high device performance is determining how to maintain the favorable TE properties of inorganic materials. This can be addressed through strategies such as high inorganic content loading, multicomponent engineering, and interfacial structure design. The review also discusses the applications of substrate-free inorganic-based TE devices in both power generation and solid-state cooling. Finally, it outlines current challenges and proposes potential research directions to further advance the field.
Collapse
Affiliation(s)
- Zhongxin Liang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Rui Shu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Congcong Xu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Yu Wang
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Hongjing Shang
- Key Laboratory of Applied Superconductivity and Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Mao
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Zhifeng Ren
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
4
|
Chen W, Shi XL, Li M, Liu T, Mao Y, Liu Q, Dargusch M, Zou J, Lu GQM, Chen ZG. Nanobinders advance screen-printed flexible thermoelectrics. Science 2024; 386:1265-1271. [PMID: 39666792 DOI: 10.1126/science.ads5868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024]
Abstract
Limited flexibility, complex manufacturing processes, high costs, and insufficient performance are major factors restricting the scalability and commercialization of flexible inorganic thermoelectrics for wearable electronics and other high-end cooling applications. We developed an innovative, cost-effective technology that integrates solvothermal, screen-printing, and sintering techniques to produce an inorganic flexible thermoelectric film. Our printable film, comprising Bi2Te3-based nanoplates as highly orientated grains and Te nanorods as "nanobinders," shows excellent thermoelectric performance for printable films, good flexibility, large-scale manufacturability, and low cost. We constructed a flexible thermoelectric device assembled by printable n-type Bi2Te3-based and p-type Bi0.4Sb1.6Te3 films, which achieved a normalized power density of >3 μW cm-2 K-2, ranking among the highest in screen-printed devices. Moreover, this technology can be extended to other inorganic thermoelectric film systems, such as Ag2Se, showing broad applicability.
Collapse
Affiliation(s)
- Wenyi Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Meng Li
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Ting Liu
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
| | - Yuanqing Mao
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
| | - Qingyi Liu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Matthew Dargusch
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
| | - Jin Zou
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | | | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
5
|
You K, Wang Z, Lin J, Guo X, Lin L, Liu Y, Li F, Huang W. On-Demand Picoliter-Level-Droplet Inkjet Printing for Micro Fabrication and Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402638. [PMID: 39149907 DOI: 10.1002/smll.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/29/2024] [Indexed: 08/17/2024]
Abstract
With the advent of Internet of Things (IoTs) and wearable devices, manufacturing requirements have shifted toward miniaturization, flexibility, environmentalization, and customization. Inkjet printing, as a non-contact picoliter-level droplet printing technology, can achieve material deposition at the microscopic level, helping to achieve high resolution and high precision patterned design. Meanwhile, inkjet printing has the advantages of simple process, high printing efficiency, mask-free digital printing, and direct pattern deposition, and is gradually emerging as a promising technology to meet such new requirements. However, there is a long way to go in constructing functional materials and emerging devices due to the uncommercialized ink materials, complicated film-forming process, and geometrically/functionally mismatched interface, limiting film quality and device applications. Herein, recent developments in working mechanisms, functional ink systems, droplet ejection and flight process, droplet drying process, as well as emerging multifunctional and intelligence applications including optics, electronics, sensors, and energy storage and conversion devices is reviewed. Finally, it is also highlight some of the critical challenges and research opportunities. The review is anticipated to provide a systematic comprehension and valuable insights for inkjet printing, thereby facilitating the advancement of their emerging applications.
Collapse
Affiliation(s)
- Kejia You
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Zhen Wang
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jiasong Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xuan Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350117, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
6
|
Thompson KL, Herring PL, Terrones M, Schaak RE. Solution Synthesis and Diffusion-Mediated Formation Pathway of NbTe 4 Particles. Inorg Chem 2024; 63:16815-16823. [PMID: 39196768 DOI: 10.1021/acs.inorgchem.4c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
NbTe4 is an important material because of its fundamental low-temperature electronic behavior and its potential interest for thermoelectric, catalytic, and phase-change applications, especially as nano- and microscale particles. As a tellurium-rich group V transition metal telluride, bulk NbTe4 is typically synthesized through high-temperature solid-state or metal flux reactions and NbTe4 films can be made by sputtering and annealing, but NbTe4 is generally not amenable to the lower-temperature solution-based syntheses that yield small particles. Here, we demonstrate a solvothermal route to NbTe4 particles that is based on mainstream colloidal nanoparticle synthesis. We find that the reaction proceeds in situ through a multistep pathway that begins by first forming elemental tellurium needles. NbTe4 then deposits on the surface of the tellurium needles through a diffusion-based process. Time-point studies throughout the reaction reveal that crystallographic relationships between Te and NbTe4 define how the diffusion-based reaction proceeds and help to rationalize the morphology of the resulting NbTe4 particles. As synthesized, NbTe4 particles exhibit a surface consisting of predominantly Nb-Te and reduced NbOx species, but after storage, surface oxidation transforms these species to primarily Nb2O5 and TeO2, while the NbTe4 remains unchanged. These synthetic capabilities and reaction pathway insights for NbTe4, made using a solvothermal method, will help to advance future studies on the properties and applications of this and related tellurides.
Collapse
Affiliation(s)
- Katherine L Thompson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Peyton L Herring
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E Schaak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Dai X, Wang Y, Sun X, Li K, Pan J, Wang J, Zhuang T, Chong D, Yan J, Wang H. All-Automated Fabrication of Freestanding and Scalable Photo-Thermoelectric Devices with High Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312570. [PMID: 38359909 DOI: 10.1002/adma.202312570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Flexible photo-thermoelectric (PTE) devices have great application prospects in the fields of solar energy conversion, ultrabroadband light detection, etc. A suitable manufacturing process to avoid the substrate effects as well as to create a narrow transition area between p-n modules for high-performance freestanding flexible PTE devices is highly desired. Herein, an automated laser fabrication (ALF) method is reported to construct the PTE devices with rylene-diimide-doped n-type single-walled carbon nanotube (SWCNT) films. The wet-compressing approach is developed to improve the thermoelectric power factors and figure of merit (ZT) of the SWCNT hybrid films. Then, the films are cut and patterned automatically to make PTE devices with various structures by the proposed ALF method. The freestanding PTE device with a narrow transition area of ≈2-3 µm between the p and n modules exhibits a high-power density of 0.32 µW cm-2 under the light of 200 mW cm-2, which is among the highest level for freestanding-film-based PTE devices. The results pave the way for the automatic production process of PTE devices for green power generation and ultrabroadband light detection.
Collapse
Affiliation(s)
- Xu Dai
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yizhuo Wang
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xu Sun
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Kuncai Li
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiahao Pan
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing Wang
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Tiantian Zhuang
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Daotong Chong
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Junjie Yan
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hong Wang
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
8
|
Tian Y, Florenciano I, Xia H, Li Q, Baysal HE, Zhu D, Ramunni E, Meyers S, Yu TY, Baert K, Hauffman T, Nider S, Göksel B, Molina-Lopez F. Facile Fabrication of Flexible and High-Performing Thermoelectrics by Direct Laser Printing on Plastic Foil. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307945. [PMID: 38100238 DOI: 10.1002/adma.202307945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The emerging fields of wearables and the Internet of Things introduce the need for electronics and power sources with unconventional form factors: large area, customizable shape, and flexibility. Thermoelectric (TE) generators can power those systems by converting abundant waste heat into electricity, whereas the versatility of additive manufacturing suits heterogeneous form factors. Here, additive manufacturing of high-performing flexible TEs is proposed. Maskless and large-area patterning of Bi2Te3-based films is performed by laser powder bed fusion directly on plastic foil. Mechanical interlocking allows simultaneous patterning, sintering, and attachment of the films to the substrate without using organic binders that jeopardize the final performance. Material waste could be minimized by recycling the unexposed powder. The particular microstructure of the laser-printed material renders the-otherwise brittle-Bi2Te3 films highly flexible despite their high thickness. The films survive 500 extreme-bending cycles to a 0.76 mm radius. Power factors above 1500 µW m-1K-2 and a record-low sheet resistance for flexible TEs of 0.4 Ω sq-1 are achieved, leading to unprecedented potential for power generation. This versatile fabrication route enables innovative implementations, such as cuttable arrays adapting to specific applications in self-powered sensing, and energy harvesting from unusual scenarios like human skin and curved hot surfaces.
Collapse
Affiliation(s)
- Yuan Tian
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Isidro Florenciano
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Heyi Xia
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Qiyuan Li
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Hasan Emre Baysal
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Daiman Zhu
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Eduardo Ramunni
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Sebastian Meyers
- KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300 - bus 2420, Leuven, 3001, Belgium
| | - Tzu-Yi Yu
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Kitty Baert
- Vrije Universiteit Brussel, Department of Materials and Chemistry, Research Group Sustainable Materials Engineering (SUME), Lab Electrochemical and Surface Engineering (SURF), Pleinlaan 2, Brussels, 1050, Belgium
| | - Tom Hauffman
- Vrije Universiteit Brussel, Department of Materials and Chemistry, Research Group Sustainable Materials Engineering (SUME), Lab Electrochemical and Surface Engineering (SURF), Pleinlaan 2, Brussels, 1050, Belgium
| | - Souhaila Nider
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J - bus 2424, Leuven, 3001, Belgium
| | - Berfu Göksel
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| | - Francisco Molina-Lopez
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, Leuven, 3001, Belgium
| |
Collapse
|
9
|
Liu Y, Zhang Q, Huang A, Zhang K, Wan S, Chen H, Fu Y, Zuo W, Wang Y, Cao X, Wang L, Lemmer U, Jiang W. Fully inkjet-printed Ag 2Se flexible thermoelectric devices for sustainable power generation. Nat Commun 2024; 15:2141. [PMID: 38459024 PMCID: PMC10923913 DOI: 10.1038/s41467-024-46183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Flexible thermoelectric devices show great promise as sustainable power units for the exponentially increasing self-powered wearable electronics and ultra-widely distributed wireless sensor networks. While exciting proof-of-concept demonstrations have been reported, their large-scale implementation is impeded by unsatisfactory device performance and costly device fabrication techniques. Here, we develop Ag2Se-based thermoelectric films and flexible devices via inkjet printing. Large-area patterned arrays with microscale resolution are obtained in a dimensionally controlled manner by manipulating ink formulations and tuning printing parameters. Printed Ag2Se-based films exhibit (00 l)-textured feature, and an exceptional power factor (1097 μWm-1K-2 at 377 K) is obtained by engineering the film composition and microstructure. Benefiting from high-resolution device integration, fully inkjet-printed Ag2Se-based flexible devices achieve a record-high normalized power (2 µWK-2cm-2) and superior flexibility. Diverse application scenarios are offered by inkjet-printed devices, such as continuous power generation by harvesting thermal energy from the environment or human bodies. Our strategy demonstrates the potential to revolutionize the design and manufacture of multi-scale and complex flexible thermoelectric devices while reducing costs, enabling them to be integrated into emerging electronic systems as sustainable power sources.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Qihao Zhang
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany.
| | - Aibin Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Keyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Shun Wan
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Hongyi Chen
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Yuntian Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Wusheng Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Yongzhe Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xun Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China.
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, 201620, Shanghai, China.
| | - Uli Lemmer
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China.
- Institute of Functional Materials, Donghua University, 201620, Shanghai, China.
| |
Collapse
|
10
|
Das S, Mondal BP, Ranjan P, Datta A. High-Performance Paper-Based Thermoelectric Generator from Cu 2SnS 3 Nanocubes and Bulk-Traced Bismuth. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56022-56033. [PMID: 38010192 DOI: 10.1021/acsami.3c13576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Flexible paper-based thermoelectric generators (PTEGs) have drawn significant interest in recent years due to their various advantages such as flexibility, adaptability, environment friendliness, low cost, and easy fabrication process. However, the reported PTEG's output performance still lags behind the performance of other flexible devices as it is not so easy to obtain a compact film on a paper-based substrate with desirable power output with the standard thermoelectric (TE) materials that have been previously utilized. In this direction, Cu2SnS3 (CTS), an earth-abundant, ternary sulfide, can be a good choice p-type semiconductor, when paired with a suitable n-type TE material. In this article, CTS nanocubes are synthesized via a simple hot injection method and a thick film device on emery paper was prepared and optimized. Furthermore, a flexible, 20-pair PTEG is fabricated with p-type CTS legs and traced and pressed n-type bismuth legs assembled using Kapton tape that produced a significantly high output power of 2.18 μW (output power density ∼0.85 nW cm-2 K-1) for a temperature gradient of ΔT = 80 K. The TE properties are also supported by finite element simulation. The bending test conducted for the PTEG suggests device stability for up to 800 cycles with <0.05% change in the internal resistance. A proof-of-concept field-based demonstration for energy harvesting from waste heat of a motorbike exhaust is shown recovering an output power of ∼42 nW for ΔT = 20 K, corroborating the experimental and theoretical results.
Collapse
Affiliation(s)
- Surajit Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Bhargab P Mondal
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Priya Ranjan
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
- Technical Research Center, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
11
|
Ma F, Ao D, Sun B, Liu WD, Jabar B, Liu X. Direct Current Treatment Tuning Crystallinity Leading to High-Performance p-Type Sb 2Te 3 Flexible Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37668-37674. [PMID: 37474529 DOI: 10.1021/acsami.3c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
With the development of wearable electronics, inorganic flexible thin films (f-TFs) with high thermoelectric performance have attracted increasing research interest. To further enhance the thermoelectric performance of p-type inorganic Sb2Te3-based f-TFs, we employed direct current treatment to tune the crystallinity by rationally tuning the direct current treatment time. Correspondingly, a high electrical conductivity of >845 S cm-1 and a moderate Seebeck coefficient of >110 μV K-1 within the entire measurement temperature range have been simultaneously achieved. Consequently, a high power factor of 12.84 μW cm-1 K-2 at 423 K has been realized in the as-prepared p-type Sb2Te3 f-TF treated by a direct current of 5 A for 4 min. A flexible thermoelectric device has been further assembled to demonstrate the power-generating capacity. This study indicates that the direct current treatment is an effective method to improve the thermoelectric performance of Sb2Te3 f-TFs.
Collapse
Affiliation(s)
- Fan Ma
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Dongwei Ao
- School of Machinery and Automation, Weifang University, Weifang 261061, China
- College of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Bing Sun
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Wei-Di Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia
| | - Bushra Jabar
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Dresden 01069, Germany
| | - Xiangdong Liu
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
12
|
Howells G, Mehraban S, McGettrick J, Lavery N, Carnie MJ, Burton M. Rapid Printing of Pseudo-3D Printed SnSe Thermoelectric Generators Utilizing an Inorganic Binder. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23068-23076. [PMID: 37141177 DOI: 10.1021/acsami.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
There has been much interest in tin selenide (SnSe) in the thermoelectric community since the discovery of the record zT in the material in 2014. Manufacturing techniques used to produce SnSe are largely energy-intensive (e.g., spark plasma sintering); however, recently, in previous work, SnSe has been shown to be produced via a low embodied energy printing technique, resulting in 3D samples with high zT values (up to 1.7). Due to the additive manufacturing technique, the manufacturing time required was substantial. In this work, 3D samples were printed using the inorganic binder sodium metasilicate and reusable molds. This facilitated a single-step printing process that substantially reduced the manufacturing time. The printed samples were thermally stable through multiple thermal cycles, and a peak zT of 0.751 at 823 K was observed with the optimum binder concentration. A proof-of-concept thermoelectric generator produced the highest power output of any reported printed Se-based TEG to date.
Collapse
Affiliation(s)
- Geraint Howells
- Department of Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Shahin Mehraban
- MACH 1, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - James McGettrick
- SPECIFIC-IKC, Department of Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Nicholas Lavery
- MACH 1, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Matthew J Carnie
- SPECIFIC-IKC, Department of Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Matthew Burton
- SPECIFIC-IKC, Department of Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| |
Collapse
|
13
|
Manzi J, Weltner AE, Varghese T, McKibben N, Busuladzic-Begic M, Estrada D, Subbaraman H. Plasma-jet printing of colloidal thermoelectric Bi 2Te 3 nanoflakes for flexible energy harvesting. NANOSCALE 2023; 15:6596-6606. [PMID: 36916135 DOI: 10.1039/d2nr06454e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Thermoelectric generators (TEGs) convert temperature differences into electrical power and are attractive among energy harvesting devices due to their autonomous and silent operation. While thermoelectric materials have undergone substantial improvements in material properties, a reliable and cost-effective fabrication method suitable for microgravity and space applications remains a challenge, particularly as commercial space flight and extended crewed space missions increase in frequency. This paper demonstrates the use of plasma-jet printing (PJP), a gravity-independent, electromagnetic field-assisted printing technology, to deposit colloidal thermoelectric nanoflakes with engineered nanopores onto flexible substrates at room temperature. We observe substantial improvements in material adhesion and flexibility with less than 2% and 11% variation in performance after 10 000 bending cycles over 25 mm and 8 mm radii of curvature, respectively, as compared to previously reported TE films. Our printed films demonstrate electrical conductivity of 2.5 × 103 S m-1 and a power factor of 70 μW m-1 K-2 at room temperature. To our knowledge, these are the first reported values of plasma-jet printed thermoelectric nanomaterial films. This advancement in plasma jet printing significantly promotes the development of nanoengineered 2D and layered materials not only for energy harvesting but also for the development of large-scale flexible electronics and sensors for both space and commercial applications.
Collapse
Affiliation(s)
- Jacob Manzi
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID, 83725, USA
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97333, USA.
| | - Ariel E Weltner
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
- Center for Atomically Thin Multifunctional Coatings, Boise State University, Boise, ID, 83725, USA
| | - Tony Varghese
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID, 83725, USA
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
| | - Nicholas McKibben
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
| | - Mia Busuladzic-Begic
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
- Center for Atomically Thin Multifunctional Coatings, Boise State University, Boise, ID, 83725, USA
- Center for Advanced Energy Studies, Boise State University, Boise, ID, 83725, USA
- Idaho National Laboratory, Idaho Falls, ID, 83416, USA
| | - Harish Subbaraman
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID, 83725, USA
- Center for Atomically Thin Multifunctional Coatings, Boise State University, Boise, ID, 83725, USA
- Center for Advanced Energy Studies, Boise State University, Boise, ID, 83725, USA
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97333, USA.
| |
Collapse
|
14
|
Liu Y, Zhu H, Xing L, Bu Q, Ren D, Sun B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. NANOSCALE 2023; 15:6025-6051. [PMID: 36892458 DOI: 10.1039/d2nr05649f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid development of flexible/wearable electronics requires novel fabricating strategies. Among the state-of-the-art techniques, inkjet printing has aroused considerable interest due to the possibility of large-scale fabricating flexible electronic devices with good reliability, high time efficiency, a low manufacturing cost, and so on. In this review, based on the working principle, recent advances in the inkjet printing technology in the field of flexible/wearable electronics are summarized, including flexible supercapacitors, transistors, sensors, thermoelectric generators, wearable fabric, and for radio frequency identification. In addition, some current challenges and future opportunities in this area are also addressed. We hope this review article can give positive suggestions to the researchers in the area of flexible electronics.
Collapse
Affiliation(s)
- Yu Liu
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Hongze Zhu
- College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Lei Xing
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Qingkai Bu
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, PR. China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR. China.
| | - Bin Sun
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| |
Collapse
|
15
|
Wu B, Geng J, Lin Y, Hou C, Zhang Q, Li Y, Wang H. Hydrogel-based printing strategy for high-performance flexible thermoelectric generators. NANOSCALE 2022; 14:16857-16864. [PMID: 36350189 DOI: 10.1039/d2nr05733f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flexible thermoelectric (TE) devices can utilize the slight temperature difference between curved surfaces and surroundings to generate TE potential, presenting great potential in microelectronic energy supply and wearable sensing. Printing method has been employed to fabricate high-performance flexible TE films by means of excellent capability of assembling nanomaterials, but the decrease in the electrical conductivity caused by organic matters in the thermoelectric pastes will significantly reduce the thermoelectric performance. Herein, we report a hydrogel-based printing strategy to deposit flexible TE generators on various flexible substrates. The hydrogel network formed by physical crosslinking and molecular chain entanglement at 0.498 wt% carboxylated cellulose nanofibers can effectively limit the fluidity of 1D nanorod dispersion, which produces only <5% decline in electrical conductivity and Seebeck coefficient compared to the pure inorganic nanorod films. The device with 72 couples constructed by printing presents a high power density of 1.278 W m-2 under a temperature difference of 50 K. The advantages of hydrogel-based printing can broaden application prospects in the field of wearable electronics.
Collapse
Affiliation(s)
- Bo Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jixin Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yujie Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
16
|
Mallick MM, Franke L, Rösch AG, Geßwein H, Long Z, Eggeler YM, Lemmer U. High Figure-of-Merit Telluride-Based Flexible Thermoelectric Films through Interfacial Modification via Millisecond Photonic-Curing for Fully Printed Thermoelectric Generators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202411. [PMID: 36106362 PMCID: PMC9631075 DOI: 10.1002/advs.202202411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The thermoelectric generator (TEG) shows great promise for energy harvesting and waste heat recovery applications. Cost barriers for this technology could be overcome by using printing technologies. However, the development of thermoelectric (TE) materials that combine printability, high-efficiency, and mechanical flexibility is a serious challenge. Here, flexible (SbBi)2 (TeSe)3 -based screen-printed TE films exhibiting record-high figure of merits (ZT) and power factors are reported. A high power factor of 24 µW cm-1 K-2 (ZTmax ≈ 1.45) for a p-type film and a power factor of 10.5 µW cm-1 K-2 (ZTmax ≈ 0.75) for an n-type film are achieved. The TE inks, comprised of p-Bi0.5 Sb1.5 Te3 (BST)/n-Bi2 Te2.7 Se0.3 (BT) and a Cu-Se-based inorganic binder (IB), are prepared by a one-pot synthesis process. The TE inks are printed on different substrates and sintered using photonic-curing leading to the formation of a highly conducting β-Cu2- δ Se phase that connects "microsolders," the grains resulting in high-performance. Folded TEGs (f-TEGs) are fabricated using the materials. A half-millimeter thick f-TEG exhibits an open-circuit voltage (VOC ) of 203 mV with a maximum power density (pmax ) of 5.1 W m-2 at ∆T = 68 K. This result signifies that a few millimeters thick f-TEG could power Internet-of-Things (IoTs) devices converting low-grade heat to electricity.
Collapse
Affiliation(s)
- Md Mofasser Mallick
- Light Technology InstituteKarlsruhe Institute of Technology76131KarlsruheGermany
| | - Leonard Franke
- Light Technology InstituteKarlsruhe Institute of Technology76131KarlsruheGermany
| | - Andres Georg Rösch
- Light Technology InstituteKarlsruhe Institute of Technology76131KarlsruheGermany
| | - Holger Geßwein
- Institute for Applied MaterialsKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
| | - Zhongmin Long
- Laboratory for Electron MicroscopyKarlsruhe Institute of Technology76131KarlsruheGermany
| | - Yolita M. Eggeler
- Laboratory for Electron MicroscopyKarlsruhe Institute of Technology76131KarlsruheGermany
| | - Uli Lemmer
- Light Technology InstituteKarlsruhe Institute of Technology76131KarlsruheGermany
- Institute of Microstructure TechnologyKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
17
|
Wang H, Wang R, Chen C, Zhou Z, Liu JW. Manipulating Single-Walled Carbon Nanotube Arrays for Flexible Photothermoelectric Devices. JACS AU 2022; 2:2269-2276. [PMID: 36311832 PMCID: PMC9597597 DOI: 10.1021/jacsau.2c00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Flexible photothermoelectric (PTE) devices possess great application prospects in the field of light energy and thermoelectric energy harvesting which are some of the cornerstones of modern green renewable energy power generation. However, the low efficiency of PTE materials and lack of suitable manufacturing processes remain an impediment to restrict its rapid development. Here, we designed a flexible PTE device by printing a highly integrated single-walled carbon nanotubes (SWCNTs) array at intervals that were surface-functionalized with poly(acrylic acid) and poly(ethylene imine) as p-n heterofilms. After the introduction of a mask to give a selective light illumination and taking advantage of the photothermal effect of SWCNTs, a remarkable temperature gradient along the printed SWCNTs and a considerable power density of 1.3 μW/cm2 can be achieved. Meanwhile, both experimental data and COMSOL theoretical simulations were adopted to optimize the performance of our device, showing new opportunities for new generation flexible PTE devices.
Collapse
|
18
|
Ao D, Liu WD, Ma F, Bao W, Chen Y. Post-Electric Current Treatment Approaching High-Performance Flexible n-Type Bi 2Te 3 Thin Films. MICROMACHINES 2022; 13:1544. [PMID: 36144166 PMCID: PMC9505272 DOI: 10.3390/mi13091544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Inorganic n-type Bi2Te3 flexible thin film, as a promising near-room temperature thermoelectric material, has attracted extensive research interest and application potentials. In this work, to further improve the thermoelectric performance of flexible Bi2Te3 thin films, a post-electric current treatment is employed. It is found that increasing the electric current leads to increased carrier concentration and electric conductivity from 1874 S cm−1 to 2240 S cm−1. Consequently, a high power factor of ~10.70 μW cm−1 K−2 at room temperature can be achieved in the Bi2Te3 flexible thin films treated by the electric current of 0.5 A, which is competitive among flexible n-type Bi2Te3 thin films. Besides, the small change of relative resistance <10% before and after bending test demonstrates excellent bending resistance of as-prepared flexible Bi2Te3 films. A flexible device composed of 4 n-type legs generates an open circuit voltage of ~7.96 mV and an output power of 24.78 nW at a temperature difference of ~35 K. Our study indicates that post-electric current treatment is an effective method in boosting the electrical performance of flexible Bi2Te3 thin films.
Collapse
Affiliation(s)
- Dongwei Ao
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Wei-Di Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Fan Ma
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Wenke Bao
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Yuexing Chen
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
19
|
Influence of Thermoelectric Properties and Parasitic Effects on the Electrical Power of Thermoelectric Micro-Generators. ENERGIES 2022. [DOI: 10.3390/en15103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heat recovery systems based on thermoelectric micro-generators (µ-TEGs) can play a significant role in the development of wireless, energetically autonomous electronics. However, to date, the power density recovered for low temperature differences using µ-TEGs is limited to a few micro-watts or less, which is still insufficient to power a wide-range of wireless devices. To develop more efficient µ-TEGs, material, device and system requirements must be considered simultaneously. In this study, an innovative design of an in-plane µ-TEG integrating bismuth telluride forming sinusoidal-shaped trenches is reported. Using 3D numerical modelling, the influence of boundary conditions, parasitic effects (electrical and thermal contact resistances), and transport properties of thermoelectric materials on the output power of these µ-TEGs are investigated in detail for a small temperature difference of 5 K between the hot and cold sources. Compared to wavy-shaped trenches, this novel shape enables enhancing the output power. The results show that either the thermal conductivity or the Seebeck coefficient of the active n- and p-type semiconductors is the key parameter that should be minimized or maximized, depending on the magnitude of the parasitic effects.
Collapse
|
20
|
Burton M, Howells G, Atoyo J, Carnie M. Printed Thermoelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108183. [PMID: 35080059 DOI: 10.1002/adma.202108183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The looming impact of climate change and the diminishing supply of fossil fuels both highlight the need for a transition to more sustainable energy sources. While solar and wind can produce much of the energy needed, to meet all our energy demands there is a need for a diverse sustainable energy generation mix. Thermoelectrics can play a vital role in this, by harvesting otherwise wasted heat energy and converting it into useful electrical energy. While efficient thermoelectric materials have been known since the 1950s, thermoelectrics have not been utilized beyond a few niche applications. This can in part be attributed to the high cost of manufacturing and the geometrical restraints of current commercial manufacturing techniques. Printing offers a potential route to manufacture thermoelectric materials at a lower price point and allows for the fabrication of generators that are custom built to meet the waste heat source requirements. This review details the significant progress that has been made in recent years in printing of thermoelectric materials in all thermoelectric material groups and printing methods, and highlights very recent publications that show printing can now offer comparable performance to commercially manufactured thermoelectric materials.
Collapse
Affiliation(s)
- Matthew Burton
- SPECIFIC, Materials Research Centre, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Geraint Howells
- M2A, Materials Research Centre, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Jonathan Atoyo
- M2A, Materials Research Centre, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Matthew Carnie
- SPECIFIC, Materials Research Centre, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| |
Collapse
|
21
|
Ao D, Liu W, Chen Y, Wei M, Jabar B, Li F, Shi X, Zheng Z, Liang G, Zhang X, Fan P, Chen Z. Novel Thermal Diffusion Temperature Engineering Leading to High Thermoelectric Performance in Bi 2 Te 3 -Based Flexible Thin-Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103547. [PMID: 34939357 PMCID: PMC8844477 DOI: 10.1002/advs.202103547] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Flexible Bi2 Te3 -based thermoelectric devices can function as power generators for powering wearable electronics or chip-sensors for internet-of-things. However, the unsatisfied performance of n-type Bi2 Te3 flexible thin films significantly limits their wide application. In this study, a novel thermal diffusion method is employed to fabricate n-type Te-embedded Bi2 Te3 flexible thin films on flexible polyimide substrates, where Te embeddings can be achieved by tuning the thermal diffusion temperature and correspondingly result in an energy filtering effect at the Bi2 Te3 /Te interfaces. The energy filtering effect can lead to a high Seebeck coefficient ≈160 µV K-1 as well as high carrier mobility of ≈200 cm2 V-1 s-1 at room-temperature. Consequently, an ultrahigh room-temperature power factor of 14.65 µW cm-1 K-2 can be observed in the Te-embedded Bi2 Te3 flexible thin films prepared at the diffusion temperature of 623 K. A thermoelectric sensor is also assembled through integrating the n-type Bi2 Te3 flexible thin films with p-type Sb2 Te3 counterparts, which can fast reflect finger-touch status and demonstrate the applicability of as-prepared Te-embedded Bi2 Te3 flexible thin films. This study indicates that the thermal diffusion method is an effective way to fabricate high-performance and applicable flexible Te-embedded Bi2 Te3 -based thin films.
Collapse
Affiliation(s)
- Dong‐Wei Ao
- Shenzhen Key Laboratory of Advanced Thin Films and ApplicationsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Wei‐Di Liu
- Centre for Future Materials University of Southern Queensland Springfield CentralBrisbaneQLD4300Australia
- School of Mechanical and Mining EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Yue‐Xing Chen
- Shenzhen Key Laboratory of Advanced Thin Films and ApplicationsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Meng Wei
- Shenzhen Key Laboratory of Advanced Thin Films and ApplicationsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Bushra Jabar
- Shenzhen Key Laboratory of Advanced Thin Films and ApplicationsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Fu Li
- Shenzhen Key Laboratory of Advanced Thin Films and ApplicationsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xiao‐Lei Shi
- Centre for Future Materials University of Southern Queensland Springfield CentralBrisbaneQLD4300Australia
- School of Mechanical and Mining EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Zhuang‐Hao Zheng
- Shenzhen Key Laboratory of Advanced Thin Films and ApplicationsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Guang‐Xing Liang
- Shenzhen Key Laboratory of Advanced Thin Films and ApplicationsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xiang‐Hua Zhang
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR6226RennesF‐35000France
| | - Ping Fan
- Shenzhen Key Laboratory of Advanced Thin Films and ApplicationsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Zhi‐Gang Chen
- Centre for Future Materials University of Southern Queensland Springfield CentralBrisbaneQLD4300Australia
- School of Mechanical and Mining EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| |
Collapse
|
22
|
Mallick MM, Franke L, Rösch AG, Ahmad S, Geßwein H, Eggeler YM, Rohde M, Lemmer U. Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu 2-δSe Phase. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61386-61395. [PMID: 34910878 DOI: 10.1021/acsami.1c13526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It has been a substantial challenge to develop a printed thermoelectric (TE) material with a figure-of-merit ZT > 1. In this work, high ZT p-type Bi0.5Sb1.5Te3-based printable TE materials have been advanced by interface modification of the TE grains with a nonstoichiometric β-Cu2-δSe-based inorganic binder (IB) through a facile printing-sintering process. As a result, a very high TE power factor of ∼17.5 μW cm-1 K-2 for a p-type printed material is attained in the optimized compounds at room temperature (RT). In addition, a high ZT of ∼1.2 at RT and of ∼1.55 at 360 K is realized using thermal conductivity (κ) of a pellet made of the prepared printable material containing 10 wt % of IB. Using the same material for p-type TE legs and silver paste for n-type TE legs, a printed TE generator (print-TEG) of four thermocouples has been fabricated for demonstration. An open-circuit voltage (VOC) of 14 mV and a maximum power output (Pmax) of 1.7 μW are achieved for ΔT = 40 K for the print-TEG.
Collapse
Affiliation(s)
- Md Mofasser Mallick
- Light Technology Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Leonard Franke
- Light Technology Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andres Georg Rösch
- Light Technology Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Sarfraz Ahmad
- Institute for Applied Materials Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Holger Geßwein
- Institute for Applied Materials Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yolita M Eggeler
- Laboratory for electron microscopy, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Magnus Rohde
- Institute for Applied Materials Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Uli Lemmer
- Light Technology Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
Jacob S, Delatouche B, Péré D, Ullah Khan Z, Ledoux MJ, Crispin X, Chmielowski R. High-performance flexible thermoelectric modules based on high crystal quality printed TiS 2/hexylamine. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:907-916. [PMID: 34867084 PMCID: PMC8635557 DOI: 10.1080/14686996.2021.1978802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Printed electronics implies the use of low-cost, scalable, printing technologies to fabricate electronic devices and circuits on flexible substrates, such as paper or plastics. The development of this new electronic is currently expanding because of the emergence of the internet-of-everything. Although lot of attention has been paid to functional inks based on organic semiconductors, another class of inks is based on nanoparticles obtained from exfoliated 2D materials, such as graphene and metal sulfides. The ultimate scientific and technological challenge is to find a strategy where the exfoliated nanoparticle flakes in the inks can, after solvent evaporation, form a solid which displays performances equal to the single crystal of the 2D material. In this context, a printed layer, formed from an ink composed of nano-flakes of TiS2 intercalated with hexylamine, which displays thermoelectric properties superior to organic intercalated TiS2 single crystals, is demonstrated for the first time. The choice of the fraction of exfoliated nano-flakes appears to be a key to the forming of a new self-organized layered material by solvent evaporation. The printed layer is an efficient n-type thermoelectric material which complements the p-type printable organic semiconductors The thermoelectric power factor of the printed TiS2/hexylamine thin films reach record values of 1460 µW m-1 K-2 at 430 K, this is considerably higher than the high value of 900 µW m-1 K-2 at 300 K reported for a single crystal. A printed thermoelectric generator based on eight legs of TiS2 confirms the high-power factor values by generating a power density of 16.0 W m-2 at ΔT = 40 K.
Collapse
Affiliation(s)
- Stéphane Jacob
- Department of Advanced Materials, IMRA Europe S.A.S., Sophia Antipolis, France
| | - Bruno Delatouche
- Department of Advanced Materials, IMRA Europe S.A.S., Sophia Antipolis, France
| | - Daniel Péré
- Department of Advanced Materials, IMRA Europe S.A.S., Sophia Antipolis, France
| | - Zia Ullah Khan
- Department of Advanced Materials, IMRA Europe S.A.S., Sophia Antipolis, France
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Marc Jacques Ledoux
- Department of Advanced Materials, IMRA Europe S.A.S., Sophia Antipolis, France
- Institut de Chimie et Procédés Pour l’Energie, l’Environnement et la Santé (ICPEES), UMR 7515 CNRS/Université de Strasbourg, Schiltigheim, France
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | | |
Collapse
|
24
|
Zeng M, Zavanelli D, Chen J, Saeidi-Javash M, Du Y, LeBlanc S, Snyder GJ, Zhang Y. Printing thermoelectric inks toward next-generation energy and thermal devices. Chem Soc Rev 2021; 51:485-512. [PMID: 34761784 DOI: 10.1039/d1cs00490e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability of thermoelectric (TE) materials to convert thermal energy to electricity and vice versa highlights them as a promising candidate for sustainable energy applications. Despite considerable increases in the figure of merit zT of thermoelectric materials in the past two decades, there is still a prominent need to develop scalable synthesis and flexible manufacturing processes to convert high-efficiency materials into high-performance devices. Scalable printing techniques provide a versatile solution to not only fabricate both inorganic and organic TE materials with fine control over the compositions and microstructures, but also manufacture thermoelectric devices with optimized geometric and structural designs that lead to improved efficiency and system-level performances. In this review, we aim to provide a comprehensive framework of printing thermoelectric materials and devices by including recent breakthroughs and relevant discussions on TE materials chemistry, ink formulation, flexible or conformable device design, and processing strategies, with an emphasis on additive manufacturing techniques. In addition, we review recent innovations in the flexible, conformal, and stretchable device architectures and highlight state-of-the-art applications of these TE devices in energy harvesting and thermal management. Perspectives of emerging research opportunities and future directions are also discussed. While this review centers on thermoelectrics, the fundamental ink chemistry and printing processes possess the potential for applications to a broad range of energy, thermal and electronic devices.
Collapse
Affiliation(s)
- Minxiang Zeng
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Duncan Zavanelli
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA.
| | - Jiahao Chen
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Mortaza Saeidi-Javash
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yipu Du
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Saniya LeBlanc
- Department of Mechanical & Aerospace Engineering, George Washington University, 801 22nd St. NW, Suite 739, Washington, DC 20052, USA
| | - G Jeffrey Snyder
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA.
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
25
|
Li Z, Guo Y, Zong Y, Li K, Wang S, Cao H, Teng C. Ga Based Particles, Alloys and Composites: Fabrication and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2246. [PMID: 34578561 PMCID: PMC8471900 DOI: 10.3390/nano11092246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Liquid metal (LM) materials, including pure gallium (Ga) LM, eutectic alloys and their composites with organic polymers and inorganic nanoparticles, are cutting-edge functional materials owing to their outstanding electrical conductivity, thermal conductivity, extraordinary mechanical compliance, deformability and excellent biocompatibility. The unique properties of LM-based materials at room temperatures can overcome the drawbacks of the conventional electronic devices, particularly high thermal, electrical conductivities and their fluidic property, which would open tremendous opportunities for the fundamental research and practical applications of stretchable and wearable electronic devices. Therefore, research interest has been increasingly devoted to the fabrication methodologies of LM nanoparticles and their functional composites. In this review, we intend to present an overview of the state-of-art protocols for the synthesis of Ga-based materials, to introduce their potential applications in the fields ranging from wearable electronics, energy storage batteries and energy harvesting devices to bio-applications, and to discuss challenges and opportunities in future studies.
Collapse
Affiliation(s)
- Zhi Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yiming Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Yufen Zong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Kai Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shuang Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Hai Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Chao Teng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
| |
Collapse
|
26
|
Liu D, Zhao Y, Yan Z, Zhang Z, Zhang Y, Shi P, Xue C. Screen-Printed Flexible Thermoelectric Device Based on Hybrid Silver Selenide/PVP Composite Films. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2042. [PMID: 34443872 PMCID: PMC8401139 DOI: 10.3390/nano11082042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
In recent years, the preparation of flexible thermoelectric generators by screen printing has attracted wide attention due to easy processing and high-volume production. In this work, we propose an n-type Ag2Se/polymer polyvinylpyrrolidone (PVP) film based on screen printing and investigate the effect of PVP on thermoelectric performance by varying the ratio of PVP. When the content ratio of Ag2Se to PVP is 30:1, i.e., PI30, the fabricated PI30 film has the best thermoelectric property. The maximum power factor (PF) of the PI30 is 4.3 μW·m-1·K-2, and conductivity reaches 81% of its initial value at 1500 bending cycles. Then, the film thermoelectric generator (F-TEG) fabricated by PI30 is tested for practical application; the output voltage and the maximum output power are 21.6 mV and 233.3 nW at the temperature difference of 40 K, respectively. This work demonstrates that the use of PVP combined with screen printing to prepare F-TEG is a simple and rapid method, which provides an efficient preparation solution for the development of environmentally friendly and wearable flexible thermoelectric devices.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (Y.Z.); (Z.Y.); (Z.Z.); (Y.Z.)
| | - Yaxin Zhao
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (Y.Z.); (Z.Y.); (Z.Z.); (Y.Z.)
| | - Zhuqing Yan
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (Y.Z.); (Z.Y.); (Z.Z.); (Y.Z.)
| | - Zhidong Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (Y.Z.); (Z.Y.); (Z.Z.); (Y.Z.)
| | - Yanjun Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (Y.Z.); (Z.Y.); (Z.Z.); (Y.Z.)
| | - Peng Shi
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Chenyang Xue
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China; (Y.Z.); (Z.Y.); (Z.Z.); (Y.Z.)
| |
Collapse
|
27
|
Synthesis and Performance of Large-Scale Cost-Effective Environment-Friendly Nanostructured Thermoelectric Materials. NANOMATERIALS 2021; 11:nano11051091. [PMID: 33922455 PMCID: PMC8146525 DOI: 10.3390/nano11051091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
Thermoelectricity is a promising technology that directly converts heat energy into electricity and finds its use in enormous applications. This technology can be used for waste heat recovery from automobile exhausts and industrial sectors and convert the heat from solar energy, especially in hot and humid areas such as Qatar. The large-scale, cost-effective commercialization of thermoelectric generators requires the processing and fabrication of nanostructured materials with quick, easy, and inexpensive techniques. Moreover, the methods should be replicable and reproducible, along with stability in terms of electrical, thermal, and mechanical properties of the TE material. This report summarizes and compares the up-to-date technologies available for batch production of the earth-abundant and ecofriendly materials along with some notorious works in this domain. We have also evaluated and assessed the pros and cons of each technique and its effect on the properties of the materials. The simplicity, time, and cost of each synthesis technique have also been discussed and compared with the conventional methods.
Collapse
|
28
|
Tian Y, Molina-Lopez F. Boosting the performance of printed thermoelectric materials by inducing morphological anisotropy. NANOSCALE 2021; 13:5202-5215. [PMID: 33688886 DOI: 10.1039/d0nr08144b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermoelectrics can generate electrical energy from waste heat and work also as active coolers. However, their widespread use is hindered by their poor efficiency, which is aggravated by their costly and hard-to-scale fabrication process. Good thermoelectric performances require materials with high (low) electrical (thermal) conductivity. Inducing morphological anisotropy at the nanoscale holds promise to boost thermoelectric performances, in both inorganic and organic materials, by increasing the ratio electrical/thermal conductivity along a selected direction without strongly affecting the Seebeck coefficient. Recent advances in 2D/3D printed electronics are revealing new simple and inexpensive routes to fabricate thermoelectrics with the necessary morphological control to boost performance by inducing anisotropy.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3000, Leuven, Belgium.
| | - Francisco Molina-Lopez
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3000, Leuven, Belgium.
| |
Collapse
|
29
|
Neumann TV, Kara B, Sargolzaeiaval Y, Im S, Ma J, Yang J, Ozturk MC, Dickey MD. Aerosol Spray Deposition of Liquid Metal and Elastomer Coatings for Rapid Processing of Stretchable Electronics. MICROMACHINES 2021; 12:146. [PMID: 33535606 PMCID: PMC7912875 DOI: 10.3390/mi12020146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
We report a spray deposition technique for patterning liquid metal alloys to form stretchable conductors, which can then be encapsulated in silicone elastomers via the same spraying procedure. While spraying has been used previously to deposit many materials, including liquid metals, this work focuses on quantifying the spraying process and combining it with silicones. Spraying generates liquid metal microparticles (~5 μm diameter) that pass through openings in a stencil to produce traces with high resolution (~300 µm resolution using stencils from a craft cutter) on a substrate. The spraying produces sufficient kinetic energy (~14 m/s) to distort the particles on impact, which allows them to merge together. This merging process depends on both particle size and velocity. Particles of similar size do not merge when cast as a film. Likewise, smaller particles (<1 µm) moving at the same speed do not rupture on impact either, though calculations suggest that such particles could rupture at higher velocities. The liquid metal features can be encased by spraying uncured silicone elastomer from a volatile solvent to form a conformal coating that does not disrupt the liquid metal features during spraying. Alternating layers of liquid metal and elastomer may be patterned sequentially to build multilayer devices, such as soft and stretchable sensors.
Collapse
Affiliation(s)
- Taylor V. Neumann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; (T.V.N.); (S.I.); (J.M.); (J.Y.)
| | - Berra Kara
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (Y.S.); (M.C.O.)
| | - Yasaman Sargolzaeiaval
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (Y.S.); (M.C.O.)
| | - Sooik Im
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; (T.V.N.); (S.I.); (J.M.); (J.Y.)
| | - Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; (T.V.N.); (S.I.); (J.M.); (J.Y.)
| | - Jiayi Yang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; (T.V.N.); (S.I.); (J.M.); (J.Y.)
| | - Mehmet C. Ozturk
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (Y.S.); (M.C.O.)
| | - Michael D. Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; (T.V.N.); (S.I.); (J.M.); (J.Y.)
| |
Collapse
|
30
|
Abstract
A 2.4 GHz flexible monopole antenna fed by a coplanar waveguide (CPW) was presented on polyimide (PI) as the dielectric substrate, which was fabricated by in situ self-metallization. The technology does not depend on expensive equipment or complex experimental environments, including hydrolysis, ion exchange, and reduction reaction. The measurement results show that the resonance frequency of the proposed antenna is 2.28 GHz, the bandwidth is 2.06–2.74 GHz, and the relative bandwidth is 28.33% under the flat state. The bending and folding test was also carried out. Whether it was flat, bent, or folded, the measured results met the requirements of the antenna. A fatigue test was carried out to illustrate that the prepared film has high mechanical flexibility, which expands the application field of antenna.
Collapse
|
31
|
Teixeira JS, Costa RS, Pires AL, Pereira AM, Pereira C. Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices. Dalton Trans 2021; 50:9983-10013. [PMID: 34264261 DOI: 10.1039/d1dt01568k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The worldwide energy scarcity arising from the massive consumption of nonrenewable energy sources raised a global awareness of the need for cleaner and affordable energy solutions to mitigate climate change and ensure the world sustainable development. The rise of the Internet of Things and the fast growth of the groundbreaking market of wearable electronics boosted a major quest for self-powered technologies merging energy harvesting and energy storage functionalities to meet the demands of a myriad of market segments, such as healthcare, transportation, defense and sports. Thermoelectric devices are a green energy harvesting solution for wearable electronics since they harness the low-grade waste heat from ubiquitous thermal energy sources and convert it into electrical energy. However, these systems generate electrical energy in an intermittent manner, depend on the local heat release availability and require an additional unit to store energy. Flexible and wearable supercapacitors are a safe and eco-friendly energy storage solution to power wearables, offering advantages of security, longer cycle life, higher power density and faster charging over batteries. However, an additional unit that generates energy or that is able to charge the storage device is required. More recently, a new class of all-in-one thermally-chargeable supercapacitors blossomed to meet the requirements of the next generation of autonomous wearable electronics and ensure an endurable energy supply. This self-chargeable hybrid technology combines the functionalities of thermal energy harvesting and supercapacitive energy storage in a single multitasking device. In this Perspective, the advances in the burgeoning field of all-in-one thermally-chargeable supercapacitors for flexible/wearable applications will be critically examined, ranging from their structure and working principle to the rational design of the composing materials and of tailor-made architectures. It will start by introducing the foundations of single flexible/wearable thermoelectric generators and supercapacitors and will evolve into the pioneering venture of fully-integrated thermal energy harvesting/storage systems. It will end by highlighting the current bottlenecks and future pathways for advancing the development of this sophisticated smart technology.
Collapse
Affiliation(s)
- Joana S Teixeira
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. and IFIMUP - Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Rui S Costa
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. and IFIMUP - Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana L Pires
- IFIMUP - Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - André M Pereira
- IFIMUP - Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Clara Pereira
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
32
|
High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat Commun 2020; 11:5948. [PMID: 33230141 PMCID: PMC7684283 DOI: 10.1038/s41467-020-19756-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022] Open
Abstract
Softening of thermoelectric generators facilitates conformal contact with arbitrary-shaped heat sources, which offers an opportunity to realize self-powered wearable applications. However, existing wearable thermoelectric devices inevitably exhibit reduced thermoelectric conversion efficiency due to the parasitic heat loss in high-thermal-impedance polymer substrates and poor thermal contact arising from rigid interconnects. Here, we propose compliant thermoelectric generators with intrinsically stretchable interconnects and soft heat conductors that achieve high thermoelectric performance and unprecedented conformability simultaneously. The silver-nanowire-based soft electrodes interconnect bismuth-telluride-based thermoelectric legs, effectively absorbing strain energy, which allows our thermoelectric generators to conform perfectly to curved surfaces. Metal particles magnetically self-assembled in elastomeric substrates form soft heat conductors that significantly enhance the heat transfer to the thermoelectric legs, thereby maximizing energy conversion efficiency on three-dimensional heat sources. Moreover, automated additive manufacturing paves the way for realizing self-powered wearable applications comprising hundreds of thermoelectric legs with high customizability under ambient conditions. Though flexible thermoelectric generators (TEGs) are attractive for energy harvesting applications, existing devices show low efficiency due to heat loss and poor thermal contact. Here, the authors report high-performance conformable TEGs with stretchable interconnects and soft heat conductors.
Collapse
|
33
|
Ding D, Sun F, Xia F, Tang Z. A high-performance and flexible thermoelectric generator based on the solution-processed composites of reduced graphene oxide nanosheets and bismuth telluride nanoplates. NANOSCALE ADVANCES 2020; 2:3244-3251. [PMID: 36134279 PMCID: PMC9417153 DOI: 10.1039/d0na00118j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 06/12/2023]
Abstract
The fabrication of a flexible thermoelectric generator (TEG) with both high power output and good flexibility has drawn considerable attention. Solution-processed inorganic nanocrystals have good processibility in interface to retain excellent electrical properties of nanocrystals and can be processed into thin films on a flexible substrate by an easy scale-up printing or coating method. However, a high-performance TEG device based on inorganic solution-processed materials also poses challenges when it comes to flexibility of the whole device. Herein, flexible planar TEG devices are fabricated by printing an ink mixture comprising solution-processed bismuth telluride (Bi2Te3) nanoplates with reduced-graphene oxide (rGO) nanosheets onto flexible polyimide substrates. The interface treatment by hot ethylenediamine and the appropriate amount of rGO contribute to the high electrical properties of the material. Also, when rGO nanosheets of 1% mass ratio are added, the optimum power output of the corresponding rGO/Bi2Te3 TEG device with six elements reaches ∼1.72 μW at a temperature difference of 20 K. Moreover, owing to the contribution from flexible rGO nanosheets, the suitable thickness of each element, and the artful connection of elements with a soft copper wire in the devices, the 1% rGO/Bi2Te3 TEG device was found to be robust, and its electrical resistance merely changes by 2% after bending 1000 cycles on 5 mm in bending. These inorganic-based TEGs with both high performance and good flexibility will promote the development of new generation energy devices in the field of flexible electronics.
Collapse
Affiliation(s)
- Defang Ding
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG) 388 Lumo Road Wuhan 430074 P. R. China
| | - Fengming Sun
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG) 388 Lumo Road Wuhan 430074 P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG) 388 Lumo Road Wuhan 430074 P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology No. 11, Beiyitiao, Zhongguancun Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Rd, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
34
|
Neumann TV, Facchine EG, Leonardo B, Khan S, Dickey MD. Direct write printing of a self-encapsulating liquid metal-silicone composite. SOFT MATTER 2020; 16:6608-6618. [PMID: 32613217 DOI: 10.1039/d0sm00803f] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silicone composites featuring inclusions of liquid metal particles are soft and stretchable materials with useful electric, dielectric, mechanical, and thermal properties. Until recently, these materials have primarily been cast as films. This work examines the possibility of using uncured liquid metal-elastomer (LME) composites as inks for direct writing. The liquid metal inclusions act as rheological modifiers for the silicone, forming a gel-structure that can be extruded from a nozzle and hold its shape after printing. Additionally, by tuning the particle size, larger particles in the printed structures can settle to form metal-rich regions at the bottom of the structures, encased by metal-depleted (insulating) regions. Using mechanical force, the liquid metal-rich interior can be rendered conductive by sintering without affecting the insulating exterior. Thus, it is possible to print this soft and stretchable material while creating conductors with self-insulating shells.
Collapse
Affiliation(s)
- Taylor V Neumann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Emily G Facchine
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Brian Leonardo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Saad Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
35
|
Shi XL, Zou J, Chen ZG. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem Rev 2020; 120:7399-7515. [PMID: 32614171 DOI: 10.1021/acs.chemrev.0c00026] [Citation(s) in RCA: 487] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The long-standing popularity of thermoelectric materials has contributed to the creation of various thermoelectric devices and stimulated the development of strategies to improve their thermoelectric performance. In this review, we aim to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics, including structural design (point defects, dislocations, interfaces, inclusions, and pores), multidimensional design (quantum dots/wires, nanoparticles, nanowires, nano- or microbelts, few-layered nanosheets, nano- or microplates, thin films, single crystals, and polycrystalline bulks), and advanced device design (thermoelectric modules, miniature generators and coolers, and flexible thermoelectric generators). The outline of each strategy starts with a concise presentation of their fundamentals and carefully selected examples. In the end, we point out the controversies, challenges, and outlooks toward the future development of thermoelectric materials and devices. Overall, this review will serve to help materials scientists, chemists, and physicists, particularly students and young researchers, in selecting suitable strategies for the improvement of thermoelectrics and potentially other relevant energy conversion technologies.
Collapse
Affiliation(s)
- Xiao-Lei Shi
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia.,School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jin Zou
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi-Gang Chen
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia.,School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
36
|
Zadan M, Malakooti MH, Majidi C. Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17921-17928. [PMID: 32208638 DOI: 10.1021/acsami.9b19837] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stretchable thermoelectric generators (TEGs) capable of harvesting electrical energy from body heat under cold weather conditions have the potential to make wearable electronic and robotic systems more lightweight and portable by reducing their dependency on on-board batteries. However, progress depends on the integration of soft conductive materials for robust electrical wiring and thermal management. The use of thermally conductive soft elastomers is especially important for conforming to the body, absorbing body heat, and maintaining a temperature gradient between the two sides of the TEGs in order to generate power. Here, we introduce a soft-matter TEG architecture composed of electrically and thermally conductive liquid metal embedded elastomer (LMEE) composites with integrated arrays of n-type and p-type Bi2Te3 semiconductors. The incorporation of a LMEE as a multifunctional encapsulating material allows for the seamless integration of 100 thermoelectric semiconductor elements into a simplified material layup that has a dimension of 41.0 × 47.3 × 3.0 mm. These stretchable thermoelectric devices generate voltages of 59.96 mV at Δ10 °C, 130 mV at Δ30 °C, and 278.6 mV and a power of 86.6 μW/cm2 at Δ60 °C. Moreover, they do not electrically or mechanically fail when stretched to strains above 50%, making them well-suited for energy harvesting in soft electronics and wearable computing applications.
Collapse
Affiliation(s)
- Mason Zadan
- Physics Department, University of Richmond, Richmond, Virginia 23173, United States
| | - Mohammad H Malakooti
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
37
|
Liu Y, Mu E, Wu Z, Che Z, Sun F, Fu X, Wang F, Wang X, Hu Z. Ultrathin MEMS thermoelectric generator with Bi 2Te 3/(Pt, Au) multilayers and Sb 2Te 3 legs. NANO CONVERGENCE 2020; 7:8. [PMID: 32124134 PMCID: PMC7052102 DOI: 10.1186/s40580-020-0218-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/12/2020] [Indexed: 05/10/2023]
Abstract
Multilayer structure is one of the research focuses of thermoelectric (TE) material in recent years. In this work, n-type 800 nm Bi2Te3/(Pt, Au) multilayers are designed with p-type Sb2Te3 legs to fabricate ultrathin microelectromechanical systems (MEMS) TE devices. The power factor of the annealed Bi2Te3/Pt multilayer reaches 46.5 μW cm-1 K-2 at 303 K, which corresponds to more than a 350% enhancement when compared to pristine Bi2Te3. The annealed Bi2Te3/Au multilayers have a lower power factor than pristine Bi2Te3. The power of the device with Sb2Te3 and Bi2Te3/Pt multilayers measures 20.9 nW at 463 K and the calculated maximum output power reaches 10.5 nW, which is 39.5% higher than the device based on Sb2Te3 and Bi2Te3, and 96.7% higher than the Sb2Te3 and Bi2Te3/Au multilayers one. This work can provide an opportunity to improve TE properties by using multilayer structures and novel ultrathin MEMS TE devices in a wide variety of applications.
Collapse
Affiliation(s)
- Yang Liu
- National Key Laboratory of Science and Technology on Micro-Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240 China
- Institute of Nano-Micro Energy, Shanghai Jiao Tong University, Shanghai, 200240 China
- Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Erzhen Mu
- National Key Laboratory of Science and Technology on Micro-Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240 China
- Institute of Nano-Micro Energy, Shanghai Jiao Tong University, Shanghai, 200240 China
- Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Zhenhua Wu
- National Key Laboratory of Science and Technology on Micro-Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240 China
- Institute of Nano-Micro Energy, Shanghai Jiao Tong University, Shanghai, 200240 China
- Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Zhanxun Che
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fangyuan Sun
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xuecheng Fu
- Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Fengdan Wang
- Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xinwei Wang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Zhiyu Hu
- National Key Laboratory of Science and Technology on Micro-Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240 China
- Institute of Nano-Micro Energy, Shanghai Jiao Tong University, Shanghai, 200240 China
- Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
38
|
Dobrozhan O, Pshenychnyi R, Vorobiov S, Kurbatov D, Komanicky V, Opanasyuk A. Influence of the thermal annealing on the morphological and structural properties of ZnO films deposited onto polyimide substrates by ink-jet printing. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
39
|
Hossain MS, Li T, Yu Y, Yong J, Bahk JH, Skafidas E. Recent advances in printable thermoelectric devices: materials, printing techniques, and applications. RSC Adv 2020; 10:8421-8434. [PMID: 35497831 PMCID: PMC9049993 DOI: 10.1039/c9ra09801a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/03/2020] [Indexed: 01/27/2023] Open
Abstract
Thermoelectric devices have great potential as a sustainable energy conversion technology to harvest waste heat and perform spot cooling with high reliability. However, most of the thermoelectric devices use toxic and expensive materials, which limits their application. These materials also require high-temperature fabrication processes, limiting their compatibility with flexible, bio-compatible substrate. Printing electronics is an exciting new technique for fabrication that has enabled a wide array of biocompatible and conformable systems. Being able to print thermoelectric devices allows them to be custom made with much lower cost for their specific application. Significant effort has been directed toward utilizing polymers and other bio-friendly materials for low-cost, lightweight, and flexible thermoelectric devices. Fortunately, many of these materials can be printed using low-temperature printing processes, enabling their fabrication on biocompatible substrates. This review aims to report the recent progress in developing high performance thermoelectric inks for various printing techniques. In addition to the usual thermoelectric performance measures, we also consider the attributes of flexibility and the processing temperatures. Finally, recent advancement of printed device structures is discussed which aims to maximize the temperature difference across the junctions.
Collapse
Affiliation(s)
- Md Sharafat Hossain
- Department of Electrical and Electronic Engineering, ARC Research Hub for Graphene Enabled Industry Transformation, The University of Melbourne Parkville 3010 Australia
| | - Tianzhi Li
- Department of Electrical and Electronic Engineering, ARC Research Hub for Graphene Enabled Industry Transformation, The University of Melbourne Parkville 3010 Australia
| | - Yang Yu
- Department of Electrical and Electronic Engineering, ARC Research Hub for Graphene Enabled Industry Transformation, The University of Melbourne Parkville 3010 Australia
| | - Jason Yong
- Department of Electrical and Electronic Engineering, ARC Research Hub for Graphene Enabled Industry Transformation, The University of Melbourne Parkville 3010 Australia
| | - Je-Hyeong Bahk
- Department of Mechanical and Materials Engineering, Department of Electrical Engineering and Computer Science, The University of Cincinnati Cincinnati OH 45221 USA
| | - Efstratios Skafidas
- Department of Electrical and Electronic Engineering, ARC Research Hub for Graphene Enabled Industry Transformation, The University of Melbourne Parkville 3010 Australia
| |
Collapse
|
40
|
Parate K, Rangnekar SV, Jing D, Mendivelso-Perez DL, Ding S, Secor EB, Smith EA, Hostetter JM, Hersam MC, Claussen JC. Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8592-8603. [PMID: 32040290 DOI: 10.1021/acsami.9b22183] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Graphene-based inks are becoming increasingly attractive for printing low-cost and flexible electrical circuits due to their high electrical conductivity, biocompatibility, and manufacturing scalability. Conventional graphene printing techniques, such as screen and inkjet printing, are limited by stringent ink viscosity requirements properties and large as-printed line width that impedes the performance of printed biosensors. Here, we report an aerosol-jet-printed (AJP) graphene-based immunosensor capable of monitoring two distinct cytokines: interferon gamma (IFN-γ) and interleukin 10 (IL-10). Interdigitated electrodes (IDEs) with 40 μm finger widths were printed from graphene-nitrocellulose ink on a polyimide substrate. The IDEs were annealed in CO2 to introduce reactive oxygen species on the graphene surface that act as chemical handles to covalently link IFN-γ and IL-10 antibodies to the graphene surfaces. The resultant AJP electrochemical immunosensors are capable of monitoring cytokines in serum with wide sensing range (IFN-γ: 0.1-5 ng/mL; IL-10: 0.1-2 ng/mL), low detection limit (IFN-γ: 25 pg/ml and IL-10: 46 pg/ml) and high selectivity (antibodies exhibited minimal cross-reactivity with each other and IL-6) without the need for sample prelabeling or preconcentration. Moreover, these biosensors are mechanically flexible with minimal change in signal output after 250 bending cycles over a high curvature (Φ = 5 mm). Hence, this technology could be applied to numerous electrochemical applications that require low-cost electroactive circuits that are disposable and/or flexible.
Collapse
Affiliation(s)
- Kshama Parate
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Sonal V Rangnekar
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Dapeng Jing
- Materials Analysis and Research Laboratory , Iowa State University , Ames , Iowa 50010 , Unites States
| | | | - Shaowei Ding
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Ethan B Secor
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Emily A Smith
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | - Jesse M Hostetter
- College of Veterinary Medicine , Iowa State University , Ames , Iowa 50011 , United States
| | - Mark C Hersam
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
41
|
Chen N, Scimeca MR, Paul SJ, Hafiz SB, Yang Z, Liu X, Yang F, Ko DK, Sahu A. High-performance thermoelectric silver selenide thin films cation exchanged from a copper selenide template. NANOSCALE ADVANCES 2020; 2:368-376. [PMID: 36133987 PMCID: PMC9416934 DOI: 10.1039/c9na00605b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 05/11/2023]
Abstract
Over the past decade, Ag2Se has attracted increasing attention due to its potentially excellent thermoelectric (TE) performance as an n-type semiconductor. It has been considered a promising alternative to Bi-Te alloys and other commonly used yet toxic and/or expensive TE materials. To optimize the TE performance of Ag2Se, recent research has focused on fabricating nanosized Ag2Se. However, synthesizing Ag2Se nanoparticles involves energy-intensive and time-consuming techniques with poor yield of final product. In this work, we report a low-cost, solution-processed approach that enables the formation of Ag2Se thin films from Cu2-x Se template films via cation exchange at room temperature. Our simple two-step method involves fabricating Cu2-x Se thin films by the thiol-amine dissolution of bulk Cu2Se, followed by soaking Cu2-x Se films in AgNO3 solution and annealing to form Ag2Se. We report an average power factor (PF) of 617 ± 82 μW m-1 K-2 and a corresponding ZT value of 0.35 at room temperature. We obtained a maximum PF of 825 μW m-1 K-2 and a ZT value of 0.46 at room temperature for our best-performing Ag2Se thin-film after soaking for 5 minutes. These high PFs have been achieved via full solution processing without hot-pressing.
Collapse
Affiliation(s)
- Nan Chen
- Department of Chemical and Biomolecular Engineering, New York University Brooklyn New York 11201 USA
| | - Michael R Scimeca
- Department of Chemical and Biomolecular Engineering, New York University Brooklyn New York 11201 USA
| | - Shlok J Paul
- Department of Chemical and Biomolecular Engineering, New York University Brooklyn New York 11201 USA
| | - Shihab B Hafiz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Ze Yang
- Department of Mechanical Engineering, Stevens Institute of Technology Hoboken New Jersey 07030 USA
| | - Xiangyu Liu
- Department of Chemical and Biomolecular Engineering, New York University Brooklyn New York 11201 USA
| | - Fan Yang
- Department of Mechanical Engineering, Stevens Institute of Technology Hoboken New Jersey 07030 USA
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Ayaskanta Sahu
- Department of Chemical and Biomolecular Engineering, New York University Brooklyn New York 11201 USA
| |
Collapse
|
42
|
Qu H, Wang Z, Cang D. Flexible Bandpass Filter Fabricated on Polyimide Substrate by Surface Modification and In Situ Self-Metallization Technique. Polymers (Basel) 2019; 11:E2068. [PMID: 31842264 PMCID: PMC6960876 DOI: 10.3390/polym11122068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Polymer, especially polyimide (PI), is the best suitable substrate material for the design of flexible electronics. The compact silver can be reduced on the surface of PI films by surface modification and in situ self-metallization technique. The formed silver layers have good electrical and mechanical flexibility. A flexible bandpass filter on a PI flexible substrate by surface modification and in situ self-metallization technique at room temperature are presented in this work. Measured results show that the proposed flexible bandpass filter could achieve a fractional bandwidth of 80.8% with an insertion loss (IL) of less than 0.6 dB. The performance of the designed filter is almost constant under different bending, folding, and rolling conditions. The formed silver layers also present good adhesion with PI substrates. This technology provides an alternative approach for manufacturing flexible filters without high-temperature thermal annealing, costly equipment, and vacuum conditions.
Collapse
Affiliation(s)
| | - Zhiliang Wang
- School of Information Science and Technology, Nantong University, NanTong 226019, China; (H.Q.); (D.C.)
| | | |
Collapse
|
43
|
Fabrication and Evaluation of a Novel Non-Invasive Stretchable and Wearable Respiratory Rate Sensor Based on Silver Nanoparticles Using Inkjet Printing Technology. Polymers (Basel) 2019; 11:polym11091518. [PMID: 31540494 PMCID: PMC6781180 DOI: 10.3390/polym11091518] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023] Open
Abstract
The respiration rate (RR) is a key vital sign that links to adverse clinical outcomes and has various important uses. However, RR signals have been neglected in many clinical practices for several reasons and it is still difficult to develop low-cost RR sensors for accurate, automated, and continuous measurement. This study aims to fabricate, develop and evaluate a novel stretchable and wearable RR sensor that is low-cost and easy to use. The sensor is fabricated using the soft lithography technique of polydimethylsiloxane substrates (PDMS) for the stretchable sensor body and inkjet printing technology for creating the conductive circuit by depositing the silver nanoparticles on top of the PDMS substrates. The inkjet-printed (IJP) PDMS-based sensor was developed to detect the inductance fluctuations caused by respiratory volumetric changes. The output signal was processed in a Wheatstone bridge circuit to derive the RR. Six different patterns for a IJP PDMS-based sensor were carefully designed and tested. Their sustainability (maximum strain during measurement) and durability (the ability to go bear axial cyclic strains) were investigated and compared on an automated mechanical stretcher. Their repeatability (output of the sensor in repeated tests under identical condition) and reproducibility (output of different sensors with the same design under identical condition) were investigated using a respiratory simulator. The selected optimal design pattern from the simulator evaluation was used in the fabrication of the IJP PDMS-based sensor where the accuracy was inspected by attaching it to 37 healthy human subjects (aged between 19 and 34 years, seven females) and compared with the reference values from e-Health nasal sensor. Only one design survived the inspection procedures where design #6 (array consists of two horseshoe lines) indicated the best sustainability and durability, and went through the repeatability and reproducibility tests. Based on the best pattern, the developed sensor accurately measured the simulated RR with an error rate of 0.46 ± 0.66 beats per minute (BPM, mean ± SD). On human subjects, the IJP PDMS-based sensor and the reference e-Health sensor showed the same RR value, without any observable differences. The performance of the sensor was accurate with no apparent error compared with the reference sensor. Considering its low cost, good mechanical property, simplicity, and accuracy, the IJP PDMS-based sensor is a promising technique for continuous and wearable RR monitoring, especially under low-resource conditions.
Collapse
|
44
|
Du B, Lai X, Liu Q, Liu H, Wu J, Liu J, Zhang Z, Pei Y, Zhao H, Jian J. Spark Plasma Sintered Bulk Nanocomposites of Bi 2Te 2.7Se 0.3 Nanoplates Incorporated Ni Nanoparticles with Enhanced Thermoelectric Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31816-31823. [PMID: 31436073 DOI: 10.1021/acsami.9b08392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bi2Te3-based compounds are important near room temperature thermoelectric materials with commercial applications in thermoelectric modules. However, new routes leading to improved thermoelectric performance are highly desirable. Incorporation of superparamagnetic nanoparticles was recently proposed as a means to promote the thermoelectric properties of materials, but its feasibility has rarely been examined in mainstream thermoelectric materials. In this study, high quality single-crystalline Bi2Te2.7Se0.3 nanoplates and Ni nanoparticles were successfully synthesized by solvothermal and thermal decomposition methods, respectively. Bulk nanocomposites consisting of Bi2Te2.7Se0.3 nanoplates and superparamagnetic Ni nanoparticles were prepared by spark plasma sintering. It was found that incorporation of Ni nanoparticles simultaneously increased the carrier concentration and provided additional scattering centers, which resulted in enlarged electric conductivities and Seebeck coefficients. The greatly improved ZT was achieved due to the increase in power factor. Spark plasma sintered bulk nanocomposites of Bi2Te2.7Se0.3 nanoplates incorporated by 0.4 mol %Ni nanoparticles (in molar ratio) showed a figure-of-merit ZT of 0.66 at 425 K, equivalent to 43% increase when compared to pure Bi2Te2.7Se0.3 nanoplates. The results revealed that incorporation of magnetic nanoparticles could be an effective approach for promoting the thermoelectric performance of conventional semiconductors.
Collapse
Affiliation(s)
- Bingsheng Du
- Physics and Optoelectronic Engineering College , Guangdong University of Technology , Guangzhou 510006 , China
| | - Xiaofang Lai
- Physics and Optoelectronic Engineering College , Guangdong University of Technology , Guangzhou 510006 , China
| | - Qiulin Liu
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Haitao Liu
- Physics and Optoelectronic Engineering College , Guangdong University of Technology , Guangzhou 510006 , China
- School of Physical Science and Technology , Xinjiang University , Urumqi 830046 , China
| | - Jing Wu
- Physics and Optoelectronic Engineering College , Guangdong University of Technology , Guangzhou 510006 , China
| | - Jiao Liu
- Physics and Optoelectronic Engineering College , Guangdong University of Technology , Guangzhou 510006 , China
| | - Zhihua Zhang
- Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering , Dalian Jiaotong University , Dalian 116028 , China
| | - Yanzhong Pei
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Huaizhou Zhao
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jikang Jian
- Physics and Optoelectronic Engineering College , Guangdong University of Technology , Guangzhou 510006 , China
| |
Collapse
|
45
|
Williams NX, Noyce S, Cardenas JA, Catenacci M, Wiley BJ, Franklin AD. Silver nanowire inks for direct-write electronic tattoo applications. NANOSCALE 2019; 11:14294-14302. [PMID: 31318368 PMCID: PMC6689233 DOI: 10.1039/c9nr03378e] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Room-temperature printing of conductive traces has the potential to facilitate the direct writing of electronic tattoos and other medical devices onto biological tissue, such as human skin. However, in order to achieve sufficient electrical performance, the vast majority of conductive inks require biologically harmful post-processing techniques. In addition, most printed conductive traces will degrade with bending stresses that occur from everyday movement. In this work, water-based inks consisting of high aspect ratio silver nanowires are shown to enable the printing of conductive traces at low temperatures and without harmful post-processing. Moreover, the traces produced from these inks retain high electrical performance, even while undergoing up to 50% bending strain and cyclic bending strain over a thousand bending cycles. This ink has a rapid dry time of less than 2 minutes, which is imperative for applications requiring the direct writing of electronics on sensitive surfaces. Demonstrations of conductive traces printed onto soft, nonplanar materials, including an apple and a human finger, highlight the utility of these new silver nanowire inks. These mechanically robust films are ideally suited for printing directly on biological substrates and may find potential applications in the direct-write printing of electronic tattoos and other biomedical devices.
Collapse
Affiliation(s)
- Nicholas X Williams
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|