1
|
Rafiudeen RA, Anwardeen NH, Lavanya V, Jamal S, Ahmed N. Coral Reef Metabolites for Cancer Treatment. CURRENT PHARMACOLOGY REPORTS 2024; 11:3. [DOI: 10.1007/s40495-024-00386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 01/06/2025]
|
2
|
Zhang X, Jia R, Yang J, Song Z, Xu X, Song F. A butyrolactone derivative from marine-derived fungal strain Aspergillus terreus BTBU20211037. Nat Prod Res 2024:1-7. [PMID: 39487763 DOI: 10.1080/14786419.2024.2422515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The secondary metabolites of marine-derived fungal strain, Aspergillus terreus BTBU20211037, isolated from Qinhuangdao coast were investigated. Thirteen compounds were isolated and identified, including one new compound, butyrolactone J (1), and twelve known compounds, butyrolactone I (2), butyrolactone VI (3), aspernolide B (4), aspernolide A (5), 7'-hydroxybutyrolactone III (6), methyl asterrate (7), methyl dichloroasterrate (8), sulochrin (9), methyl 6-acetyl-4-methoxy-5,7,8-trihydroxynaphthalene-2-carboxylate (10), serantrypinone (11), alantrypinone (12), and territrem A (13). The structures of the compounds were elucidated by HRESIMS, NMR, and ECD analysis. Compounds 1, 10, and 13 showed inhibitory effects against Staphylococcus aureus ATCC 25923 with minimal inhibitory concentrations of 12.5, 25, and 100 μg/mL, respectively.
Collapse
Affiliation(s)
- Xinwan Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, P. R. China
- Key Laboratory of Polar Geology and Marine Mineral Resources (China University of Geosciences, Beijing), Ministry of Education, Hainan Institute of China University of Geosciences (Beijing), School of Ocean Sciences, China University of Geosciences, Beijing, P. R. China
| | - Renming Jia
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, P. R. China
| | - Jinpeng Yang
- Key Laboratory of Polar Geology and Marine Mineral Resources (China University of Geosciences, Beijing), Ministry of Education, Hainan Institute of China University of Geosciences (Beijing), School of Ocean Sciences, China University of Geosciences, Beijing, P. R. China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, P. R. China
| | - Zhijun Song
- College of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Xiuli Xu
- Key Laboratory of Polar Geology and Marine Mineral Resources (China University of Geosciences, Beijing), Ministry of Education, Hainan Institute of China University of Geosciences (Beijing), School of Ocean Sciences, China University of Geosciences, Beijing, P. R. China
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, P. R. China
| |
Collapse
|
3
|
Dharavath R, A S. Employing soil isolated fungi for production of bioactive phenolic compounds: a fermentative approach. Prep Biochem Biotechnol 2024; 54:1121-1131. [PMID: 38477871 DOI: 10.1080/10826068.2024.2326882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
An efficient method of solid-state fermentation (SSF) is reported for producing bioactive phenolic compounds using soil-isolated fungi. Antioxidant activity using a rapid DPPH (1,1-diphenyl-2-picryl hydrazyl), was employed to screen the 120 fungal isolates from soil. Aspergillus terreus 1, Aspergillus fumigatus, Aspergillus terreus 2, Penicillium citrinum, Aspergillus wentii1, Aspergillus wentii 2, Penicillium expansum and Penicillium granulatum were chosen, concerning their antioxidant activity and total phenolic content. These fungal strains were applied on agro residues viz. sugarcane bagasse, corn cob, rice straw, pea pod and wheat straw, to evaluate the release of phenolic compounds. The fermented extracts from various agro-residues showed good antioxidant activity against DPPH, ferric ion, and nitric oxide radicals. The highest antioxidant activity was observed in fermented extracts of sugarcane bagasse, followed by pea pod. Additionally, the total phenolic content in the fermented extracts positively correlated with antioxidant potential. This study highlights the significant potential of solid substrate fermentation using soil-isolated fungi and agro-residues to produce bioactive phenolic compounds with potent antioxidant properties. The utilization of SSF for the extraction of bioactive compounds from natural sources not only offers a clean and sustainable approach but also contributes to the valorization of agro-industrial residues.
Collapse
Affiliation(s)
| | - Srividya A
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
4
|
Boruta T, Englart G, Foryś M, Pawlikowska W. The repertoire and levels of secondary metabolites in microbial cocultures depend on the inoculation ratio: a case study involving Aspergillus terreus and Streptomyces rimosus. Biotechnol Lett 2024; 46:601-614. [PMID: 38844646 PMCID: PMC11217084 DOI: 10.1007/s10529-024-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE The aim of this study was to determine the influence of the inoculation volume ratio on the production of secondary metabolites in submerged cocultures of Aspergillus terreus and Streptomyces rimosus. RESULTS The shake flask cocultures were initiated by using 23 inoculum variants that included different volumes of A. terreus and S. rimosus precultures. In addition, the axenic controls were propagated in parallel with the cocultures. UPLC‒MS analysis revealed the presence of 15 secondary metabolites, 12 of which were found both in the "A. terreus vs. S. rimosus" cocultures and axenic cultures of either A. terreus or S. rimosus. The production of the remaining 3 molecules was recorded solely in the cocultures. The repertoire and quantity of secondary metabolites were evidently dependent on the inoculation ratio. It was also noted that detecting filamentous structures resembling typical morphological forms of a given species was insufficient to predict the presence of a given metabolite. CONCLUSIONS The modification of the inoculation ratio is an effective strategy for awakening and enhancing the production of secondary metabolites that are not biosynthesized under axenic conditions.
Collapse
Affiliation(s)
- Tomasz Boruta
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland.
| | - Grzegorz Englart
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| | - Martyna Foryś
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| | - Weronika Pawlikowska
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| |
Collapse
|
5
|
Amr K, Ibrahim N, Elissawy AM, Singab ANB. Unearthing the fungal endophyte Aspergillus terreus for chemodiversity and medicinal prospects: a comprehensive review. Fungal Biol Biotechnol 2023; 10:6. [PMID: 36966331 PMCID: PMC10040139 DOI: 10.1186/s40694-023-00153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/27/2023] Open
Abstract
Aspergillus terreus microorganism represents a promising prospective source for drug discovery since it is rich in diverse kinds of bioactive secondary metabolites. It contributed to many biotechnological applications and its metabolites are used in the synthesis of certain pharmaceuticals and food products, in addition to its useful uses in fermentation processes. There are about 346 compounds identified from marine and terrestrial-derived A. terreus from 1987 until 2022, 172 compounds of them proved a vast array of bioactivity. This review aimed to create an up-to-date comprehensive literature data of A. terreus's secondary metabolites classes supported by its different bioactivity data to be a scientific record for the next work in drug discovery.
Collapse
Affiliation(s)
- Khadiga Amr
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt.
- Center of Drug Discovery Research and Development, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Gill H, Sykes EME, Kumar A, Sorensen JL. Isolation of Bioactive Metabolites from Soil Derived Fungus-Aspergillus fumigatus. Microorganisms 2023; 11:microorganisms11030590. [PMID: 36985164 PMCID: PMC10053833 DOI: 10.3390/microorganisms11030590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Fungi produce numerous secondary metabolites with intriguing biological properties for the health, industrial, and agricultural sectors. Herein, we report the high-yield isolation of phenolic natural products, N-formyl-4-hydroxyphenyl-acetamide 1 (~117 mg/L) and atraric acid 2 (~18 mg/L), from the ethyl acetate extract of the soil-derived fungus, Aspergillus fumigatus. The structures of compounds 1 and 2 were elucidated through the detailed spectroscopic analysis of NMR and LCMS data. These compounds were assayed for their antimicrobial activities. It was observed that compounds 1 and 2 exhibited strong inhibition against a series of fungal strains but only weak antibacterial properties against multi-drug-resistant strains. More significantly, this is the first known instance of the isolation of atraric acid 2 from a non-lichen fungal strain. We suggest the optimization of this fungal strain may exhibit elevated production of compounds 1 and 2, potentially rendering it a valuable source for the industrial-scale production of these natural antimicrobial compounds. Further investigation is necessary to establish the veracity of this hypothesis.
Collapse
Affiliation(s)
- Harman Gill
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ellen M. E. Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - John L. Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
7
|
Chen Y, Pang X, He Y, Lin X, Zhou X, Liu Y, Yang B. Secondary Metabolites from Coral-Associated Fungi: Source, Chemistry and Bioactivities. J Fungi (Basel) 2022; 8:1043. [PMID: 36294608 PMCID: PMC9604832 DOI: 10.3390/jof8101043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
Our study of the secondary metabolites of coral-associated fungi produced a valuable and extra-large chemical database. Many of them exhibit strong biological activity and can be used for promising drug lead compounds. Serving as an epitome of the most promising compounds, which take the ultra-new skeletons and/or remarkable bioactivities, this review presents an overview of new compounds and bioactive compounds isolated from coral-associated fungi, covering the literature from 2010 to 2021. Its scope included 423 metabolites, focusing on the bioactivity and structure diversity of these compounds. According to structure, these compounds can be roughly classified as terpenes, alkaloids, peptides, aromatics, lactones, steroids, and other compounds. Some of them described in this review possess a wide range of bioactivities, such as anticancer, antimicrobial, antifouling, and other activities. This review aims to provide some significant chemical and/or biological enlightenment for the study of marine natural products and marine drug development in the future.
Collapse
Affiliation(s)
- Ying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanchun He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
8
|
Fan H, Wei X, Si-Tu MX, Lei YH, Zhou FG, Zhang CX. γ-Aromatic Butenolides of Microbial Source - A Review of Their Structures, Biological Activities and Biosynthesis. Chem Biodivers 2022; 19:e202200208. [PMID: 35567462 DOI: 10.1002/cbdv.202200208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 11/11/2022]
Abstract
γ-Aromatic butenolides (γ-AB) are an important type of structures found in many bioactive microbial secondary metabolites (SMs). γ-AB refer to a group of natural products (NPs) containing five-membered (unsaturated) lactones with 3-phenyl and 4-benzyl substituents. Their wide-range biological activities have inspired pharmaceutical chemists to explore its biosynthesis mechanisms and design strategies to construct the γ-AB skeleton. Recently, there are a great deal of interesting research progress on the structures, biological activities and biosynthesis of γ-AB. This review will focus on these aspects and summarize the important achievements of γ-AB from 1975 to 2021.
Collapse
Affiliation(s)
- Hao Fan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Xia Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Mei-Xia Si-Tu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Yan-Hu Lei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Feng-Guo Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Uras IS, Korinek M, Albohy A, Abdulrazik BS, Lin W, Ebada SS, Konuklugil B. Anti-Inflammatory, Antiallergic and COVID-19 Main Protease (M pro) Inhibitory Activities of Butenolides from a Marine-Derived Fungus Aspergillus costaricaensis. ChemistrySelect 2022; 7:e202200130. [PMID: 35599958 PMCID: PMC9111082 DOI: 10.1002/slct.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/02/2022]
Abstract
Amid the current COVID-19 pandemic, the emergence of several variants in a relatively high mutation rate (twice per month) strengthened the importance of finding out a chemical entity that can be potential for developing an effective medicine. In this study, we explored ethyl acetate (EtOAc) extract of a marine-derived fungus Aspergillus cosatricaensis afforded three butenolide derivatives, butyrolactones I, VI and V (1-3), two naphtho-γ-pyrones, TMC-256 A1 (4) and rubrofusarin B (5) and methyl p-hydroxyphenyl acetate (6). Structure identification was unambiguously determined based on exhaustive spectral analyses including 1D/2D NMR and mass spectrometry. The isolated compounds (1-6) were assessed for their in vitro anti-inflammatory, antiallergic, elastase inhibitory activities and in silico SARS-CoV-2 main protease (Mpro). Results exhibited that only butenolides (1 and 2) revealed potent activities similar to or more than reference drugs unlike butyrolactone V (3) suggesting them as plausible chemical entities for developing lead molecules.
Collapse
Affiliation(s)
- Ibrahim S. Uras
- Department of PharmacognosyFaculty of PharmacyAnkara UniversityAnkara06560
- Department of PharmacognosyFaculty of PharmacyAgri Ibrahim Cecen UniversityAgri04100Turkey
| | - Michal Korinek
- Graduate Institute of Natural ProductsCollege of PharmacyKaohsiung Medical UniversityKaohsiung80708Taiwan.
| | - Amgad Albohy
- Department of Pharmaceutical ChemistryFaculty of PharmacyThe British University in Egypt (BUE)Suez Desert RoadCairo11837Egypt.
- The Center for Drug Research and Development (CDRD)Faculty of Pharmacythe British University in EgyptCairo11837Egypt.
| | - Basma S. Abdulrazik
- Department of Pharmaceutical ChemistryFaculty of PharmacyThe British University in Egypt (BUE)Suez Desert RoadCairo11837Egypt.
- The Center for Drug Research and Development (CDRD)Faculty of Pharmacythe British University in EgyptCairo11837Egypt.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
| | - Sherif S. Ebada
- Department of PharmacognosyFaculty of PharmacyAin Shams University, AbbasiaCairo11566
| | - Belma Konuklugil
- Department of PharmacognosyFaculty of PharmacyAnkara UniversityAnkara06560
- Department of PharmacognosyFaculty of PharmacyLokman Hekim UniversityÇAnkaya06510
| |
Collapse
|
10
|
Chen S, Zhang Y, Niu X, Mohyuddin SG, Wen J, Bao M, Yu T, Wu L, Hu C, Yong Y, Liu X, Abd El-Aty AM, Ju X. Coral-Derived Endophytic Fungal Product, Butyrolactone-I, Alleviates Lps Induced Intestinal Epithelial Cell Inflammatory Response Through TLR4/NF-κB and MAPK Signaling Pathways: An in vitro and in vivo Studies. Front Nutr 2021; 8:748118. [PMID: 34660669 PMCID: PMC8517189 DOI: 10.3389/fnut.2021.748118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Herein, we assessed the anti-inflammatory and intestinal barrier protective effects of butyrolactone-I (BTL-1), derived from the coral-derived endophytic fungus (Aspergillus terreus), using the LPS-induced IPEC-J2 inflammation model and the DSS-induced IBD model in mice. In IPEC-J2 cells, pretreatment with BTL-I significantly inhibited TLR4/NF-κB signaling pathway and JNK phosphorylation, resulting in the decrease of IL-1β and IL-6 expression. Interestingly, BTL-1 pretreatment activated the phosphorylation of ERK and P38, which significantly enhanced the expression of TNF-α. Meanwhile, BTL-1 pretreatment upregulated tight junction protein expression (ZO-1, occludin, and claudin-1) and maintained intestinal barrier and intestinal permeability integrity. In mice, BTL-1 significantly alleviated the intestinal inflammatory response induced by DSS, inhibited TLR4/NF-κB signaling pathway, and MAPK signaling pathway, thus reducing the production of IL-1, IL-6, and TNF-α. Further, the expression of tight junction proteins (ZO-1, occludin, and claudin-1) was upregulated in BTL-1 administrated mice. Therefore, it has been suggested that butyrolactone-I alleviates inflammatory responses in LPS-stimulated IPEC-J2 and DSS-induced murine colitis by TLR4/NF-κB and MAPK signal pathway. Thereby, BTL-1 might potentially be used as an ocean drug to prevent intestinal bowel disease.
Collapse
Affiliation(s)
- Shengwei Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yi Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xueting Niu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Sahar Ghulam Mohyuddin
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Jiayin Wen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Minglong Bao
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Tianyue Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Lianyun Wu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Canyin Hu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yanhong Yong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Xiaoxi Liu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - A M Abd El-Aty
- State Key Laboratory of Bio Based Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
11
|
Neha K, Wakode S. Contemporary advances of cyclic molecules proposed for inflammation. Eur J Med Chem 2021; 221:113493. [PMID: 34029774 DOI: 10.1016/j.ejmech.2021.113493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
This review stretches insight about the advancement (2011-2021) of synthesized non-heterocyclic, heterocyclic and natural occurring cyclic molecules for inflammation. While inflammation is very significant in the abolition of pathogens and other causes of soreness, a protracted inflammatory procedure takes to outcomes in chronic disease that might finally affect in organ failure or damage. Thus, restraining the provocative process by the use of anti-inflammatory agents is chief in controlling this damage. It also reveals other pursuit along with their anti-inflammatory activity. Molecular docking studies represent most suitable PDB (Protein Data Bank) ID for the synthesized heterocyclic molecules with their selective inhibitor. It discusses the findings presented in recent research papers and provides understanding to researchers intended for the growth of newer combinations/molecules having littler side things.
Collapse
Affiliation(s)
- Kumari Neha
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India.
| |
Collapse
|
12
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
13
|
Bioactive aromatic butenolides from a mangrove sediment originated fungal species, Aspergillus terreus SCAU011. Fitoterapia 2021; 150:104856. [PMID: 33582267 DOI: 10.1016/j.fitote.2021.104856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 11/20/2022]
Abstract
Seven new compounds including five aromatic butenolide analogues (1-5), one quinazolinone alkaloid (6) and one benzoic acid derivative (7), along with eleven known co-metabolites (8-18), were isolated from Aspergillus terreus SCAU011, a fungus from the rhizosphere sediment of a mangrove plant Rhizophora stylosa. The structures of these isolates were established by a combination of MS, NMR and ECD data analyses, as well as chemical method. Compound 3 is a rare ring-open aromatic butenolide, while 6 represents the first natural ring-open benzomalvin-type quinazolinone alkaloid. Also, the previously reported structures for asperlides A-C were proposed to be revised in the present work. The COX-2 inhibitory, α-glucosidase inhibitory, antioxidant and antibacterial activities of all the compounds were assessed. While compounds 4, 6, 11 and 18 exhibited better COX-2 inhibitory activity than the positive control celecoxib, compounds 9 and 10 showed significant α-glucosidase inhibitory activity with IC50 values of 56.1 and 12.9 μM, respectively. Meanwhile, half of the tested samples (1, 8-11 and 15-17) exerted similar or better antioxidant activity compared with the reference drug curcumin, and compounds 3, 9, 17 and 18 displayed moderate antibacterial effect against Staphylococcus aureus.
Collapse
|
14
|
Woelflingseder L, Adam G, Marko D. Suppression of Trichothecene-Mediated Immune Response by the Fusarium Secondary Metabolite Butenolide in Human Colon Epithelial Cells. Front Nutr 2020; 7:127. [PMID: 32850941 PMCID: PMC7423873 DOI: 10.3389/fnut.2020.00127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/01/2020] [Indexed: 11/13/2022] Open
Abstract
Butenolide (BUT, 4-acetamido-4-hydroxy-2-butenoic acid gamma-lactone) is a secondary metabolite produced by several Fusarium species and is co-produced with the major trichothecene mycotoxin deoxynivalenol (DON) on cereal grains throughout the world. BUT has low acute toxicity and only very limited occurrence and exposure data are available. The intestinal epithelium represents the first physiological barrier against food contaminants. We aimed to elucidate the intestinal inflammatory response of the human, non-cancer epithelial HCEC-1CT cells to BUT and to characterize potential combinatory interactions with co-occurring trichothecenes, such as DON and NX-3. Using a reporter gene approach, BUT (≥5 μM, 20 h) was found to decrease lipopolysaccharide (LPS; 10 ng/mL) induced nuclear factor kappa B (NF-κB) activation in a dose-dependent manner, and in combinatory treatments BUT represses trichothecene-induced enhancement of this important inflammatory pathway. Analysis of transcription and secretion levels of NF-κB-dependent, pro-inflammatory cytokines, revealed a significant down-regulation of IL-1β, IL-6, and TNF-α in IL-1β-stimulated (25 ng/mL) HCEC-1CT cells after BUT exposure (10 μM). Trichothecene-induced expression of pro-inflammatory cytokines by the presence of 1 μM DON or NX-3 was substantially suppressed in the presence of 10 μM BUT. The emerging mycotoxin BUT has the ability to suppress NF-κB-induced intestinal inflammatory response mechanisms and to modulate substantially the immune responsiveness of HCEC-1CT cells after trichothecene treatment. Our results suggest that BUT, present in naturally occurring mixtures of Fusarium fungal metabolites, should be increasingly monitored, and the mechanism of inhibition of NF-κB that might affect the pathogenesis or progression of intestinal inflammatory disorders, should be further investigated.
Collapse
Affiliation(s)
- Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Department of Crop Science, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Bao J, Li XX, He F, Zhang X, Zhu K, Tao H, Yu JH, Liu H, Zhang H. Asperbutenolide A, an unusual aromatic butenolide dimer with diverse bioactivities from a marine-derived fungus Aspergillus terreus SCAU011. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Liu MT, He Y, Shen L, Hu ZX, Zhang YH. Bipolarins A-H, eight new ophiobolin-type sesterterpenes with antimicrobial activity from fungus Bipolaris sp. TJ403-B1. Chin J Nat Med 2020; 17:935-944. [PMID: 31882049 DOI: 10.1016/s1875-5364(19)30116-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 11/28/2022]
Abstract
Bipolarins A-H (1-8), eight new tetracyclic ophiobolin-type sesterterpenes featuring a rare oxaspiro[4.4]nonane moiety, were isolated from cultures of fungus Bipolaris sp. TJ403-B1. Their structures and absolute configurations were elucidated by comprehensive spectroscopic analyses, single-crystal X-ray diffraction experiments, electronic circular dichroism and 13C NMR calculations. Additionally, compound 5 exhibited significant selective antimicrobial activity against Enterococcus faecalis with an MIC value 8 μg·mL-1.
Collapse
Affiliation(s)
- Meng-Ting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan He
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng-Xi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yong-Hui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
El-Agamy DS, Ibrahim SRM, Ahmed N, Khoshhal S, Abo-Haded HM, Elkablawy MA, Aljuhani N, Mohamed GA. Aspernolide F, as a new cardioprotective butyrolactone against doxorubicin-induced cardiotoxicity. Int Immunopharmacol 2020; 72:429-436. [PMID: 31030099 DOI: 10.1016/j.intimp.2019.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/03/2019] [Accepted: 04/21/2019] [Indexed: 12/15/2022]
Abstract
Endophytic fungi have known as a promising source of secondary metabolites. γ-Butyrolactones are a class of metabolites reported from Aspergillus genus, which attracted much attention for their bioactivities. This study aimed to assess the potential cardioprotective effects of aspernolide F (AF) separated from the endophytic fungus A. terreus against doxorubicin (DOX)-induced cardiotoxic effects in rats. Animals were treated with two different doses of AF for 10 days prior to DOX injection. Electrocardiographic (ECG), biochemical, histopathological and immunohistochemical analyses were performed. Results have shown that AF effectively protected against DOX-induced cardiac damage as AF counteracted DOX-induced ECG abnormalities and attenuated serum markers of cardiotoxicity (creatine kinase-MB, lactate dehydrogenase, troponin I, and troponin T). Histopathological examination of cardiac tissue revealed a remarkable improvement in DOX-induced lesions. In addition, AF ameliorated DOX-induced oxidative damage and increased the levels of antioxidants in cardiac tissues. AF treatment inhibited the activation of nuclear factor-κB (NF-κB) and decreased the immuno-expression of NF-κB in cardiac tissue. Furthermore, AF caused a marked lowering in the level of inflammatory cytokines (nitric oxide, tumor necrosis factor-α, and interleukin-6) in the cardiac tissue. Collectively, this study demonstrates the cardioprotective activity of AF against DOX-induced cardiac damage which may be due to its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al Madinah Al-Munawwarah 30001, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sabrin R M Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al-Munawwarah 30001, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Nishat Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al Madinah Al-Munawwarah 30001, Saudi Arabia
| | - Saad Khoshhal
- Cardiogenetic Team, Pediatric Dept., College of Medicine, Taibah University, Al Madinah Al-Munawwarah 30078, Saudi Arabia
| | - Hany M Abo-Haded
- Cardiogenetic Team, Pediatric Dept., College of Medicine, Taibah University, Al Madinah Al-Munawwarah 30078, Saudi Arabia; Cardiology Unit, Department of Pediatrics, Mansoura University, 35516, Egypt
| | - Mohamed A Elkablawy
- Department of Pathology, College of Medicine, Taibah University, Al Madinah Al-Munawwarah 30078, Saudi Arabia; Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Naif Aljuhani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al Madinah Al-Munawwarah 30001, Saudi Arabia
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
18
|
New cyclopiane diterpenes with anti-inflammatory activity from the sea sediment-derived fungus Penicillium sp. TJ403-2. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Li F, Cao Y, Luo Y, Liu T, Yan G, Chen L, Ji L, Wang L, Chen B, Yaseen A, Khan AA, Zhang G, Jiang Y, Liu J, Wang G, Wang MK, Hu W. Two new triterpenoid saponins derived from the leaves of Panax ginseng and their antiinflammatory activity. J Ginseng Res 2019; 43:600-605. [PMID: 31695566 PMCID: PMC6823746 DOI: 10.1016/j.jgr.2018.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The leaves and roots of Panax ginseng are rich in ginsenosides. However, the chemical compositions of the leaves and roots of P. ginseng differ, resulting in different medicinal functions. In recent years, the aerial parts of members of the Panax genus have received great attention from natural product chemists as producers of bioactive ginsenosides. The aim of this study was the isolation and structural elucidation of novel, minor ginsenosides in the leaves of P. ginseng and evaluation of their antiinflammatory activity in vitro. METHODS Various chromatographic techniques were applied to obtain pure individual compounds, and their structures were determined by nuclear magnetic resonance and high-resolution mass spectrometry, as well as chemical methods. The antiinflammatory effect of the new compounds was evaluated on lipopolysaccharide-stimulated RAW 264.7 cells. RESULTS AND CONCLUSIONS Two novel, minor triterpenoid saponins, ginsenoside LS1 (1) and 5,6-didehydroginsenoside Rg3 (2), were isolated from the leaves of P. ginseng. The isolated compounds 1 and 2 were assayed for their inhibitory effect on nitric oxide production in LPS-stimulated RAW 264.7 cells, and Compound 2 showed a significant inhibitory effect with IC50 of 37.38 μM compared with that of NG-monomethyl-L-arginine (IC50 = 90.76 μM). Moreover, Compound 2 significantly decreased secretion of cytokines such as prostaglandin E2 and tumor necrosis factor-α. In addition, Compound 2 significantly suppressed protein expression of inducible nitric oxide synthase and cyclooxygenase-2. These results suggested that Compound 2 could be used as a valuable candidate for medicinal use or functional food, and the mechanism is warranted for further exploration.
Collapse
Affiliation(s)
- Fu Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yufeng Cao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Yanyan Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Tingwu Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Guilong Yan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Liang Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Lilian Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Lun Wang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bin Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Aftab Yaseen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ashfaq A. Khan
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
| | - Guolin Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yunyao Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gongcheng Wang
- Department of Urology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Ming-Kui Wang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
| |
Collapse
|
20
|
Li H, Xu D, Sun W, Yang B, Li F, Liu M, Wang J, Xue Y, Hu Z, Zhang Y. HPLC-DAD-Directed Isolation of Linearly Fused Prenylated Indole Alkaloids from a Soil-Derived Aspergillus versicolor. JOURNAL OF NATURAL PRODUCTS 2019; 82:2181-2188. [PMID: 31390200 DOI: 10.1021/acs.jnatprod.9b00183] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An HPLC-DAD-directed chemical investigation of the soil-derived fungus Aspergillus versicolor QC812 resulted in the isolation and identification of eight new linearly fused prenylated indole alkaloids, asperversiamides I-P (1-8), along with a congener, asperversiamide H (9). Their structures and absolute configurations were determined by spectroscopic analysis including HRESIMS and 1D and 2D NMR, electronic circular dichroism analysis, and single-crystal X-ray diffraction. Asperversiamide I (1), the first diketopiperazine derived from d-proline and l-tryptophan, possesses an unprecedented C-11-spiro-fused 6/6/5/5/6/5 hexacyclic ring system. Asperversiamide J (2) is the first linearly fused 6/6/5 tricyclic prenylated indole alkaloid to be reported. 1 and 2 showed moderate inhibitory activities against HeLa cells with IC50 values of 7.3 and 6.4 μM, respectively.
Collapse
Affiliation(s)
- Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Dan Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yongbo Xue
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
21
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17. [PMID: 31405226 DOI: 10.3390/md1708046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/20/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
22
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17:E468. [PMID: 31405226 PMCID: PMC6723858 DOI: 10.3390/md17080468] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
23
|
Feng W, Chen C, Mo S, Qi C, Gong J, Li XN, Zhou Q, Zhou Y, Li D, Lai Y, Zhu H, Wang J, Zhang Y. Highly oxygenated meroterpenoids from the Antarctic fungus Aspergillus terreus. PHYTOCHEMISTRY 2019; 164:184-191. [PMID: 31158603 DOI: 10.1016/j.phytochem.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Eleven highly oxygenated meroterpenoids, named terreustoxins A-K, along with five known analogues, were isolated from the Antarctic fungus Aspergillus terreus. The structures and absolute configurations of these undescribed compounds were characterized by NMR spectroscopy, single-crystal X-ray crystallography, and ECD experiments. Terreustoxins A-D are the first examples of meroterpenoids with two ortho-hydroxy groups at C-6 and C-7 in the terretonins family. Terreustoxin C and terretonin inhibited the proliferation of Con A-induced murine T cells at the concentration of 10 μM.
Collapse
Affiliation(s)
- Wenya Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jiaojiao Gong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yuan Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Dongyan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yongji Lai
- Department of Pharmacy, The Central Hospital of Wuhan Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
24
|
Yang B, He Y, Lin S, Zhang J, Li H, Wang J, Hu Z, Zhang Y. Antimicrobial Dolabellanes and Atranones from a Marine-Derived Strain of the Toxigenic Fungus Stachybotrys chartarum. JOURNAL OF NATURAL PRODUCTS 2019; 82:1923-1929. [PMID: 31265296 DOI: 10.1021/acs.jnatprod.9b00305] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Three new dolabellane-type diterpenoids (1-3) and three new atranones (4-6) were isolated and identified from a marine-derived strain of the toxigenic fungus Stachybotrys chartarum. The planar and relative structures of 1-6 were elucidated using extensive spectroscopic methods, and their absolute configurations were fully confirmed via single-crystal X-ray diffraction analysis. Structurally, compounds 2 and 3 have a 1,14-seco dolabellane-type diterpenoid skeleton; compound 4 is the first C23 atranone featuring a propan-2-one motif linked to a dolabellane-type diterpenoid by a carbon-carbon bond; compound 5 represents the first example of a C24 atranone with a 2-methyltetrahydrofuran-3-carboxylate motif fused to a dolabellane-type diterpenoid at C-5-C-6. In an in vitro antimicrobial activity assay, compound 2 was active against Acinetobacter baumannii and Enterococcus faecalis with MIC values of 16 and 32 μg/mL, respectively, while compound 4 exhibited significant inhibitory activities against Candida albicans, Enterococcus faecalis, and methicillin-resistant Staphylococcus aureus (MRSA) with MIC values of 8, 16, and 32 μg/mL, respectively.
Collapse
|
25
|
Liu M, He Y, Shen L, Anbari WHA, Li H, Wang J, Qi C, Hu Z, Zhang Y. Asperteramide A, an Unusual N
-Phenyl-Carbamic Acid Methyl Ester Trimer Isolated from the Coral-Derived Fungus Aspergillus Terreus. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Yan He
- Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Weaam Hasan Al Anbari
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| |
Collapse
|
26
|
Al-Fakih AA, Almaqtri WQA. Overview on antibacterial metabolites from terrestrial Aspergillus spp. Mycology 2019; 10:191-209. [PMID: 31632829 PMCID: PMC6781474 DOI: 10.1080/21501203.2019.1604576] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022] Open
Abstract
Medicines developed from natural sources are a frequent target for the research and discovery of antimicrobial compounds. Discovering of penicillin in 1928 was a motive to explore of nature as a source of new antimicrobial agents. Fungi produce a diverse range of bioactive metabolites, making them rich source of different types of medicines. The purpose of this paper was to review studies on antibacterials from terrestrial Aspergillus published exclusively during 1942-2018, with emphasis on their antibacterial activities, structures, and mechanisms of action if present. According to the results from different studies in the world, large number of compounds and extracts showed different activities against different bacterial species, including Gram-positive and Gram-negative bacteria. The most prominent result was that of the compound CJ-17,665, isolated from A. ochraceus, showing good activity against multi-drug resistant Staphylococcus aureus, which is well-recognised to be one of the most important current public health problem. These findings may motivate scientists to undertake a project that may result in the development of novel antibacterial drugs from terrestrial-derived Aspergillus spp., although further toxicity assays (in vivo) must be performed before their application.
Collapse
|
27
|
Zeng Q, Zhong WM, Chen YC, Xiang Y, Chen XY, Tian XP, Zhang WM, Zhang S, Wang FZ. A new butenolide derivative from the deep-sea fungus Aspergillus terreus SCSIO FZQ028. Nat Prod Res 2019; 34:1984-1991. [DOI: 10.1080/14786419.2019.1569658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Qi Zeng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of sciences, Guangzhou, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wei-Mao Zhong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of sciences, Guangzhou, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yu-Chan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, P.R. China
| | - Yao Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of sciences, Guangzhou, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xia-Yu Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of sciences, Guangzhou, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xin-Peng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of sciences, Guangzhou, P.R. China
| | - Wei-Min Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, P.R. China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of sciences, Guangzhou, P.R. China
| | - Fa-Zuo Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of sciences, Guangzhou, P.R. China
| |
Collapse
|
28
|
Gong J, Chen C, Mo S, Liu J, Wang W, Zang Y, Li H, Chai C, Zhu H, Hu Z, Wang J, Zhang Y. Fusaresters A–E, new γ-pyrone-containing polyketides from fungus Fusarium sp. Hungcl and structure revision of fusariumin D. Org Biomol Chem 2019; 17:5526-5532. [DOI: 10.1039/c9ob00534j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical investigation of a marine-derived fungus Fusarium sp. Hungcl afforded five new γ-pyrone-containing polyketides, fusaresters A–E.
Collapse
|
29
|
Li F, Sun W, Guan J, Lu Y, Zhang S, Lin S, Liu J, Gao W, Wang J, Hu Z, Zhang Y. Alterbrassicicene A, a Highly Transformed Fusicoccane-Derived Diterpenoid with Potent PPAR-γ Agonistic Activity from Alternaria brassicicola. Org Lett 2018; 20:7982-7986. [DOI: 10.1021/acs.orglett.8b03553] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Raimundo I, Silva SG, Costa R, Keller-Costa T. Bioactive Secondary Metabolites from Octocoral-Associated Microbes-New Chances for Blue Growth. Mar Drugs 2018; 16:E485. [PMID: 30518125 PMCID: PMC6316421 DOI: 10.3390/md16120485] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Octocorals (Cnidaria, Anthozoa Octocorallia) are magnificent repositories of natural products with fascinating and unusual chemical structures and bioactivities of interest to medicine and biotechnology. However, mechanistic understanding of the contribution of microbial symbionts to the chemical diversity of octocorals is yet to be achieved. This review inventories the natural products so-far described for octocoral-derived bacteria and fungi, uncovering a true chemical arsenal of terpenes, steroids, alkaloids, and polyketides with antibacterial, antifungal, antiviral, antifouling, anticancer, anti-inflammatory, and antimalarial activities of enormous potential for blue growth. Genome mining of 15 bacterial associates (spanning 12 genera) cultivated from Eunicella spp. resulted in the identification of 440 putative and classifiable secondary metabolite biosynthetic gene clusters (BGCs), encompassing varied terpene-, polyketide-, bacteriocin-, and nonribosomal peptide-synthase BGCs. This points towards a widespread yet uncharted capacity of octocoral-associated bacteria to synthetize a broad range of natural products. However, to extend our knowledge and foster the near-future laboratory production of bioactive compounds from (cultivatable and currently uncultivatable) octocoral symbionts, optimal blending between targeted metagenomics, DNA recombinant technologies, improved symbiont cultivation, functional genomics, and analytical chemistry are required. Such a multidisciplinary undertaking is key to achieving a sustainable response to the urgent industrial demand for novel drugs and enzyme varieties.
Collapse
Affiliation(s)
- Inês Raimundo
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Sandra G Silva
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| |
Collapse
|
31
|
Affiliation(s)
- Shuanglong Jia
- Laboratoire de Synthèse Organique (LSO), CNRS; Ecole Polytechnique, ENSTA ParisTech-UMR 7652; Université Paris-Saclay; 828 Bd des Maréchaux 91128 Palaiseau. France
| | - Laurent El Kaïm
- Laboratoire de Synthèse Organique (LSO), CNRS; Ecole Polytechnique, ENSTA ParisTech-UMR 7652; Université Paris-Saclay; 828 Bd des Maréchaux 91128 Palaiseau. France
| |
Collapse
|
32
|
Liu M, Qi C, Sun W, Shen L, Wang J, Liu J, Lai Y, Xue Y, Hu Z, Zhang Y. α-Glucosidase Inhibitors From the Coral-Associated Fungus Aspergillus terreus. Front Chem 2018; 6:422. [PMID: 30271773 PMCID: PMC6146087 DOI: 10.3389/fchem.2018.00422] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Nine novel butenolide derivatives, including four pairs of enantiomers, named (±)-asperteretones A-D (1a/1b-4a/4b), and a racemate, named asperteretone E (5), were isolated and identified from the coral-associated fungus Aspergillus terreus. All the structures were established based on extensive spectroscopic analyses, including HRESIMS and NMR data. The chiral chromatography analyses allowed the separation of (±)-asperteretones A-D, whose absolute configurations were further confirmed by experimental and calculated electronic circular dichroism (ECD) analysis. Structurally, compounds 2-5 represented the first examples of prenylated γ-butenolides bearing 2-phenyl-3-benzyl-4H-furan-1-one motifs, and their crucial biogenetically related metabolite, compound 1, was uniquely defined by an unexpected cleavage of oxygen bridge between C-1 and C-4. Importantly, (±)-asperteretal D and (4S)-4-decarboxylflavipesolide C were revised to (±)-asperteretones B (2a/2b) and D (4), respectively. Additionally, compounds 1a/1b-4a/4b and 5 were evaluated for the α-glucosidase inhibitory activity, and all these compounds exhibited potent inhibitory potency against α-glucosidase, with IC50 values ranging from 15.7 ± 1.1 to 53.1 ± 1.4 μM, which was much lower than that of the positive control acarbose (IC50 = 154.7 ± 8.1 μM), endowing them as promising leading molecules for the discovery of new α-glucosidase inhibitors for type-2 diabetes mellitus treatment.
Collapse
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongji Lai
- Department of Pharmacy, the Central Hospital of Wuhan, Wuhan, China
| | - Yongbo Xue
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Hu Z, Sun W, Li F, Guan J, Lu Y, Liu J, Tang Y, Du G, Xue Y, Luo Z, Wang J, Zhu H, Zhang Y. Fusicoccane-Derived Diterpenoids from Alternaria brassicicola: Investigation of the Structure–Stability Relationship and Discovery of an IKKβ Inhibitor. Org Lett 2018; 20:5198-5202. [DOI: 10.1021/acs.orglett.8b02137] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Zhang Q, Yang B, Li F, Liu M, Lin S, Wang J, Xue Y, Zhu H, Sun W, Hu Z, Zhang Y. Mycophenolic Acid Derivatives with Immunosuppressive Activity from the Coral-Derived Fungus Penicillium bialowiezense. Mar Drugs 2018; 16:E230. [PMID: 29986508 PMCID: PMC6070797 DOI: 10.3390/md16070230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
Mycophenolic acid (MPA) is a potent inosine-5′-monophosphate dehydrogenase (IMPDH) inhibitor for immunosuppressive chemotherapy. Most importantly, as the 2-morpholinoethyl ester prodrug of MPA, mycophenolate mofetil (MMF) is a well-known immunosuppressant used to prevent rejection in organ transplantations. Nevertheless, due to its frequently occurred side effects, searching for new therapeutic agents is ongoing. In our current work, by virtue of efficient bioassay-guided fractionation and purification, eleven mycophenolic acid derivatives, including five previously unreported metabolites (3⁻7) and six known compounds (1, 2, and 8⁻11), were obtained from the coral-derived fungus Penicillium bialowiezense. Their structures were elucidated by means of extensive spectroscopic analyses (including 1D and 2D NMR and HRESIMS data) and comparison of the NMR and other physical data with those reported in the literature in the case of the known compounds. All the isolates 1⁻11 were evaluated for the immunosuppressive activity, and 1⁻3 showed potent IMPDH2 inhibitory potency with IC50 values of 0.84⁻0.95 μM, which were comparable to that of MPA (the positive control), while 4⁻10 showed significant inhibitory potency with IC50 values of 3.27⁻24.68 μM. All the MPA derivatives showed promising immunosuppressive activity, endowing them as potential drug leads for organ transplantations and autoimmune related diseases.
Collapse
Affiliation(s)
- Qing Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yongbo Xue
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
35
|
Bioactive secondary metabolites from the marine-associated fungus Aspergillus terreus. Bioorg Chem 2018; 80:525-530. [PMID: 30014920 DOI: 10.1016/j.bioorg.2018.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023]
Abstract
Three new compounds, including a prenylated tryptophan derivative, luteoride E (1), a butenolide derivative, versicolactone G (2), and a linear aliphatic alcohol, (3E,7E)-4,8-dimethyl-undecane-3,7-diene-1,11-diol (3), together with nine known compounds (4-12), were isolated and identified from a coral-associated fungus Aspergillus terreus. Their structures were elucidated by HRESIMS, one- and two-dimensional NMR analysis, and the absolute configuration of 2 was determined by comparison of its electronic circular dichroism (ECD) spectrum with the literature. Structurally, compound 1 featured an unusual (E)-oxime group, which occurred rarely in natural products. Compounds 1-3 were evaluated for the α-glucosidase inhibitory activity, and compound 2 showed potent inhibitory potency with IC50 value of 104.8 ± 9.5 μM, which was lower than the positive control acarbose (IC50 = 154.7 ± 8.1 µM). Additionally, all the isolated compounds were evaluated for the anti-inflammatory activity against NO production, and compounds 1-3, 5-7, and 10 showed significant inhibitory potency with IC50 values ranging from 5.48 to 29.34 μM.
Collapse
|
36
|
Zhang YY, Zhang Y, Yao YB, Lei XL, Qian ZJ. Butyrolactone-I from Coral-Derived Fungus Aspergillus terreus Attenuates Neuro-Inflammatory Response via Suppression of NF-κB Pathway in BV-2 Cells. Mar Drugs 2018; 16:E202. [PMID: 29880753 PMCID: PMC6025369 DOI: 10.3390/md16060202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Butyrolactone-I (ZB5-1) from the coral-derived fungus Aspergillus terreus was investigated in this study to estimate its anti-neuroinflammatory effects on lipopolysaccharide (LPS)-induced BV-2 microglia cells. MTT assay indicated that ZB5-1 in tested concentrations had no cytotoxicity on BV-2 cells, and significantly reduced the production of nitric oxide (NO), measured using Griess reagent, and interleukin-1 beta (IL-1β), detected by enzyme-linked immunosorbent assay (ELISA). ZB5-1 also down-regulated the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner by Western blot analysis. Moreover, the effect of ZB5-1 on the nuclear factor-κB (NF-κB) signaling pathway was studied via the expression of phosphorylation of NF-κB p65 and inhibitor of NF-κB (IκB), and the nuclear translocation of NF-κB p65 respectively. The results showed that ZB5-1 could inhibit the phosphorylation of p65 and IκB. Furthermore, molecular docking study suggested that ZB5-1 bound at the active sites of NF-κB to prevent its translocation to the nucleus. Therefore, we suggest ZB5-1 has a potential to reduce the anti-inflammatory response in LPS-induced BV-2 cells.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yi Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Yuan-Bei Yao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xiao-Ling Lei
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhong-Ji Qian
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
37
|
Li F, Sun W, Guan J, Lu Y, Lin S, Zhang S, Gao W, Liu J, Du G, Wang J, Zhu H, Qi C, Hu Z, Zhang Y. Anti-inflammatory fusicoccane-type diterpenoids from the phytopathogenic fungus Alternaria brassicicola. Org Biomol Chem 2018; 16:8751-8760. [DOI: 10.1039/c8ob02353k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight undescribed fusicoccane-type diterpenoids (1–8), wherein 1 had a rare 16-nor-dicyclopenta[a,d]cyclooctane skeleton, were isolated from Alternaria brassicicola.
Collapse
|