1
|
Zarrinnahad H, Dehdast SA, Fard GC, Nourbakhsh M, Koohi MK, Panahi G, Karimpour A, Rezayat SM, Shabani M. The effect of biosynthesized zinc oxide nanoparticles on gene expression and apoptosis in triple-negative breast cancer cells. Daru 2024; 33:10. [PMID: 39731629 PMCID: PMC11682029 DOI: 10.1007/s40199-024-00553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/25/2024] [Indexed: 12/30/2024] Open
Abstract
OBJECTIVE(S) Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments. MATERIALS AND METHODS Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done. Analysis of Zinc Oxide NPs using DLS, FTIR, SEM, and EDS techniques have been performed. Moreover, biological activities of ZnO NPs evaluated through MTT method, Flow cytometry, and real time PCR methods. Biocatalytic and apoptotic activity of ZnO NPs on healthy HFF (human fibroblast cell line), MDA-MB 231, and MDA-MB 468 (triple negative breast cancer cell lines, (TNBC)) evaluated. Furthermore, Bax, Bcl-2 and caspase-3 apoptotic genes expression changes in cancer cells assessed in compare to GAPDH as a house keeping gene. RESULTS Physico-chemical investigation demonstrated ZnO NPs were confirmed by Berberis integerrima fruit extract for the first time. The MTT assay and Flow cytometry results indicated biocompatibility of the ZnO NPs in normal cell line and high anticancer potential against TNBC MDA-MB-231 and MDA-MB-468 cell lines. The IC50 of ZnO NPs were 104.4 and 44.86, 20.96 after 24 hours for HFF, MDA-MB-231 and MDA-MB-468 cells, respectively. CONCLUSION The current research showed a fast, cost effective and ecofriendly method for ZnO NPs nanoparticle synthesis. Furthermore, In vitro data analysis demonstrated biocompatibility and highly anticancer effects of biosynthesized ZnO NPs against TNBC cancerous cells.
Collapse
Affiliation(s)
- Hannaneh Zarrinnahad
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Ahmad Dehdast
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Chizari Fard
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clothing and Fabric Design Department, Art Faculty, Imam Javad University College, Yazd, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Karimpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Mehdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Shabani
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Góral-Kowalczyk M, Grządka E, Orzeł J, Góral D, Skrzypek T, Kobus Z, Nawrocka A. Green Synthesis of Iron Nanoparticles Using an Aqueous Extract of Strawberry ( Fragaria × ananassa Duchesne) Leaf Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2515. [PMID: 38893778 PMCID: PMC11174040 DOI: 10.3390/ma17112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
In this study, we analysed the potential use of dried strawberry leaves and calyces for the production of nanoparticles using inorganic iron compounds. We used the following iron precursors FeCl3 × 6H2O, FeCl2 × 4H2O, Fe(NO3)3 × 9H2O, Fe2(SO4)3 × H2O, FeSO4 × 7H2O, FeCl3 anhydrous. It was discovered that the content of polyphenols and flavonoids in dried strawberries and their antioxidant activity in DPPH and FRAP were 346.81 µM TE/1 g and 331.71 µM TE/1 g, respectively, and were similar to these of green tea extracts. Microimages made using TEM techniques allowed for the isolation of a few nanoparticles with dimensions ranging from tens of nanometres to several micrometres. The value of the electrokinetic potential in all samples was negative and ranged from -21,300 mV to -11,183 mV. XRF analyses confirmed the presence of iron ranging from 0.13% to 0.92% in the samples with a concentration of 0.01 mol/dm3. FT-IR spectra analyses showed bands characteristic of nanoparticles. In calorimetric measurements, no increase in temperature was observed in any of the tests during exposure to the electromagnetic field. In summary, using the extract from dried strawberry leaves and calyxes as a reagent, we can obtain iron nanoparticles with sizes dependent on the concentration of the precursor.
Collapse
Affiliation(s)
- Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Elżbieta Grządka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland; (E.G.); (J.O.)
| | - Jolanta Orzeł
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland; (E.G.); (J.O.)
| | - Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland;
| | - Zbigniew Kobus
- Department of Technology Fundamentals, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| | - Agnieszka Nawrocka
- Department of Physical Properties of Plant Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| |
Collapse
|
3
|
Xia Y, Chen Z, Huang C, Shi L, Ma W, Chen X, Liu Y, Wang Y, Cai C, Huang Y, Liu W, Shi R, Luo Q. Investigation the mechanism of iron overload-induced colonic inflammation following ferric citrate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116241. [PMID: 38522287 DOI: 10.1016/j.ecoenv.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangqin Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu 611130, China
| | - Wenjing Ma
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Yucong Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyu Cai
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiang Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Krkobabić A, Radetić M, Zille A, Ribeiro AI, Tadić V, Ilic-Tomic T, Marković D. Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies. Molecules 2024; 29:1447. [PMID: 38611727 PMCID: PMC11013149 DOI: 10.3390/molecules29071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.
Collapse
Affiliation(s)
- Ana Krkobabić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia; (A.K.); (M.R.)
| | - Maja Radetić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia; (A.K.); (M.R.)
| | - Andrea Zille
- Centro de Ciência e Tecnologia Têxtil (2C2T), Universidade do Minho, 4800-058 Guimarães, Portugal; (A.Z.); (A.I.R.)
| | - Ana Isabel Ribeiro
- Centro de Ciência e Tecnologia Têxtil (2C2T), Universidade do Minho, 4800-058 Guimarães, Portugal; (A.Z.); (A.I.R.)
| | - Vanja Tadić
- Institute for Medical Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia;
| | - Darka Marković
- Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
5
|
Hayat M, Bukhari SAR, Ashraf MI, Hayat S. Zero-valent Iron Nanoparticles: Biogenic Synthesis and their Medical Applications; Existing Challenges and Future Prospects. Curr Pharm Biotechnol 2024; 25:1362-1376. [PMID: 37303179 DOI: 10.2174/1389201024666230609102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVES In the last decade, nanobiotechnology is emerging as a keen prudence area owing to its widespread applications in the medical field. In this context, zero-valent iron nanoparticles (nZVI) have garnered tremendous attention attributed to their cheap, non-toxic, excellent paramagnetic nature, extremely reactive surface, and dual oxidation state that makes them excellent antioxidants and free-radical scavengers. Facile biogenic synthesis, in which a biological source is used as a template for the synthesis of NPs, is presumably dominant among other physical and chemical synthetic procedures. The purpose of this review is to elucidate plant-mediated synthesis of nZVI, although they have been successfully fabricated by microbes and other biological entities (such as starch, chitosan, alginate, cashew nut shell, etc.) as well. METHODS The methodology of the study involved keyword searches of electronic databases, including ScienceDirect, NCBI, and Google Scholar (2008-2023). Search terms of the review included 'biogenic synthesis of nZVI', 'plant-mediated synthesis of nZVI', 'medical applications of nZVI', and 'Recent advancements and future prospects of nZVI'. RESULTS Various articles were identified and reviewed for biogenic fabrication of stable nZVI with the vast majority of studies reporting positive findings. The resultant nanomaterial found great interest for biomedical purposes such as their use as biocompatible anticancer, antimicrobial, antioxidant, and albumin binding agents that have not been adequately accessed in previous studies. CONCLUSION This review shows that there are potential cost savings applications to be made when using biogenic nZVI for medical purposes. However, the encountering challenges concluded later, along with the prospects for sustainable future development.
Collapse
Affiliation(s)
- Minahil Hayat
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | | | | | - Sumreen Hayat
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| |
Collapse
|
6
|
Dabbaghi MM, Fadaei MS, Soleimani Roudi H, Baradaran Rahimi V, Askari VR. A review of the biological effects of Myrtus communis. Physiol Rep 2023; 11:e15770. [PMID: 37464095 PMCID: PMC10354007 DOI: 10.14814/phy2.15770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
The World Health Organization stated that 1.6 million deaths worldwide were caused by contact with chemicals and toxins in 2019. In the same year, the Centers for Disease Control and Prevention stated that natural toxins caused 3960 deaths. Myrtus communis, also known as common Myrtle, is a flowering plant native to the Mediterranean region. Myrtle has been traditionally used to treat diarrhea, inflammation, bleeding, headache, pulmonary and skin diseases. This review was performed to assess Myrtle's protective and therapeutic efficacy against various chemical, natural, and radiational noxious. Multiple databases such as PubMed, Web of Sciences, and Scopus were investigated without publication time limitation. Recent studies have demonstrated its potential as a protective agent against both natural and chemical toxins. One of Myrtle's most significant protective properties is its high antioxidant content. Studies have shown that the antioxidant properties of Myrtle can protect against harmful substances such as heavy metals, pesticides, and other environmental toxins. Additionally, Myrtle has anti-inflammatory properties that can help reduce the damage caused by long-term exposure to toxins. The anti-inflammatory and antimicrobial properties of Myrtle have also proven effective in alleviating gastrointestinal conditions such as gastric ulcers.
Collapse
Affiliation(s)
- Mohammad Mahdi Dabbaghi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesan Soleimani Roudi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Das C, Ghosh NN, Pulhani V, Biswas G, Singhal P. Bio-functionalized magnetic nanoparticles for cost-effective adsorption of U(vi): experimental and theoretical investigation. RSC Adv 2023; 13:15015-15023. [PMID: 37200695 PMCID: PMC10187032 DOI: 10.1039/d3ra00799e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
U(vi) removal using cost-effective (production cost: $14.03 per kg), biocompatible, and superparamagnetic Cinnamomum tamala (CT) leaf extract-coated magnetite nanoparticles (CT@MNPs or CT@Fe3O4 nanoparticles) from water resources was studied. From pH-dependent experiments, the maximum adsorption efficiency was found to be at pH 8. Isotherm and kinetic studies were performed and found to follow Langmuir isotherm and pseudo-second order kinetics, respectively. The maximum adsorption capacity of CT@MNPs was calculated to be 45.5 mg of U(vi) per g of nanoparticles (NPs). Recyclability studies suggest that over 94% sorption was retained even after four consecutive cycles. The sorption mechanism was explained by the point of the zero-charge experiment and the XPS measurement. Additionally, calculations using density functional theory (DFT) were carried out to support the experimental findings.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar West Bengal India 736101
| | | | - Vandana Pulhani
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre Mumbai 400085 India 91-22-2550-5313 91-22-2559-2349
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar West Bengal India 736101
| | - Pallavi Singhal
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre Mumbai 400085 India 91-22-2550-5313 91-22-2559-2349
| |
Collapse
|
8
|
Mohamed A, Atta RR, Kotp AA, Abo El-Ela FI, Abd El-Raheem H, Farghali A, Alkhalifah DHM, Hozzein WN, Mahmoud R. Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd 2+ and Ni 2+) from aqueous solutions with Antimicrobial Investigation. Sci Rep 2023; 13:7227. [PMID: 37142660 PMCID: PMC10160056 DOI: 10.1038/s41598-023-31704-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
Clove and green Coffee (g-Coffee) extracts were used to synthesize green iron oxide nanoparticles, which were then used to sorb Cd2+ and Ni2+ ions out of an aqueous solution. Investigations with x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and desorption (BET), Zeta potential, and scanning electron microscopy were performed to know and understand more about the chemical structure and surface morphology of the produced iron oxide nanoparticles. The characterization revealed that the main component of iron nanoparticles was magnetite when the Clove extract was used as a reducing agent for Fe3+, but both magnetite and hematite were included when the g-Coffee extract was used. Sorption capacity for metal ions was studied as a function of sorbent dosage, metal ion concentration, and sorption period. The maximum Cd2+ adsorption capacity was 78 and 74 mg/g, while that of Ni2+ was 64.8 and 80 mg/g for iron nanoparticles prepared using Clove and g-Coffee, respectively. Different isotherm and kinetic adsorption models were used to fit experimental adsorption data. Adsorption of Cd2+ and Ni2+ on the iron oxide surface was found to be heterogeneous, and the mechanism of chemisorption is involved in the stage of determining the rate. The correlation coefficient R2 and error functions like RMSE, MES and MAE were used to evaluate the best fit models to the experimental adsorption data. The adsorption mechanism was explored using FTIR analysis. Antimicrobial study showed broad spectrum antibacterial activity of the tested nanomaterials against both Gram positive (S. aureus) (25923) and Gram negative (E. coli) (25913) bacteria with increased activity against Gram positive bacteria than Gram negative one and more activity for Green iron oxide nanoparticles prepared from Clove than g-Coffee one.
Collapse
Affiliation(s)
- Abdelrahman Mohamed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - R R Atta
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt.
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia.
| | - Amna A Kotp
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hany Abd El-Raheem
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Environmental Engineering Program, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, B.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
9
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
10
|
Synthesis of Green Magnetite/Carbonized Coffee Composite from Natural Pyrite for Effective Decontamination of Congo Red Dye: Steric, Synergetic, Oxidation, and Ecotoxicity Studies. Catalysts 2023. [DOI: 10.3390/catal13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Green magnetite/carbonized spent coffee (MG/CFC) composite was synthesized from natural pyrite and characterized as an adsorbent and catalyst in photo-Fenton’s oxidation system of Congo red dye (C.R). The absorption behavior was illustrated based on the steric and energetic parameters of the advanced Monolayer equilibrium model of one energetic site (R2 > 0.99). The structure exhibits 855 mg/g as effective site density which induces its C.R saturation adsorption capacity to 436.1 mg/g. The change in the number of absorbed C.R per site with temperature (n = 1.53 (293) to 0.51 (313 K)) suggests changes in the mechanism from multimolecular (up to 2 molecules per site) to multianchorage (one molecule per more than one site) processes. The energetic studies (ΔE = 6.2–8.2 kJ/mol) validate the physical uptake of C.R by MG/CFC which might be included van der Waals forces, electrostatic attractions, and hydrogen bonding. As a catalyst, MG/CFC exhibits significant activity during the photo-Fenton’s oxidation of C.R under visible light. The complete oxidation of C.R was detected after 105 min (5 mg/L), 120 min (10 mg/L), 135 min (15 mg/L), 180 min (20 mg/L), and 240 min (25 mg/L) using MG/CFC at 0.2 g/L dosage and 0.1 mL of H2O2. Increasing the dosage up to 0.5 g/L reduce the complete oxidation interval of C.R (5 mg/L) down to 30 min while the complete mineralization was detected after 120 min. The acute and chronic toxicities of the treated samples demonstrate significant safe products of no toxic effects on aquatic organisms as compared to the parent C.R solution.
Collapse
|
11
|
Narayanan M, Devarajan N, Salmen SH, Alharbi SA, Lavarti R, Lan Chi NT, Brindhadevi K. Characterization of NiONPs synthesized by aqueous extract of orange fruit waste and assessed their antimicrobial and antioxidant potential. ENVIRONMENTAL RESEARCH 2023; 216:114734. [PMID: 36343715 DOI: 10.1016/j.envres.2022.114734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
This research was performed to evaluate the nickel oxide nanoparticles (NiONPs) fabricating potential of orange fruit waste (OFW) aqueous extract. Moreover characterize the synthesized OFW-NiONPs through standard techniques such as UV-vis. spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and Scanning Electron Microscope (SEM) analyses. Furthermore, the antimicrobial and antioxidant potential of OFW-NiONPs were studied against most common microbial pathogens (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Aspergillus niger) and free radicals (2,2-diphenyl-1-picrylhydrazyl (DPPH), H2O2, OH, and FRAP). A sharp absorbance peak was obtained at 324 nm under UV-vis spectrum analysis that confirmed that the synthesis of OFW-NiONPs and it has been capped and stabilized by numbers of active functional groups studied through FTIR analysis. SEM and DLS analyses revealed that the cubic and triangle shaped OFW-NiONPs with the size intensity distribution was ranging from 21 nm to 130 nm. Interestingly, the OFW-NiONPs showed remarkable antimicrobial activity against the common microbial pathogens in the order of E. coli > A. niger > K. pneumoniae > B. subtilis > S. aureus at increased concentration of 200 μg mL-1. Similarly, the synthesized OFW-NiONPs also possess significant free radicals scavenging activity against DPPH, OH, and FRAP. These results conclude that this OFW-NiONPs can be considered for some biomedical applications after the investigations of some in-vivo research.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India
| | | | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Rupa Lavarti
- Pharmacology and Toxicology Department, Augusta University, USA
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
12
|
Islam SU, Bairagi S, Kamali MR. Review on Green Biomass-Synthesized Metallic Nanoparticles and Composites and Their Photocatalytic Water Purification Applications: Progress and Perspectives. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
13
|
Yazdani Z, Biparva P, Rafiei A, Kardan M, Hadavi S. Combination effect of cold atmospheric plasma with green synthesized zero-valent iron nanoparticles in the treatment of melanoma cancer model. PLoS One 2022; 17:e0279120. [PMID: 36534669 PMCID: PMC9762585 DOI: 10.1371/journal.pone.0279120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Green synthesized zero-valent iron nanoparticles (nZVI) have high potential in cancer therapy. Cold atmospheric plasma (CAP) is also an emerging biomedical technique that has great potential to cure cancer. Therefore, the combined effect of CAP and nZVI might be promising in treatment of cancer. In this study, we evaluated the combined effect of CAP and nZVI on the metabolic activity of the surviving cells and induction of apoptosis in malignant melanoma in comparison with normal cells. Therefore, the effect of various time exposure of CAP radiation, different doses of nZVI, and the combined effect of CAP and nZVI were evaluated on the viability of malignant melanoma cells (B16-F10) and normal fibroblast cells (L929) at 24 h after treatment using MTT assay. Then, the effect of appropriate doses of each treatment on apoptosis was evaluated by fluorescence microscopy and flow cytometry with Annexin/PI staining. In addition, the expression of BAX, BCL2 and Caspase 3 (CASP3) was also assayed. The results showed although the combined effect of CAP and nZVI significantly showed cytotoxic effects and apoptotic activity on cancer cells, this treatment had no more effective compared to CAP or nZVI alone. In addition, evaluation of gene expression showed that combination therapy didn't improve expression of apoptotic genes in comparison with CAP or nZVI. In conclusion, combined treatment of CAP and nZVI does not seem to be able to improve the effect of monotherapy of CAP or nZVI. It may be due to the resistance of cancer cells to high ROS uptake or the accumulation of saturated ROS in cells, which prevents the intensification of apoptosis.
Collapse
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pourya Biparva
- Department of Basic Sciences, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Kardan
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedehniaz Hadavi
- Department of Atomic and Molecular Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
- Plasma Technology Research Center, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
14
|
Anasdass JR, Kannaiyan P, Gopinath SCB. Biosynthesis of zerovalent iron nanoparticles for catalytic reduction of 4-nitrophenol and decoloration of textile dyes. Biotechnol Appl Biochem 2022; 69:2780-2793. [PMID: 35293654 DOI: 10.1002/bab.2323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
We demonstrate a green chemistry approach to synthesize narrow-sized zerovalent iron (nZVI) nanoparticles using Artocarpus heterophyllus Lam. leaf extract as reducing and capping agent. The produced nZVI was characterized by various instrumental methods including ultraviolet-visible spectra, transmission electron microscopy, vibrating sample magnetometer (VSM), X-ray diffraction, and Fourier transform infrared spectroscopy. Based on the electron microscopy observations, the particle size was estimated to be ∼30 nm. In VSM, the saturation point of magnetization was observed to be 0.6 emu g-1 under a magnetic field of 0 ± 30 kOe. The synthesized nZVI was amorphous in nature as per the XRD results. The catalytic activity of the nZVI was employed for the catalytic reduction of 4-nitrophenol (4-NP) and decoloration of textile dyes such as methylene blue, methyl orange, and malachite green, respectively. The proposed nZVI synthesis method exhibited better catalytic performance toward reduction of 4-NP and degradation of dyes within 4 min for 0.1 mg of catalyst. Moreover, the synthesized catalyst nZVI can be recoverable and reutilized in many cycles without loss of its significant catalytic activity. The synthesized nZVI could be a promising material to treat industrial wastewater via profitable, sustainable, and ecofriendly approaches.
Collapse
Affiliation(s)
| | - Pandian Kannaiyan
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai, India
| | - Subhash C B Gopinath
- Faculty of Chemical Engineering Technology, Perlis, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia.,Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| |
Collapse
|
15
|
Abdelfatah AM, El-Maghrabi N, Mahmoud AED, Fawzy M. Synergetic effect of green synthesized reduced graphene oxide and nano-zero valent iron composite for the removal of doxycycline antibiotic from water. Sci Rep 2022; 12:19372. [PMID: 36371519 PMCID: PMC9652592 DOI: 10.1038/s41598-022-23684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
In this work, the synthesis of an rGO/nZVI composite was achieved for the first time using a simple and green procedure via Atriplex halimus leaves extract as a reducing and stabilizing agent to uphold the green chemistry principles such as less hazardous chemical synthesis. Several tools have been used to confirm the successful synthesis of the composite such as SEM, EDX, XPS, XRD, FTIR, and zeta potential which indicated the successful fabrication of the composite. The novel composite was compared with pristine nZVI for the removal aptitude of a doxycycline antibiotic with different initial concentrations to study the synergistic effect between rGO and nZVI. The adsorptive removal of bare nZVI was 90% using the removal conditions of 25 mg L-1, 25 °C, and 0.05 g, whereas the adsorptive removal of doxycycline by the rGO/nZVI composite reached 94.6% confirming the synergistic effect between nZVI and rGO. The adsorption process followed the pseudo-second order and was well-fitted to Freundlich models with a maximum adsorption capacity of 31.61 mg g-1 at 25 °C and pH 7. A plausible mechanism for the removal of DC was suggested. Besides, the reusability of the rGO/nZVI composite was confirmed by having an efficacy of 60% after six successive cycles of regeneration.
Collapse
Affiliation(s)
- Ahmed M Abdelfatah
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Nourhan El-Maghrabi
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Manal Fawzy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| |
Collapse
|
16
|
Chau TP, Brindhadevi K, Krishnan R, Alyousef MA, Almoallim HS, Whangchai N, Pikulkaew S. A novel synthesis, analysis and evaluation of Musa coccinea based zero valent iron nanoparticles for antimicrobial and antioxidant. ENVIRONMENTAL RESEARCH 2022; 209:112770. [PMID: 35063432 DOI: 10.1016/j.envres.2022.112770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Zerovalent Iron Nanoparticles (MC-ZVI NPs) were synthesized from Musa coocinea peel extract as reducing and stabilizing agent using a novel synthesis technique. The synthesis of MC-ZVI NPs was confirmed using UV-vis spectroscopy showing a sharp absorption peak at 341 nm. Further the chemical and structural characterization of MC-ZVI NPs were performed using Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering technique (DLS). FTIR analysis revealed the presence of phytochemical molecules associated with the MC-ZVI NPs. SEM analysis revealed the synthesized MC-ZVI NPs were in spherical shaped, while DLS analysis confirmed the synthesis of poly dispersed and non-homogenous MC-ZVI NPs. The antimicrobial efficacy of MC-ZVI NPs synthesized using Musa coccinea peel extract was tested against bacterial (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Bacillus subtilis) and fungal (Aspergillus niger) pathogens. But MC-ZVI NPs exhibited maximum of 19 mm zone of inhibition against B. subtilis and A. niger. Further the free radical scavenging activity MC-ZVI NPs was confirmed using DPPH, hydroxyl radical, hydrogen peroxide, FRAP assay showing displayed effective antioxidant activity. Thus, the present idea will give a fast and cost effective approach to synthesize MC-ZVI NPs with antimicrobial property for application in biomedical purposes.
Collapse
Affiliation(s)
- Tan Phat Chau
- Institute of Applied Science & Technology, Van Lang University, Ho Chi Minh, 70000, Viet Nam.
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ramakrishnan Krishnan
- Department of Business, Harrisburg University of Science and Technology, Harrisburg, PA, 17101, USA
| | - Mansour Ali Alyousef
- General Directorate of Health Affairs in Riyadh, Ministry of Health, Saudi Arabia
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Niwooti Whangchai
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Surachai Pikulkaew
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
17
|
α-Hydroxy acids modified β-cyclodextrin capped iron nanocatalyst for rapid reduction of nitroaromatics: A sonochemical approach. Int J Biol Macromol 2022; 209:1504-1515. [PMID: 35469942 DOI: 10.1016/j.ijbiomac.2022.04.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
Abstract
This study reports a sonochemical approach for the synthesis and catalytic performance of zerovalent iron nanoparticles (nZVI) capped with two cyclodextrin (CD) crosslinked polymers derived from Lactic acid and Citric acid (CDLA and CDCA respectively). The polymers and the catalysts were characterized by NMR, FTIR, HRTEM, DLS, Zeta potential, FESEM, EDAX, VSM, XRD, XPS, TGA analysis. The catalysts proved to be sustainable and recyclable for rapid sonochemical reduction of nitroaromatics under ambient conditions. The isolated yield of the derivatives was found to be greater than 90%. The results suggest excellent dispersibility, stability, high iron content and smaller size of CDLA polymer capped nZVI compared to CDCA capped nZVI, leading to two-fold higher catalytic activity. The effect of various crucial catalysis parameters was investigated and optimized. The scope of the reaction was extended to other nitroaromatics under the optimized conditions. Being magnetically separable, the cost effective and non-toxic catalysts exhibited high recycling efficiency (~13 cycles), high turnover number (TON) and turnover frequency (TOF). The recyclable catalysts could be low-cost and sustainable options for organic transformation in water via sonochemical approach in aqueous medium.
Collapse
|
18
|
Tong Z, Deng Q, Luo S, Li J, Liu Y. Marine Biomass-Supported Nano Zero-Valent Iron for Cr(VI) Removal: A Response Surface Methodology Study. NANOMATERIALS 2022; 12:nano12111846. [PMID: 35683701 PMCID: PMC9182078 DOI: 10.3390/nano12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023]
Abstract
Heavy metal ions such as Cr(VI) pose great hazards to the environment, which requests materials and methods for decontamination. Nano zero-valent iron (nZVI) has emerged as a promising candidate for Cr(VI) removal. Herein, harnessing the merits of marine biomass, a heterogeneous water treatment system for the decontamination of Cr(VI) is developed based on the in situ immobilization of nZVI on the seashell powder (SP)-derived porous support. A response surface methodology (RSM) study involving three independent factors is designed and conducted to direct material synthesis and reaction design for products with optimal performances. Under optimal synthetic conditions, the nZVI-loaded seashell powder (SP@nZVI), which is characterized in detail by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), results in a 79% increase in the removal efficiency of Cr(VI) compared to free nZVI. Mechanism studies show that the removal of Cr(VI) by SP@nZVI conforms to the Langmuir adsorption model with a quasi-second order kinetic equation, in which redox reactions between nZVI and Cr(VI) occurred at the SP surface. The results of this work are expected to benefit the reuse of bioresource waste in developing environmental remediation materials.
Collapse
Affiliation(s)
| | | | | | | | - Yong Liu
- Correspondence: (S.L.); (J.L.); (Y.L.)
| |
Collapse
|
19
|
Hashemi Z, Ebrahimzadeh MA, Biparva P. Naked Eye Chemosensor and In Vivo Chelating Activity of Iron (III) By Bromopyridine Quinoxaline (BPQ). J Fluoresc 2022; 32:1669-1678. [PMID: 35622216 DOI: 10.1007/s10895-022-02893-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 01/17/2023]
Abstract
A wide variety of medical, biomedical, and industrial applications has been reported for quinoxalines derivatives. In this work, a novel quinoxaline derivative was designed and synthesized. Naked-eye and quantitative detection of Fe3+ among several cations were evaluated using UV-Vis spectroscopy. New chemosensor, 2,3-bis(6-bromopyridine-2-yl)-6-chloroquinoxaline named BPQ, showed a selective interaction for iron ion over other tested cations by changing color. Iron overloaded mice were prepared as a thalassemia model and then the effects of iron-chelating activities of BPQ were experienced. The job's plot methods determined the stoichiometric ratio of ligand to Fe3+ (1:1). The iron content in serum was evaluated by atomic absorption spectroscopy (AAS). Results showed significant differences (two-fold decrease in total iron and Fe3+) between the iron overloaded and BPQ (dose of 20 mgkg-1). The BPQ was identified as a ligand, which can be applied as a new chelator for decreasing the excess iron of blood.
Collapse
Affiliation(s)
- Zahra Hashemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Hemoglobinopathy Institute and Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Hemoglobinopathy Institute and Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Pourya Biparva
- Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, P.O.Box 578, Sari, Iran.
| |
Collapse
|
20
|
Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02276-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Abida O, Van der Graaf F, Li LY. Exploratory study of removing nutrients from aqueous environments employing a green synthesised nano zero-valent iron. ENVIRONMENTAL TECHNOLOGY 2022; 43:2017-2032. [PMID: 33317431 DOI: 10.1080/09593330.2020.1864480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
This study explores the green synthesis of nano zero-valent iron (nZVI) extracted from the peel of selected waste fruits: banana (BP), mango (MP), and pomegranate (GP), for the removal of nutrients from aqueous environments. The extract was prepared by heating de-ionised water at 60°C for 5 min, adding a reducing and a stabilising agent, FeCl3, then stirring with a N2 gas flush solution to form iron nanoparticles, with a final drying step under N2 conditions. Using a variety of characterisation techniques, it was determined that nZVI particles were successfully synthesised via the reduction of iron (III) to iron (0) and stabilised by the presence of phenolic compounds in the extract. The removal of 20 mg/L nutrients from an aqueous solution carried out using the nZVIs resulted in nitrate removal of 92% (nZVI-GP), 88% (nZVI-BP), and 72% (nZVI-MP) within 5 min, whereas ∼98% phosphate was removed by all three nZVIs within 60 min. The aging effect was also tested. Aging the nZVIs for >20 days resulted in less efficient phosphate adsorption after exposure for 250 min; ∼70% phosphate removal was achieved using the nZVIs under these conditions. The mechanisms and pathways of nitrate reduction, including the adsorption of phosphate by nZVI were demonstrated, and discussed. Leachability tests of the phosphate-loaded nZVIs revealed that 10%, 28%, and 48% phosphate was released from the nZVI-GP, nZVI-BP, and nZVI-MP particles, respectively. Using waste fruit is, therefore, a viable and sustainable alternative to the traditional sodium borohydride method to produce nZVIs for environmental application.
Collapse
Affiliation(s)
- Otman Abida
- College of Engineering and Technology, American University of Middle East, Kuwait
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| | - Fennie Van der Graaf
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Ghaffar N, Javad S, Farrukh MA, Shah AA, Gatasheh MK, Al-Munqedhi BMA, Chaudhry O. Metal nanoparticles assisted revival of Streptomycin against MDRS Staphylococcus aureus. PLoS One 2022; 17:e0264588. [PMID: 35324924 PMCID: PMC8947119 DOI: 10.1371/journal.pone.0264588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/06/2022] [Indexed: 11/18/2022] Open
Abstract
The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics. Therefore, it is critically required to develop novel antibiotic agents and treatments to control bacterial infections. Green synthesized metallic and metal oxide nanoparticles are considered as the potential means to target bacteria as an alternative to antibiotics. Nanoconjugates have also attracted attention because of their increased biological activity as compared to free antibiotics. In the present investigation, silver nanoparticles (AgNPs), zinc oxide nanoparticles (ZnO NPs), copper oxide nanoparticles (CuO NPs), and iron oxide nanoparticles (FeO NPs) have been synthesized by using leaf extract of Ricinus communis. Characterization of nanoparticles was done by using UV-Vis Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Energy Dispersive X-Ray Analyzer, X-ray Diffraction Analysis, and Dynamic Light Scattering Particle Size Analyzer. Interestingly, Streptomycin when combined with AgNPs, ZnO NPs, CuO NPs, and FeO NPs showed enhanced antibacterial activity against clinical isolates of S. aureus which suggested synergism between the nanoparticles and antibiotics. The highest enhanced antibacterial potential of Streptomycin was observed in conjugation with ZnO NPs (11 ± 0.5 mm) against S. aureus. Minimum inhibitory concentration of conjugates of AgNPs, ZnO NPs, CuO NPs, and FeO NPs with streptomycin against S. aureus was found to be 3.12, 2.5,10, and 12.5 μg/mL respectively. The considerable point of the present investigation is that S. aureus, which was resistant to streptomycin becomes highly susceptible to the same antibiotic when combined with nanoparticles. This particular observation opens up windows to mitigate the current crisis due to antibiotic resistance to combat antimicrobial infections efficiently.
Collapse
Affiliation(s)
- Nadia Ghaffar
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Akhyar Farrukh
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Education, Lahore, Pakistan
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department Botony and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
23
|
Ahmed AA, Rizvi ZR, Shahzad H, Farrukh MA. Neodymium oxide nanoparticles synthesis using phytochemicals of leaf extracts of different plants as reducing and capping agents: Growth mechanism, optical, structural and catalytic properties. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aleezay Anjum Ahmed
- Department of Chemistry Forman Christian College (A Chartered University) Lahore Pakistan
| | - Zoha Raza Rizvi
- Department of Chemistry Forman Christian College (A Chartered University) Lahore Pakistan
| | - Hira Shahzad
- Department of Chemistry Forman Christian College (A Chartered University) Lahore Pakistan
| | | |
Collapse
|
24
|
Bacelo H, Santos SCR, Ribeiro A, Boaventura RAR, Botelho CMS. Antimony removal from water by pine bark tannin resin: Batch and fixed-bed adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114100. [PMID: 34794053 DOI: 10.1016/j.jenvman.2021.114100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Antimony is present in water by natural causes but is also mobilized in the environment by anthropogenic activities, particularly mining. Considering its toxicological behavior, antimony removal from contaminated groundwater and mine effluents is necessary. In this work, Sb(III) and Sb(V) removal from aqueous solution was studied using a resin prepared from pine bark tannins. Subsequent iron loading of the tannin resin was tested, but this chemical modification was shown not to improve adsorptive properties. Tannin resin (unmodified form) presented a good ability to uptake antimony, with maximum adsorption capacities, evaluated in batch mode, of 30-33 mg g-1 (Sb(III), pH 6) and 16-47 mg g-1 (Sb(V), pH 2), depending on the particle size. The performance of the adsorbent was not affected by high levels of sulfate, which characterize most mining-impacted waters, but depending on Sb-load of the water it could be moderately affected by metal cations coexisting in solution. The applicability of the tannin resin on Sb(III) uptake was confirmed in continuous fixed-bed experiments. Breakthrough curves were obtained for different inlet adsorbate concentrations, bed heights, flow rates and aqueous media (distilled water and a simulated mine effluent). The adsorptive capacity of the tannin resin was practically maintained and adsorbent usage rates as low as 0.11 kg m-3 were determined to treat efficiently (90% removal) 1 mg-Sb(III) L-1 contaminated water. Overall, tannin resin is a bio-derived sorbent that shows affinity for antimony in both redox states, being stable in pH conditions commonly found in Sb-contaminated waters.
Collapse
Affiliation(s)
- Hugo Bacelo
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Chemical Engineering Department, Faculdade de Engenharia da Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Sílvia C R Santos
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Chemical Engineering Department, Faculdade de Engenharia da Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Andreia Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Chemical Engineering Department, Faculdade de Engenharia da Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Chemical Engineering Department, Faculdade de Engenharia da Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cidália M S Botelho
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Chemical Engineering Department, Faculdade de Engenharia da Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
25
|
Jahanshahi M, Khalili M, Margdari A, Aalikhani M. Naringin is a promising natural compound for therapy of iron-overload disorders. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Masoumeh Khalili
- Golestan University of Medical Sciences, Iran; Golestan University of Medical Sciences, Iran
| | | | | |
Collapse
|
26
|
Abdelfatah AM, Fawzy M, El-Khouly ME, Eltaweil AS. Efficient adsorptive removal of tetracycline from aqueous solution using phytosynthesized nano-zero valent iron. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Rahman MH, Hasan MN, Nigar S, Ma F, Aly Saad Aly M, Khan MZH. Synthesis and Characterization of a Mixed Nanofertilizer Influencing the Nutrient Use Efficiency, Productivity, and Nutritive Value of Tomato Fruits. ACS OMEGA 2021; 6:27112-27120. [PMID: 34693131 PMCID: PMC8529675 DOI: 10.1021/acsomega.1c03727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/23/2021] [Indexed: 05/09/2023]
Abstract
Due to the higher potential for enhancing nutrient use efficiency, nanofertilizer (NF) is crucial in sustainable crop production. Thus, foliar-applied mixed nanofertilizer (MNFf) and commercial fertilizer (CF) into the soil (CFs) were claimed together ([MNFf + CFs]) and comparative nutrient use efficiency (NUE), productivity, and nutritional properties of tomato fruits were investigated. The mixed nanofertilizer (MNF) was prepared in our laboratory and characterized using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared. To avoid the interference of other factors, all the treatments were divided into three groups: (i) blank treatment (no fertilizer), (ii) CF treatment, and (iii) combined [MNFf + CFs] treatment. The vegetative growth and qualitative and quantitative attributes of tomatoes were recorded, and the NUE, total production, and benefit-cost ratio (BCR) were also calculated. In addition, comparative nutritional properties for all treatments were analyzed. The plant's height, stem diameter, root length, photosynthetic pigments, leaf minerals, and qualitative traits of tomato fruits were significantly (p < 0.05) increased by [MNFf + CFs] treatment compared to CFs. The protein, fiber, Fe, Zn, and K contents were significantly (p < 0.05) increased by 23.80, 38.10, 44.23, 60.01, and 2.39%, respectively, with the [MNFf + CFs] treatment as compared to CFs, while the ash and protein contents were both lower than the untreated tomato. Moreover, [MNFf + CFs] treatment has significantly (p < 0.05) increased the antioxidant properties. The NUE, total production, and BCR were also increased by 26.08, 26.04, and 25.38%, respectively, with the same treatment. Thus, [MNFf + CFs] treatment could be a potential alternative for reducing the excess use of CF.
Collapse
Affiliation(s)
- Md Hafizur Rahman
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Nazmul Hasan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shireen Nigar
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Fanyi Ma
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Mohamed Aly Saad Aly
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-Daero, Daegu 42988, Republic of Korea
| | - Md Zaved Hossain Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
28
|
Abdelfatah A, Fawzy M, Eltaweil AS, El-Khouly ME. Green Synthesis of Nano-Zero-Valent Iron Using Ricinus Communis Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. ACS OMEGA 2021; 6:25397-25411. [PMID: 34632198 PMCID: PMC8495865 DOI: 10.1021/acsomega.1c03355] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 05/15/2023]
Abstract
In this study, the removal of methylene blue dye (MB) from aqueous solution was examined using a novel green adsorbent to overcome the obstacles encountered in chemical methods. Ricinus communis (RC) aqueous seeds extract was herein used as a reducing and capping agent to synthesize a novel nano-zero-valent iron (RC-nZVI) for the adsorption of harmful MB. Structural and morphological characterization of the synthesized RC-nZVI were performed using several techniques, e.g., steady-state absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and zeta potential. The maximum efficiency of the removal was 96.8% at pH 6 and 25 °C. According to the kinetics study results, the adsorption process obeys the pseudo-first-order model. The experimental equilibrium data were fitted to the Freundlich isotherm model, the maximum adsorption capacity reached was 61.37 mg·g-1, and the equilibrium parameters were determined. The synthesized RC-nZVI possesses good reusability and can be considered as a potential economic and environmentally friendly adsorbent.
Collapse
Affiliation(s)
- Ahmed
M. Abdelfatah
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Abdelazeem S. Eltaweil
- Department
of Chemistry, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Mohamed E. El-Khouly
- Institute
of Basic and Applied Sciences, Egypt-Japan University of Science and
Technology (E-JUST), New Borg
El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
29
|
Haydar MS, Das D, Ghosh S, Mandal P. Implementation of mature tea leaves extract in bioinspired synthesis of iron oxide nanoparticles: preparation, process optimization, characterization, and assessment of therapeutic potential. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01872-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Mubeen I, Farrukh MA. Mechanisms of green synthesis of iron nanoparticles using Trifolium alexandrinum extract and degradation of methylene blue. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1978491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Iqra Mubeen
- Nano-Chemistry Laboratory, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Akhyar Farrukh
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
31
|
Chowdhury A, Peela NR, Golder AK. Synthesis of Cu2O NPs using bioanalytes present in Sechium edule: Mechanistic insights and application in electrocatalytic CO2 reduction to formate. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Iron sulfide nanoparticles prepared using date seed extract: Green synthesis, characterization and potential application for removal of ciprofloxacin and chromium. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Lem O, Yoon S, Bae S, Lee W. The enhanced reduction of bromate by highly reactive and dispersive green nano-zerovalent iron (G-NZVI) synthesized with onion peel extract. RSC Adv 2021; 11:5008-5018. [PMID: 35424449 PMCID: PMC8694555 DOI: 10.1039/d0ra09897c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, novel green nano-zerovalent iron (G-NZVI) is synthesized for the first time using onion peel extract for the prevention of rapid surface oxidation and the enhancement of particle dispersibility with a high reductive capacity. The results from various surface analyses revealed that the spherical shape of G-NZVI was fully covered by the onion peel extract composed of polyphenolic compounds with C[double bond, length as m-dash]C-C[double bond, length as m-dash]C unsaturated carbon, C[double bond, length as m-dash]C, C-O, and O-H bonds, resulting in high mobility during column chromatography. Furthermore, the obtained G-NZVI showed the complete removal of 50 mg L-1 of bromate (BrO3 -) in 2 min under both aerobic (k = 4.42 min-1) and anaerobic conditions (k = 4.50 min-1), showing that G-NZVI had outstanding oxidation resistance compared to that of bare NZVI. Moreover, the observed performance of G-NZVI showed that it was much more reactive than other well-known reductants (e.g., Fe and Co metal organic frameworks), regardless of whether aerobic or anaerobic conditions were used. The effects of G-NZVI loading, the BrO3 - concentration, and pH on the BrO3 - removal kinetics using G-NZVI were also investigated in this study. The results provide the novel insight that organic onion peel waste can be reused to synthesize highly reactive anti-oxidative nanoparticles for the treatment of inorganic chemical species and heavy metals in water and wastewater.
Collapse
Affiliation(s)
- Olga Lem
- Department of Civil and Environmental Engineering, National Laboratory Astana, Nazarbayev University Nur-Sultan 010000 Republic of Kazakhstan +7-7172-70-6540
| | - Sunho Yoon
- Department of Civil and Environmental Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Woojin Lee
- Department of Civil and Environmental Engineering, National Laboratory Astana, Nazarbayev University Nur-Sultan 010000 Republic of Kazakhstan +7-7172-70-6540
| |
Collapse
|
34
|
Dinesh GK, Pramod M, Chakma S. Sonochemical synthesis of amphoteric Cu 0-Nanoparticles using Hibiscus rosa-sinensis extract and their applications for degradation of 5-fluorouracil and lovastatin drugs. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123035. [PMID: 32512280 DOI: 10.1016/j.jhazmat.2020.123035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Recent studies reported the detection of numerous emerging and active pharmaceutical constituents in the ground and surface water. To address these issues, the present study reported the ultrasound-assisted synthesis of zero-valent copper (Cu0) nanoparticles using Hibiscus rosa-sinensis extract as reducing and stabilizing agent. The catalyst was characterized using XRD, SEM, EDX, PSA, BET, etc., and the results revealed that sonochemical synthesis technique influenced the crystallinity with controlled growth of Cu0. While the hard ligand hydroxyl group (-OH) reduces the Cu2+ to Cu0 and soft ligand carbonyl group (CO) present in the oxidized polyphenols helps in capping and stabilizing the Cu0-nanoparticles. During the ultrasound application, continuous release of Cu+ from Cu0 promoted the degradation by producing OH and O2•- radicals. Approx. 91.3 % and 93.2 % degradation efficiencies were achieved for 5-fluorouracil and lovastatin. The results showed that Cu0 nanoparticles were amphoteric in nature and the synergy calculation revealed that ultrasound has a direct influence on degradation of drugs which are difficult to degrade/mineralize using conventional techniques. Based on the results, a possible degradation mechanism of drug molecules in the presence of oxidants, zero-valent copper and ultrasound has been proposed.
Collapse
Affiliation(s)
- G Kumaravel Dinesh
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, 462 066 Madhya Pradesh, India
| | - Malavika Pramod
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, 462 066 Madhya Pradesh, India
| | - Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, 462 066 Madhya Pradesh, India.
| |
Collapse
|
35
|
Hashemi Z, Ebrahimzadeh MA, Biparva P, Mortazavi-Derazkola S, Goli HR, Sadeghian F, Kardan M, Rafiei A. Biogenic Silver and Zero-Valent Iron Nanoparticles by Feijoa: Biosynthesis, Characterization, Cytotoxic, Antibacterial and Antioxidant Activities. Anticancer Agents Med Chem 2020; 20:1673-1687. [DOI: 10.2174/1871520620666200619165910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 02/05/2023]
Abstract
Background: and Purpose:
Green nanotechnology is an interesting method for the synthesis of functional
nanoparticles. Because of their wide application, they have set up great attention in recent years.
Objective:
The present research examines the green synthesis of Ag and zero-valent iron nanoparticles (AgNPs,
ZVINPs) by Feijoa sellowiana fruit extract. In this synthesis, no stabilizers or surfactants were applied.
Methods:
Eco-friendly synthesis of Iron and biogenic synthesis of Ag nanoparticles were accomplished by
controlling critical parameters such as concentration, incubation period and temperature. Scanning Electron
Microscopy (SEM), Transmission Electron Microscope (TEM), Energy-Dispersive X-ray Spectroscopy (EDS),
Fourier-Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction analysis (XRD), Dynamic Light Scattering
(DLS) and UV-Vis were applied to characterize NPs. The cytotoxicity of NPs was investigated in two cell lines,
MCF-7 (breast cancer) and AGS (human gastric carcinoma). A high-performance liquid chromatography
(HPLC) analysis was also performed for characterization of phenolic acids in the extract.
Results:
Both NPs displayed powerful anticancer activities against two tumor cell lines with little effect on
BEAS-2B normal cells. Synthesized AgNPs and ZVINPs inhibited the growth of all selected bacteria. Pseudomonas
aeruginosa, Proteus mirabilis, Klebsiella pneumonia, Staphylococcus aureus, Enterococcus faecalis,
Acinetobacter baumannii and Escherichia coli have been studied in two stages. We initially examined the
ATCCs followed by clinical strain isolation. Based on the results from resistant strains, we showed that nanoparticles
were superior to conventional antibiotics. DPPH (diphenyl-1-picrylhydrazyl) free radical scavenging assay
and iron chelating activity were used for the determination of antioxidant properties. Results showed a high
antioxidant activity of scavenging free radicals for ZVINPs and powerful iron-chelating activity for AgNPs.
Based on the HPLC data, catechin was the major phenolic compound in the extract.
Conclusion:
Our synthesized nanoparticles displayed potent cytotoxic, antibacterial and antioxidant activities.
Collapse
Affiliation(s)
- Zahra Hashemi
- Depatment of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Depatment of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pourya Biparva
- Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran
| | - Sobhan Mortazavi-Derazkola
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Reza Goli
- Molecular and Cell Biology Research Center, Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Sadeghian
- Depatment of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Kardan
- Molecular and Cell Biology Research Center, Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Molecular and Cell Biology Research Center, Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
36
|
Ebrahimzadeh MA, Biparva P, Mohammadi H, Tavakoli S, Rafiei A, Kardan M, Badali H, Eslami S. Highly Concentrated Multifunctional Silver Nanoparticle Fabrication through Green Reduction of Silver Ions in Terms of Mechanics and Therapeutic Potentials. Anticancer Agents Med Chem 2020; 19:2140-2153. [PMID: 31736448 DOI: 10.2174/1871520619666191021115609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/15/2019] [Accepted: 09/13/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Green synthesis of silver nanoparticles (AgNPs) is limited to produce AgNPs with only relatively low concentrations, and is unsuitable for large-scale productions. The use of Myrtus communis (MC) leaf methanolic extract (rich in hydrolyzable tannins) has been recommended to resolve the issues related to the aggregation of nanoparticles at high concentrations of silver ions with added facet of antioxidant properties. METHODS The produced highly concentrated MC-AgNPs were characterized by using imaging and spectroscopic methods. Subsequently, antioxidant, anticancer and antifungal activities of the nanoparticles were evaluated. RESULTS The thermogravimetric analysis and energy dispersive spectroscopy quantitative results suggested that the nanoparticles are biphasic in nature (bio-molecule + Ag0) and layered in structure, suggesting the formation of nanoparticles through a different mechanism than those described in the literature. MC-AgNPs showed greater scavenging activity of nitric oxide and iron (II) chelating ability than the extract. It also showed good reducing power compared to the standard antioxidant. Remarkable anticancer activity of MC-AgNPs (IC50 = 5.99µg/mL) was found against HCT-116 (human colon carcinoma) cell lines after 24h exposure with a therapeutic index value 2-fold higher than the therapeutic index of standard doxorubicin. Furthermore, distinct antifungal activity (MIC = 4µg/mL) was found against Candida krusei. CONCLUSION The current method outperforms the existing methods because it produces a large amount of multifunctional nanoscale hybrid materials more efficiently using natural sources; thus, it may be used for diverse biomedical applications.
Collapse
Affiliation(s)
- Mohammad A Ebrahimzadeh
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pourya Biparva
- Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirin Tavakoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Molecular and Cell Biology Research Center, Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Kardan
- Molecular and Cell Biology Research Center, Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahram Eslami
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
37
|
Wang T, Zhang F, Zhao R, Wang C, Hu K, Sun Y, Politis C, Shavandi A, Nie L. Polyvinyl Alcohol/Sodium Alginate Hydrogels Incorporated with Silver Nanoclusters via Green Tea Extract for Antibacterial Applications. Des Monomers Polym 2020; 23:118-133. [PMID: 33029080 PMCID: PMC7473243 DOI: 10.1080/15685551.2020.1804183] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/28/2020] [Indexed: 01/13/2023] Open
Abstract
Silver-based nanoparticles and biomaterials have extensive biomedical applications owing to their unique antimicrobial properties. Thus, green and facile synthesis of such materials is highly desirable. This study reports an antibacterial hydrogel based on polyvinyl alcohol/sodium alginate network with the incorporation of silver nanoparticles (AgNPs), which is greenly synthesized by reductive metabolites obtained from the leaves of green tea. The 'flower-shape' AgNPs were acquired, it formed a mono-disperse system with a distinct uniform interparticle separation. The average size of AgNPs varied from 129.5 to 243.6 nm, which could be regulated by using different volumes of the green tea extract. Zeta potentials of the AgNPs were from -39.3 mV to -20.3 mV, indicating the moderate stability of the particles in water. In the next stage, the antibacterial polyvinyl alcohol/sodium alginate hydrogels were fabricated by incorporating prepared AgNPs. Scanning Electron Microscopy (SEM) images showed that the porous structure was obtained, and Energy Dispersive X-Ray (EDX) analysis confirmed that the AgNPs were uniformly dispersed in the polymer network. The hydrogels exhibited superior water absorption properties, which were characterized by a high swelling ratio (500-900%) and fast equilibrium. The hydrogels also exhibited good antimicrobial activity in assays with Gram-positive bacteria Escherichia coli and Gram-negative bacteria Staphylococcus aureus. To sum up, a process for the green preparation of antibacterial hydrogels based on AgNPs derived from tea leaves as a conveniently available cheap local agricultural product was established.
Collapse
Affiliation(s)
- Tianwen Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Fang Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, XinyangChina
| | - Can Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Kehui Hu
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yi Sun
- Department of Imaging & Pathology, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Constantinus Politis
- Department of Imaging & Pathology, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Amin Shavandi
- BioMatter Unit - École Polytechnique De Bruxelles, Université Libre De Bruxelles, Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Department of Imaging & Pathology, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Khunjan U, Kasikamphaiboon P. Green Synthesis of Kaolin-Supported Nanoscale Zero-Valent Iron Using Ruellia tuberosa Leaf Extract for Effective Decolorization of Azo Dye Reactive Black 5. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04831-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Bio-inspired synthesis of flower shaped iron oxide nanoparticles (FeONPs) using phytochemicals of Solanum lycopersicum leaf extract for biomedical applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101698] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Guo B, Li M, Li S. The comparative study of a homogeneous and a heterogeneous system with green synthesized iron nanoparticles for removal of Cr(VI). Sci Rep 2020; 10:7382. [PMID: 32355322 PMCID: PMC7193580 DOI: 10.1038/s41598-020-64476-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/16/2020] [Indexed: 11/18/2022] Open
Abstract
Green iron nanoparticles (G-nZVI) were synthesized in situ by adding grape-seed extracts and Fe2+ solution simultaneously. The performances for the removal of Cr(VI) were compared in a homogeneous system by original G-nZVI (in suspension) with in a heterogeneous system by treated G-nZVI. The characterization of TEM, SEM, XRD, FTIR and XPS show that G-nZVI is the formation of Fe°-iron oxide core-shell nanoparticles with organic matters in the extracts as capping/stabilizing agents. The same excellent performances on the removal of Cr(VI) were observed in the both systems and the adsorption capacity was from 78.3 to 166.7 mg (Cr)·g-1 (Fe) with the increase of initial Fe2+ concentrations. The pseudo second-order model described the adsorption process excellently and both pseudo first-order and pseudo second-order models fit the reduction process well. It illustrated that the reaction included prompt adsorption and simultaneous redox process. Moreover, the results of thermodynamics study (ΔG° < 0, ΔH° > 0, ΔS° > 0) revealed that the adsorption was a spontaneous and endothermic process. It is obvious that the systhesis of original G-nZVI in the homogeneous system is more simple, rapid, cost-effective and suitable for in situ uses. It holds a great potential for remediation of soil and water.
Collapse
Affiliation(s)
- Bo Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China.
| | - Meiling Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China
| | - Sai Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China
| |
Collapse
|
41
|
Sharma D, Ledwani L, Mehrotra T, Kumar N, Pervaiz N, Kumar R. Biosynthesis of hematite nanoparticles using Rheum emodi and their antimicrobial and anticancerous effects in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111841. [PMID: 32197209 DOI: 10.1016/j.jphotobiol.2020.111841] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
The synthesis of magnetic Hematite nanoparticles (α-Fe2O3) via green route has been a long lasting challenge for the scientific and technological fascination of many researchers. In the present investigation, iron oxide nanoparticles (α-Fe2O3) were synthesized using Rheum emodi roots in a cost effective and ecofriendly method. Their physicochemical property orchestration involved techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray (EDX), X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Vibrating sample magnetometer (VSM), and Atomic force microscopy (AFM). Through TEM, FESEM and AFM analysis, α-Fe2O3NPs were confirmed spherical in shape and the average diameter of particle is ~12 nm as depicted through TEM image. Thermal property was investigated by TGA. Magnetic behavior was observed in R. emodi mediated α-Fe2O3NPs by magnetic hysteresis measurements. FTIR analysis revealed the presence of anthraquinones in R. emodi roots extract which play the central role in stabilization of the α-Fe2O3NPs. Further, the crystalline nature of the nanoparticle sample was determined with XRD experiment and SAED fringes calculation. The crystal was also confirmed with Rietveld refinement of XRD profile fitted with R-3c model Additionally, magnetic interaction with bacterial cell wall showed antimicrobial property against Escherichia coli, Gram-negative and Staphylococcus aureus, Gram-positive species. The approach transcribed in this paper reveals a novel methodology that utilizes α-Fe2O3 NPs to initiate apoptosis and inhibition of cervical cancer cells.
Collapse
Affiliation(s)
| | | | - Tarang Mehrotra
- College of Professional Studies, Northeastern University, Boston, MA 02115, United States
| | - Naveen Kumar
- Panjab Engineering College (Deemed to be University), Chandigarh 160012, India
| | - Naveed Pervaiz
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Ravinder Kumar
- Department of Zoology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
42
|
Ebrahimzadeh MA, Naghizadeh A, Amiri O, Shirzadi-Ahodashti M, Mortazavi-Derazkola S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg Chem 2020; 94:103425. [DOI: 10.1016/j.bioorg.2019.103425] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
|
43
|
Yi Y, Wei Y, Tsang PE, Fang Z. Aging effects on the stabilisation and reactivity of iron-based nanoparticles green synthesised using aqueous extracts of Eichhornia crassipes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28361-28371. [PMID: 31372953 DOI: 10.1007/s11356-019-06006-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Aging effects play a crucial role in determining applications of green-synthesised iron-based nanoparticles in wastewater treatment from laboratory scale to practical applications. In this study, iron-based nanoparticles (Ec-Fe-NPs) were synthesised using the extract of Eichhornia crassipes and ferric chloride. Scanning electron microscopy (SEM) revealed that the fresh Ec-Fe-NPs were spherical and had a narrow particle size range (50 to 80 nm). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) demonstrated that the Ec-Fe-NPs were mainly amorphous in nature and consisted of Fe0, FeO, Fe2O3 and Fe3O4. As they aged, the particle size of the liquid Ec-Fe-NPs gradually increased and then tended to stabilise. Ec-Fe-NPs that were aged for 28 days were only 19% less efficient than fresh material at removing Cr(VI). Extracts aged up to 28 days were also tested, and their antioxidant capacity was found to be 15.4% lower than that of the fresh extracts. Furthermore, the removal efficiency of Cr(VI) using iron-based nanoparticles synthesised with the aged extracts was 67.2%. Finally, the active components of the extracts, which were responsible for the reactivity and stability of the iron-based nanoparticles, were identified by liquid chromatography-mass spectrometry. Overall, green-synthesised iron-based nanoparticles show promise for Cr(VI) removal from wastewater in practical applications.
Collapse
Affiliation(s)
- Yunqiang Yi
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Yufen Wei
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 00852, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
| |
Collapse
|
44
|
Phytofabrication of iron nanoparticles and their catalytic activity. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
45
|
Bharathi D, Ranjithkumar R, Vasantharaj S, Chandarshekar B, Bhuvaneshwari V. Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. Int J Biol Macromol 2019; 132:880-887. [DOI: 10.1016/j.ijbiomac.2019.03.233] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/26/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|
46
|
Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0511-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|