1
|
Hannun YA, Merrill AH, Luberto C. The Bioactive Sphingolipid Playbook. A Primer for the Uninitiated as well as Sphingolipidologists. J Lipid Res 2025:100813. [PMID: 40254066 DOI: 10.1016/j.jlr.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Sphingolipids and glycosphingolipids are among the most structurally diverse and complex compounds in the mammalian metabolome. They are well known to play important roles in biological architecture, cell-cell communication and cellular regulation, and for many biological processes, multiple sphingolipids are involved. Thus, it is not surprising that untargeted genetic/transcriptomic/pharmacologic/metabolomic screens have uncovered changes in sphingolipids and sphingolipid genes/proteins while studying physiological and pathological processes. Consequently, with increasing frequency, both targeted and untargeted mass spectrometry methodologies are being used to conduct sphingolipidomic analyses. Interpretation of such large data sets and design of follow-up experiments can be daunting for investigators with limited expertise with sphingolipids (and sometimes even for someone well-versed in sphingolipidology). Therefore, this review gives an overview of essential elements of sphingolipid structure and analysis, metabolism, functions, and roles in disease, and discusses some of the items to consider when interpreting lipidomics data and designing follow-up investigations.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Departments of Biochemistry, Medicine, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Chiara Luberto
- Department of Physiology and Biophysics, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Kol M, Novak AJE, Morstein J, Schröer C, Sokoya T, Mensing S, Korneev SM, Trauner D, Holthuis JCM. Optical control of sphingolipid biosynthesis using photoswitchable sphingosines. J Lipid Res 2025; 66:100724. [PMID: 39672331 PMCID: PMC11782902 DOI: 10.1016/j.jlr.2024.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024] Open
Abstract
Sphingolipid metabolism comprises a complex interconnected web of enzymes, metabolites, and modes of regulation that influence a wide range of cellular and physiological processes. Deciphering the biological relevance of this network is challenging as numerous intermediates of sphingolipid metabolism are short-lived molecules with often opposing biological activities. Here, we introduce clickable, azobenzene-containing sphingosines, termed caSphs, as light-sensitive substrates for sphingolipid biosynthesis. Photo-isomerization of the azobenzene moiety enables reversible switching between a straight trans- and curved cis-form of the lipid's hydrocarbon tail. Combining in vitro enzyme assays with metabolic labeling studies, we demonstrate that trans-to-cis isomerization of caSphs profoundly stimulates their metabolic conversion by ceramide synthases and downstream sphingomyelin synthases. These light-induced changes in sphingolipid production rates are acute, reversible, and can be implemented with great efficiency in living cells. Our findings establish caSphs as versatile tools for manipulating sphingolipid biosynthesis and function with the spatiotemporal precision of light.
Collapse
Affiliation(s)
- Matthijs Kol
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
| | | | - Johannes Morstein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Christian Schröer
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Tolulope Sokoya
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Svenja Mensing
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Sergei M Korneev
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
4
|
Kol M, Novak AJ, Morstein J, Schröer C, Sokoya T, Mensing S, Korneev SM, Trauner D, Holthuis JC. Optical control of sphingolipid biosynthesis using photoswitchable sphingosines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619506. [PMID: 39484495 PMCID: PMC11527141 DOI: 10.1101/2024.10.24.619506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Sphingolipid metabolism comprises a complex interconnected web of enzymes, metabolites and modes of regulation that influence a wide range of cellular and physiological processes. Deciphering the biological relevance of this network is challenging as numerous intermediates of sphingolipid metabolism are short-lived molecules with often opposing biological activities. Here, we introduce clickable, azobenzene-containing sphingosines, termed caSphs, as light-sensitive substrates for sphingolipid biosynthesis. Photo-isomerization of the azobenzene moiety enables reversible switching between a straight trans- and curved cis-form of the lipid's hydrocarbon tail. Combining in vitro enzyme assays with metabolic labeling studies, we demonstrate that trans-to-cis isomerization of caSphs profoundly stimulates their metabolic conversion by ceramide synthases and downstream sphingomyelin synthases. These light-induced changes in sphingolipid production rates are acute, reversible, and can be implemented with great efficiency in living cells. Our findings establish caSphs as versatile tools with unprecedented opportunities to manipulate sphingolipid biosynthesis and function with the spatiotemporal precision of light.
Collapse
Affiliation(s)
- Matthijs Kol
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Alexander J.E. Novak
- Department of Chemistry, New York University 100 Washington Square East, New York, NY, 10003, USA
| | - Johannes Morstein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christian Schröer
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Tolulope Sokoya
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Svenja Mensing
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Sergei M. Korneev
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Joost C.M. Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| |
Collapse
|
5
|
Clotworthy MR, Dawson JJM, Johnstone MD, Fleming CL. Coumarin-Derived Caging Groups in the Spotlight: Tailoring Physiochemical and Photophysical Properties. Chempluschem 2024; 89:e202400377. [PMID: 38960871 DOI: 10.1002/cplu.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The development of light-responsive molecular tools enables spatiotemporal control of biochemical processes with superior precision. Amongst these molecular tools, photolabile caging groups are employed to prevent critical binding interactions between a bioactive molecule and its corresponding target. Only upon irradiation with light, the bioactive is released in its 'active' form and is now readily available to bind to its target. Coumarin-derived caging groups constitute one of the most popular classes of photolabile protecting groups, due to their facile synthetic accessibility, ease of tuning photophysical properties via structural modification and rapid photolysis reactions. Herein, we highlight the recent progress made on the development of coumarin-derived caging groups, in which the red-shifting of absorption spectra, improving aqueous solubility and tailoring sub-cellular localisation has been of particular interest.
Collapse
Affiliation(s)
- Megan R Clotworthy
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Joseph J M Dawson
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mark D Johnstone
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Cassandra L Fleming
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
6
|
Jamecna D, Höglinger D. The use of click chemistry in sphingolipid research. J Cell Sci 2024; 137:jcs261388. [PMID: 38488070 DOI: 10.1242/jcs.261388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.
Collapse
Affiliation(s)
- Denisa Jamecna
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| |
Collapse
|
7
|
Harayama T. Metabolic bias: Lipid structures as determinants of their metabolic fates. Biochimie 2023; 215:34-41. [PMID: 37769936 DOI: 10.1016/j.biochi.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Cellular lipids have an enormous diversity in their chemical structures, which affect the physicochemical properties of lipids and membranes, as well as their regulatory roles on protein functions. Here, I review additional roles of lipid structures. Multiple studies show that structural differences affect how lipids, even from the same class, are metabolically converted via distinct pathways. I propose the name "structure-guided metabolic bias" for this phenomenon, and discuss its biological relevance. This metabolic bias seems implicated in the buildup of basic cellular lipid compositions, as well as genetic predisposition to diseases. Thus, guiding metabolic biases is an important function of lipid structures, while having the characteristic of being difficult to study by in vitro biochemical reconstitutions.
Collapse
Affiliation(s)
- Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de La Recherche Scientifique and Université Côte D'Azur, 660 Route des Lucioles, 06560, Valbonne, France.
| |
Collapse
|
8
|
Uematsu M, Baskin JM. Chemical Approaches for Measuring and Manipulating Lipids at the Organelle Level. Cold Spring Harb Perspect Biol 2023; 15:a041407. [PMID: 37604586 PMCID: PMC10691496 DOI: 10.1101/cshperspect.a041407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
As the products of complex and often redundant metabolic pathways, lipids are challenging to measure and perturb using genetic tools. Yet by virtue of being the major constituents of cellular membranes, lipids are highly regulated in space and time. Chemists have stepped into this methodological void, developing an array of techniques for the precise quantification and manipulation of lipids at the subcellular, organelle level. Here, we survey the landscape of these methods. For measuring lipids, we summarize the use of metabolic labeling and click chemistry tagging, photoaffinity labeling, isotopic tagging for Raman microscopy, and chemoenzymatic labeling for tracking lipid production and interorganelle transport. For perturbing lipids, we describe synthetic photocaged lipids and membrane editing approaches using optogenetic enzymes for precise manipulation of lipid signaling. Collectively, these chemical and biochemical tools are revealing phenomena and mechanisms underlying lipid functions at the subcellular level.
Collapse
Affiliation(s)
- Masaaki Uematsu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
9
|
Somalo-Barranco G, Pagano Zottola AC, Abdulrahman AO, El Zein RM, Cannich A, Muñoz L, Serra C, Oishi A, Marsicano G, Masri B, Bellocchio L, Llebaria A, Jockers R. Mitochondria-targeted melatonin photorelease supports the presence of melatonin MT1 receptors in mitochondria inhibiting respiration. Cell Chem Biol 2023; 30:920-932.e7. [PMID: 37572668 DOI: 10.1016/j.chembiol.2023.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/16/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
The presence of signaling-competent G protein-coupled receptors in intracellular compartments is increasingly recognized. Recently, the presence of Gi/o protein-coupled melatonin MT1 receptors in mitochondria has been revealed, in addition to the plasma membrane. Melatonin is highly cell permeant, activating plasma membrane and mitochondrial receptors equally. Here, we present MCS-1145, a melatonin derivative bearing a triphenylphosphonium cation for specific mitochondrial targeting and a photocleavable o-nitrobenzyl group releasing melatonin upon illumination. MCS-1145 displayed low affinity for MT1 and MT2 but spontaneously accumulated in mitochondria, where it was resistant to washout. Uncaged MCS-1145 and exogenous melatonin recruited β-arrestin 2 to MT1 in mitochondria and inhibited oxygen consumption in mitochondria isolated from HEK293 cells only when expressing MT1 and from mouse cerebellum of WT mice but not from MT1-knockout mice. Overall, we developed the first mitochondria-targeted photoactivatable melatonin ligand and demonstrate that melatonin inhibits mitochondrial respiration through mitochondrial MT1 receptors.
Collapse
Affiliation(s)
- Gloria Somalo-Barranco
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France; MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | | | | | - Rami M El Zein
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Lourdes Muñoz
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Carme Serra
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Atsuro Oishi
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Bernard Masri
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France.
| |
Collapse
|
10
|
Melero A, Jiménez-Rojo N. Cracking the membrane lipid code. Curr Opin Cell Biol 2023; 83:102203. [PMID: 37437490 DOI: 10.1016/j.ceb.2023.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Why has nature acquired such a huge lipid repertoire? Although it would be theoretically possible to make a lipid bilayer fulfilling barrier functions with only one glycerophospholipid, there are diverse and numerous different lipid species. Lipids are heterogeneously distributed across the evolutionary tree with lipidomes evolving in parallel to organismal complexity. Moreover, lipids are different between organs and tissues and even within the same cell, different organelles have characteristic lipid signatures. At the molecular level, membranes are asymmetric and laterally heterogeneous. This lipid asymmetry at different scales indicates that these molecules may play very specific molecular functions in biology. Some of these roles have been recently uncovered: lipids have been shown to be essential in processes such as hypoxia and ferroptosis or in protein sorting and trafficking but many of them remain still unknown. In this review we will discuss the importance of understanding lipid diversity in biology across scales and we will share a toolbox with some of the emerging technologies that are helping us to uncover new lipid molecular functions in cell biology and, step by step, crack the membrane lipid code.
Collapse
Affiliation(s)
- Alejandro Melero
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Noemi Jiménez-Rojo
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Instituto Biofisika (UPV/EHU, CSIC), 48940, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
11
|
Shao X, Meng C, Song W, Zhang T, Chen Q. Subcellular visualization: Organelle-specific targeted drug delivery and discovery. Adv Drug Deliv Rev 2023; 199:114977. [PMID: 37391014 DOI: 10.1016/j.addr.2023.114977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Organelles perform critical biological functions due to their distinct molecular composition and internal environment. Disorders in organelles or their interacting networks have been linked to the incidence of numerous diseases, and the research of pharmacological actions at the organelle level has sparked pharmacists' interest. Currently, cell imaging has evolved into a critical tool for drug delivery, drug discovery, and pharmacological research. The introduction of advanced imaging techniques in recent years has provided researchers with richer biological information for viewing and studying the ultrastructure of organelles, protein interactions, and gene transcription activities, leading to the design and delivery of precision-targeted drugs. Therefore, this reviews the research on organelles-targeted drugs based upon imaging technologies and development of fluorescent molecules for medicinal purposes. We also give a thorough analysis of a number of subcellular-level elements of drug development, including subcellular research instruments and methods, organelle biological event investigation, subcellular target and drug identification, and design of subcellular delivery systems. This review will make it possible to promote drug research from the individual/cellular level to the subcellular level, as well as give a new focus based on newly found organelle activities.
Collapse
Affiliation(s)
- Xintian Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Caicai Meng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Wenjing Song
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Tao Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250014, PR China
| | - Qixin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
12
|
Abstract
Lipids are key components of all organisms. We are well educated in their use as fuel and their essential role to form membranes. We also know much about their biosynthesis and metabolism. We are also aware that most lipids have signaling character meaning that a change in their concentration or location constitutes a signal that helps a living cell to respond to changes in the environment or to fulfill its specific function ranging from secretion to cell division. What is much less understood is how lipids change location in cells over time and what other biomolecules they interact with at each stage of their lifetime. Due to the large number of often quite similar lipid species and the sometimes very short lifetime of signaling lipids, we need highly specific tools to manipulate and visualize lipids and lipid-protein interactions. If successfully applied, these tools provide fabulous opportunities for discovery.In this Account, I summarize the development of synthetic tools from our lab that were designed to address crucial properties that allow them to function as tools in live cell experiments. Techniques to change the concentration of lipids by adding a small molecule or by light are described and complemented by examples of biological findings made when applying the tools. This ranges from chemical dimerizer-based systems to synthetic "caged" lipid derivatives. Furthermore, I discuss the problem of locating a lipid in an intact cell. Synthetic molecular probes are described that help to unravel the lipid location and to determine their binding proteins. These location studies require in-cell lipid tagging by click chemistry, photo-cross-linking to prevent further movement and the "caging" groups to avoid premature metabolism. The combination of these many technical features in a single tool allows for the analysis of not only lipid fluxes through metabolism but also lipid transport from one membrane to another as well as revealing the lipid interactome in a cell-dependent manner. This latter point is crucial because with these multifunctional tools in combination with lipidomics we can now address differences in healthy versus diseased cells and ultimately find the changes that are essential for disease development and new therapeutics that prevent these changes.
Collapse
Affiliation(s)
- Carsten Schultz
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| |
Collapse
|
13
|
Iglesias-Artola JM, Nadler A. The Road to Quantitative Lipid Biochemistry in Living Cells. Acc Chem Res 2023; 56:810-820. [PMID: 36943016 PMCID: PMC10077588 DOI: 10.1021/acs.accounts.2c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
ConspectusTraditional cell biological techniques are not readily suitable for studying lipid signaling events because genetic perturbations are much slower than the interconversion of lipids in complex metabolic networks. For this reason, novel chemical biological approaches have been developed. One approach is to chemically modify a lipid with a so-called "caging group" that renders it inactive, but this cage can be removed photochemically inside cells to release the bioactive molecule. These caged compounds offer unique advantages for studying the kinetics of cellular biochemistry and have been extensively used in the past. However, a limitation of conventional caged compounds is their ability to diffuse freely inside the cell, which does not permit localized activation below optical precision. This poses a challenge for studying lipid signaling as lipid function inside cells is tightly linked to their parent membrane. An ideal lipid probe should, therefore, be restricted to a single organelle membrane or preferentially to a single leaflet. We first demonstrated the plasma-membrane-specific photorelease of fatty acids by employing sulfonated caging groups. Using these caged fatty acid probes we demonstrated that lipid localization determines signaling outcome. Generalizing this approach, we designed a so-called "click cage" that can be coupled to lipids and offers the possibility to attach organelle targeting groups via click chemistry. Using this strategy, we have synthesized plasma membrane, lysosomal, mitochondria, and endoplasmic-reticulum-targeted lipids that can be used to dissect organelle-specific signaling events. To reduce the synthetic effort associated with generating caged compounds, we designed a coumarin triflate reagent that allows the direct functionalization of phosphate- or carboxylate-containing compounds. With this novel reagent, we synthesized a small library of photocaged G-protein-coupled receptor (GPCR) ligands to study the underlying lipid signaling dynamics. Most recently, we have focused on quantifying the kinetics of lipid signaling for different diacylglycerol (DAG) species using plasma-membrane-targeted caged DAGs. Using this approach, we quantitatively measured lipid-protein affinities and lipid transbilayer dynamics in living cells. After analyzing DAGs with different acyl chain length and saturation degree, we discovered that affinities can vary by up to an order of magnitude. This finding clearly shows that cells are able to distinguish between individual DAG species, thereby demonstrating that lipid diversity matters in cellular signal processing. Although the recent advances have yielded valuable tools to study lipid signaling, challenges remain on specifically targeting the different leaflets of organelle membranes. Furthermore, it is necessary to simplify the experimental approaches required for parametrizing and corroborating quantitative kinetic models of lipid signaling. In the future, we envision that the application of leaflet-specific caged lipids to model membrane systems will be of crucial importance for understanding lipid asymmetry.
Collapse
Affiliation(s)
- Juan M Iglesias-Artola
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
14
|
Altuzar J, Notbohm J, Stein F, Haberkant P, Hempelmann P, Heybrock S, Worsch J, Saftig P, Höglinger D. Lysosome-targeted multifunctional lipid probes reveal the sterol transporter NPC1 as a sphingosine interactor. Proc Natl Acad Sci U S A 2023; 120:e2213886120. [PMID: 36893262 PMCID: PMC10089177 DOI: 10.1073/pnas.2213886120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023] Open
Abstract
Lysosomes are catabolic organelles involved in macromolecular digestion, and their dysfunction is associated with pathologies ranging from lysosomal storage disorders to common neurodegenerative diseases, many of which have lipid accumulation phenotypes. The mechanism of lipid efflux from lysosomes is well understood for cholesterol, while the export of other lipids, particularly sphingosine, is less well studied. To overcome this knowledge gap, we have developed functionalized sphingosine and cholesterol probes that allow us to follow their metabolism, protein interactions, and their subcellular localization. These probes feature a modified cage group for lysosomal targeting and controlled release of the active lipids with high temporal precision. An additional photocrosslinkable group allowed for the discovery of lysosomal interactors for both sphingosine and cholesterol. In this way, we found that two lysosomal cholesterol transporters, NPC1 and to a lesser extent LIMP-2/SCARB2, bind to sphingosine and showed that their absence leads to lysosomal sphingosine accumulation which hints at a sphingosine transport role of both proteins. Furthermore, artificial elevation of lysosomal sphingosine levels impaired cholesterol efflux, consistent with sphingosine and cholesterol sharing a common export mechanism.
Collapse
Affiliation(s)
- Janathan Altuzar
- Heidelberg University Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, 69120Heidelberg, Germany
| | - Judith Notbohm
- Heidelberg University Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, 69120Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory, 69117Heidelberg, Germany
| | - Per Haberkant
- European Molecular Biology Laboratory, 69117Heidelberg, Germany
| | - Pia Hempelmann
- Heidelberg University Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, 69120Heidelberg, Germany
| | - Saskia Heybrock
- Institute of Biochemistry, Christian-Albrechts-Universität Kiel, 24118Kiel, Germany
| | - Jutta Worsch
- Heidelberg University Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, 69120Heidelberg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-Universität Kiel, 24118Kiel, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, 69120Heidelberg, Germany
| |
Collapse
|
15
|
Simon C, Asaro A, Feng S, Riezman H. An organelle-specific photoactivation and dual-isotope labeling strategy reveals phosphatidylethanolamine metabolic flux. Chem Sci 2023; 14:1687-1695. [PMID: 36819876 PMCID: PMC9930920 DOI: 10.1039/d2sc06069h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylethanolamine metabolism plays essential roles in eukaryotic cells but has not been completely investigated due to its complexity. This is because lipid species, unlike proteins or nucleic acids, cannot be easily manipulated at the single molecule level or controlled with subcellular resolution, two of the key factors toward understanding their functions. Here, we use the organelle-targeting photoactivation method to study PE metabolism in living cells with a high spatiotemporal resolution. Containing predefined PE structures, probes which can be selectively introduced into the ER or mitochondria were designed to compare their metabolic products according to their subcellular localization. We combined photo-uncaging with dual stable isotopic labeling to track PE metabolism in living cells by mass spectrometry analysis. Our results reveal that both mitochondria- and ER-released PE participate in phospholipid remodeling, and that PE methylation can be detected only under particular conditions. Thus, our method provides a framework to study phospholipid metabolism at subcellular resolution.
Collapse
Affiliation(s)
- Clémence Simon
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| | - Antonino Asaro
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| | - Suihan Feng
- Unit of Chemical Biology and Lipid Metabolism, Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of SciencesShanghai200031China
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| |
Collapse
|
16
|
Jiménez-López C, Nadler A. Caged lipid probes for controlling lipid levels on subcellular scales. Curr Opin Chem Biol 2023; 72:102234. [PMID: 36493527 DOI: 10.1016/j.cbpa.2022.102234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Lipids exert their cellular functions in individual organelles, in some cases on the scale of even smaller, specialized membrane domains. Thus, the experimental capacity to precisely manipulate lipid levels at the subcellular level is crucial for studying lipid-related processes in cell biology. Photo-caged lipid probes which partition into specific cellular membranes prior to photoactivation have emerged as key tools for localized and selective perturbation of lipid concentration in living cells. In this review, we provide an overview of the recent advances in the area and outline which developments are still required for the methodology to be more widely implemented in the wider membrane biology community.
Collapse
Affiliation(s)
| | - André Nadler
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
17
|
Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA. The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol 2023; 33:70-86. [PMID: 35788297 DOI: 10.1016/j.tcb.2022.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022]
Abstract
Peroxisomes are essential metabolic organelles, well known for their roles in the metabolism of complex lipids and reactive ionic species. In the past 10 years, peroxisomes have also been cast as central regulators of immunity. Lipid metabolites of peroxisomes, such as polyunsaturated fatty acids (PUFAs), are precursors for important immune mediators, including leukotrienes (LTs) and resolvins. Peroxisomal redox metabolism modulates cellular immune signaling such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Additionally, peroxisomal β-oxidation and ether lipid synthesis control the development and aspects of the activation of both innate and adaptive immune cells. Finally, peroxisome number and metabolic activity have been linked to inflammatory diseases. These discoveries have opened avenues of investigation aimed at targeting peroxisomes for therapeutic intervention in immune disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada.
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zürich), Zurich, Switzerland
| | - Peter Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | |
Collapse
|
18
|
Hu T, Chen X, Lu S, Zeng H, Guo L, Han Y. Biological Role and Mechanism of Lipid Metabolism Reprogramming Related Gene ECHS1 in Cancer. Technol Cancer Res Treat 2022; 21:15330338221140655. [PMID: 36567598 PMCID: PMC9806408 DOI: 10.1177/15330338221140655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cancer is a major threat to human health today. Although the existing anticancer treatments have effectively improved the prognosis of some patients, there are still other patients who cannot benefit from these well-established strategies. Reprogramming of lipid metabolism is one of the typical features of cancers. Recent studies have revealed that key enzymes involved in lipid metabolism may be effective anticancer therapeutic targets, but the development of therapeutic lipid metabolism targets is still insufficient. ECHS1 (enoyl-CoA hydratase, short chain 1) is a key enzyme mediating the hydration process of mitochondrial fatty acid β-oxidation and has been observed to be abnormally expressed in a variety of cancers. Therefore, with ECHS1 and cancer as the main keywords, we searched the relevant studies of ECHS1 in the field of cancer in Pubmed, summarized the research status and functions of ECHS1 in different cancer contexts, and explored its potential regulatory mechanisms, with a view to finding new therapeutic targets for anti-metabolic therapy. By reviewing and summarizing the retrieved literatures, we found that ECHS1 regulates malignant biological behaviors such as cell proliferation, metastasis, apoptosis, autophagy, and drug resistance by remodeling lipid metabolism and regulating intercellular oncogenic signaling pathways. Not only that, ECHS1 exhibits early diagnostic and prognostic value in clear cell renal cell carcinoma, and small-molecule inhibitors that regulate ECHS1 also show therapeutic significance in preclinical studies. Taken together, we propose that ECHS1 has the potential to serve as a therapeutic target of lipid metabolism.
Collapse
Affiliation(s)
- Teng Hu
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Xiaojing Chen
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Simin Lu
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Hao Zeng
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Lu Guo
- Department of Ophthalmology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China,Yunwei Han, Department of Oncology, The
Affiliated Hospital of Southwest Medical University, Taiping Street, No. 25,
Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
19
|
Girik V, Feng S, Hariri H, Henne WM, Riezman H. Vacuole-Specific Lipid Release for Tracking Intracellular Lipid Metabolism and Transport in Saccharomyces cerevisiae. ACS Chem Biol 2022; 17:1485-1494. [PMID: 35667650 PMCID: PMC9207805 DOI: 10.1021/acschembio.2c00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Lipid metabolism is spatiotemporally regulated within cells, yet intervention into lipid functions at subcellular resolution remains difficult. Here, we report a method that enables site-specific release of sphingolipids and cholesterol inside the vacuole in Saccharomyces cerevisiae. Using this approach, we monitored real-time sphingolipid metabolic flux out of the vacuole by mass spectrometry and found that the endoplasmic reticulum-vacuole-tethering protein Mdm1 facilitated the metabolism of sphingoid bases into ceramides. In addition, we showed that cholesterol, once delivered into yeast using our method, could restore cell proliferation induced by ergosterol deprivation, overcoming the previously described sterol-uptake barrier under aerobic conditions. Together, these data define a new way to study intracellular lipid metabolism and transport from the vacuole in yeast.
Collapse
Affiliation(s)
- Vladimir Girik
- Department
of Biochemistry, University of Geneva, Geneva 1205, Switzerland
| | - Suihan Feng
- Department
of Biochemistry, University of Geneva, Geneva 1205, Switzerland
- National
Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva 1205, Switzerland
| | - Hanaa Hariri
- Department
of Cell Biology, UT Southwestern Medical
Center, Dallas, Texas 75390-9039 United States
| | - W. Mike Henne
- Department
of Cell Biology, UT Southwestern Medical
Center, Dallas, Texas 75390-9039 United States
| | - Howard Riezman
- Department
of Biochemistry, University of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
20
|
Fukumoto Y, Umeno T, Kuramochi H, Hamada K, Matsumoto S, Suzuki N, Usui K, Mizutani A, Karasawa S. Acid responsiveness of emissive morpholinyl aminoquinolines and their use for cell fluorescence imaging. Org Biomol Chem 2022; 20:4342-4351. [PMID: 35575175 DOI: 10.1039/d2ob00546h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein, we report emissive aminoquinoline derivatives (TFMAQ) containing alkylmorpholine and arylmorpholine groups and their photophysical properties, acid-responsiveness, and organelle targeting. The alkylmorpholine group is well-known to favour accumulation in lysosomes and be acid-responsive, but, counterintuitively, the TFMAQ derivatives containing ethylmorpholine groups showed limited accumulation in lysosomes and, instead, preferential accumulation in lipid droplets. The findings reported here will aid the development of organelle/tissue specific dyes for cell imaging and diagnosis.
Collapse
Affiliation(s)
- Yuri Fukumoto
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Hina Kuramochi
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Koichi Hamada
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Shota Matsumoto
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Noriko Suzuki
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Kazuteru Usui
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Akihiro Mizutani
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Satoru Karasawa
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
21
|
Roy B, Mengji R, Roy S, Pal B, Jana A, Singh NDP. NIR-Responsive Lysosomotropic Phototrigger: An "AIE + ESIPT" Active Naphthalene-Based Single-Component Photoresponsive Nanocarrier with Two-Photon Uncaging and Real-Time Monitoring Ability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4862-4870. [PMID: 35049266 DOI: 10.1021/acsami.1c19022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent times, organelle-targeted drug delivery systems have gained tremendous attention due to the site-specific delivery of active drug molecules, resulting in enhanced bioefficacy. In this context, a phototriggered drug delivery system (DDS) for releasing an active molecule is superior, as it provides spatial and temporal control over the release. So far, a near-infrared (NIR) light-responsive organelle-targeted DDS has not yet been developed. Hence, we introduced a two-photon NIR light-responsive lysosome-targeted "AIE + ESIPT" active single-component DDS based on the naphthalene chromophore. The two-photon absorption cross section of our DDS is 142 GM at 850 nm. The DDS was converted into pure organic nanoparticles for biological applications. Our nano-DDS is capable of selective targeting, AIE luminogenic imaging, and drug release within the lysosome. In vitro studies using cancerous cell lines showed that our single-component photoresponsive nanocarrier exhibited enhanced cytotoxicity and real-time monitoring ability of drug release.
Collapse
Affiliation(s)
- Biswajit Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rakesh Mengji
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samrat Roy
- Department of Physics, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Bipul Pal
- Department of Physics, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Avijit Jana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
22
|
Körner C, Fröhlich F. Compartmentation and functions of sphingolipids. Curr Opin Cell Biol 2022; 74:104-111. [DOI: 10.1016/j.ceb.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023]
|
23
|
Simon C, Feng S, Riezman H. Chemical Biology Tools to Study Lipids and their Metabolism with Increased Spatial and Temporal Resolution. Chimia (Aarau) 2021; 75:1012-1016. [PMID: 34920769 DOI: 10.2533/chimia.2021.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lipids are important cellular components providing many essential functions. To fulfill these various functions evolution has selected for a diverse set of lipids and this diversity is seen at the organismal, cellular and subcellular level. Understanding how cells maintain this complex lipid organization is a very challenging problem, which for lipids, is not easily addressed using biochemical and genetic techniques. Therefore, chemical tools have an important role to play in our quest to understand the complexities of lipid metabolism. Here we discuss new chemical tools to study lipids, their distribution and metabolism with increased spatial and temporal resolution.
Collapse
Affiliation(s)
- Clémence Simon
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva
| | - Suihan Feng
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva; Current Address : Center for Microbes, Health and Development (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, China
| | - Howard Riezman
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva;,
| |
Collapse
|
24
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 795] [Impact Index Per Article: 198.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
25
|
Synthetic probes and chemical tools in sphingolipid research. Curr Opin Chem Biol 2021; 65:126-135. [PMID: 34509716 DOI: 10.1016/j.cbpa.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Sphingolipids (SLs) are a unique class of nitrogen-linked lipids that are involved in membrane structure, cell signaling, and other important cellular processes. Abnormal sphingolipid metabolism is observed in several diseases including cancer, diabetes, metabolic disorders, and neurodegenerative diseases, such as Alzheimer's. However, the direct study of SLs has been hampered by their ubiquitous presence in cells and their complex metabolism. In the past few decades, efforts have been focused on creating synthetic probes and chemical tools to study SLs and decipher their roles in cellular biology. In this brief perspective, we seek to provide a concise snapshot of recently developed state-of-the-art chemical tools in SL research and the challenges that can be addressed through further development of SL probes.
Collapse
|
26
|
Suzuki AZ, Sakano T, Sasaki H, Watahiki R, Sone M, Horikawa K, Furuta T. Design and synthesis of gene-directed caged cyclic nucleotides exhibiting cell type selectivity. Chem Commun (Camb) 2021; 57:5630-5633. [PMID: 34018507 DOI: 10.1039/d1cc01405f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We designed a new caging group that can be photoactivated only in the presence of a non-endogenous enzyme when exposed to 405 nm light. Because cells or tissues can be genetically tagged by an exogenously expressed enzyme, this novel method can serve as a strategy for adding targeting abilities to photocaged compounds.
Collapse
Affiliation(s)
- Akinobu Z Suzuki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Taichi Sakano
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Hirona Sasaki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Rei Watahiki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Kazuki Horikawa
- Department of Optical Imaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto Cho, Tokushima City, Tokushima 770-8503, Japan
| | - Toshiaki Furuta
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| |
Collapse
|
27
|
Tei R, Morstein J, Shemet A, Trauner D, Baskin JM. Optical Control of Phosphatidic Acid Signaling. ACS CENTRAL SCIENCE 2021; 7:1205-1215. [PMID: 34345670 PMCID: PMC8323247 DOI: 10.1021/acscentsci.1c00444] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 05/31/2023]
Abstract
Phosphatidic acids (PAs) are glycerophospholipids that regulate key cell signaling pathways governing cell growth and proliferation, including the mTOR and Hippo pathways. Their acyl chains vary in tail length and degree of saturation, leading to marked differences in the signaling functions of different PA species. For example, in mTOR signaling, saturated forms of PA are inhibitory, whereas unsaturated forms are activating. To enable rapid control over PA signaling, we describe here the development of photoswitchable analogues of PA, termed AzoPA and dAzoPA, that contain azobenzene groups in one or both lipid tails, respectively. These photolipids enable optical control of their tail structure and can be reversibly switched between a straight trans form and a relatively bent cis form. We found that cis-dAzoPA selectively activates mTOR signaling, mimicking the bioactivity of unsaturated forms of PA. Further, in the context of Hippo signaling, whose growth-suppressing activity is blocked by PA, we found that the cis forms of both AzoPA and dAzoPA selectively inhibit this pathway. Collectively, these photoswitchable PA analogues enable optical control of mTOR and Hippo signaling, and we envision future applications of these probes to dissect the pleiotropic effects of physiological and pathological PA signaling.
Collapse
Affiliation(s)
- Reika Tei
- Department
of Chemistry and Chemical Biology and Weill Institute for Cell and
Molecular Biology, Cornell University, Ithaca, New York 14850, United States
| | - Johannes Morstein
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Andrej Shemet
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Dirk Trauner
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Jeremy M. Baskin
- Department
of Chemistry and Chemical Biology and Weill Institute for Cell and
Molecular Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
28
|
Millner A, Atilla-Gokcumen GE. Solving the enigma: Mass spectrometry and small molecule probes to study sphingolipid function. Curr Opin Chem Biol 2021; 65:49-56. [PMID: 34175552 DOI: 10.1016/j.cbpa.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Sphingolipids are highly bioactive lipids. Sphingolipid metabolism produces key membrane components (e.g. sphingomyelin) and a variety of signaling lipids with different biological functions (e.g. ceramide, sphingosine-1-phosphate). The coordinated activity of tens of different enzymes maintains proper levels and localization of these lipids with key roles in cellular processes. In this review, we highlight the signaling roles of sphingolipids in cell death and survival. We discuss recent findings on the role of specific sphingolipids during these processes, enabled by the use of lipidomics to study compositional and spatial regulation of these lipids and synthetic sphingolipid probes to study subcellular localization and interaction partners of sphingolipids to understand the function of these lipids.
Collapse
Affiliation(s)
- Alec Millner
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA.
| |
Collapse
|
29
|
Farley S, Laguerre A, Schultz C. Caged lipids for subcellular manipulation. Curr Opin Chem Biol 2021; 65:42-48. [PMID: 34119744 DOI: 10.1016/j.cbpa.2021.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
We present recently developed strategies to manipulate lipid levels in live cells by light. We focus on photoremovable protecting groups that lead to subcellular restricted localization and activation and discuss alternative techniques. We emphasize the development of organelle targeting of caged lipids and discuss recent advances in chromatic orthogonality of caging groups for future applications.
Collapse
Affiliation(s)
- Scotland Farley
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Aurélien Laguerre
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Carsten Schultz
- Dept. Chemical Physiology & Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
30
|
Prause K, Naseri G, Schumacher F, Kappe C, Kleuser B, Arenz C. A photocaged inhibitor of acid sphingomyelinase. Chem Commun (Camb) 2021; 56:14885-14888. [PMID: 33179626 DOI: 10.1039/d0cc06661c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acid sphingomyelinase (ASM) is a potential drug target and involved in rapid lipid signalling events. However, there are no tools available to adequately study such processes. Based on a non cell-permeable PtdIns(3,5)P2 inhibitor of ASM, we developed a compound with o-nitrobenzyl photocages and butyryl esters to transiently mask hydroxyl groups. This resulted in a potent light-inducible photocaged ASM inhibitor (PCAI). The first example of a time-resolved inhibition of ASM was shown in intact living cells.
Collapse
Affiliation(s)
- Kevin Prause
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| | - Gita Naseri
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany and Department of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Christian Kappe
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Christoph Arenz
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| |
Collapse
|
31
|
Kim JL, Mestre B, Shin SH, Futerman AH. Ceramide synthases: Reflections on the impact of Dr. Lina M. Obeid. Cell Signal 2021; 82:109958. [PMID: 33607256 DOI: 10.1016/j.cellsig.2021.109958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a family of lipids that are critical to cell function and survival. Much of the recent work done on sphingolipids has been performed by a closely-knit family of sphingolipid researchers, which including our colleague, Dr. Lina Obeid, who recently passed away. We now briefly review where the sphingolipid field stands today, focusing in particular on areas of sphingolipid research to which Dr. Obeid made valued contributions. These include the 'many-worlds' view of ceramides and the role of a key enzyme in the sphingolipid biosynthetic pathway, namely the ceramide synthases (CerS). The CerS contain a number of functional domains and also interact with a number of other proteins in lipid metabolic pathways, fulfilling Dr. Obeid's prophecy that ceramides, and the enzymes that generate ceramides, form the critical hub of the sphingolipid metabolic pathway.
Collapse
Affiliation(s)
- Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Beatriz Mestre
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sun-Hye Shin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
32
|
Barklis E, Alfadhli A, Kyle JE, Bramer LM, Bloodsworth KJ, Barklis RL, Leier HC, Petty RM, Zelnik ID, Metz TO, Futerman AH, Tafesse FG. Ceramide synthase 2 deletion decreases the infectivity of HIV-1. J Biol Chem 2021; 296:100340. [PMID: 33515546 PMCID: PMC7949126 DOI: 10.1016/j.jbc.2021.100340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023] Open
Abstract
The lipid composition of HIV-1 virions is enriched in sphingomyelin (SM), but the roles that SM or other sphingolipids (SLs) might play in the HIV-1 replication pathway have not been elucidated. In human cells, SL levels are regulated by ceramide synthase (CerS) enzymes that produce ceramides, which can be converted to SMs, hexosylceramides, and other SLs. In many cell types, CerS2, which catalyzes the synthesis of very long chain ceramides, is the major CerS. We have examined how CerS2 deficiency affects the assembly and infectivity of HIV-1. As expected, we observed that very long chain ceramide, hexosylceramide, and SM were reduced in CerS2 knockout cells. CerS2 deficiency did not affect HIV-1 assembly or the incorporation of the HIV-1 envelope (Env) protein into virus particles, but it reduced the infectivites of viruses produced in the CerS2-deficient cells. The reduced viral infection levels were dependent on HIV-1 Env, since HIV-1 particles that were pseudotyped with the vesicular stomatitis virus glycoprotein did not exhibit reductions in infectivity. Moreover, cell-cell fusion assays demonstrated that the functional defect of HIV-1 Env in CerS2-deficient cells was independent of other viral proteins. Overall, our results indicate that the altered lipid composition of CerS2-deficient cells specifically inhibit the HIV-1 Env receptor binding and/or fusion processes.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA.
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Lisa M Bramer
- Computing and Analytics Division, National Security Directorate PNNL, Richland, Washington, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Hans C Leier
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - R Max Petty
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA.
| |
Collapse
|
33
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
34
|
Mamode Cassim A, Grison M, Ito Y, Simon-Plas F, Mongrand S, Boutté Y. Sphingolipids in plants: a guidebook on their function in membrane architecture, cellular processes, and environmental or developmental responses. FEBS Lett 2020; 594:3719-3738. [PMID: 33151562 DOI: 10.1002/1873-3468.13987] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Sphingolipids are fundamental lipids involved in various cellular, developmental and stress-response processes. As such, they orchestrate not only vital molecular mechanisms of living cells but also act in diseases, thus qualifying as potential pharmaceutical targets. Sphingolipids are universal to eukaryotes and are also present in some prokaryotes. Some sphingolipid structures are conserved between animals, plants and fungi, whereas others are found only in plants and fungi. In plants, the structural diversity of sphingolipids, as well as their downstream effectors and molecular and cellular mechanisms of action, are of tremendous interest to both basic and applied researchers, as about half of all small molecules in clinical use originate from plants. Here, we review recent advances towards a better understanding of the biosynthesis of sphingolipids, the diversity in their structures as well as their functional roles in membrane architecture, cellular processes such as membrane trafficking and cell polarity, and cell responses to environmental or developmental signals.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Agroécologie, AgroSup Dijon, INRAE, ERL 6003 CNRS, University of Bourgogne Franche-Comté, Dijon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Yoko Ito
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Francoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRAE, ERL 6003 CNRS, University of Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| |
Collapse
|
35
|
Gaur P, Galkin M, Hauke S, Redkin R, Barnes C, Shvadchak VV, Yushchenko DA. Reversible spatial and temporal control of lipid signaling. Chem Commun (Camb) 2020; 56:10646-10649. [PMID: 32857092 DOI: 10.1039/d0cc04146g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we introduce versatile molecular tools that enable specific delivery and visualization of photoswitchable lipids at cellular membranes, namely at the plasma membrane and internal membranes. These molecules were prepared by tethering ortho-nitrobenzyl-based fluorescent cages with a signaling lipid bearing an azobenzene photoswitch. They permit two sequential photocontrolled reactions, which are uncaging of a lipid analogue and then its repeated activation and deactivation. We used these molecules to activate GPR40 receptor transiently expressed in HeLa cells and demonstrated downstream modulation of intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Pankaj Gaur
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16610 Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
36
|
Bojtár M, Németh K, Domahidy F, Knorr G, Verkman A, Kállay M, Kele P. Conditionally Activatable Visible-Light Photocages. J Am Chem Soc 2020; 142:15164-15171. [PMID: 32786783 PMCID: PMC7472520 DOI: 10.1021/jacs.0c07508] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The proof of concept for conditionally
activatable photocages is
demonstrated on a new vinyltetrazine-derivatized coumarin. The tetrazine
form is disabled in terms of light-induced cargo release, however,
bioorthogonal transformation of the modulating tetrazine moiety results
in fully restored photoresponsivity. Irradiation of such a “click-armed”
photocage with blue light leads to fast and efficient release of a
set of caged model species, conjugated via various linkages. Live-cell
applicability of the concept was also demonstrated by the conditional
release of a fluorogenic probe using mitochondrial pretargeting.
Collapse
Affiliation(s)
- Márton Bojtár
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Krisztina Németh
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Farkas Domahidy
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Gergely Knorr
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary.,Faculty of Chemistry and Earth Sciences, Friedrich-Schiller-Universität Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - András Verkman
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Péter Kele
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences. Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
37
|
Long MJC, Zhao Y, Aye Y. Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities. RSC Chem Biol 2020; 1:42-55. [PMID: 34458747 PMCID: PMC8341840 DOI: 10.1039/d0cb00041h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Transient associations between numerous organelles-e.g., the endoplasmic reticulum and the mitochondria-forge highly-coordinated, particular environments essential for cross-compartment information flow. Our perspective summarizes chemical-biology tools that have enabled identifying proteins present within these itinerant communities against the bulk proteome, even when a particular protein's presence is fleeting/substoichiometric. However, proteins resident at these ephemeral junctions also experience transitory changes to their interactomes, small-molecule signalomes, and, importantly, functions. Thus, a thorough census of sub-organellar communities necessitates functionally probing context-dependent signaling properties of individual protein-players. Our perspective accordingly further discusses how repurposing of existing tools could allow us to glean a functional understanding of protein-specific signaling activities altered as a result of organelles pulling together. Collectively, our perspective strives to usher new chemical-biology techniques that could, in turn, open doors to modulate functions of specific subproteomes/organellar junctions underlying the nuanced regulatory subsystem broadly termed as contactology.
Collapse
Affiliation(s)
| | - Yi Zhao
- Swiss Federal Institute of Technology Lausanne (EPFL), Institute of Chemical Sciences and Engineering 1015 Lausanne Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Institute of Chemical Sciences and Engineering 1015 Lausanne Switzerland
| |
Collapse
|
38
|
Dai Y, He F, Ji H, Zhao X, Misal S, Qi Z. Dual-Functional NIR AIEgens for High-Fidelity Imaging of Lysosomes in Cells and Photodynamic Therapy. ACS Sens 2020; 5:225-233. [PMID: 31854187 DOI: 10.1021/acssensors.9b02090] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Design and synthesis of water-soluble near-infrared (NIR) emissive fluorescent molecules with aggregation-induced emission (AIE) characteristics, perfect signal-to-noise ratio for imaging of organelle, and photodynamic therapy (PDT) functions has received enormous attention. However, the dual-functional NIR AIEgens of high-fidelity tracking lysosome and ablation cancer cells was rarely reported. Herein, a series of AIE luminogens (AIEgens) with a typical AIE effect, good biocompatibility, superior photostability, high brightness, and excellent reactive oxygen species (ROS) generation ability were developed, which had different electronic push-pull strength and conjugate system size in the molecular structure. These AIEgens could specifically "light up" and dynamically long-term track the lysosomes in living cells and zebrafish with ultrahigh colocalization imaging Pearson's correlation coefficients (Rr: 0.9687) and overlap coefficient (R: 0.9967). Additionally, the MPAT of NIR luminescence as a photosensitizer was used for photodynamic ablation of cancer cells, owing to prompt generation of the ROS under green light irradiation (495-530 nm, 10 mW cm-2). Hence, this research not only expands the application range of NIR AIEgens but also provides useful insights into design of split-new method for the treatment of cancer.
Collapse
Affiliation(s)
- Yanpeng Dai
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Fangru He
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Hefang Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xinxin Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Saima Misal
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| |
Collapse
|
39
|
Sakuma M, Fuchi Y, Usui K, Karasawa S. Photophysical Properties of Emissive Pyrido[3,2‐
c
]carbazole Derivatives and Apoptosis Induction: Development towards Theranostic Agents in Response to Light Stimulus. Chem Asian J 2019; 14:3938-3945. [DOI: 10.1002/asia.201901200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Masaomi Sakuma
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University 3-3165 Higashi-Tamagawagakuen Machida Tokyo 194-8543 Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University 3-3165 Higashi-Tamagawagakuen Machida Tokyo 194-8543 Japan
| | - Kazuteru Usui
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University 3-3165 Higashi-Tamagawagakuen Machida Tokyo 194-8543 Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University 3-3165 Higashi-Tamagawagakuen Machida Tokyo 194-8543 Japan
| |
Collapse
|
40
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019:100995. [PMID: 31445071 DOI: 10.1016/j.plipres.2019.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
41
|
D'Angelo G, Clarke CJ, Silva LC. Meeting Report - The 2019 FEBS special meeting on sphingolipid biology: sphingolipids in physiology and pathology. J Cell Sci 2019; 132:132/15/jcs235705. [PMID: 31371572 DOI: 10.1242/jcs.235705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingolipids are a fundamental class of molecules that are involved in structural, organizational and signaling properties of eukaryotic membranes. Defects in their production or disposal lead to acquired and inherited human diseases. A growing community of scientists has embraced the challenge to dissect different aspects of sphingolipid biology using a variety of approaches, and a substantial part of this community met last May in the beautiful town of Cascais in Portugal. Over 200 scientists from 26 countries animated the conference, held in a 15th century citadel, sharing their data and opinions on the current understanding and future challenges in sphingolipid research. Here, we report some of their contributions to provide the readers with a bird's-eye view of the themes discussed at the meeting.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Interfaculty Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Liana C Silva
- iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
42
|
Jiménez-Rojo N, Riezman H. On the road to unraveling the molecular functions of ether lipids. FEBS Lett 2019; 593:2378-2389. [PMID: 31166014 DOI: 10.1002/1873-3468.13465] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Ether lipids are glycerolipids further classified into alkyl-ether and alkenyl-ether (also termed plasmalogens) lipids. The two ether lipid subclasses share the first steps of their synthesis. However, alkyl-ether and alkenyl-ether lipids differ in their structure and physico-chemical properties (featuring different head groups) and, thus, probably in their functions. Ether lipids have intermittent distribution across the evolutionary tree and defects in their synthesis have been shown to perturb cellular homeostasis and lead to disease in humans. Here, we review their structure, their interactions with other lipids, and their potential roles in cellular functions, such as membrane homeostasis and membrane trafficking. Moreover, we discuss still unclear aspects of these lipids such as their subcellular distribution, and the need to unravel their molecular functions as well as how novel tools to study lipid biology will help clarify these aspects.
Collapse
Affiliation(s)
- Noemi Jiménez-Rojo
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, Switzerland
| | - Howard Riezman
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, Switzerland
| |
Collapse
|
43
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019; 75:100988. [PMID: 31132366 DOI: 10.1016/j.plipres.2019.100988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
44
|
Funato K, Riezman H, Muñiz M. Vesicular and non-vesicular lipid export from the ER to the secretory pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158453. [PMID: 31054928 DOI: 10.1016/j.bbalip.2019.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/26/2022]
Abstract
The endoplasmic reticulum is the site of synthesis of most glycerophospholipids, neutral lipids and the initial steps of sphingolipid biosynthesis of the secretory pathway. After synthesis, these lipids are distributed within the cells to create and maintain the specific compositions of the other secretory organelles. This represents a formidable challenge, particularly while there is a simultaneous and quantitatively important flux of membrane components stemming from the vesicular traffic of proteins through the pathway, which can also vary depending on the cell type and status. To meet this challenge cells have developed an intricate system of interorganellar contacts and lipid transport proteins, functioning in non-vesicular lipid transport, which are able to ensure membrane lipid homeostasis even in the absence of membrane trafficking. Nevertheless, under normal conditions, lipids are transported in cells by both vesicular and non-vesicular mechanisms. In this review we will discuss the mechanism and roles of vesicular and non-vesicular transport of lipids from the ER to other organelles of the secretory pathway.
Collapse
Affiliation(s)
- Kouichi Funato
- Department of Bioresource Science and Technology, Hiroshima University, Japan.
| | - Howard Riezman
- NCCR Chemical Biology and Department of Biochemistry, Sciences II, University of Geneva, Switzerland.
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
45
|
Gaur P, Kucherak OA, Ermakova YG, Shvadchak VV, Yushchenko DA. Nitrobenzyl-based fluorescent photocages for spatial and temporal control of signalling lipids in cells. Chem Commun (Camb) 2019; 55:12288-12291. [DOI: 10.1039/c9cc05602e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we present a set of fluorescent cages prepared by tethering fluorescent dyes to a photolabile group.
Collapse
Affiliation(s)
- Pankaj Gaur
- Laboratory of Chemical Biology
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
- 16610 Prague 6
- Czech Republic
| | - Oleksandr A. Kucherak
- Laboratory of Chemical Biology
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
- 16610 Prague 6
- Czech Republic
| | - Yulia G. Ermakova
- Cell Biology & Biophysics Unit
- European Molecular Biology Laboratory (EMBL)
- 69117 Heidelberg
- Germany
| | - Volodymyr V. Shvadchak
- Laboratory of Chemical Biology
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
- 16610 Prague 6
- Czech Republic
| | - Dmytro A. Yushchenko
- Laboratory of Chemical Biology
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
- 16610 Prague 6
- Czech Republic
- Group of Bioconjugation Chemistry
| |
Collapse
|