1
|
Chen L, Li Q, Qu G, Zhang J, Yang Z, Hu Y, Yang L. In-situ fixation (ISF): A rapid, reusable, and high-throughput nucleic acid extraction method for plant molecular analysis. Biosens Bioelectron 2025; 278:117344. [PMID: 40090259 DOI: 10.1016/j.bios.2025.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Rapid, sensitive, and high-throughput nucleic acid testing (NAT) is crucial for diverse applications in plant breeding and crop protection, including genotyping, transgenic detection, and pathogen diagnosis. However, efficient plant DNA/RNA extraction methods suitable for point-of-care testing remain a significant challenge due to the complex plant cell composition. Here, we present a novel in-situ fixation (ISF) method that eliminates the need for sample grinding, water bath, centrifugation, and pipetting, enabling rapid (6 min) and high-throughput (96 samples) nucleic acid extraction from plant leaves. The ISF method fixes DNA/RNA within the cells, allowing reuse of the extraction reagents without cross-contamination. The extracted nucleic acids are suitable for various NAT techniques, including PCR, RT-PCR, qPCR, and LAMP. We demonstrate the integration of ISF with qPCR and LAMP for rapid detection of genetically modified content and plant pathogens. Furthermore, an ISF-based high-throughput device was developed for efficient genotyping of rice hybrid offspring. The ISF method's simplicity, reusability, and compatibility with field-deployable isothermal amplification offer a promising solution for on-site, rapid, and cost-effective plant molecular analysis.
Collapse
Affiliation(s)
- Lu Chen
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, PR China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qiang Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Guorun Qu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiao Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ziqi Yang
- Shanghai Jiao Tong University Affiliated High School Minhang Branch, Shanghai, 200240, PR China
| | - Yuan Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Litao Yang
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, PR China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
2
|
Zhang L, Zhang M, Liu X, Wei J, Yin C, Wang N, Fan B, Fu Y, Liu Y, Bu L, Su Z, Pang B, Li J, Song X. Portable DNA extraction integrated with LAMP-CRISPR/Cas12a technology for on-site detection of Salmonella Typhimurium. NPJ Sci Food 2025; 9:39. [PMID: 40128217 PMCID: PMC11933393 DOI: 10.1038/s41538-025-00401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
The infection and outbreak of Salmonella typhimurium (S. typhimurium) highlight the need for developing a reliable on-site detection strategy fitting to various settings. However, due to the requirement of specialized instruments and trained personnel, traditional detection methods have to be implemented in laboratories and are not ideal for on-site applications. To achieve a sample-to-answer and field-deployable detection for S. typhimurium, we developed an integrated nucleic acid detection platform combining single-vial of loop-mediated isothermal amplification (LAMP)-clustered regularly interspaced short palindromic repeat (CRISPR)/Cas12a system, portable device and smartphone app. This platform enables the extraction, concentration, and purification of DNA, amplification of the target, and output of visual fluorescent signals within 1 h. With this detection platform, 102 CFU/mL of S. typhimurium in food and environmental matrix was able to be accurately detected. This method demonstrated excellent selectivity. Also, an auxiliary smartphone application was developed to achieve simplified result interpretation. Our method exhibited potential to better control and respond to outbreaks of foodborne diseases, especially in low-resource settings.
Collapse
Affiliation(s)
- Liang Zhang
- School of Public Health, Jilin University, 130021, Changchun, P.R. China
- Disease Control and Prevention of Liaoning Province, 110000, Shenyang, P.R. China
| | - Mengfan Zhang
- School of Public Health, Jilin University, 130021, Changchun, P.R. China
- Health Monitoring and Inspection Center of Baishan City, 134300, Baishan, P.R. China
| | - Xingxing Liu
- Department of Cadre Ward, The First Hospital of Jilin University, 130021, Changchun, P.R. China
| | - Jia Wei
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, 130021, Changchun, P.R. China
| | - Caihong Yin
- School of Public Health, Jilin University, 130021, Changchun, P.R. China
| | - Nan Wang
- School of Public Health, Jilin University, 130021, Changchun, P.R. China
| | - Beibei Fan
- School of Public Health, Jilin University, 130021, Changchun, P.R. China
| | - Yanli Fu
- School of Public Health, Jilin University, 130021, Changchun, P.R. China
| | - Yanwen Liu
- School of Public Health, Jilin University, 130021, Changchun, P.R. China
| | - Liangyun Bu
- School of Public Health, Jilin University, 130021, Changchun, P.R. China
| | - Zhenyue Su
- School of Public Health, Jilin University, 130021, Changchun, P.R. China
| | - Bo Pang
- School of Public Health, Jilin University, 130021, Changchun, P.R. China.
| | - Jinhua Li
- School of Public Health, Jilin University, 130021, Changchun, P.R. China.
| | - Xiuling Song
- School of Public Health, Jilin University, 130021, Changchun, P.R. China.
| |
Collapse
|
3
|
Wang Y, Huang Y, Peng Y, Cao Q, Liu W, Zhou Z, Xu G, Li L, Zhou R. Development and validation of a rapid five-minute nucleic acid extraction method for respiratory viruses. Virol J 2024; 21:189. [PMID: 39155366 PMCID: PMC11331601 DOI: 10.1186/s12985-024-02381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND The rapid transmission and high pathogenicity of respiratory viruses significantly impact the health of both children and adults. Extracting and detecting their nucleic acid is crucial for disease prevention and treatment strategies. However, current extraction methods are laborious and time-consuming and show significant variations in nucleic acid content and purity among different kits, affecting detection sensitivity and efficiency. Our aim is to develop a novel method that reduces extraction time, simplifies operational steps, and ensures high-quality acquisition of respiratory viral nucleic acid. METHODS We extracted respiratory syncytial virus (RSV) nucleic acid using reagents with different components and analyzed cycle threshold (Ct) values via quantitative real-time polymerase chain reaction (qRT-PCR) to optimize and validate the novel lysis and washing solution. The performance of this method was compared against magnetic bead, spin column, and precipitation methods for extracting nucleic acid from various respiratory viruses. The clinical utility of this method was confirmed by comparing it to the standard magnetic bead method for extracting clinical specimens of influenza A virus (IAV). RESULTS The solution, composed of equal parts glycerin and ethanol (50% each), offers an innovative washing approach that achieved comparable efficacy to conventional methods in a single abbreviated cycle. When combined with our A Plus lysis solution, our novel five-minute nucleic acid extraction (FME) method for respiratory viruses yielded superior RNA concentrations and purity compared to traditional methods. FME, when used with a universal automatic nucleic acid extractor, demonstrated similar efficiency as various conventional methods in analyzing diverse concentrations of respiratory viruses. In detecting respiratory specimens from 525 patients suspected of IAV infection, the FME method showed an equivalent detection rate to the standard magnetic bead method, with a total coincidence rate of 95.43% and a kappa statistic of 0.901 (P < 0.001). CONCLUSIONS The FME developed in this study enables the rapid and efficient extraction of nucleic acid from respiratory samples, laying a crucial foundation for the implementation of expedited molecular diagnosis.
Collapse
Affiliation(s)
- Yu Wang
- Guangzhou National Laboratory, Guangzhou, China
| | | | - Yuqing Peng
- Guangzhou National Laboratory, Guangzhou, China
| | - Qinglin Cao
- Guangzhou National Laboratory, Guangzhou, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Guangxin Xu
- Guangzhou National Laboratory, Guangzhou, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China.
- GIRM Biosafety (Guangzhou) Co., Ltd, Guangzhou, China.
| | - Rong Zhou
- Guangzhou National Laboratory, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Akalın P, Yazgan-Karataş A. Development of a nucleic acid-based lateral flow device as a reliable diagnostic tool for respiratory viral infections. MethodsX 2023; 11:102372. [PMID: 37744884 PMCID: PMC10511794 DOI: 10.1016/j.mex.2023.102372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Viral infections continue to pose a significant threat to the public health, leading to high morbidity and mortality rates worldwide. To combat these challenges, early detection and treatment are essential in reducing hospitalizations and preventing severe complications. Simple, inexpensive, and sensitive diagnostic methods are in constant demand in many areas. In this study, we report the development of a nucleic acid-based lateral flow immunoassay device (NALFIA) and demonstrate its successful application in conjunction with a multiplexed reverse-transcription loop-mediated isothermal amplification assay (LAMP) for the detection of SARS-CoV-2 and influenza. In our approach the NALFIA part preparation is independent of the target, and has the potential to ensure widespread use in diagnostics particularly where testing speed is critical such as in respiratory viral infections.•Simple, inexpensive, sensitive and reliable rapid diagnostic tool.•Target independent design.•Effective use for respiratory samples due to practical sample extraction.
Collapse
Affiliation(s)
- Pınar Akalın
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Ayten Yazgan-Karataş
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak 34469 Istanbul, Turkey
| |
Collapse
|
5
|
Huang Y, Gao Z, Ma C, Sun Y, Huang Y, Jia C, Zhao J, Feng S. An integrated microfluidic chip for nucleic acid extraction and continued cdPCR detection of pathogens. Analyst 2023. [PMID: 37194305 DOI: 10.1039/d3an00271c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This paper introduces an enclosed microfluidic chip that integrates sample preparation and the chamber-based digital polymerase chain reaction (cdPCR). The sample preparation of the chip includes nucleic acid extraction and purification based on magnetic beads, which adsorb nucleic acids by moving around the reaction chambers to complete the reactions including lysis, washing, and elution. The cdPCR area of the chip consists of tens of thousands of regularly arranged microchambers. After the sample preparation processes are completed, the purified nucleic acid can be directly introduced into the microchambers for amplification and detection on the chip. The nucleic acid extraction performance and digital quantification performance of the system were examined using synthetic SARS-CoV-2 plasmid templates at concentrations ranging from 101-105 copies per μL. Further on, a simulated clinical sample was used to test the system, and the integrated chip was able to accurately detect SARS-CoV-2 virus particle samples doped with interference (saliva) with a detection limit of 10 copies per μL. This integrated system could provide a promising tool for point-of-care testing of pathogenic infections.
Collapse
Affiliation(s)
- Yaru Huang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- School of Life Sciences, Shanghai Normal University, China
| | - Zehang Gao
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
| | - Cong Ma
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- School of Information Science and Technology, ShanghaiTech University, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
| | - Yimeng Sun
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
| | - Yuhang Huang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- School of Life Sciences, Shanghai Normal University, China
| | - Chunping Jia
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
| | - Jianlong Zhao
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| | - Shilun Feng
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
| |
Collapse
|
6
|
Ma C, Sun Y, Huang Y, Gao Z, Huang Y, Pandey I, Jia C, Feng S, Zhao J. On-Chip Nucleic Acid Purification Followed by ddPCR for SARS-CoV-2 Detection. BIOSENSORS 2023; 13:bios13050517. [PMID: 37232879 DOI: 10.3390/bios13050517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
We developed a microfluidic chip integrated with nucleic acid purification and droplet-based digital polymerase chain reaction (ddPCR) modules to realize a 'sample-in, result-out' infectious virus diagnosis. The whole process involved pulling magnetic beads through drops in an oil-enclosed environment. The purified nucleic acids were dispensed into microdroplets by a concentric-ring, oil-water-mixing, flow-focusing droplets generator driven under negative pressure conditions. Microdroplets were generated with good uniformity (CV = 5.8%), adjustable diameters (50-200 μm), and controllable flow rates (0-0.3 μL/s). Further verification was provided by quantitative detection of plasmids. We observed a linear correlation of R2 = 0.9998 in the concentration range from 10 to 105 copies/μL. Finally, this chip was applied to quantify the nucleic acid concentrations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The measured nucleic acid recovery rate of 75 ± 8.8% and detection limit of 10 copies/μL proved its on-chip purification and accurate detection abilities. This chip can potentially be a valuable tool in point-of-care testing.
Collapse
Affiliation(s)
- Cong Ma
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Huang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yaru Huang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Ikshu Pandey
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Xiangfu Laboratory, Jiaxing 314102, China
| |
Collapse
|
7
|
Hong SL, Zhang MF, Wang X, Liu H, Zhang N, Tang M, Li W. Magnetic-based Microfluidic Chip: A Powerful Tool for Pathogen Detection and Affinity Reagents Selection. Crit Rev Anal Chem 2023; 54:2658-2669. [PMID: 37004164 DOI: 10.1080/10408347.2023.2195940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The global outbreak of pathogen diseases has brought a huge risk to human lives and social development. Rapid diagnosis is the key strategy to fight against pathogen diseases. Development of detection methods and discovery of related affinity reagents are important parts of pathogen diagnosis. Conventional detection methods and affinity reagents discovery have some problems including much reagent consumption and labor intensity. Magnetic-based microfluidic chip integrates the unique advantages of magnetism and microfluidic technology, improving a powerful tool for pathogen detection and their affinity reagent discovery. This review provides a summary about the summary of pathogen detection through magnetic-based microfluidic chip, which refers to the pathogen nucleic acid detection (including extraction, amplification and signal acquisition), pathogen proteins and antibodies detection. Meanwhile, affinity reagents are served as the critical tool to specially capture pathogens. New affinity reagents are discovered to further facilitate the pathogen diagnosis. Microfluidic technology has also emerged as a powerful tool for affinity reagents discovery. Thus, this review further introduced the selection progress of aptamer as next generation affinity through the magnetic-based microfluidic technology. Using this selection technology shows great potential to improve selection performance, including integration and highly efficient selection. Finally, an outlook is given on how this field will develop on the basis of ongoing pathogen challenges.
Collapse
Affiliation(s)
- Shao-Li Hong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, People's Republic of China
| | - Meng-Fan Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Xuan Wang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Huihong Liu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Nangang Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Man Tang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Ngo HT, Jin M, Trick AY, Chen FE, Chen L, Hsieh K, Wang TH. Sensitive and Quantitative Point-of-Care HIV Viral Load Quantification from Blood Using a Power-Free Plasma Separation and Portable Magnetofluidic Polymerase Chain Reaction Instrument. Anal Chem 2023; 95:1159-1168. [PMID: 36562405 PMCID: PMC11250783 DOI: 10.1021/acs.analchem.2c03897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Point-of-care (POC) HIV viral load (VL) tests are needed to enhance access to HIV VL testing in low- and middle-income countries (LMICs) and to enable HIV VL self-testing at home, which in turn have the potential to enhance the global management of the disease. While methods based on real-time reverse transcription-polymerase chain reaction (RT-PCR) are highly sensitive and quantitatively accurate, they often require bulky and expensive instruments, making applications at the POC challenging. On the other hand, although methods based on isothermal amplification techniques could be performed using low-cost instruments, they have shown limited quantitative accuracies, i.e., being only semiquantitative. Herein, we present a sensitive and quantitative POC HIV VL quantification method from blood that can be performed using a small power-free three-dimensional-printed plasma separation device and a portable, low-cost magnetofluidic real-time RT-PCR instrument. The plasma separation device, which is composed of a plasma separation membrane and an absorbent material, demonstrated 96% plasma separation efficiency per 100 μL of whole blood. The plasma solution was then processed in a magnetofluidic cartridge for automated HIV RNA extraction and quantification using the portable instrument, which completed 50 cycles of PCR in 15 min. Using the method, we achieved a limit of detection of 500 HIV RNA copies/mL, which is below the World Health Organization's virological failure threshold, and a good quantitative accuracy. The method has the potential for sensitive and quantitative HIV VL testing at the POC and at home self-testing.
Collapse
Affiliation(s)
- Hoan T Ngo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mei Jin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Elnagar A, Blome S, Beer M, Hoffmann B. Point-of-Care Testing for Sensitive Detection of the African Swine Fever Virus Genome. Viruses 2022; 14:v14122827. [PMID: 36560831 PMCID: PMC9781289 DOI: 10.3390/v14122827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
African swine fever (ASF) is a contagious viral hemorrhagic disease that affects domestic pigs and wild boar. The disease is notifiable to the World Organization of Animal Health (WOAH), and causes significant deaths and economic losses. There is currently no fully licensed vaccine available. As a result, early identification of the causative agent, ASF virus (ASFV), is crucial for the implementation of control measures. PCR and real-time PCR are the WOAH-recommended standard methods for the direct detection of ASFV. However, under special field conditions or in simple or remote field laboratories, there may be no sophisticated equipment or even stable electricity available. Under these circumstances, point-of-care systems can be put in place. Along these lines, a previously published, rapid, reliable, and electricity-free extraction method (TripleE) was used to isolate viral nucleic acid from diagnostic specimens. With this tool, nucleic acid extraction from up to eight diagnostic samples can be realized in one run in less than 10 min. In addition, the possibility of completely omitting viral DNA extraction was analyzed with so-called direct real-time PCR protocols using ASFV original samples diluted to 1:40 in RNase-free water. Furthermore, three real-time PCR cyclers, developed for use under field conditions (IndiField, Liberty16 and UF-300 GenecheckerTM), were comparatively applied for the sensitive high-speed detection of ASFV genomes, with overall PCR run times between 20 and 54 min. Depending on the viral DNA extraction/releasing method used and the point-of-care cycler applied, a total time for detection of 30 to 60 min for up to eight samples was feasible. As expected, the limitations in analytical sensitivity were positively correlated to the analysis time. These limitations are acceptable for ASFV diagnostics due to the expected high ASFV genome loads in diseased animals or carcasses.
Collapse
|
10
|
Gao D, Ma Z, Jiang Y. Recent advances in microfluidic devices for foodborne pathogens detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Hou Y, Chen S, Zheng Y, Zheng X, Lin JM. Droplet-based digital PCR (ddPCR) and its applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Zhang Z, Zhang L, Liu Y, Hu C, Liu Q. Sensitive DNA Detection using a Branched DNA as a Sensor Coupled with Hybridization Chain Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202201891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhikun Zhang
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Liu Zhang
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Yumin Liu
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Cuixia Hu
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Qingju Liu
- Beijing Research Center for Agriculture Standards and Testing Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
| |
Collapse
|
13
|
Rodriguez-Mateos P, Ngamsom B, Iles A, Pamme N. Microscale immiscible phase magnetic processing for bioanalytical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
14
|
Ren Y, Cao L, You M, Ji J, Gong Y, Ren H, Xu F, Guo H, Hu J, Li Z. “SMART” digital nucleic acid amplification technologies for lung cancer monitoring from early to advanced stages. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Chen C, Zheng Z, Liu C, Yang W. Synthesis of magnetic Fe 3O 4@Al 3+ particles and its application in DNA extraction. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2085217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chi Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Zhong Zheng
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Changxia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
16
|
Kong J, Li W, Hu J, Zhao S, Yue T, Li Z, Xia Y. The Safety of Cold-Chain Food in Post-COVID-19 Pandemic: Precaution and Quarantine. Foods 2022; 11:1540. [PMID: 35681292 PMCID: PMC9180738 DOI: 10.3390/foods11111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Since the outbreak of coronavirus disease-19 (COVID-19), cold-chain food contamination caused by the pathogenic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has attracted huge concern. Cold-chain foods provide a congenial environment for SARS-CoV-2 survival, which presents a potential risk for public health. Strengthening the SARS-CoV-2 supervision of cold-chain foods has become the top priority in many countries. Methodologically, the potential safety risks and precaution measures of SARS-CoV-2 contamination on cold-chain food are analyzed. To ensure the safety of cold-chain foods, the advances in SARS-CoV-2 detection strategies are summarized based on technical principles and target biomarkers. In particular, the techniques suitable for SARS-CoV-2 detection in a cold-chain environment are discussed. Although many quarantine techniques are available, the field-based quarantine technique on cold-chain food with characteristics of real-time, sensitive, specific, portable, and large-scale application is urgently needed.
Collapse
Affiliation(s)
- Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Wenxin Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Jinyao Hu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Shixuan Zhao
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Xianyang 712100, China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Xianyang 712100, China
| | - Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| |
Collapse
|
17
|
Advances in improvement strategies of digital nucleic acid amplification for pathogen detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Hanson RL, Lazalde E, Knob R, Harris DH, Akuoko Y, Nielsen JB, Woolley AT. Multilabel hybridization probes for sequence-specific detection of sepsis-related drug resistance genes in plasmids. TALANTA OPEN 2021; 3. [PMID: 34950926 DOI: 10.1016/j.talo.2021.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Emerging antimicrobial drug resistance is increasing the complexity involved in treating critical conditions such as bacterial induced sepsis. Methods for diagnosing specific drug resistance tend to be rapid or sensitive, but not both. Detection methods like sequence-specific single-molecule analysis could address this concern if they could be adapted to work on smaller targets similar to those produced in traditional clinical situations. In this work we demonstrate that a 120 bp double stranded polynucleotide with an overhanging single stranded 25 bp probe sequence can be created by immobilizing DNA with a biotin/streptavidin magnetic bead system, labeling with SYBR Gold, and rinsing the excess away while the probe retains multiple fluorophores. These probes with multiple fluorophores can then be used to label a bacterial plasmid target in a sequence-specific manner. These probes enabled the detection of 1 pM plasmid samples containing a portion of an antibiotic resistance gene sequence. This system shows the possibility of improving capture and fluorescence labeling of small nucleic acid fragments, generating lower limits of detection for clinically relevant samples while maintaining rapid processing times.
Collapse
Affiliation(s)
- Robert L Hanson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Elaine Lazalde
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Radim Knob
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - David H Harris
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Yesman Akuoko
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jacob B Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
19
|
Kang J, Li Y, Zhao Y, Wang Y, Ma C, Shi C. Nucleic acid extraction without electrical equipment via magnetic nanoparticles in Pasteur pipettes for pathogen detection. Anal Biochem 2021; 635:114445. [PMID: 34740597 PMCID: PMC8562038 DOI: 10.1016/j.ab.2021.114445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/26/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19 makes epidemic prevention and control become a growing global concern. Nucleic acid amplification testing (NAAT) can realize early and rapid detection of targets, thus it is considered as an ideal approach for detecting pathogens of severe acute infectious diseases. Rapid acquisition of high-quality target nucleic acid is the prerequisite to ensure the efficiency and accuracy of NAAT. Herein, we proposed a simple system in which magnetic nanoparticles (MNPs) based nucleic acid extraction was carried out in a plastic Pasteur pipette. Different from traditional approaches, this proposed system could be finished in 15 min without the supports of any electrical instruments. Furthermore, this system was superior to traditional MNPs based extraction methods in the aspects of rapid extraction and enhancing the sensitivity of a NAAT method, accelerated denaturation bubbles mediated strand exchange amplification (ASEA), to the pathogens from various artificial samples. Finally, this Pasteur pipette system was utilized for pathogen detection in actual samples of throat swabs, cervical swabs and gastric mucosa, the diagnosis results of which were identical with that provided by hospital. This rapid, easy-performing and efficiency extraction method ensures the applications of the NAAT in pathogen detection in regions with restricted resources.
Collapse
Affiliation(s)
- Jia Kang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, And Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, And Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Yan Zhao
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, And Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Yanling Wang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, And Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, And Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China,Corresponding author
| |
Collapse
|
20
|
Cunha ML, da Silva SS, Stracke MC, Zanette DL, Aoki MN, Blanes L. Sample Preparation for Lab-on-a-Chip Systems in Molecular Diagnosis: A Review. Anal Chem 2021; 94:41-58. [PMID: 34870427 DOI: 10.1021/acs.analchem.1c04460] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and low-cost molecular analysis is especially required for early and specific diagnostics, quick decision-making, and sparing patients from unnecessary tests and hospitals from extra costs. One way to achieve this objective is through automated molecular diagnostic devices. Thus, sample-to-answer microfluidic devices are emerging with the promise of delivering a complete molecular diagnosis system that includes nucleic acid extraction, amplification, and detection steps in a single device. The biggest issue in such equipment is the extraction process, which is normally laborious and time-consuming but extremely important for sensitive and specific detection. Therefore, this Review focuses on automated or semiautomated extraction methodologies used in lab-on-a-chip devices. More than 15 different extraction methods developed over the past 10 years have been analyzed in terms of their advantages and disadvantages to improve extraction procedures in future studies. Herein, we are able to explain the high applicability of the extraction methodologies due to the large variety of samples in which different techniques were employed, showing that their applications are not limited to medical diagnosis. Moreover, we are able to conclude that further research in the field would be beneficial because the methodologies presented can be affordable, portable, time efficient, and easily manipulated, all of which are strong qualities for point-of-care technologies.
Collapse
Affiliation(s)
- Mylena Lemes Cunha
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Stella Schuster da Silva
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Cassaboni Stracke
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| |
Collapse
|
21
|
Design considerations for point-of-need devices based on nucleic acid amplification for COVID-19 diagnostics and beyond. Biotechniques 2021; 71:505-509. [PMID: 34392709 PMCID: PMC8366723 DOI: 10.2144/btn-2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
23
|
Obino D, Vassalli M, Franceschi A, Alessandrini A, Facci P, Viti F. An Overview on Microfluidic Systems for Nucleic Acids Extraction from Human Raw Samples. SENSORS 2021; 21:s21093058. [PMID: 33925730 PMCID: PMC8125272 DOI: 10.3390/s21093058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Nucleic acid (NA) extraction is a basic step for genetic analysis, from scientific research to diagnostic and forensic applications. It aims at preparing samples for its application with biomolecular technologies such as isothermal and non-isothermal amplification, hybridization, electrophoresis, Sanger sequencing and next-generation sequencing. Multiple steps are involved in NA collection from raw samples, including cell separation from the rest of the specimen, cell lysis, NA isolation and release. Typically, this process needs molecular biology facilities, specialized instrumentation and labor-intensive operations. Microfluidic devices have been developed to analyze NA samples with high efficacy and sensitivity. In this context, the integration within the chip of the sample preparation phase is crucial to leverage the promise of portable, fast, user-friendly and economic point-of-care solutions. This review presents an overview of existing lab-on-a-chip (LOC) solutions designed to provide automated NA extraction from human raw biological fluids, such as whole blood, excreta (urine and feces), saliva. It mainly focuses on LOC implementation aspects, aiming to describe a detailed panorama of strategies implemented for different human raw sample preparations.
Collapse
Affiliation(s)
- Daniele Obino
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, James Watt South Building, Glasgow G128LT, UK;
| | | | - Andrea Alessandrini
- Nanoscience Institute, National Research Council, 41125 Modena, Italy;
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paolo Facci
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
- Correspondence:
| | - Federica Viti
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
| |
Collapse
|
24
|
Chen L, Yadav V, Zhang C, Huo X, Wang C, Senapati S, Chang HC. Elliptical Pipette Generated Large Microdroplets for POC Visual ddPCR Quantification of Low Viral Load. Anal Chem 2021; 93:6456-6462. [PMID: 33861566 DOI: 10.1021/acs.analchem.1c00192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rapid point-of-care (POC) quantification of low virus RNA load would significantly reduce the turn-around time for the PCR test and help contain a fast-spreading epidemic. Herein, we report a droplet digital PCR (ddPCR) platform that can achieve this sensitivity and rapidity without bulky lab-bound equipment. The key technology is a flattened pipette tip with an elliptical cross-section, which extends a high aspect-ratio microfluidic chip design to pipette scale, for rapid (<5 min) generation of several thousand monodispersed droplets ∼150 to 350 μm in size with a CV of ∼2.3%. A block copolymer surfactant (polyoxyalkylene F127) is used to stabilize these large droplets in oil during thermal cycling. At this droplet size and number, positive droplets can be counted by eye or imaged by a smartphone with appropriate illumination/filtering to accurately quantify up to 100 target copies. We demonstrate with 2019 nCoV-PCR assay LODs of 3.8 copies per 20 μL of sample and a dynamic range of 4-100 copies. The ddPCR platform is shown to be inhibitor resistant with spiked saliva samples, suggesting RNA extraction may not be necessary. It represents a rapid 1.5-h POC quantitative PCR test that requires just a pipette equipped with elliptical pipette tip, a commercial portable thermal cycler, a smartphone, and a portable trans-illuminator, without bulky and expensive micropumps and optical detectors that prevent POC application.
Collapse
Affiliation(s)
- Liao Chen
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Vivek Yadav
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Chenguang Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xiaoye Huo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ceming Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
25
|
Wu H, Chen Y, Shi Y, Wang L, Zhang M, Wu J, Chen H. Carrying out pseudo dual nucleic acid detection from sample to visual result in a polypropylene bag with CRISPR/Cas12a. Biosens Bioelectron 2021; 178:113001. [DOI: 10.1016/j.bios.2021.113001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022]
|
26
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
27
|
Paul R, Ostermann E, Wei Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosens Bioelectron 2020; 169:112592. [PMID: 32942143 PMCID: PMC7476893 DOI: 10.1016/j.bios.2020.112592] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.
Collapse
Affiliation(s)
- Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emily Ostermann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
28
|
Yin J, Zou Z, Yin F, Liang H, Hu Z, Fang W, Lv S, Zhang T, Wang B, Mu Y. A Self-Priming Digital Polymerase Chain Reaction Chip for Multiplex Genetic Analysis. ACS NANO 2020; 14:10385-10393. [PMID: 32794742 DOI: 10.1021/acsnano.0c04177] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Digital PCR (polymerase chain reaction) is a powerful and attractive tool for the quantification of nucleic acids. However, the multiplex detection capabilities of this system are limited or require expensive instrumentation and reagents, all of which can hinder multiplex detection goals. Here, we propose strategies toward solving these issues regarding digital PCR. We designed and tested a self-priming digital PCR chip containing 6-plex detection capabilities using monochrome fluorescence, which has six detection areas and four-layer structures. This strategy achieved multiplex digital detection by the use of self-priming to preintroduce the specific reaction mix to a certain detection area. This avoids competition when multiple primer pairs coexist, allowing for multiplexing in a shorter time while using less reagents and low-cost instruments. This also prevents the digital PCR chip from experiencing long sample introduction time and evaporation. For further validation, this multiplex digital PCR chip was used to detect five types of EGFR (epidermal growth factor receptor) gene mutations in 15 blood samples from lung cancer patients. We conclude that this technique can precisely quantify EGFR mutations in high-performance diagnostics. This multiplex digital detection chip is a simple and inexpensive test intended for liquid biopsies. It can be applied and used in prenatal diagnostics, the monitoring of residual disease, rapid pathogen detection, and many other procedures.
Collapse
Affiliation(s)
- Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Zheyu Zou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fangfang Yin
- Weifang People's Hospital, Weifang 261000, China
| | - Hongxiao Liang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Zhenming Hu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Weibo Fang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China
| | - Tao Zhang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
29
|
Chen Y, Liu Y, Shi Y, Ping J, Wu J, Chen H. Magnetic particles for integrated nucleic acid purification, amplification and detection without pipetting. Trends Analyt Chem 2020; 127:115912. [PMID: 32382202 PMCID: PMC7202819 DOI: 10.1016/j.trac.2020.115912] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid amplification based detection plays an important role in food safety, environmental monitoring and clinical diagnosis. However, traditional nucleic acid detection process involves transferring liquid from one tube to another by pipetting. It requires trained persons, equipped labs and consumes lots of time. The ideal nucleic acid detection is integrated, closed, simplified and automated. Magnetic particles actuated by magnetic fields can efficiently adsorb nucleic acids and promote integrated nucleic acid assays without pipetting driven by pumps and centrifuges. We will comprehensively review magnetic particles assisted integrated system for nucleic acid detection and hope it can inspire further related study.
Collapse
Key Words
- ATP, adenosine triphosphate
- DLS, dynamic light scattering
- FMR, ferromagnetic resonance
- GTC, guanidinium thiocyanate
- ICP-AES, inductively coupled plasma atomic emission spectroscopy
- IFAST, immiscible filtration assisted by surface tension
- Immiscible interface
- Integrated detection
- LAMP, loop-mediated isothermal amplification
- Magnetic particles
- Nucleic acid
- PCR, polymerase chain reaction
- PEG, polyethylene glycol
- POCT, point-of-care testing
- RPA, recombinase polymerase amplification
- SQUID, superconducting quantum interference device magnetometer
- TEM, transmission electron microscopy
- XRD, X-Ray diffraction
- qPCR, quantitative PCR
Collapse
Affiliation(s)
- Yanju Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yang Liu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Ya Shi
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, 310058, China
| | - Huan Chen
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| |
Collapse
|