1
|
Wu T, Zhang X, Cai S, Zhang W, Yang R. Prussian blue nanocages as efficient radical scavengers and photothermal agents for reducing amyloid-beta induced neurotoxicity. Colloids Surf B Biointerfaces 2025; 246:114369. [PMID: 39536606 DOI: 10.1016/j.colsurfb.2024.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The unusual accumulation of amyloid-beta 1-42 (Aβ42) is an essential pathological feature of Alzheimer's disease (AD), and development of Aβ42 nanomodulators offers a potentially therapeutic approach to AD. Here, we report facile synthesis of the hollow mesocrystalline Prussian blue nanocages (HMPBs), which serve as versatile Aβ42 modulators. Due to the hollow nanostructures and large specific surface area, they can effectively inhibit Aβ42 aggregation by adsorption. They also exhibit robust near-infrared (NIR) photothermal effect for light-to-heat transition, which promotes the depolymerization of Aβ42 fibers. Besides, they display ROS quenching ability to scavenge hydroxyl radicals (•OH) caused by Aβ42 fibers, alleviate cellular oxidative stress, and improve cell survival. This work provides a new kind of Prussian blue nanomaterial for multimodal Aβ modulation.
Collapse
Affiliation(s)
- Ting Wu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xining Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Lin X, Dong X, Sun Y. Dual-Carbon Dots Composite: A Multifunctional Photo-Propelled Nanomotor Against Alzheimer's β-Amyloid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407154. [PMID: 39392092 DOI: 10.1002/smll.202407154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Indexed: 10/12/2024]
Abstract
The abnormal accumulation of β-amyloid protein (Aβ) is considered as the main pathological hallmark of Alzheimer's disease (AD). The design of potent multifunctional theranostic agents targeting Aβ is one of the effective strategies for AD prevention and treatment. Nanomotors as intelligent, advanced, and multifunctional nanoplatforms can perform many complex tasks, but their application in AD theranostics is rare. Herein, sub-10nm multifunctional dual-carbon dots composites (ERCD) with photo-propelled nanomotor behavior are fabricated by conjugating near-infrared (NIR) carbon dots (RCD) of thermogenic and photodynamic capability with the previously reported epigallocatechin gallate-derived carbonized polymer dots (ECD). ERCD-1 (ECD:RCD = 1:2.5) showed potent inhibitory capability similar to ECD in the absence of NIR light, and exhibited photooxygenation activity and nanomotor behavior powered by "self-thermophoretic force" under NIR irradiation, significantly enhancing the inhibition, disaggregation, and photooxygenation capabilities. The nanomotor suppressed Aβ fibrillization and rapidly disaggregated mature Aβ fibrils at very low concentrations (0.5 µg mL-1). Moreover, the NIR-activated ERCD-1 imaged Aβ plaques in vivo and prolonged nematode lifespan by 6 d at 2 µg mL-1. As a proof-of-concept, this work opened a new avenue to the design of multifunctional sub-10nm nanomotors targeting Aβ for AD theranostics.
Collapse
Affiliation(s)
- Xiaoding Lin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
3
|
Zhang Q, Li C, Yin B, Yan J, Gu Y, Huang Y, Chen J, Lao X, Hao J, Yi C, Zhou Y, Cheung JCW, Wong SHD, Yang M. A biomimetic upconversion nanoreactors for near-infrared driven H 2 release to inhibit tauopathy in Alzheimer's disease therapy. Bioact Mater 2024; 42:165-177. [PMID: 39280581 PMCID: PMC11402069 DOI: 10.1016/j.bioactmat.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Abnormal hyperphosphorylation of tau protein is a principal pathological hallmark in the onset of neurodegenerative disorders, such as Alzheimer's disease (AD), which can be induced by an excess of reactive oxygen species (ROS). As an antioxidant, hydrogen gas (H2) has the potential to mitigate AD by scavenging highly harmful ROS such as •OH. However, conventional administration methods of H2 face significant challenges in controlling H2 release on demand and fail to achieve effective accumulation at lesion sites. Herein, we report artificial nanoreactors that mimic natural photosynthesis to realize near-infrared (NIR) light-driven photocatalytic H2 evolution in situ. The nanoreactors are constructed by biocompatible crosslinked vesicles (CVs) encapsulating ascorbic acid and two photosensitizers, chlorophyll a (Chla) and indoline dye (Ind). In addition, platinum nanoparticles (Pt NPs) serve as photocatalysts and upconversion nanoparticles (UCNP) act as light-harvesting antennas in the nanoreacting system, and both attach to the surface of CVs. Under NIR irradiation, the nanoreactors release H2 in situ to scavenge local excess ROS and attenuate tau hyperphosphorylation in the AD mice model. Such NIR-triggered nanoreactors provide a proof-of-concept design for the great potential of hydrogen therapy against AD.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Bohan Yin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yutian Gu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xinyue Lao
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - James Chung Wai Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Siu Hong Dexter Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
- Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
4
|
Gao F, Wu Y, Gan C, Hou Y, Deng D, Yi X. Overview of the Design and Application of Photothermal Immunoassays. SENSORS (BASEL, SWITZERLAND) 2024; 24:6458. [PMID: 39409498 PMCID: PMC11479306 DOI: 10.3390/s24196458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Developing powerful immunoassays for sensitive and real-time detection of targets has always been a challenging task. Due to their advantages of direct readout, controllable sensing, and low background interference, photothermal immunoassays have become a type of new technology that can be used for various applications such as disease diagnosis, environmental monitoring, and food safety. By modification with antibodies, photothermal materials can induce temperature changes by converting light energy into heat, thereby reporting specific target recognition events. This article reviews the design and application of photothermal immunoassays based on different photothermal materials, including noble metal nanomaterials, carbon-based nanomaterials, two-dimensional nanomaterials, metal oxide and sulfide nanomaterials, Prussian blue nanoparticles, small organic molecules, polymers, etc. It pays special attention to the role of photothermal materials and the working principle of various immunoassays. Additionally, the challenges and prospects for future development of photothermal immunoassays are briefly discussed.
Collapse
Affiliation(s)
- Fengli Gao
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Yike Wu
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Cui Gan
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Yupeng Hou
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Dehua Deng
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Chen W, Li J, Guo J, Li L, Wu H. Diagnosis and therapy of Alzheimer's disease: Light-driven heterogeneous redox processes. Adv Colloid Interface Sci 2024; 332:103253. [PMID: 39067260 DOI: 10.1016/j.cis.2024.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Light-driven heterogeneous processes are promising approaches for diagnosing and treating Alzheimer's disease (AD) by regulating its relevant biomolecules. The molecular understanding of the heterogeneous interface environment and its interaction with target biomolecules is important. This review critically appraises the advances in AD early diagnosis and therapy employing heterogeneous light-driven redox processes, encompassing photoelectrochemical (PEC) biosensing, photodynamic therapy, photothermal therapy, PEC therapy, and photoacoustic therapy. The design strategies for heterogeneous interfaces based on target biomolecules and applications are also compiled. Finally, the remaining challenges and future perspectives are discussed. The present review may promote the fundamental understanding of AD diagnosis and therapy and facilitate interdisciplinary studies at the junction of nanotechnology and bioscience.
Collapse
Affiliation(s)
- Wenting Chen
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiahui Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Hao Wu
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau.
| |
Collapse
|
6
|
Choi JH, Haizan I, Choi JW. Recent advances in two-dimensional materials for the diagnosis and treatment of neurodegenerative diseases. DISCOVER NANO 2024; 19:151. [PMID: 39289310 PMCID: PMC11408446 DOI: 10.1186/s11671-024-04099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
With the size of the aging population increasing worldwide, the effective diagnosis and treatment of neurodegenerative diseases (NDDs) has become more important. Two-dimensional (2D) materials offer specific advantages for the diagnosis and treatment of NDDs due to their high sensitivity, selectivity, stability, and biocompatibility, as well as their excellent physical and chemical characteristics. As such, 2D materials offer a promising avenue for the development of highly sensitive, selective, and biocompatible theragnostics. This review provides an interdisciplinary overview of advanced 2D materials and their use in biosensors, drug delivery, and tissue engineering/regenerative medicine for the diagnosis and/or treatment of NDDs. The development of 2D material-based biosensors has enabled the early detection and monitoring of NDDs via the precise detection of biomarkers or biological changes, while 2D material-based drug delivery systems offer the targeted and controlled release of therapeutics to the brain, crossing the blood-brain barrier and enhancing treatment effectiveness. In addition, when used in tissue engineering and regenerative medicine, 2D materials facilitate cell growth, differentiation, and tissue regeneration to restore neuronal functions and repair damaged neural networks. Overall, 2D materials show great promise for use in the advanced treatment of NDDs, thus improving the quality of life for patients in an aging population.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Izzati Haizan
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| |
Collapse
|
7
|
Avendaño-Godoy J, Cattoën X, Kogan MJ, Morales Valenzuela J. Epigallocatechin-3-gallate adsorbed on core-shell gold nanorod@mesoporous silica nanoparticles, an antioxidant nanomaterial with photothermal properties. Int J Pharm 2024; 662:124507. [PMID: 39048041 DOI: 10.1016/j.ijpharm.2024.124507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Epigallocatechin-3-gallate (EGCG) exhibits several pharmacological activities with potential benefits for human health, however, it has low oral bioavailability. A promising approach is to transport EGCG in a nanostructured system to protect it until it reaches the site of action and also allow combining chemotherapy with phototherapy to improve its therapeutic efficiency. The aim of this work was to synthesize GNR@mSiO2-NH2/EGCG and characterize the adsorption process, its antioxidant activity, properties and photothermal stability, for its potential use in chemo-photothermal therapy. The nanosystem presented good encapsulation efficiency (19.2 %) and EGCG loading capacity (6.0 %). The DPPH• free radical scavenging capacity (RSA) and chelating activity of the nanosystem was 60.7 ± 6.9 % and 71.0 ± 6.4 % at an EGCG equivalent concentration of 1 µg/mL and 30 µg/mL, respectively. The core-shell NPs presented a good photothermal transduction efficiency of 17 %. EGCG free, as well as its RSA and chelating activity, remained stable after NIR irradiation (808 nm, 7 W/cm2). The morphology of GNR@mSiO2 remained intact after being irradiated with NIR, however, ultrasmall gold NPs could be observed, probably a product of photocracking of GNR. In summary, the nanosystem has good antioxidant activity, photothermal stability, and photothermal transduction ability making it potentially useful for chemo-photothermal therapy.
Collapse
Affiliation(s)
- Javier Avendaño-Godoy
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Advanced Center of Chronic Diseases (ACCDiS), Chile; Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Université Grenoble Alpes, CNRS, Grenoble INP, Intitut Néel, France
| | - Xavier Cattoën
- Université Grenoble Alpes, CNRS, Grenoble INP, Intitut Néel, France
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Advanced Center of Chronic Diseases (ACCDiS), Chile.
| | - Javier Morales Valenzuela
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile.
| |
Collapse
|
8
|
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, Thiruvengadam M. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers. Mol Neurobiol 2024; 61:3042-3089. [PMID: 37966683 DOI: 10.1007/s12035-023-03730-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Oriane Onimus
- Faculty of Basic and Biomedical Sciences, University of Paris, Paris, France
| | - Naomi D'souza
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Research Consultation Department, Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
9
|
Mi J, Liu C, Chen H, Qian Y, Zhu J, Zhang Y, Liang Y, Wang L, Ta D. Light on Alzheimer's disease: from basic insights to preclinical studies. Front Aging Neurosci 2024; 16:1363458. [PMID: 38566826 PMCID: PMC10986738 DOI: 10.3389/fnagi.2024.1363458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD), referring to a gradual deterioration in cognitive function, including memory loss and impaired thinking skills, has emerged as a substantial worldwide challenge with profound social and economic implications. As the prevalence of AD continues to rise and the population ages, there is an imperative demand for innovative imaging techniques to help improve our understanding of these complex conditions. Photoacoustic (PA) imaging forms a hybrid imaging modality by integrating the high-contrast of optical imaging and deep-penetration of ultrasound imaging. PA imaging enables the visualization and characterization of tissue structures and multifunctional information at high resolution and, has demonstrated promising preliminary results in the study and diagnosis of AD. This review endeavors to offer a thorough overview of the current applications and potential of PA imaging on AD diagnosis and treatment. Firstly, the structural, functional, molecular parameter changes associated with AD-related brain imaging captured by PA imaging will be summarized, shaping the diagnostic standpoint of this review. Then, the therapeutic methods aimed at AD is discussed further. Lastly, the potential solutions and clinical applications to expand the extent of PA imaging into deeper AD scenarios is proposed. While certain aspects might not be fully covered, this mini-review provides valuable insights into AD diagnosis and treatment through the utilization of innovative tissue photothermal effects. We hope that it will spark further exploration in this field, fostering improved and earlier theranostics for AD.
Collapse
Affiliation(s)
- Jie Mi
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Chao Liu
- Yiwu Research Institute, Fudan University, Yiwu, China
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Honglei Chen
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Yan Qian
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Medical Ultrasound Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Dean Ta
- Yiwu Research Institute, Fudan University, Yiwu, China
- Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Gao W, Liu W, Dong X, Sun Y. Albumin-manganese dioxide nanocomposites: a potent inhibitor and ROS scavenger against Alzheimer's β-amyloid fibrillogenesis and neuroinflammation. J Mater Chem B 2023; 11:10482-10496. [PMID: 37909060 DOI: 10.1039/d3tb01763j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease pathologically caused by amyloid-β protein (Aβ) aggregation, oxidative stress, and neuroinflammation. The pathogenesis of AD is still uncertain and intricate, and helpful therapy has rarely been recorded. So, discovering amyloid modulators is deemed a promising avenue for preventing and treating AD. In this study, human serum albumin (HSA), a protein-based Aβ inhibitor, was utilized as a template to guide the synthesis of HSA-manganese dioxide nanocomposites (HMn NCs) through biomineralization. The in situ formed MnO2 in HSA endows this nano-platform with outstanding reactive oxygen species (ROS) scavenging capability, including superoxide dismutase-mimetic and catalase-mimetic activities, which could scavenge the plethora of superoxide anion radicals and hydrogen peroxide. More importantly, the HMn NCs show enhanced potency in suppressing Aβ fibrillization compared with HSA, which further alleviates Aβ-mediated SH-SY5Y neurotoxicity by scavenging excessive ROS. Moreover, it is demonstrated that HMn NCs reduce Aβ-related inflammation in BV-2 cells by lowering tumor necrosis factor-α and interleukin-6. Furthermore, transgenic C. elegans studies showed that HMn NCs could remove Aβ plaques, reduce ROS in CL2006 worms, and promote the lifespan extension of worms. Thus, HMn NCs provide a promising tactic to facilitate the application of multifunctional nanocomposites in AD treatment.
Collapse
Affiliation(s)
- Weiqun Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
11
|
Botchway BOA, Liu X, Zhou Y, Fang M. Biometals in Alzheimer disease: emerging therapeutic and diagnostic potential of molybdenum and iodine. J Transl Med 2023; 21:351. [PMID: 37244993 PMCID: PMC10224607 DOI: 10.1186/s12967-023-04220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023] Open
Abstract
The current ageing trend of the world population has, in part, accounted for Alzheimer disease (AD) being a public health issue in recent times. Although some progress has been made in clarifying AD-related pathophysiological mechanisms, effective intervention is still elusive. Biometals are indispensable to normal physiological functions of the human body-for example, neurogenesis and metabolism. However, their association with AD remains highly controversial. Copper (Cu) and zinc (Zn) are biometals that have been investigated at great length in relation to neurodegeneration, whereas less attention has been afforded to other trace biometals, such as molybdenum (Mo), and iodine. Given the above context, we reviewed the limited number of studies that have evidenced various effects following the usage of these two biometals in different investigative models of AD. Revisiting these biometals via thorough investigations, along with their biological mechanisms may present a solid foundation for not only the development of effective interventions, but also as diagnostic agents for AD.
Collapse
Affiliation(s)
- Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, 310052 China
- Pharmacy Department, Bupa Cromwell Hospital, Kensington, London, SW5 0TU UK
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang China
| | - Yu Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, 310052 China
| |
Collapse
|
12
|
Elsherbiny SM, Khalifa MA, Acheampong A, Liu C, Bondzie-Quaye P, Swallah MS, Lin X, Huang Q. Effective Nanocomposite Based on Bi 2MoO 6/MoS 2/AuNRs for NIR-II Light-Boosted Photodynamic/Chemodynamic Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37146209 DOI: 10.1021/acs.langmuir.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bi2MoO6 (BMO) nanoparticles (NPs) have been widely used as a photocatalyst to decompose organic pollutants, but their potential for photodynamic therapy (PDT) is yet to be explored. Normally, the UV absorption property of BMO NPs is not suitable for clinical application because the penetration depth of the UV light is too small. To overcome this limitation, we rationally designed a novel nanocomposite based on Bi2MoO6/MoS2/AuNRs (BMO-MSA), which simultaneously possesses both the high photodynamic ability and POD-like activity under NIR-II light irradiation. Additionally, it has excellent photothermal stability with good photothermal conversion efficiency. The as-prepared BMO-MSA nanocomposite could induce the germline apoptosis of Caenorhabditis elegans (C. elegans) via the cep-1/p53 pathway after being illuminated by light with a wavelength of 1064 nm. The in vivo investigations confirmed the ability of the BMO-MSA nanocomposite for the induction of DNA damage in the worms, and the mechanism was approved by determining the egl-1 fold induction in the mutants that have a loss of function in the genes involved in DNA damage response mutants. Thus, this work has not only provided a novel PDT agent, which may be used for PDT in the NIR-II region, but also introduced a new approach to therapy, taking advantage of both PDT and CDT effects.
Collapse
Affiliation(s)
- Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud A Khalifa
- Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chao Liu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Mohammed S Swallah
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Xiuping Lin
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machine, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Lin D, Qian Z, Bagnani M, Hernández-Rodríguez MA, Corredoira-Vázquez J, Wei G, Carlos LD, Mezzenga R. Probing the Protein Folding Energy Landscape: Dissociation of Amyloid-β Fibrils by Laser-Induced Plasmonic Heating. ACS NANO 2023; 17:9429-9441. [PMID: 37134221 DOI: 10.1021/acsnano.3c01489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Insoluble amyloid fibrils made from proteins and peptides are difficult to be degraded in both living and artificial systems. The importance of studying their physical stability lies primarily with their association with human neurodegenerative diseases, but also owing to their potential role in multiple bio-nanomaterial applications. Here, gold nanorods (AuNRs) were utilized to investigate the plasmonic heating properties and dissociation of amyloid-β fibrils formed by different peptide fragments (Aβ16-22/Aβ25-35/Aβ1-42) related to the Alzheimer's disease. It is demonstrated that AuNRs were able to break mature amyloid-β fibrils from both the full length (Aβ1-42) and peptide fragments (Aβ16-22/Aβ25-35) within minutes by triggering ultrahigh localized surface plasmon resonance (LSPR) heating. The LSPR energy absorbed by the amyloids to unfold and move to higher levels in the protein folding energy landscape can be measured directly and in situ by luminescence thermometry using lanthanide-based upconverting nanoparticles. We also show that Aβ16-22 fibrils, with the largest persistence length, displayed the highest resistance to breakage, resulting in a transition from rigid fibrils to short flexible fibrils. These findings are consistent with molecular dynamics simulations indicating that Aβ16-22 fibrils possess the highest thermostability due to their highly ordered hydrogen bond networks and antiparallel β-sheet orientation, hence affected by an LSPR-induced remodeling rather than melting. The present results introduce original strategies for disassembling amyloid fibrils noninvasively in liquid environment; they also introduce a methodology to probe the positioning of amyloids on the protein folding and aggregation energy landscape via nanoparticle-enabled plasmonic and upconversion nanothermometry.
Collapse
Affiliation(s)
- Dongdong Lin
- School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- ETH Zurich Department of Health Sciences & Technology and Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Massimo Bagnani
- ETH Zurich Department of Health Sciences & Technology and Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Miguel A Hernández-Rodríguez
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Julio Corredoira-Vázquez
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Raffaele Mezzenga
- ETH Zurich Department of Health Sciences & Technology and Department of Materials, ETH Zurich, Zurich 8093, Switzerland
- ETH Zurich, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, Zurich 8093, Switzerland
| |
Collapse
|
14
|
Shao X, Yan C, Wang C, Wang C, Cao Y, Zhou Y, Guan P, Hu X, Zhu W, Ding S. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation. NANOSCALE ADVANCES 2022; 5:46-80. [PMID: 36605800 PMCID: PMC9765474 DOI: 10.1039/d2na00625a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that brings about enormous economic pressure to families and society. Inhibiting abnormal aggregation of Aβ and accelerating the dissociation of aggregates is treated as an effective method to prevent and treat AD. Recently, nanomaterials have been applied in AD treatment due to their excellent physicochemical properties and drug activity. As a drug delivery platform or inhibitor, various excellent nanomaterials have exhibited potential in inhibiting Aβ fibrillation, disaggregating, and clearing mature amyloid plaques by enhancing the performance of drugs. This review comprehensively summarizes the advantages and disadvantages of nanomaterials in modulating amyloid aggregation and AD treatment. The design of various functional nanomaterials is discussed, and the strategies for improved properties toward AD treatment are analyzed. Finally, the challenges faced by nanomaterials with different dimensions in AD-related amyloid aggregate modulation are expounded, and the prospects of nanomaterials are proposed.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region Xianyang Shaanxi 712082 China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University 169 Changle West Road Xi'an 710032 China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| |
Collapse
|
15
|
Zhou Z, Li X, Hu T, Xue B, Chen H, Ma L, Liang R, Tan C. Molybdenum‐Based Nanomaterials for Photothermal Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Xiangqian Li
- School of Chemical and Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas) Pingdingshan University Pingdingshan 467000 P.R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Baoli Xue
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Chaoliang Tan
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Kowloon Hong Kong SAR 999077 P.R. China
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 999077 P.R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P.R. China
| |
Collapse
|
16
|
|
17
|
Liang X, Wang Y, Song J, Xia D, Li Q, Dong M. Nontoxic silicene photothermal agents with high near-infrared absorption for disassembly of Alzheimer's amyloid‑β fibrils. Colloids Surf B Biointerfaces 2022; 216:112575. [PMID: 35636323 DOI: 10.1016/j.colsurfb.2022.112575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
The disassembly and eliminating the amyloid-β (Aβ) aggregates has become an effective way to treat Alzheimer's disease (AD). Herein, for the first time, the near-infrared (NIR) activated silicene nanosheets (SNSs) have been identified as an effective nontoxic photothermal conversion agent for irreversibly disassembly of the Aβ33-42 aggregates. The SNSs synthesized by a combination of mild oxidation method and liquid exfoliation method possess good biocompatibility and biodegradability, and high near-infrared photothermal conversion capabilities. Under NIR light, the SNSs could disassemble the large and dense Aβ33-42 mature fibrils into short fibrils and even form thin films, leading to the degradation rate of 96.47%. The circular dichroism spectrum, fluorescent spectra, and nanostructure were analyzed to monitor the photothermal degradation of mature Aβ33-42 fibrils for elaborating the mechanism beneath. This study might provide a clue for developing potential therapeutic strategy for AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoteng Liang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yin Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark
| | - Jie Song
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Dan Xia
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| |
Collapse
|
18
|
Ge K, Mu Y, Liu M, Bai Z, Liu Z, Geng D, Gao F. Gold Nanorods with Spatial Separation of CeO 2 Deposition for Plasmonic-Enhanced Antioxidant Stress and Photothermal Therapy of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3662-3674. [PMID: 35023712 DOI: 10.1021/acsami.1c17861] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Activities of catalase (CAT) and superoxide dismutase (SOD) of ceria nanoparticles (CeO2 NPs) provide the possibility for their application in nervous system oxidative stress diseases including Alzheimer's disease (AD). The addition of hot electrons produced by a plasma photothermal effect can expand the photocatalytic activity of CeO2 to the near-infrared region (NIR), significantly improving its redox performance. Therefore, we coated both ends of gold nanorods (Au NRs) with CeO2 NPs, and photocatalysis and photothermal therapy in the NIR are introduced into the treatment of AD. Meanwhile, the spatially separate structure enhances the catalytic performance and photothermal conversion efficiency. In addition, the photothermal effect significantly improves the permeability of the blood-brain barrier (BBB) and overcomes the shortcomings of traditional anti-AD drugs. To further improve the therapeutic efficiency, Aβ-targeted inhibitory peptides were modified on the middle surface of gold nanorods to synthesize KLVFF@Au-CeO2 (K-CAC) nanocomposites. We have verified their biocompatibility and therapeutic effectiveness at multiple levels in vitro and in vivo, which have a profound impact on the research and clinical transformation of nanotechnology in AD therapy.
Collapse
Affiliation(s)
- Kezhen Ge
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yingfeng Mu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Miaoyan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zetai Bai
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhao Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Deqin Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
19
|
Geng H, Gao D, Wang Z, Liu X, Cao Z, Xing C. Strategies for Inhibition and Disaggregation of Amyloid‐β Fibrillation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hao Geng
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular, Biophysics Institute of Biophysics, School of Science Hebei University of Technology Tianjin 300130 China
| | - Zijuan Wang
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Xiaoning Liu
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
| | - Zhanshuo Cao
- College of Chemical Engineering Hebei University of Technology Tianjin 300130 China
| | - Chengfen Xing
- School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China
- Key Laboratory of Hebei Province for Molecular, Biophysics Institute of Biophysics, School of Science Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
20
|
Liu J, Ma L, Zhang G, Chen Y, Wang Z. Recent Progress of Surface Modified Nanomaterials for Scavenging Reactive Oxygen Species in Organism. Bioconjug Chem 2021; 32:2269-2289. [PMID: 34669378 DOI: 10.1021/acs.bioconjchem.1c00402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) are essential for normal physiological processes and play important roles in signal transduction, immunity, and tissue homeostasis. However, excess ROS may have a negative effect on the normal cells leading to various diseases. Nanomaterials are an attractive therapeutic alternative of antioxidants and possess an intrinsic ability to scavenge ROS. Surface modification for nanomaterials is a critical strategy to improve their comprehensive performances. Herein, we review the different surface modified strategies for nanomaterials to scavenge ROS and their inherent antioxidant capability, mechanisms of action, and biological applications. At last, the primary challenges and future perspectives in this emerging research frontier have also been highlighted. It is believed that this review paper will offer a top understanding and guidance on engineering future high-performance surface modified ROS scavenging nanomaterials for wide biomedical applications.
Collapse
Affiliation(s)
- Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100039, P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
21
|
Yan X, Pan Y, Ji L, Gu J, Hu Y, Xia Y, Li C, Zhou X, Yang D, Yu Y. Multifunctional Metal-Organic Framework as a Versatile Nanoplatform for Aβ Oligomer Imaging and Chemo-Photothermal Treatment in Living Cells. Anal Chem 2021; 93:13823-13834. [PMID: 34609144 DOI: 10.1021/acs.analchem.1c02459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In view of the close association of β-amyloid oligomers (AβO) with the clinical development of Alzheimer's disease (AD) symptoms, it is urgent to design a promising sensing and therapeutic strategy that can target AβO for preventing or delaying the onset of AD. Herein, a core-shell nanocomposite CeONP-Res-PCM@ZIF-8/polydopamine (PDA) was synthesized through an in situ encapsulated strategy, in which resveratrol (Res), ceria nanoparticles (CeONPs), and PCM (tetradecanol) were embedded into the ZIF-8/PDA matrix via a water-based mild approach. Using the AβO aptamer, the ability of CeONP-Res-PCM@ZIF-8/PDA/Apt as the fluorescent sensing platform for AβO detection and intracellular imaging was demonstrated. The nanocomposite was high in Res loading (27.5%) and could be activated to release the encapsulated Res upon illumination with NIR through PCM regulation. Moreover, due to the synergetic interactions of PDA, CeONPs, and Res in one system, CeONP-Res-PCM@ZIF-8/PDA/Apt nanocomposites exhibited multifunctional effects on inhibiting Aβ aggregation, degrading Aβ fibrils, and alleviating Aβ-induced oxidative stress and neural apoptosis. These therapeutic effects could be enhanced under NIR irradiation by virtue of the excellent photothermal property of PDA. As far as we know, there is no report of using ZIF-8-based materials for simultaneous sensing and therapeutic applications. This work boosted the development of multifunctional nanoagents for biomedical research studies.
Collapse
Affiliation(s)
- Xueyan Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai 200025, P. R. China
| | - Liang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Jinyu Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yuanyuan Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yi Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xinguang Zhou
- Shenzhen NTEK Testing Technology Co., Ltd., Shenzhen 518000, Guangdong, P. R. China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| |
Collapse
|
22
|
Zeng F, Peng K, Han L, Yang J. Photothermal and Photodynamic Therapies via NIR-Activated Nanoagents in Combating Alzheimer's Disease. ACS Biomater Sci Eng 2021; 7:3573-3585. [PMID: 34279071 DOI: 10.1021/acsbiomaterials.1c00605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is well established that the polymerization of amyloid-β peptides into fibrils/plaques is a critical step during the development of Alzheimer's disease (AD). Phototherapy, which includes photodynamic therapy and photothermal therapy, is a highly attractive strategy in AD treatment due to its merits of operational flexibility, noninvasiveness, and high spatiotemporal resolution. Distinct from traditional chemotherapies or immunotherapies, phototherapies capitalize on the interaction between photosensitizers or photothermal transduction agents and light to trigger photochemical reactions to generate either reactive oxygen species or heat effects to modulate Aβ aggregation, ultimately restoring nerve damage and ameliorating memory deficits. In this Review, we provide an overview of the recent advances in the development of near-infrared-activated nanoagents for AD phototherapies and discuss the potential challenges of and perspectives on this emerging field with a special focus on how to improve the efficiency and utility of such treatment. We hope that this Review will spur preclinical research and the clinical translation of AD treatment through phototherapy.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Kewen Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Han
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
| | - Jian Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
23
|
Huang Y, Chang Y, Liu L, Wang J. Nanomaterials for Modulating the Aggregation of β-Amyloid Peptides. Molecules 2021; 26:4301. [PMID: 34299575 PMCID: PMC8305396 DOI: 10.3390/molecules26144301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
The aberrant aggregation of amyloid-β (Aβ) peptides in the brain has been recognized as the major hallmark of Alzheimer's disease (AD). Thus, the inhibition and dissociation of Aβ aggregation are believed to be effective therapeutic strategiesforthe prevention and treatment of AD. When integrated with traditional agents and biomolecules, nanomaterials can overcome their intrinsic shortcomings and boost their efficiency via synergistic effects. This article provides an overview of recent efforts to utilize nanomaterials with superior properties to propose effective platforms for AD treatment. The underlying mechanismsthat are involved in modulating Aβ aggregation are discussed. The summary of nanomaterials-based modulation of Aβ aggregation may help researchers to understand the critical roles in therapeutic agents and provide new insight into the exploration of more promising anti-amyloid agents and tactics in AD theranostics.
Collapse
Affiliation(s)
- Yaliang Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Yong Chang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
24
|
Li Y, Tang H, Zhu H, Kakinen A, Wang D, Andrikopoulos N, Sun Y, Nandakumar A, Kwak E, Davis TP, Leong DT, Ding F, Ke PC. Ultrasmall Molybdenum Disulfide Quantum Dots Cage Alzheimer's Amyloid Beta to Restore Membrane Fluidity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29936-29948. [PMID: 34143617 PMCID: PMC8251662 DOI: 10.1021/acsami.1c06478] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) is a major cause of dementia characterized by the overexpression of transmembrane amyloid precursor protein and its neurotoxic byproduct amyloid beta (Aβ). A small peptide of considerable hydrophobicity, Aβ is aggregation prone catalyzed by the presence of cell membranes, among other environmental factors. Accordingly, current AD mitigation strategies often aim at breaking down the Aβ-membrane communication, yet no data is available concerning the cohesive interplay of the three key entities of the cell membrane, Aβ, and its inhibitor. Using a lipophilic Laurdan dye and confocal fluorescence microscopy, we observed cell membrane perturbation and actin reorganization induced by Aβ oligomers but not by Aβ monomers or amyloid fibrils. We further revealed recovery of membrane fluidity by ultrasmall MoS2 quantum dots, also shown in this study as a potent inhibitor of Aβ amyloid aggregation. Using discrete molecular dynamics simulations, we uncovered the binding of MoS2 and Aβ monomers as mediated by hydrophilic interactions between the quantum dots and the peptide N-terminus. In contrast, Aβ oligomers and fibrils were surface-coated by the ultrasmall quantum dots in distinct testudo-like, reverse protein-corona formations to prevent their further association with the cell membrane and adverse effects downstream. This study offers a crucial new insight and a viable strategy for regulating the amyloid aggregation and membrane-axis of AD pathology with multifunctional nanomedicine.
Collapse
Affiliation(s)
- Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Houjuan Zhu
- National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Aparna Nandakumar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Eunbi Kwak
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - David Tai Leong
- National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
- The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| |
Collapse
|
25
|
Liu W, Dong X, Liu Y, Sun Y. Photoresponsive materials for intensified modulation of Alzheimer's amyloid-β protein aggregation: A review. Acta Biomater 2021; 123:93-109. [PMID: 33465508 DOI: 10.1016/j.actbio.2021.01.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
The abnormal self-assembly of amyloid-β protein (Aβ) into toxic aggregates is a major pathological hallmark of Alzheimer's disease (AD). Modulation of Aβ fibrillization with pharmacological modalities has become an active field of research, which aims to mitigate Aβ-induced neurotoxicity and ameliorate impaired recognition. Among the various strategies for AD treatment, phototherapy, including photothermal therapy (PTT), photodynamic therapy (PDT), and photoresponsive release systems have attracted increased attention because of the spatiotemporal controllability. Under the irradiation of light, the heat or reactive oxygen species generated by photothermal or photodynamic processes significantly enhances the efficacy of the inhibitor or modulator, and the "caged" drug can be accurately released at the intended site, thus avoiding adverse effects. This review, from a viewpoint of materials, focuses on the recent advances in modulating Aβ aggregation by light that irradiates on the materials that function on modulating Aβ aggregation. Representative examples of PTT, PDT, and photoresponsive drug release systems are discussed in terms of inhibitory mechanism, the unique properties of materials, and the design of modulators. The major challenges of phototherapy against AD are addressed and the promising prospects are proposed. It is concluded that the noninvasive light-assisted approaches will become a promising strategy for intensifying the modulation of Aβ aggregation and thus facilitating AD treatment. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) with the hallmark of amyloid-β protein (Aβ) deposition is affecting more than 50 million people globally. It is urgent to explore intelligent materials to modulate Aβ aggregation. This review summarizes the intensified modulation of Aβ aggregation by a variety of photoresponsive materials including photothermal, photosensitizing and photoresponsive release materials, focusing on their characteristics and functionalities. We believe this review would arouse more interest in the research field of stimuli-responsive materials and promote their clinical applications in AD therapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
26
|
Curcumin ligand based iridium(III) complexes as inhibition and visualization agent of beta-amyloid fibrillation. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
27
|
Liu Y, Zheng Y, Li S, Li J, Du X, Ma Y, Liao G, Wang Q, Yang X, Wang K. Contradictory effect of gold nanoparticle-decorated molybdenum sulfide nanocomposites on amyloid-β-40 aggregation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Polovyi IO, Gnatyuk OP, Pyrshev KO, Hanulia TO, Doroshenko TP, Karakhim SA, Posudievsky OY, Kondratyuk AS, Koshechko VG, Dovbeshko GI. Dual effect of 2D WS 2 nanoparticles on the lysozyme conformation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140556. [PMID: 33075478 DOI: 10.1016/j.bbapap.2020.140556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/17/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
In the present work we studied the effect of 2D WS2 nanoparticles on the conformational changes in lysozyme protein at different pH values (2.0-11.5). The contributions of various structural conformations (α-helix, β-sheets parallel and antiparallel, unordered structure and side groups) were determined by decomposition of Amid I absorbance bands. The 2D WS2 were shown to have different impact on secondary structure depending on pH of the solution and protein concentration. The amyloid fibril presence was confirmed with confocal microscopy enhanced by gold support, and fluorescent spectroscopy with amyloid-sensitive dye Thioflavin T. Our data show that WS2 can both inhibit and stimulate amyloid formation. Additionally, we have also reported an unusual spectroscopic behavior displayed by lysozyme, indicated by narrowing of Amide I and Amide II bands at pH 2.5 and 3.5 when incubated with 2D WS2 nanoparticles.
Collapse
Affiliation(s)
- I O Polovyi
- Institute of Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 46, Kyiv 03028, Ukraine.
| | - O P Gnatyuk
- Institute of Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 46, Kyiv 03028, Ukraine
| | - K O Pyrshev
- Institute of Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 46, Kyiv 03028, Ukraine; O.V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovycha street, 9, Kyiv 01054, Ukraine
| | - T O Hanulia
- Institute of Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 46, Kyiv 03028, Ukraine; Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, Okolna street, 2, Wroclaw 50-422, Poland
| | - T P Doroshenko
- V. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 41, Kyiv 03028, Ukraine
| | - S A Karakhim
- O.V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovycha street, 9, Kyiv 01054, Ukraine
| | - O Yu Posudievsky
- L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Nauky avenue, 31, Kyiv 03028, Ukraine
| | - A S Kondratyuk
- L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Nauky avenue, 31, Kyiv 03028, Ukraine
| | - V G Koshechko
- L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Nauky avenue, 31, Kyiv 03028, Ukraine
| | - G I Dovbeshko
- Institute of Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 46, Kyiv 03028, Ukraine
| |
Collapse
|
29
|
Ma M, Gao N, Li X, Liu Z, Pi Z, Du X, Ren J, Qu X. A Biocompatible Second Near-Infrared Nanozyme for Spatiotemporal and Non-Invasive Attenuation of Amyloid Deposition through Scalp and Skull. ACS NANO 2020; 14:9894-9903. [PMID: 32806077 DOI: 10.1021/acsnano.0c02733] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phototherapy, such as photodynamic therapy and photothermal therapy, holds great potential for modulation of Alzheimer's β-amyloid (Aβ) self-assembly. Unfortunately, current works for phototherapy of Alzheimer's disease (AD) are just employing either visible or first near-infrared (NIR-I) light with limited tissue penetration, which can not avoid damaging nearby normal tissues of AD patients through the dense skull and scalp. To overcome the shortcomings of AD phototherapy, herein we report an amyloid targeting, N-doped three-dimensional mesoporous carbon nanosphere (KD8@N-MCNs) as a second near-infrared (NIR-II) PTT agent. This makes it possible for photothermal dissociation of Aβ aggregates through the scalp and skull in a NIR-II window without hurting nearby normal tissues. Besides, KD8@N-MCNs have both superoxide dismutase and catalase activities, which can scavenge intracellular superfluous reactive oxygen species and alleviate neuroinflammation in vivo. Furthermore, KD8@N-MCNs efficiently cross the blood-brain barrier owing to the covalently grafted target peptides of KLVFFAED on the nanosphere surface. In vivo studies demonstrate that KD8@N-MCNs decrease Aβ deposits, ameliorate memory deficits, and alleviate neuroinflammation in the 3xTg-AD mouse model. Our work provides a biocompatible and non-invasive way to attenuate AD-associated pathology.
Collapse
Affiliation(s)
- Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuexia Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zifeng Pi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| |
Collapse
|
30
|
Burilova EA, Pashirova TN, Zueva IV, Gibadullina EM, Lushchekina SV, Sapunova AS, Kayumova RM, Rogov AM, Evtjugin VG, Sudakov IA, Vyshtakalyuk AB, Voloshina AD, Bukharov SV, Burilov AR, Petrov KA, Zakharova LY, Sinyashin OG. Bi-functional sterically hindered phenol lipid-based delivery systems as potential multi-target agents against Alzheimer's disease via an intranasal route. NANOSCALE 2020; 12:13757-13770. [PMID: 32573587 DOI: 10.1039/d0nr04037a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New lipid-based nanomaterials and multi-target directed ligands (MTDLs) based on sterically hindered phenol, containing a quaternary ammonium moiety (SHP-s-R, with s = 2,3) of varying hydrophobicity (R = CH2Ph and CnH2n+1, with n = 8, 10, 12, 16), have been prepared as potential drugs against Alzheimer's disease (AD). SHP-s-R are inhibitors of human cholinesterases with antioxidant properties. The inhibitory potency of SHP-s-R and selectivity ratio of cholinesterase inhibition were found to significantly depend on the length of the methylene spacer (s) and alkyl chain length. The compound SHP-2-16 showed the best IC50 for human AChE and the highest selectivity, being 30-fold more potent than for human BChE. Molecular modeling of SHP-2-16 binding to human AChE suggests that this compound is a dual binding site inhibitor that interacts with both the peripheral anionic site and catalytic active site. The relationship between self-assembly parameters (CMC, solubilization capacity, aggregation number), antioxidant activity and a toxicological parameter (hemolytic action on human red blood cells) was investigated. Two sterically hindered phenols (SHP-2-Bn and SHP-2-R) were loaded into L-α-phosphatidylcholine (PC) nanoparticles by varying the SHP alkyl chain length. For the brain AChE inhibition assay, PC/SHP-2-Bn/SHP-2-16 nanoparticles were administered to rats intranasally at a dose of 8 mg kg-1. The Morris water maze experiment showed that scopolamine-induced AD-like dementia in rats treated with PC/SHP-2-Bn/SHP-2-16 nanoparticles was significantly reduced. This is the first example of cationic SHP-phospholipid nanoparticles for inhibition of brain cholinesterases realized by the use of intranasal administration. This route has promising potential for the treatment of AD.
Collapse
Affiliation(s)
- Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ma M, Wang Y, Gao N, Liu X, Sun Y, Ren J, Qu X. A Near-Infrared-Controllable Artificial Metalloprotease Used for Degrading Amyloid-β Monomers and Aggregates. Chemistry 2019; 25:11852-11858. [PMID: 31361361 DOI: 10.1002/chem.201902828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Proteolysis of amyloid-β (Aβ) is a promising approach against Alzheimer's disease. However, it is not feasible to employ natural hydrolases directly because of their cumbersome preparation and purification, poor stability, and hazardous immunogenicity. Therefore, artificial enzymes have been developed as potential alternatives to natural hydrolases. Since specific cleavage sites of Aβ are usually embedded inside the β-sheet structures that restrict access by artificial enzymes, this strongly hinders their efficiency for practical applications. Herein, we construct a NIR (near-IR) controllable artificial metalloprotease (MoS2 -Co) using a molybdenum disulfide nanosheet (MoS2 ) and a cobalt complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Codota). Evidenced by detailed experimental and theoretical studies, the NIR-enhanced MoS2 -Co can circumvent the restriction by simultaneously inhibition of β-sheet formation and destroying β-sheet structures of the preformed Aβ aggregates in living cell. Furthermore, our designed MoS2 -Co is an easy to graft Aβ-target agent that prevents misdirected or undesirable hydrolysis reactions, and has been demonstrated to cross the blood brain barrier. This method can be adapted for hydrolysis of other kinds of amyloids.
Collapse
Affiliation(s)
- Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Ying Wang
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xinping Liu
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Yuhuan Sun
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of, Rare Earth Resource Utilization, Changchun Institute of, Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|