1
|
Lee SB, Park JM, Park R, Choi HE, Hong SW, Kim KS. Synergistic chemo-photothermal treatment via MXene-encapsulated nanoparticles for targeted melanoma therapy. J Control Release 2025; 382:113729. [PMID: 40233827 DOI: 10.1016/j.jconrel.2025.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Owing to its high photothermal conversion efficiency, MXene has garnered strong interest in biomedical applications. MXene has demonstrated significant promise particularly in chemo-photothermal cancer therapy. However, MXene's inherent instability in aqueous environments poses challenges for advanced biological applications. Here, we address this limitation by encapsulating MXene nanoparticles (NPs) within an amphiphilic polymer matrix of hyaluronic acid and poly(lactide-co-glycolide) (HA-PLGA/MX NPs), enhancing photothermal stability and functionality in physiological conditions. Moreover, to achieve targeted chemo-photothermal therapy, we co-loaded the anticancer agent paclitaxel (PTX) with HA-PLGA/MX (HA-PLGA/MXP NPs), facilitating simultaneous delivery of heat and drug to tumor sites. The HA-PLGA/MXP NPs were synthesized using a straightforward water-oil-water emulsion method and extensively characterized for drug release assays to confirm their suitability as dual-functional nanocarriers. Both in vitro and in vivo studies demonstrated that HA-PLGA/MXP NPs, under laser irradiation, achieved obviously enhanced therapeutic efficacy, with an ∼81.9 % cell death rate and a ∼95.7 % tumor inhibition rate, outperforming the effects of chemotherapy or photothermal therapy alone. Integrating MXene in HA-PLGA encapsulation introduces a potent platform for melanoma treatment, offering synergistic therapeutic potential by combining photothermal activity with sustained drug release, highlighting a promising approach to targeted cancer therapy, and advancing the field of NP-based chemo-photothermal therapeutics.
Collapse
Affiliation(s)
- Su Bin Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong Min Park
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Rowoon Park
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; Department of Organic Materials Science and Engineering and Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Woodworth KE, Froom ZSCS, Osborne ND, Rempe CN, Wheeler B, Medd K, Callaghan NI, Qian H, Acharya AP, Charron C, Davenport Huyer L. Development of Itaconate Polymers Microparticles for Intracellular Regulation of Pro-Inflammatory Macrophage Activation. Adv Healthc Mater 2025:e2405257. [PMID: 40183748 DOI: 10.1002/adhm.202405257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Itaconate (IA) is an endogenous metabolite and a potent regulator of the innate immune system. It's use in immunomodulatory therapies has faced limitations due to challenges in controlled delivery and requirements of high extracellular concentrations for internalization of the highly polar small molecule to achieve its intracellular therapeutic activity. Microparticle (MP)-based delivery strategies are a promising approach for intracellular delivery of small molecule metabolites through macrophage phagocytosis and subsequent intracellular polymer degradation-based delivery. Toward the goal of intracellular delivery of IA, degradable polyester polymer- (poly(dodecyl itaconate)) based IA polymer microparticles (IA-MPs) are generated using an emulsion method, forming micron-scale (≈1.5 µm) degradable microspheres. IA-MPs are characterized with respect to their material properties and IA release kinetics to inform particle fabrication. Treatment of murine bone marrow-derived macrophages with an optimized particle concentration of 0.1 mg million-1 cells enables phagocytosis-mediated internalization and low levels of cytotoxicity. Flow cytometry demonstrates IA-MP-specific regulation of IA-sensitive inflammatory targets. Metabolic analyses demonstrate that IA-MP internalization inhibits oxidative metabolism and induced glycolytic reliance, consistent with the established mechanism of IA-associated inhibition of succinate dehydrogenase. This development of IA-based polymer microparticles provides a basis for additional innovative metabolite-based microparticle drug delivery systems for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Kaitlyn E Woodworth
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Natasha D Osborne
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christian N Rempe
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Brenden Wheeler
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Kyle Medd
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Neal I Callaghan
- Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Huikang Qian
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Abhinav P Acharya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Carlie Charron
- Department of Chemistry, Faculty of Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Surgery, Nova Scotia Health, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
3
|
Shaikh S, Chary PS, Mehra NK. Tyrosine Kinase Inhibitor Lenvatinib Based Nano Formulations and Cutting-Edge Scale-Up Technologies in revolutionizing Cancer Therapy. ACS APPLIED BIO MATERIALS 2025; 8:1749-1784. [PMID: 40091597 DOI: 10.1021/acsabm.4c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Lenvatinib (LEN), a tyrosine kinase inhibitor, has emerged as a promising therapeutic agent for various solid tumors. Nevertheless, a number of constraints, including diminished bioavailability, incapacity to elicit localized inflammation, and inability to selectively accumulate at the tumor site, may impede the comprehensive exploitation of its versatile tyrosine kinase inhibitory capabilities. In order to achieve targeted delivery of LEN while also reducing its high dose used in conventional therapeutics, nanoformulation approaches can be adopted. The integration of LEN into various nanoformulations, such as nanoparticles, nanocrystals, high density lipoproteins (HDLs), liposomes, and micelles, is discussed, highlighting the advantages of these innovative approaches in a comparative manner; however, given that the current methods of nanoformulation synthesis employ toxic organic solvents and chemicals, there is an imperative need for exploring alternative, environmentally friendly approaches. The multifaceted effects of nanocarriers have rendered them profoundly applicable within the biomedical domain, serving as instrumental entities in various capacities such as vehicles for drug delivery and genetic material, diagnostic agents, facilitators of photothermal therapy, and radiotherapy. However, the scalability of these nanotechnological methodologies must be rigorously investigated and addressed to refine drug delivery mechanisms. This endeavor offers promising prospects for revolutionizing strategies in cancer therapeutics, thereby laying the foundation for future research in scale-up techniques in the pursuit of more effective and less toxic therapies for cancer.
Collapse
Affiliation(s)
- Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500029, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500029, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500029, India
| |
Collapse
|
4
|
Martínez E, Gamboa J, Finkielstein CV, Cañas AI, Osorio MA, Vélez Y, Llinas N, Castro CI. Oral dosage forms for drug delivery to the colon: an existing gap between research and commercial applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:24. [PMID: 40042550 PMCID: PMC11882727 DOI: 10.1007/s10856-025-06868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Oral drug administration is the preferred route for pharmaceuticals, accounting for ~90% of the global pharmaceutical market due to its convenience and cost-effectiveness. This study provides a comprehensive scientific and technological analysis of the latest advances in oral dosage forms for colon-targeted drug delivery. Utilizing scientific and patent databases, along with a bibliometric analysis and bibliographical review, we compared the oral dosage forms (technology) with the specific application of the technology (colon delivery) using four search equations. Our findings reveal a gap in the publications and inventions associated with oral dosage forms for colon release compared to oral dosage forms for general applications. While tablets and capsules were found the most used dosage forms, other platforms such as nanoparticles, microparticles, and emulsions have been also explored. Enteric coatings are the most frequently applied excipient to prevent the early drug release in the stomach with pH-triggered systems being the predominant release mechanism. In summary, this review provides a comprehensive analysis of the last advancements and high-impact resources in the development of oral dosage forms for colon-targeted drug delivery, providing insights into the technological maturity of these approaches.
Collapse
Affiliation(s)
- Estefanía Martínez
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Jennifer Gamboa
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ana Isabel Cañas
- Micología médica y experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Marlon Andrés Osorio
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Investigación Biología de Sistemas, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Yesid Vélez
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Néstor Llinas
- Departamento de Oncología Clínica, Clínica Vida, Fundación Colombiana de Cancerología, Medellín, Colombia
| | - Cristina Isabel Castro
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia.
| |
Collapse
|
5
|
Helal DA, Osama A, El-Nabarawi MA, Teaima MH, Ibrahim Al-Samadi IE. Dual-action of clotrimazole loaded - nanosponges vaginal gel for spermicidal action and treatment of vaginal candidiasis: Optimization, in-vitro, ex-vivo, and in-vivo experiments. Int J Pharm 2025; 670:125193. [PMID: 39788399 DOI: 10.1016/j.ijpharm.2025.125193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Clotrimazole (CLO) is a strong antifungal drug approved to treat vaginal candidiasis (VC). Nanosponges (NSs) were developed to maintain providing CLO in a steady pattern with amplified accumulation in the vaginal mucosa. The quasi-emulsion solvent diffusion method was utilized to prepare NSs. The optimized NSs selected by Design Expert® exhibited a production yield percent (PY%) of 60.10 ± 0.39 %, encapsulation efficiency percent (EE%) of 91.21 ± 0.59 %, particle size (PS) 275.50 ± 0.97 nm, polydispersity index (PDI) 0.425 ± 0.01, and zeta potential (ZP) of -27.40 ± 0.25 mV. The morphological results confirmed a spongy, porous structure. Fourier Transform Infrared Spectroscopy ensured the drug encapsulation. Differential scanning calorimetric studies showed no interaction between the excipients and CLO. The prepared NSs-loaded gel of optimized CLO-NSs was evaluated, the mucoadhesive strength (6065.85 ± 52.03 dyne/cm2) with spermicidal activity of (0 % sperm motility/60 s). The ex-vivo deposition depicted significantly increased vaginal retention of CLO by 2.44-fold compared to Candistan® 2 % vaginal cream (the market product). Finally, the in-vivo study on rats demonstrated thesuperior efficacy of CLO-NSs gel relative to Candestan®, with significantly reduced inflammatory biomarkers and minimal histopathological alterations in the treatment of vaginal candidiasis with a high safety profile.
Collapse
Affiliation(s)
- Doaa A Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, El Fayoum, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Amr Osama
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, El Fayoum, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud Hassan Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Inas Essam Ibrahim Al-Samadi
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| |
Collapse
|
6
|
Woodworth KE, Froom ZSCS, Osborne ND, Rempe CN, Wheeler B, Medd K, Callaghan NI, Qian H, Acharya AP, Charron C, Huyer LD. Development of itaconate polymer microparticles for intracellular regulation of pro-inflammatory macrophage activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635692. [PMID: 39974988 PMCID: PMC11838496 DOI: 10.1101/2025.01.30.635692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Itaconate (IA) is an endogenous metabolite and a potent regulator of the innate immune system. Its use in immunomodulatory therapies has faced limitations due to inherent challenges in achieving controlled delivery and requirements for high extracellular concentrations to achieve internalization of the highly polar small molecule to achieve its intracellular therapeutic activity. Microparticle (MP)-based delivery strategies are a promising approach for intracellular delivery of small molecule metabolites through macrophage phagocytosis and subsequent intracellular polymer degradation-based delivery. Toward the goal of intracellular delivery of IA, degradable polyester polymer-(poly(itaconate-co-dodecanediol)) based IA polymer microparticles (IA-MPs) were generated using an emulsion method, forming micron-scale (∼ 1.5 µm) degradable microspheres. IA-MPs were characterized with respect to their material properties and IA release kinetics to inform particle fabrication. Treatment of murine bone marrow-derived macrophages with an optimized particle concentration of 0.1 mg/million cells enabled phagocytosis-mediated internalization and low levels of cytotoxicity. Flow cytometry demonstrated IA-MP-specific regulation of IA-sensitive inflammatory targets. Metabolic analyses demonstrated that IA-MP internalization inhibited oxidative metabolism and induced glycolytic reliance, consistent with the established mechanism of IA-associated inhibition of succinate dehydrogenase. This development of IA-based polymer microparticles provides a basis for additional innovative metabolite-based microparticle drug delivery systems for the treatment of inflammatory disease.
Collapse
|
7
|
Slavkova M, Voycheva C, Popova T, Tzankov B, Tzankova D, Spassova I, Kovacheva D, Stefanova D, Tzankova V, Yoncheva K. Ophthalmic In Situ Nanocomposite Gel for Delivery of a Hydrophobic Antioxidant. Gels 2025; 11:105. [PMID: 39996648 PMCID: PMC11854355 DOI: 10.3390/gels11020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
The topical administration of in situ hydrogels for ocular pathologies is a promising application strategy for providing high effectiveness and patient compliance. Curcumin, a natural polyphenol, possesses all the prerequisites for successful therapy of ophthalmic diseases, but unfortunately its physicochemical properties hurdle the practical use. Applying a composite in situ thermoresponsive hydrogel formulation embedded with polymer nanoparticles is a potent strategy to overcome all the identified drawbacks. In the present work we prepared uniform spherical nanoparticles (296.4 ± 3.1 nm) efficiently loaded with curcumin (EE% 82.5 ± 2.3%) based on the biocompatible and biodegradable poly-(lactic-co-glycolic acid). They were thoroughly physicochemically characterized in terms of FTIR, SEM, TGA, and DLS, in vitro release following Fickian diffusion (45.62 ± 2.37%), and stability over 6 months. Their lack of cytotoxicity was demonstrated in vitro on HaCaT cell lines, and the potential for antioxidant protection was also outlined, starting from concentrations as low as 0.1 µM and reaching 41% protection at 5 µM. An in situ thermoresponsive hydrogel (17% w/v poloxamer 407 and 0.1% Carbopol) with suitable properties for ophthalmic application was optimized with respect to gelation temperature (31.40 ± 0.36 °C), gelling time (8.99 ± 0.28 s) upon tears dilution, and gel erosion (90.75 ± 4.06%). Upon curcumin-loaded nanoparticle embedding, the in situ hydrogels demonstrated appropriate pseudoplastic behavior and viscosity at 35 °C (2129 ± 24 Pa∙s), 6-fold increase in the permeation, and prolonged release over 6 h.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.); (K.Y.)
| | - Christina Voycheva
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.); (K.Y.)
| | - Teodora Popova
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.); (K.Y.)
| | - Borislav Tzankov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.); (K.Y.)
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Denitsa Stefanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.S.); (V.T.)
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.S.); (V.T.)
| | - Krassimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.); (K.Y.)
| |
Collapse
|
8
|
Xie J, Li K, Chen L, Zhong H, Xiao T, Chen L, He H, Liu H, Zhang G. Long-acting release of fluocinolone acetonide microspheres using electrospray technology for noninfectious uveitis therapy. Pharm Dev Technol 2025; 30:210-219. [PMID: 39899473 DOI: 10.1080/10837450.2025.2462998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Intravitreous long-acting drug delivery system offers an excellent alternative to multiple injections for the treatment of noninfectious uveitis (NIU). However, the adverse effects of non-biodegradable intravitreal implants of fluocinolone acetonide (FA), such as postoperative hypotony and secondary injury during removal of the implant matrix, are frequent occurrence to affect patient's compliance. Herein, biodegradable poly (lactic-co-glycolic acid) (PLGA)-based microspheres (MS) containing fluocinolone acetonide (FA@MS) were prepared using an optimized electrospray technology with a voltage of 10.07 kV and the receiving distance of 9.87 cm. The obtained FA@MS with the average particle size of 2.25 μm possessed the high encapsulation efficiency (94.85%) and drug content (9.48%). In vitro release demonstrated that FA@MS exhibited sustained release for 30 days, and the release characteristic of FA@MS conformed to the Weibull model. In vivo study in a rabbit NIU model indicated that FA@MS continuously released the drug for at least 28 days in vitreum and progressively decreased inflammation of NIU. Furthermore, the intraocular pressure of rabbits treated with blank MS and FA@MS remained the normal level for 28 days, which demonstrated the favorable biosafety of FA@MS. In conclusion, long-acting release of FA@MS provides a promising formulation for NIU treatment. HIGHLIGHTSA biodegradable FA@MS was prepared using the modified electrospray technology for intravitreal administration.FA@MS exhibited the sustained release characteristics for 30 days in the medium of PBS (pH 7.4) with 0.2% Tween 80.The pharmacodynamics indicated that FA@MS could be continuously released for at least 28 days in vitreum to treat NIU.
Collapse
Affiliation(s)
- Jiayu Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Ke Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Lusi Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Huiying Zhong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Tao Xiao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Lihua Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Haibing He
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Hongfei Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
- Jiangsu Haizhihong Biomedicine Co., Ltd, Nantong, China
| | - Guoqing Zhang
- Research and Development Center, Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, China
| |
Collapse
|
9
|
Zhang M, Wang C, Pan J, Wang M, Cui H, Zhao X. Preparation and evaluation of oral insulin nanocapsule delivery systems. Int J Biol Macromol 2025; 290:138727. [PMID: 39672446 DOI: 10.1016/j.ijbiomac.2024.138727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Insulin therapy is essential for regulating blood sugar levels. Conventional subcutaneous injection is prone to psychological stress, local tissue damage and severe blood glucose fluctuations, and thus the development of oral insulin technology has become an alternative therapy. However, oral insulin faces challenges such as difficult absorption, poor adhesion, low bioavailability, and short duration of action, due to the large molecular weight, low permeability, and easily degradable by enzymes and gastric acids. In this study, oral insulin nanocapsule delivery systems (Orl-Ins-NPs) were developed by using polylactic acid-co-glycolic acid (PLGA) as the encapsulation material for insulin loading. After preparation, optimization and characterization, the mean size of Orl-Ins-NPs was 140.08 nm, the encapsulation efficiency of the system was 54.3 %, and the loading capacity of insulin was 2.2 %. In addition, cationic modification with chitosan/ polyethyleneimine promoted adhesion and permeation of the intestinal mucus layer, and surface coating with pH-responsive methyl methacrylate trimethylamine ethyl chloride copolymer achieved 100 % gastric protection. The results of rat blood glucose test showed that, subcutaneous injection of the control group reduced blood glucose concentrations within 1 h and returned to initial levels within 4 h, while Orl-Ins-NPs slowly reduced blood glucose concentration to 51.3 % of the initial level and maintains stability within 10 h. Orl-Ins-NPs exhibited good physicochemical stabilities, sustained release property, improved in vitro acid resistance, as well as long-term in vivo hypoglycemic effect. This system demonstrates its potential clinical application in oral insulin and other protein drugs delivery.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengjie Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Saleh SR, Khamiss SE, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Thabet EH, Ghareeb DA, Awad D, El-Bessoumy AA. Biochemical investigation and in silico analysis of the therapeutic efficacy of Ipriflavone through Tet-1 Surface-Modified-PLGA nanoparticles in Streptozotocin-Induced Alzheimer's like Disease: Reduced oxidative damage and etiological Descriptors. Int J Pharm 2025; 669:125021. [PMID: 39631714 DOI: 10.1016/j.ijpharm.2024.125021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Ipriflavone (IPRI), an isoflavone derivative, is clinically used to prevent postmenopausal bone loss in addition to its antioxidant and cognitive benefits. However, its poor aqueous solubility retained its bioavailability. New strategies have been developed to improve the bioavailability and solubility of neurological medications to enhance their potency and limit adverse effects. This study aimed to prepare targeted IPRI-poly-lactic-co-glycolic acid (PLGA) nanoparticles coupled with Tet-1 peptide to increase the therapeutic potency of IPRI in a rat model of Alzheimer's disease (AD). Streptozotocin (STZ) exacerbates Alzheimer-related alterations by promoting central insulin resistance resulted from defective signaling pathways related to neuroinflammation and neurotoxicity. Bilateral intracerebroventricular (icv) injection of STZ was used to introduce the AD model. Icv-STZ injection significantly affected brain insulin, oxidative stress, inflammatory, and apoptotic indicators and caused behavioral abnormalities. STZ promoted the formation of amyloid β42 (Aβ42) by increasing BACE1 and reducing ADAM10 and ADAM17 expression levels. STZ also triggered the accumulation of neurofibrillary tangles and synaptic dysfunction, which are crucial for neurological impairments. Icv-STZ injection showed evident degenerative changes in the pyramidal cell layer and significantly reduced the count of viable cells in both CA1 and prefrontal cortex, indicating increased neuronal cell death. IPRI successfully ameliorated cognitive dysfunction by improving the phosphorylated forms of cAMP-response element-binding protein (pCREB) and extracellular signal-regulated kinase 1/2 (pERK1/2) related to synaptic plasticity. Targeted IPRI nanoparticles exceeded free IPRI potential in reducing oxidative stress, acetylcholinesterase/monoamine oxidase activities, Tau phosphorylation, and Aβ42 levels revealing less degenerative changes and increased viable neuron counts. IPRI-targeted nanoparticles improved the neuroprotective potential of free IPRI, making this strategy applicable to treat many neurodegenerative diseases. Finally, the in silico study predicted its ability to cross the BBB and to bind various protein targets in the brain.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Salma E Khamiss
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Eman H Thabet
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Doaa Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Ashraf A El-Bessoumy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
11
|
De Soricellis C, Amante C, Russo P, Aquino RP, Del Gaudio P. Prilling as an Effective Tool for Manufacturing Submicrometric and Nanometric PLGA Particles for Controlled Drug Delivery to Wounds: Stability and Curcumin Release. Pharmaceutics 2025; 17:129. [PMID: 39861775 PMCID: PMC11768656 DOI: 10.3390/pharmaceutics17010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug. METHODS Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis. RESULTS Particles mean diameter (d50) 316 and 452 nm, depending on drug-loaded cargo as Curcumin-loaded PLGA nanoparticles demonstrated high encapsulation efficiency, assessed via HPLC analysis, stability, and controlled release profiles. In vitro studies revealed a faster release for lower drug loadings (90% release in 6 h) compared to sustained release over 7 days for higher-loaded nanoparticles, attributed to polymer degradation and drug-polymer interactions on the surface of the particles, as confirmed by FTIR analyses. CONCLUSIONS These findings underline the potential of this scalable technique for biomedical applications, offering a versatile platform for designing drug delivery systems with tailored release characteristics.
Collapse
Affiliation(s)
| | | | | | | | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
12
|
Tehrani SF, Garcia Ac A, Minani Tuyaga MA, Rode Garcia T, Banquy X, Roullin VG. Critical assessment of purification processes for the robust production of polymeric nanomedicine. Int J Pharm 2025; 668:124975. [PMID: 39580106 DOI: 10.1016/j.ijpharm.2024.124975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Polymeric nanoparticles are among the most widely used nanocarriers for delivering therapeutic molecules. However, their synthesis processes often generate undesirable impurities that could be toxic and challenging to eliminate. In this study, we compared three purification techniques - centrifugation, dialysis, and tangential flow filtration (TFF) - to evaluate their efficacy in removing residual drug, surfactant, and solvent while preserving the nanoparticles' physicochemical features (hydrodynamic size, zeta potential, polydispersity index). Centrifugation excels in eliminating unencapsulated drug and residual surfactant but significantly affects the nanoparticles' physicochemical properties, such as colloidal stability and size homogeneity. On the other hand, dialysis is a gentler technique effective in removing residual solvent but less so for residual surfactant and unencapsulated drug. TFF emerges as a balanced approach, offering a compromise between the two but none of these techniques achieves satisfactory purification at lab-scale alone. While each technique has its merits, none can meet all requirements independently. The optimal purification strategy often involves a combination of techniques, determined on a case-by-case basis considering factors like purity levels, time, costs, and the preservation of critical properties such as drug loading and colloidal stability. This study underscores the need for a nuanced approach in selecting purification strategies for polymeric nanoparticles in drug delivery applications.
Collapse
Affiliation(s)
- Soudeh F Tehrani
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada
| | - Araceli Garcia Ac
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Xavier Banquy
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada.
| | - V Gaëlle Roullin
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
13
|
Seegobin N, Abdalla Y, Li G, Murdan S, Shorthouse D, Basit AW. Optimising the production of PLGA nanoparticles by combining design of experiment and machine learning. Int J Pharm 2024; 667:124905. [PMID: 39491656 DOI: 10.1016/j.ijpharm.2024.124905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer in drug delivery and nanoparticle (NP) formulation due to its controlled drug release properties and safety profiles. Among the methods available for NP production, nanoprecipitation is distinguished by its simplicity and scalability. However, it requires careful optimisation to achieve the desired NP characteristics, making the process potentially lengthy and costly. This study aimed to assess and compare the predictive performance of Design of Experiments (DOE) and Machine Learning (ML) models for the optimisation of PLGA nanoparticle size and zeta potential produced by nanoprecipitation. Various ML methods were employed to predict particle size, with Extreme Gradient Boosting (XGBoost) identified as the best performing. The key finding is that integrating ML with DOE provides deeper insights into the dataset than either method alone. While ML outperformed DOE in predictive performance, as evidenced by lower root mean squared error values and higher coefficients of determination, both methods struggled to accurately predict zeta potential, generating models with high errors. However, ML proved more effective in identifying the parameters that most significantly influence NP size, even with a smaller DOE dataset. Combining DOE datasets with ML for parameter importance was particularly advantageous in situations where data is limited, offering superior predictive power and the potential to streamline experimental design and optimisation. These results suggest that the synergistic use of ML and DOE can lead to more robust feature analysis and improved optimisation outcomes, particularly for NP size. This integrated approach can enhance the accuracy of predictions and supports more efficient experimental design, streamlining nanoparticle production processes, especially under resource-constrained conditions.
Collapse
Affiliation(s)
- Nidhi Seegobin
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Youssef Abdalla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Ge Li
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - David Shorthouse
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
14
|
Haider M, Jagal J, Ali Alghamdi M, Haider Y, Hassan HAFM, Najm MB, Jayakuma MN, Ezzat H, Greish K. Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer. Int J Pharm 2024; 666:124825. [PMID: 39401579 DOI: 10.1016/j.ijpharm.2024.124825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remain a major oncological challenge with significant morbidity and mortality rates. Erlotinib (Er) and Curcumin (Cm) are potential therapeutic agents for HNSCC, yet they are hindered by poor solubility and bioavailability. This study explored the optimization of poly(lactic-co-glycolic acid) nanoparticles co-loaded with Er and Cm (Er/Cm-NP), prepared via a D-optimal response surface design-guided nanoprecipitation process. The optimized formulation, optEr/Cm-NP, was then incorporated into chitosan/β-glycerophosphate hydrogels (optEr/Cm-NP-HG) to create an injectable intratumoral (IT) nanocomposite hydrogel (HG) delivery system. Physicochemical properties of the formulations, including gelation time, injectability, mechanical strength and drug release profiles were assessed alongside hemolytic activity. Compared to optEr/Cm-NP alone, the NP-loaded HG formulation exhibited a more pronounced modulation effect, enabling sustained and controlled drug release. The cytotoxicity of the developed formulations was evaluated using the FaDu HNSCC cancer cell line. Both optEr/Cm-NP and optEr/Cm-NP-HG21 displayed enhanced cytotoxicity compared to free drugs. Confocal laser microscopy and flow cytometry confirmed superior cellular uptake of Er and Cm when delivered via NPs or NP-loaded HG. Furthermore, a significant increase in apoptotic cell death upon treatment with optEr/Cm-NP was observed, highlighting its potential for HNSCC therapy. In vivo studies conducted on a xenograft HNSCC mouse model revealed the significant capacity of the intratumorally-injected optEr/Cm-NP-HG21 formulation to retard the tumor growth. Conclusively, the results presented herein report the successful development of a nanocomposite HG system incorporating NPs co-loaded with Er and Cm that could be efficiently utilized in the treatment of HNSCC.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Kingdom of Saudi Arabia; Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain
| | - Youssef Haider
- College of Engineering, Boston University, Boston, MA, USA
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Muna B Najm
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Manju N Jayakuma
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Helal Ezzat
- Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates; Civil Engineering Department, Delta Higher Institute for Engineering and Technology, Mansoura, Egypt
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain.
| |
Collapse
|
15
|
Hasan MW, Haseeb M, Gadahi JA, Ehsan M, Wang Q, Lakho SA, Haider A, Aleem MT, Aimulajiang K, Lu M, Xu L, Song X, Li X, Yan R. Nanoparticle containing recombinant excretory/secretory-24 protein of Haemonchus contortus enhanced the cellular immune responses in mice. Front Vet Sci 2024; 11:1470084. [PMID: 39600880 PMCID: PMC11588750 DOI: 10.3389/fvets.2024.1470084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Haemonchus contortus poses a global challenge as a parasite affecting small ruminants, yet the problem of absence of an effective vaccine against H. contortus infection still exists. This investigation sought to appraise the immunological reaction induced by recombinant H. contortus excretory/secretory-24 (rHcES-24) in combination with complete Freund's adjuvant (CFA) and bio-polymeric nanoparticles (NPs) within a murine model. In this study, rHcES-24 was encapsulated in poly(d, l-lactide-co-glycolide) (PLGA) and chitosan (CS) NPs, administered subcutaneously to mice. Researchers analyzed the NPs using scanning electron microscope (SEM) and assessed lymphocyte proliferation, specific antibodies, cytokines, T cell proliferation (CD3e+CD4+, CD3e+CD8a+), and phenotypic alteration in splenocytes (CD11c+CD83+, CD11c+CD86+) through flow cytometry to understand the immune response. The results demonstrated that the administration of nanovaccines (NVs) prompted immune responses towards Th1 pathway. This was indicated by notable enhancements in the production of specific antibodies, heightened cytokine levels, and a robust proliferation of lymphocytes observed in mice that received the NVs compared to control groups. Remarkably, mice vaccinated with the antigen-loaded NPs formulations exhibited considerably higher proportions of splenic dendritic cells (DCs) and T cells in comparison to those receiving the traditional adjuvant or the control groups. Incorporating HcES-24 protein into NPs effectively conferred immunity against H. contortus, paving the way for developing a targeted and commercial vaccine.
Collapse
Affiliation(s)
- Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Javaid Ali Gadahi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiangqiang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ali Haider
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Shah KA, Razzaq A, You B, Dormocara A, Iqbal H, Cui JH. Unveiling the potential of pulmonary surfactant-based nanocarriers for protein inhalation therapy. Eur J Pharm Biopharm 2024; 205:114574. [PMID: 39521354 DOI: 10.1016/j.ejpb.2024.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/31/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The study investigates the effect of pulmonary surfactant (PS) coating on the performance of lysozyme-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs). The NPs were fabricated using a double emulsification technique and optimized using the Box-Behnken experimental design (BBED). The NPs were assessed for size, polydispersity index (PDI), zeta potential, drug loading (DL%), and encapsulation efficiency (EE%). In addition, the optimized PLGA NPs were modified with either a neutral dipalmitoylphosphatidylcholine DPPC or an anionic dipalmitoyl phosphatidylglycerol (DPPG) with different molar ratios of PS to PLGA (PS: PLGA = 1:2, 1:1 and 2:1). These NPs were assessed for biological activity, drug release, mucus adhesion, mucus penetration, cellular uptake, toxicity, and in vivo destiny after intratracheal (IT) instillation to mice. Results showed a bi-phasic drug release, with no significant effect of PS on the release and biological activities of PLGA NPs. The PS@PLGA NPs improved mucus adhesion, decreased mucus penetration, and increased cellular internalization of PLGA NPs. In addition, ex vivo experiments demonstrated that DPPC@PLGA NPs and DPPG@PLGA NPs could adhere to mucus. These NPs created a thicker layer at the interface of the airway compared to unmodified PLGA NPs. Moreover, interaction of PS@PLGA NPs with BALF suggested improved mucoadhesive characteristics. Finally, the in vivo studies confirmed the precise distribution of all NPs in the lungs after IT administration. The study presents empirical evidence and scientific guidance for developing a lung surfactant-modified nanocarrier system for lung drug delivery.
Collapse
Affiliation(s)
- Kiramat Ali Shah
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Bengang You
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Amos Dormocara
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Jing-Hao Cui
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
17
|
Li R, Xu A, Chen Y, Li Y, Fu R, Jiang W, Li X. Fabrication of apigenin and adenosine-loaded nanoparticles against doxorubicin-induced myocardial infarction by reducing inflammation and oxidative stress. BMC Biotechnol 2024; 24:87. [PMID: 39501266 PMCID: PMC11539433 DOI: 10.1186/s12896-024-00912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
The study's goals are to fabricate PLGA nanoparticles (PNPs) loaded with apigenin (AP) and adenosine (AD) using a microfluidic preparation method to a standard emulsification method and investigate the possible heart-protective effects of AP-AD PNPs made using the emulsification method. Compared to microfluidics, the emulsification method fabricated small-size nanoparticles, which are better at encapsulating drugs, retaining more drugs, and having a low viscosity for the myocardial infarction (MI) injection. TheMI model was developed using SD rats injected under the skin with 85 mg/kg doxorubicin (DOX) for 2 days. The metabolic results showed that our AP-AD PNPs accelerated the blood flow in rats with MI, which increased the amounts of AP and AD in the circulatory system. This led to significant improvements in the cardiac index and lower amounts of AST, LDH, and CK in the blood. A histopathological study using Hematoxylin&eosin, and TUNEL staining showed that cardiac function had improved and apoptosis had decreased. Moreover, tests that checked the amounts of IL-6, TNF-α, NO, GSH, MDA, and SOD showed that AP-AD PNPs may help treat MI by reducing oxidative stress and inflammation, making it a potentially useful therapeutic approach.
Collapse
Affiliation(s)
- Ruixuan Li
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Aixia Xu
- Department of Endocrinology, Changsha Central Hospital, Changsha, 410007, China
| | - Ye Chen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yihui Li
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ru Fu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Weihong Jiang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Xiaogang Li
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
18
|
Virameteekul S, Lees AJ, Bhidayasiri R. Small Particles, Big Potential: Polymeric Nanoparticles for Drug Delivery in Parkinson's Disease. Mov Disord 2024; 39:1922-1937. [PMID: 39077831 DOI: 10.1002/mds.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Despite the availability of a number of efficacious treatments for Parkinson's disease, their limitations and drawbacks, particularly related to low brain bioavailability and associated side effects, emphasize the need for alternative and more effective therapeutic approaches. Nanomedicine, the application of nanotechnology in medicine, has received considerable interest in recent years as a method of effectively delivering potentially therapeutic molecules to the brain. In particular, polymeric nanoparticles, constructed from biodegradable polymer, have shown great promise in enhancing therapeutic efficacy, reducing toxicity, and ensuring targeted delivery. However, their clinical translation remains a considerable challenge. This article reviews recent in vitro and in vivo studies using polymeric nanoparticles as drug and gene delivery systems for Parkinson's disease with their challenges and future directions. We are also particularly interested in the technical properties, mechanism, drugs release patterns, and delivery strategies to overcome the blood-brain barrier. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sasivimol Virameteekul
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
19
|
Cucoveica O, Stadoleanu C, Bertsch C, Triaud R, Condriuc IP, Atanase LI, Delaite C. Colloidal Characteristics of Poly(L-Lactic Acid)-b-Poly (ε-Caprolactone) Block Copolymer-Based Nanoparticles Obtained by an Emulsification/Evaporation Method. Polymers (Basel) 2024; 16:2748. [PMID: 39408458 PMCID: PMC11479068 DOI: 10.3390/polym16192748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL), two biodegradable and biocompatible polymers that are commonly used for biomedical applications, are, respectively, the result of the ring-opening polymerization of LA and ε-CL, cyclic esters, which can be produced according to several mechanisms (cationic, monomer-activated cationic, anionic, and coordination-insertion), except for L-lactide, which is polymerized only by anionic, cationic, or coordination-insertion polymerization. A series of well-defined PLLA-b-PCL block copolymers have been obtained starting from the same PLLA homopolymer, having a molar mass of 2500 g·mol-1, and being synthesized by coordination-insertion in the presence of tin octoate. PCL blocks were obtained via a cationic-activated monomer mechanism to limit transesterification reactions, and their molar masses varied from 1800 to 18,500 g·mol-1. The physicochemical properties of the copolymers were determined by 1H NMR, SEC, and DSC. Moreover, a series of nanoparticles (NPs) were prepared starting from these polyester-based copolymers by an emulsification/evaporation method. The sizes of the obtained NPs varied between 140 and 150 nm, as a function of the molar mass of the copolymers. Monomodal distribution curves with PDI values under 0.1 were obtained by Dynamic Light Scattering (DLS) and their spherical shape was confirmed by TEM. The increase in the temperature from 25 to 37 °C induced only a very slight decrease in the NP sizes. The results obtained in this preliminary study indicate that NPs have a temperature stability, allowing us to consider their use as drug-loaded nanocarriers for biomedical applications.
Collapse
Affiliation(s)
- Oana Cucoveica
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania;
| | - Carmen Stadoleanu
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania;
| | - Christelle Bertsch
- Laboratoire de Photochimie et d’Ingénierie Macromoléculaires (LPIM), Université de Haute Alsace (UHA), 68100 Mulhouse, France; (C.B.); (R.T.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Romain Triaud
- Laboratoire de Photochimie et d’Ingénierie Macromoléculaires (LPIM), Université de Haute Alsace (UHA), 68100 Mulhouse, France; (C.B.); (R.T.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Iustina Petra Condriuc
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Leonard Ionut Atanase
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania;
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Christelle Delaite
- Laboratoire de Photochimie et d’Ingénierie Macromoléculaires (LPIM), Université de Haute Alsace (UHA), 68100 Mulhouse, France; (C.B.); (R.T.)
- Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
20
|
Tanna V, Vora A, Shah P, Nair AB, Shah J, Sawarkar SP. PLGA Nanoparticles Based Mucoadhesive Nasal In Situ Gel for Enhanced Brain Delivery of Topiramate. AAPS PharmSciTech 2024; 25:205. [PMID: 39237656 DOI: 10.1208/s12249-024-02917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Oral Topiramate therapy is associated with systemic adverse effects including paresthesia,abdominal pain, and fluctuations in plasma levels. The purpose of this research was to develop an intranasal in situ gel based system comprising Topiramate polymeric nanoparticles and evaluate its potential both in vitro and in vivo. Poly (lactic-co-glycolic acid) (PLGA)nanoparticles prepared by nanoprecipitation method were added into the in situ gelling system of Poloxamer 407 and HPMC K4M. Selected formulation (TG5) was evaluated for physicochemical properties, nasal permeation and in vivo pharmacokinetics in rats. PLGAnanoparticles (O1) exhibited low particle size (~ 144.4 nm), good polydispersity index (0.202), negative zeta potential (-12.7 mV), and adequate entrapment efficiency (64.7%). Developed in situ gel showed ideal pH (6.5), good gelling time (35 s), gelling temperature(37℃), suitable viscosity (1335 cP)and drug content of 96.2%. In vitro drug release conformedto Higuchi release kinetics, exhibiting a biphasic pattern of initial burst release and sustained release for 24 h. Oral administration of the drug to Sprague-Dawley rats (G3) showed higher plasma Cmax(504 ng/ml, p < 0.0001) when compared to nasal delivery of in situ gel (G4) or solution (G5). Additionally, AUC0-α of G3 (8786.82 ng/ml*h) was considerably higher than othergroups. Brain uptake data indicates a higher drug level with G4 (112.47 ng /ml) at 12 h when compared to G3. Histopathological examination of groups; G1 (intranasal saline), G2(intranasal placebo), G3, G4, and G5 did not show any lesions of pathological significance. Overall, the experimental results observed were promising and substantiated the potential of developed in situ gel for intranasal delivery.
Collapse
Affiliation(s)
- Vidhi Tanna
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India
| | - Amisha Vora
- Department of Pharmaceutical Chemistry, ShobhabenPratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS University, Mumbai, Maharashtra, India
| | - Pranav Shah
- Department of Pharmaceutics & Pharmaceutical Technology, Maliba Pharmacy College, UkaTarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, Surat, Gujarat, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| |
Collapse
|
21
|
Marecki EK, Oh KW, Knight PR, Davidson BA. Poly(lactic-co-glycolic acid) nanoparticle fabrication, functionalization, and biological considerations for drug delivery. BIOMICROFLUIDICS 2024; 18:051503. [PMID: 39296325 PMCID: PMC11410388 DOI: 10.1063/5.0201465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Nanoparticles can be used for drug delivery and consist of many sizes and chemical compositions. They can accommodate a diverse population of drugs and can be made to target specific areas of the body. Fabrication methods generally follow either top-down or bottom-up manufacturing techniques, which have differing production controls, which determine nanoparticle characteristics including but not limited to size and encapsulation efficiency. Functionalizing these nanoparticles is done to add drugs, prevent aggregation, add positive charge, add targeting, etc. As the nanoparticles reach the target cells, cellular uptake occurs, drug is released, and the nanoparticle is broken down. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles have often been used for drug delivery applications as they have shown minimal toxicity, which has helped with US FDA approval. This review breaks down PLGA nanoparticle fabrication, functionalization, and biological considerations.
Collapse
Affiliation(s)
| | | | - Paul R Knight
- Department of Anesthesiology, The State University of New York at Buffalo, Buffalo, New York 14203, USA
| | - Bruce A Davidson
- Department of Anesthesiology, The State University of New York at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
22
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
23
|
Almeida DRS, Gil JF, Guillot AJ, Li J, Pinto RJB, Santos HA, Gonçalves G. Advances in Microfluidic-Based Core@Shell Nanoparticles Fabrication for Cancer Applications. Adv Healthc Mater 2024; 13:e2400946. [PMID: 38736024 DOI: 10.1002/adhm.202400946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Current research in cancer therapy focuses on personalized therapies, through nanotechnology-based targeted drug delivery systems. Particularly, controlled drug release with nanoparticles (NPs) can be designed to safely transport various active agents, optimizing delivery to specific organs and tumors, minimizing side effects. The use of microfluidics (MFs) in this field has stood out against conventional methods by allowing precise control over parameters like size, structure, composition, and mechanical/biological properties of nanoscale carriers. This review compiles applications of microfluidics in the production of core-shell NPs (CSNPs) for cancer therapy, discussing the versatility inherent in various microchannel and/or micromixer setups and showcasing how these setups can be utilized individually or in combination, as well as how this technology allows the development of new advances in more efficient and controlled fabrication of core-shell nanoformulations. Recent biological studies have achieved an effective, safe, and controlled delivery of otherwise unreliable encapsulants such as small interfering RNA (siRNA), plasmid DNA (pDNA), and cisplatin as a result of precisely tuned fabrication of nanocarriers, showing that this technology is paving the way for innovative strategies in cancer therapy nanofabrication, characterized by continuous production and high reproducibility. Finally, this review analyzes the technical, biological, and technological limitations that currently prevent this technology from becoming the standard.
Collapse
Affiliation(s)
- Duarte R S Almeida
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| | - João Ferreira Gil
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, Burjassot, Valencia, 46100, Spain
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Jiachen Li
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Ricardo J B Pinto
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Gil Gonçalves
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| |
Collapse
|
24
|
Suwanpitak K, Huanbutta K, Weeranoppanant N, Sriamornsak P, Panpipat C, Sangnim T. Optimization of Lipid-Based Nanoparticles Formulation Loaded with Biological Product Using A Novel Design Vortex Tube Reactor via Flow Chemistry. Int J Nanomedicine 2024; 19:8729-8750. [PMID: 39220197 PMCID: PMC11365505 DOI: 10.2147/ijn.s474775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Lipid-based nanoparticles (LNPs) is increasingly recognized for their potential in drug delivery, offering protection to hydrophobic drugs from degradation. Industrial synthesis of LNPs, exemplified by Pfizer-BioNTech and Moderna mRNA vaccines, utilizes flow chemistry or microfluidics, showcasing its scalability. This study explores the utilization of a novel design reactor, the vortex tube reactor, within flow chemistry for LNPs synthesis, aiming to optimize its conditions and compare them with batch synthesis. Methods LNPs were synthesized using the vortex tube reactor, incorporating bovine serum albumin (BSA) as a model drug in the aqueous phase, alongside 1.2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol in the organic phase. Design of experiments (DoE), specifically Box-Behnken design, was employed to optimize parameters, including X1: the flow rate ratio (10-100 mL/min), X2: the aqueous-to-organic volumetric ratio (1:1-10:1), and X3: the number of reactor units (1-5 units). Responses evaluated encompassed physical properties and productivity. Optimized conditions were determined by minimizing particle size (Y1), polydispersity index (Y2), and zeta potential (Y3), while maximizing entrapment efficiency (Y4), drug loading (Y5), and productivity (Y5). Results Results indicated that optimal conditions were achieved at X1 of 100 mL/min, X2 of 5.278, and X3 of 1 unit. LNPs synthesized under these conditions exhibited favorable physical properties and productivity, with uniformity maintained across batches. The vortex tube reactor demonstrated superiority over batch synthesis, yielding smaller particles (166.23 ± 0.98 nm), more uniform nanoparticles (PDI 0.17 ± 0.01), and higher entrapment (67.75 ± 1.55%) and loading capacities (36.39 ± 0.83%), indicative of enhanced productivity (313.4 ± 12.88 mg/min). Conclusion This study elucidates the potential of flow chemistry, particularly utilizing the vortex tube reactor, for large-scale LNPs formulation, offering insights into parameter relationships and advancing nanoparticle synthesis for drug delivery applications.
Collapse
Affiliation(s)
- Kittipat Suwanpitak
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand
| | - Nopphon Weeranoppanant
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, 20131, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
- Academy of Science, the Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Chonlada Panpipat
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, 20131, Thailand
| |
Collapse
|
25
|
Choudhury K, Sen P, Ghosh SS. SAHA potentiates the activity of repurposed drug promethazine loaded PLGA nanoparticles in triple-negative breast cancer cells. NANOTECHNOLOGY 2024; 35:465102. [PMID: 39146954 DOI: 10.1088/1361-6528/ad6fa6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Triple-negative breast cancer (TNBC) is considered the most aggressive form of breast cancer owing to the negative expression of targetable bioreceptors. Epithelial to mesenchymal transition (EMT) associated with metastatic abilities is its critical feature. As an attempt to target TNBC, nanotechnology was utilised to augment the effects of drug repurposing. Concerning that, a combination therapeutic module was structured with one of the aspects being a repurposed antihistamine, promethazine hydrochloride loaded PLGA nanoparticles. The as-synthesized nanoparticles were 217 nm in size and fluoresced at 522 nm, rendering them suitable for theranostic applications too. The second feature of the module was a common histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), used as a form of pre-treatment. Experimental studies demonstrated efficient cellular internalisation and significant innate anti-proliferative potential. The use of SAHA sensitised the cells to the drug loaded nanoparticle treatment. Mechanistic studies showed increase in ROS generation, mitochondrial dysfunction followed by apoptosis. Investigations into protein expression also revealed reduction of mesenchymal proteins like vimentin by 1.90 fold; while increase in epithelial marker like E-Cadherin by 1.42 fold, thus indicating an altered EMT dynamics. Further findings also provided better insight into the benefits of SAHA potentiated targeting of tumor spheroids that mimic solid tumors of TNBC. Thus, this study paves the avenue to a more rational translational validation of combining nanotherapeutics with drug repurposing.
Collapse
Affiliation(s)
- Konika Choudhury
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
26
|
Wen J, Guan Y, Niu H, Dang Y, Guan J. Targeting cardiac resident CCR2+ macrophage-secreted MCP-1 to attenuate inflammation after myocardial infarction. Acta Biomater 2024:S1742-7061(24)00469-0. [PMID: 39182804 PMCID: PMC11846964 DOI: 10.1016/j.actbio.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
After myocardial infarction (MI), cardiac resident CCR2+ macrophages release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in recruiting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. We hypothesized that neutralizing the MCP-1 secreted by cardiac resident CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes and their differentiation into macrophages. In this work, we developed nanoparticles that target the infarcted heart, specifically accumulating in the damaged area after intravenous (IV) administration, and docking onto CCR2+ macrophages. These nanoparticles were designed to slowly release an MCP-1 binding peptide, HSWRHFHTLGGG (HSW), which neutralizes the upregulated MCP-1. We showed that the HSW reduced monocyte migration, inhibited pro-inflammatory cytokine upregulation, and suppressed myofibroblast differentiation in vitro. After IV delivery, the released HSW significantly decreased monocyte recruitment and pro-inflammatory macrophage density, increased cardiac cell survival, attenuated cardiac fibrosis, and improved cardiac function. Taken together, our findings support the strategy of MCP-1 neutralization at the acute phase of MI as a promising way to alleviate post-MI inflammation. STATEMENT OF SIGNIFICANCE: After a myocardial infarction (MI), CCR2+ macrophages resident in the heart release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in attracting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. In this work, we tested the hypothesis that neutralizing the MCP-1 secreted by cardiac CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes.
Collapse
Affiliation(s)
- Jiaxing Wen
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Ya Guan
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Yu Dang
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Jianjun Guan
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA.
| |
Collapse
|
27
|
Mashal M, Attia N, Maldonado I, Enríquez Rodríguez L, Gallego I, Puras G, Pedraz JL. Comparative analysis of lipid-peptide nanoparticles prepared via microfluidics, reverse phase evaporation, and ouzo techniques for efficient plasmid DNA delivery. Eur J Pharm Biopharm 2024; 201:114385. [PMID: 38945408 DOI: 10.1016/j.ejpb.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
In the current "era of lipid carriers," numerous strategies have been developed to manufacture lipid nanoparticles (LNPs). Nevertheless, the potential impact of various preparation methods on the characteristics, use, and/or stability of these LNPs remains unclear. In this work, we attempted to compare the effects of three different preparation methods: microfluidics (MF), reverse phase evaporation (RV), and ouzo (OZ) on lipid-peptide NPs (LPNPs) as plasmid DNA delivery carriers. These LPNPs had the same components, namely DOTMA cationic lipid, DSPC, cholesterol, and protamine. Subsequently, we compared the LPNPs in terms of their physicochemical features, functionality as gene delivery vehicles in two distinct cell lines (NT2 and D1-MSCs), and finally, their storage stability over a six-month period. It was clear that all three LPNP formulations worked to deliver EGFP-pDNA while keeping cells alive, and their physicochemical stability was high for 6 months. However, the preparation technique had a significant impact on their physicochemical characteristics. The MF produced LPNPs with a lesser size, polydispersity index, and zeta potential than the other synthesis methods. Additionally, their DNA entrapment efficiency, cell viability, and functional stability profiles were generally superior. These findings provide new insights for comparing different manufacturing methods to create LPNPs with the desired characteristics for effective and safe gene delivery.
Collapse
Affiliation(s)
- Mohamed Mashal
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Noha Attia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Histology and Cell Biology Department. Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Iván Maldonado
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Lucía Enríquez Rodríguez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
28
|
Rathee A, Solanki P, Emad NA, Zai I, Ahmad S, Alam S, Alqahtani AS, Noman OM, Kohli K, Sultana Y. Posaconazole-hemp seed oil loaded nanomicelles for invasive fungal disease. Sci Rep 2024; 14:16588. [PMID: 39025925 PMCID: PMC11258229 DOI: 10.1038/s41598-024-66074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Invasive fungal infections (IFI) pose a significant health burden, leading to high morbidity, mortality, and treatment costs. This study aims to develop and characterize nanomicelles for the codelivery of posaconazole and hemp seed oil for IFI via the oral route. The nanomicelles were prepared using a nanoprecipitation method and optimized through the Box Behnken design. The optimized nanomicelles resulted in satisfactory results for zeta potential, size, PDI, entrapment efficiency, TEM, and stability studies. FTIR and DSC results confirm the compatibility and amorphous state of the prepared nanomicelles. Confocal laser scanning microscopy showed that the optimized nanomicelles penetrated the tissue more deeply (44.9µm) than the suspension (25µm). The drug-loaded nanomicelles exhibited sustained cumulative drug release of 95.48 ± 3.27% for 24 h. The nanomicelles showed significant inhibition against Aspergillus niger and Candida albicans (22.4 ± 0.21 and 32.2 ± 0.46 mm, respectively). The pharmacokinetic study on Wistar rats exhibited a 1.8-fold increase in relative bioavailability for the nanomicelles compared to the suspension. These results confirm their therapeutic efficacy and lay the groundwork for future research and clinical applications, providing a promising synergistic antifungal nanomicelles approach for treating IFIs.
Collapse
Affiliation(s)
- Anjali Rathee
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Pavitra Solanki
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Nasr A Emad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Iqra Zai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Saeem Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Shadab Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India.
| |
Collapse
|
29
|
Kushawaha SK, Ashawat MS, Soni D, Kumar P, Rimpi, Baldi A. Aurothioglucose encapsulated nanoparticles fostered neuroprotection in streptozotocin-induced Alzheimer's disease. Brain Res 2024; 1834:148906. [PMID: 38570152 DOI: 10.1016/j.brainres.2024.148906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/13/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Alzherimer's disease (AD) is an age-dependent ubiquitous ailment worldwide with limited therapies that only alleviate the symptoms of AD but do not cure them entirely because of the restricted blood-brain barrier passage of the drug. Hence with new advanced technology, nanoparticles can offer an opportunity as the active candidate to overcome the above limitations. Aurothioglucose, a synthetic glucose derivative of the gold compound, has been clinically proven to be an effective anti-inflammatory drug for rheumatic arthritis. Recently, several scientific groups have developed gold nanoparticle preparations and tested them for the treatment of dementia. This study was planned to prepare the PLGA nanoparticles of aurothioglucose (ATG) and check the neuroprotective potential against STZ-induced AD in rats. The nanoparticles were prepared using the double emulsion solvent evaporation method and characterized for various parameters such as drug-excipient interaction, particle size, zeta potential, and morphology. Then, rats were injected STZ (3 mg/kg/i.c.v., days 1 and 3) and ATG (5 and 10 mg/kg/s.c.), ATG NPs (2.5 and 5 mg/kg/s.c.) and donepezil (2 mg/kg/p.o) from 15th to 29th day. Behavior parameters were performed using an actophotometer, MWM, and ORT. On the 30th day, all the animals were sacrificed, and the brains were isolated for estimating biochemical, neurochemical, and proinflammatory markers. It was observed that ATG NPs significantly restored all behavior and neurotransmitter alterations caused by STZ. Also, it increased antioxidant levels and decreased inflammatory cytokines significantly, then ATG alone. Thus, the study suggests that ATG loaded PLGA NPs could be used as a novel therapeutic strategy to slow the process of AD.
Collapse
Affiliation(s)
- Shiv Kumar Kushawaha
- Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India
| | - Mahendra Singh Ashawat
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Distt. Kangra, Himanchal Pradesh 176031, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, India.
| | - Rimpi
- Department of Pharmaceutical Sciences, PCTE College, Baddowal, Ludhiana 141021, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India.
| |
Collapse
|
30
|
Hamdallah SI, Zoqlam R, Yang B, Campbell A, Booth R, Booth J, Belton P, Qi S. Using a systematic and quantitative approach to generate new insights into drug loading of PLGA nanoparticles using nanoprecipitation. NANOSCALE ADVANCES 2024; 6:3188-3198. [PMID: 38868816 PMCID: PMC11166107 DOI: 10.1039/d4na00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
The synthesis of drug-loaded PLGA nanoparticles through nanoprecipitation in solvent/antisolvent mixtures is well reported but lacks clarity in explaining drug loading mechanisms and the prediction of efficiency of drug entrapment. Various methods using physical parameters such as log P and solid-state drug-polymer solubility aim to predict the intensity of drug-polymer interactions but lack precision. In particular, the zero-enthalpy method for drug/polymer solubility may be intrinsically inaccurate, as we demonstrate. Conventional measurement of loading capacity (LC), expressed in weight ratios, can be misleading for comparing different drugs and we stress the importance of using molar units. This research aims to provide new insights and critically evaluate the established methodologies for drug loading of PLGA nanoparticles. The study employs four model drugs with varying solubilities in solvent/antisolvent mixtures, log P values, and solid-state solubility in PLGA: ketoprofen (KPN), indomethacin (IND), sorafenib (SFN), and clofazimine (CFZ). This study highlights that drug loading efficiency is primarily influenced by the drug's solubilities within the solvent system. We emphasise that both kinetic and thermodynamic factors play a role in the behaviour of the system by considering the changes in drug solubility during mixing. The study introduces a pseudo-constant K* to characterise drug-polymer interactions, with CFZ and SFN showing the highest K* values. Interestingly, while IND and KPN have lower K* values, they achieve higher loading capacities due to their greater solubilities, indicating the key role of solubility in determining LC.
Collapse
Affiliation(s)
- Sherif I Hamdallah
- School of Pharmacy, University of East Anglia Norwich NR4 7TJ UK
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University Alexandria Egypt
| | - Randa Zoqlam
- School of Pharmacy, University College London London WC1N 1AX UK
| | - Bin Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, The Discovery Center (DISC) 1 Francis Crick Avenue Cambridge CB2 0AA UK
| | - Andrew Campbell
- Advanced Drug Delivery, Pharmaceutical Sciences, The Discovery Center (DISC) 1 Francis Crick Avenue Cambridge CB2 0AA UK
| | - Rebecca Booth
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| | - Jonathan Booth
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| | - Peter Belton
- School of Chemistry, University of East Anglia Norwich NR4 7TJ UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia Norwich NR4 7TJ UK
| |
Collapse
|
31
|
Chauhan M, Sonali, Shekhar S, Yadav B, Garg V, Dutt R, Mehata AK, Goswami P, Koch B, Muthu MS, Singh RP. AS1411 aptamer/RGD dual functionalized theranostic chitosan-PLGA nanoparticles for brain cancer treatment and imaging. BIOMATERIALS ADVANCES 2024; 160:213833. [PMID: 38564997 DOI: 10.1016/j.bioadv.2024.213833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Conventional chemotherapy and poor targeted delivery in brain cancer resulting to poor treatment and develop resistance to anticancer drugs. Meanwhile, it is quite challenging to diagnose/detection of brain tumor at early stage of cancer which resulting in severity of the disease. Despite extensive research, effective treatment with real-time imaging still remains completely unavailable, yet. In this study, two brain cancer cell specific moieties i.e., AS1411 aptamer and RGD are decorated on the surface of chitosan-PLGA nanoparticles to improve targeted co-delivery of docetaxel (DTX) and upconversion nanoparticles (UCNP) for effective brain tumor therapy and real-time imaging. The nanoparticles were developed by a slightly modified emulsion/solvent evaporation method. This investigation also translates the successful synthesis of TPGS-chitosan, TPGS-RGD and TPGS-AS1411 aptamer conjugates for making PLGA nanoparticle as a potential tool of the targeted co-delivery of DTX and UCNP to the brain cancer cells. The developed nanoparticles have shown an average particle size <200 nm, spherical in shape, high encapsulation of DTX and UCNP in the core of nanoparticles, and sustained release of DTX up to 72 h in phosphate buffer saline (pH 7.4). AS1411 aptamer and RGD functionalized theranostic chitosan-PLGA nanoparticles containing DTX and UCNP (DUCPN-RGD-AS1411) have achieved greater cellular uptake, 89-fold improved cytotoxicity, enhanced cancer cell arrest even at lower drug conc., improved bioavailability with higher mean residence time of DTX in systemic circulation and brain tissues. Moreover, DUCPN-RGD-AS1411 have greatly facilitated cellular internalization and higher accumulation of UCNP in brain tissues. Additionally, DUCPN-RGD-AS1411 demonstrated a significant suppression in tumor growth in brain-tumor bearing xenograft BALB/c nude mice with no impressive sign of toxicities. DUCPN-RGD-AS1411 has great potential to be utilized as an effective and safe theranostic tool for brain cancer and other life-threatening cancer therapies.
Collapse
Affiliation(s)
- Mahima Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Sonali
- Guru Teg Bahadur Hospital, GTB Enclave, Dilshad Garden, New Delhi, Delhi 110095, India
| | - Saurabh Shekhar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Bhavna Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Rohit Dutt
- Gandhi Memorial National College, Ambala Cantt, Haryana 133001, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pooja Goswami
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Biplob Koch
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Pratap Singh
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India.
| |
Collapse
|
32
|
V. L. Sirisha Mulukuri N, Kumar S, Dhara M, Dheeraj Rajesh G, Kumar P. Statistical modeling, optimization and characterization of andrographolide loaded emulgel for its therapeutic application on skin cancer through enhancing its skin permeability. Saudi Pharm J 2024; 32:102068. [PMID: 38699597 PMCID: PMC11063646 DOI: 10.1016/j.jsps.2024.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Andrographolide is a natural diterpene lactone with multiple biological effects. In the present study, a total of 11 andrographolide-loaded emulgels (ANG 1- ANG 11) were prepared by emulsification and solvent evaporation method using flaxseed oil and xanthan gum in different ratios, as suggested by the Design-Expert software. A 2-factor-5-level design was employed with different responses including spreadability, extrudability, viscosity, and drug release after 1 h (h) and 24 h. Based on the Design-Expert software response, the optimized emulgel ANG 12 was formulated and evaluated. The 24 h In-vitro drug release was found to be 95.7 % following Higuchi kinetics. Ex-vivo skin retention of 784.78 ug/cm2 was observed during the study. MTT assay performed on Human epidermoid carcinoma (A-431) cells demonstrated cell growth arrest at G0/G1 and G2/M phase after 24 h of ANG 12 treatment (IC50: 11.5 µg/ml). The cellular permeability of ANG-12 was assessed by Fluorescein isothiocyanate (FITC) assay. Compared to untreated cells (0.54 % uptake) the ANG-12 treated cells had shown 87.17 % FITC permeation. The biocompatibility study performed on non-cancerous human dermal fibroblast cells (HDF cells) shows 91.54 % viability after 24 h of the treatment showing the non-toxic nature of ANG-12. Confocal imaging had shown a significant time-dependent increase in in-vivo cellular uptake with enhanced, progressive penetration of the emulgel into the skin. An in-vivo skin irritation study conducted on Swiss albino mice confirmed the safety aspects of the ANG 12. Hence, it can be concluded that nanoemulgel of andrographolide (ANG 12) could be a novel approach to treating skin cancer.
Collapse
Affiliation(s)
- N. V. L. Sirisha Mulukuri
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, India
| | - Sujeet Kumar
- Nitte College of Pharmaceutical Sciences, Bangalore, India
| | - Moumita Dhara
- Nitte College of Pharmaceutical Sciences, Bangalore, India
| | - Gupta Dheeraj Rajesh
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, India
| | - Pankaj Kumar
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
33
|
Yekeler HB, Guler E, Beato PS, Priya S, Abobakr FKM, Dogan M, Uner B, Kalaskar DM, Cam ME. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer's disease. Int J Biol Macromol 2024; 268:131841. [DOI: 6.https:/doi.org/10.1016/j.ijbiomac.2024.131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
34
|
Hayee R, Iqtedar M, Albekairi NA, Alshammari A, Makhdoom MA, Islam M, Ahmed N, Rasool MF, Li C, Saeed H. Levofloxacin loaded chitosan and poly-lactic-co-glycolic acid nano-particles against resistant bacteria: Synthesis, characterization and antibacterial activity. J Infect Public Health 2024; 17:906-917. [PMID: 38569270 DOI: 10.1016/j.jiph.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND With the global increase in antibacterial resistance, the challenge faced by developing countries is to utilize the available antibiotics, alone or in combination, against resistant bacterial strains. We aimed to encapsulate the levofloxacin (LVX) into polymeric nanoparticles using biodegradable polymers i.e. Chitosan and PLGA, estimating their physicochemical characteristics followed by functional assessment as nanocarriers of levofloxacin against the different resistant strains of bacteria isolated from biological samples collected from tertiary care hospital in Lahore, Pakistan. METHODS LVX-NPs were synthesized using ion gelation and double emulsion solvent-evaporation method employing chitosan (CS) and poly-lactic-co-glycolic acid (PLGA), characterized via FTIR, XRD, SEM, and invitro drug release studies, while antibacterial activity was assessed using Kirby-Bauer disc-diffusion method. RESULTS Data revealed that the levofloxacin-loaded chitosan nanoparticles showed entrapment efficiency of 57.14% ± 0.03 (CS-I), 77.30% ± 0.08(CS-II) and 87.47% ± 0.08 (CS-III). The drug content, particle size, and polydispersity index of CS-I were 52.22% ± 0.2, 559 nm ± 31 nm, and 0.030, respectively, whereas it was 66.86% ± 0.17, 595 nm ± 52.3 nm and 0.057, respectively for CS-II and 82.65% ± 0.36, 758 nm ± 24 nm and 0.1, respectively for CS-III. The PLGA-levofloxacin nanoparticles showed an entrapment efficiency of 42.80% ± 0.4 (PLGA I) and 23.80% ± 0.4 (PLGA II). The drug content, particle size and polydispersity index of PLGA-I were 86% ± 0.21, 92 nm ± 10 nm, and 0.058, respectively, whereas it was 52.41% ± 0.45, 313 nm ± 32 nm and 0.076, respectively for PLGA-II. The XRD patterns of both polymeric nanoparticles showed an amorphous nature. SEM analysis reflects the circular-shaped agglomerated nanoparticles with PLGA polymer and dense spherical nanoparticles with chitosan polymer. The in-vitro release profile of PLGA-I nanoparticles showed a sustained release of 82% in 120 h and it was 58.40% for CS-III. Both types of polymeric nanoparticles were found to be stable for up to 6 months without losing any major drug content. Among the selected formulations, CS-III and PLGA-I, CS-III had better antibacterial potency against gram+ve and gram-ve bacteria, except for K. pneumonia, yet, PLGA-I demonstrated efficacy against K. pneumonia as per CSLI guidelines. All formulations did not exhibit any signs of hemotoxicity, nonetheless, the CS-NPs tend to bind on the surface of RBCs. CONCLUSION These data suggested that available antibiotics can effectively be utilized as nano-antibiotics against resistant bacterial strains, causing severe infections, for improved antibiotic sensitivity without compromising patient safety.
Collapse
Affiliation(s)
- Rabia Hayee
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000 Lahore, Pakistan.
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Jail Road, Lahore, Pakistan.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | | | - Muhammad Islam
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000 Lahore, Pakistan.
| | - Nadeem Ahmed
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | - Chen Li
- Dept. of Pathology and Physiopathology, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
| | - Hamid Saeed
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000 Lahore, Pakistan.
| |
Collapse
|
35
|
Cristelo C, Sá AF, Lúcio M, Sarmento B, Gama FM. Vitamin D loaded into lipid nanoparticles shows insulinotropic effect in INS-1E cells. Eur J Pharm Sci 2024; 196:106758. [PMID: 38570054 DOI: 10.1016/j.ejps.2024.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Increasing evidence suggests a beneficial role of vitamin D (VitD) supplementation in addressing the widespread VitD deficiency, but currently used VitD3 formulations present low bioavailability and toxicity constrains. Hence, poly(L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), solid-lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were investigated to circumvent these issues. PLGA NPs prepared by emulsification or nanoprecipitation presented 74 or 200 nm, and association efficiency (AE) of 68 % and 17 %, respectively, and a rapid burst release of VitD3. Both SLN and NLCs presented higher polydispersity and larger NPs size, around 500 nm, which could be reduced to around 200 nm by use of hot high-pressure homogenization in the case of NLCs. VitD3 was efficiently loaded in both SLNs and NLCs with an AE of 82 and 99 %, respectively. While SLNs showed burst release, NLCs allowed a sustained release of VitD3 for nearly one month. Furthermore, NLCs showed high stability with maintenance of VitD3 loading for up to one month at 4 °C and no cytotoxic effects on INS-1E cells up to 72 h. A trending increase (around 30 %) on glucose-dependent insulin secretion was observed by INS-1E cells pre-treated with VitD3. This effect was consistently observed in the free form and after loading on NLCs. Overall, this work contributed to further elucidation on a suitable delivery system for VitD3 and on the effects of this metabolite on β cell function.
Collapse
Affiliation(s)
- Cecília Cristelo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, Braga, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Filipa Sá
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Universidade do Minho, Campus de Gualtar, Braga, Portugal; CBMA, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IUCS-CESPU, Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - Francisco Miguel Gama
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, Braga, Portugal.
| |
Collapse
|
36
|
Yekeler HB, Guler E, Beato PS, Priya S, Abobakr FKM, Dogan M, Uner B, Kalaskar DM, Cam ME. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer's disease. Int J Biol Macromol 2024; 268:131841. [PMID: 38679260 DOI: 10.1016/j.ijbiomac.2024.131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Targeted nanoparticles (NPs) are aimed at improving clinical outcomes by enhancing the diagnostic and therapeutic efficacy of drugs in the treatment of Alzheimer's disease (AD). METHODS Curcumin (CUR)-loaded poly-lactic-co-glycolic acid (PLGA) NPs (CNPs) were produced to demonstrate a prolonged release and successfully embedded into 3D printed sodium alginate (SA)/gelatin (GEL) scaffolds that can dissolve rapidly sublingually. Characterization and in vitro activity of the NPs and scaffolds were evaluated. RESULTS Based on the in vitro drug release studies, 99.6 % of the encapsulated CUR was released in a controlled manner within 18 days for the CNPs. In vitro cell culture studies showed that all samples exhibited cell viability above 84.2 % and no significant cytotoxic effect on SH-SY5Y cells. The samples were analyzed through 2 different pathways by PCR analysis. Real-time PCR results indicated that CNP and CNP-embedded SA/GEL scaffolds (CNPSGS) may show neuroprotective effects by modulating the Wnt/β-catenin pathway. The gene expression level of β-catenin slightly increased compared to the gene expression levels of other proteins and enzymes with these treatments. However, the PI3K/Akt/GSK-3β signaling pathway was regulated at the same time because of the crosstalk between these 2 pathways. CONCLUSION CNPSGS might be an effective therapeutic alternative for AD treatment.
Collapse
Affiliation(s)
- Humeyra Betul Yekeler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye
| | - Ece Guler
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Patricia Santos Beato
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Sushma Priya
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | | | - Murat Dogan
- Department of Pharmaceutical Biotechnology, Cumhuriyet University, Sivas 58140, Türkiye; Cancer Survivorship Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 625 N. Michigan Ave., Suite 2100, Chicago, IL, 60611, USA
| | - Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Muhammet Emin Cam
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye; Biomedical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34854, Türkiye.
| |
Collapse
|
37
|
Mohammed SW, El-Megrab NA, Hasan AA, Gomaa E. A remodeled ivermectin polycaprolactone-based nanoparticles for inhalation as a promising treatment of pulmonary inflammatory diseases. Eur J Pharm Sci 2024; 195:106714. [PMID: 38301972 DOI: 10.1016/j.ejps.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
In recent years, ivermectin (IVM), an antiparasitic drug of low water solubility and poor oral bioavailability, has shown a profound effect on inflammatory mediators involved in diseases, such as acute lung injury, lung fibrosis, and COVID-19. In order to maximize drug bioavailability, polymeric nanoparticles can be delivered through nebulizers for pulmonary administration. The aim of this study was to prepare IVM-loaded polycaprolactone (PCL) nanoparticles (NPs) by solvent evaporation method. Box-Benkhen design (BBD) was used to optimize entrapment efficiency (Y1), percent drug release after 6 h (Y2), particle size (Y3), and zeta potential (Y4). A study was conducted examining the effects of three independent variables: PCL-IVM ratio (A), polyvinyl alcohol (PVA) concentration (B), and sonication time (C). The optimized formula was also compared to the oral IVM dispersion for lung deposition, in-vivo behavior, and pharmacokinetic parameters. The optimized IVM-PCL-NPs formulation was spherical in shape with entrapment efficiency (% EE) of 93.99 ± 0.96 %, about 62.71 ± 0.53 % released after 6 h, particle size of 100.07 ± 0.73 nm and zeta potential of -3.30 ± 0.23 mV. Comparing the optimized formulation to IVM-dispersion, the optimized formulation demonstrated greater bioavailability with greater area under the curve AUC0-t of 710.91 ± 15.22 μg .ml-1.h for lung and 637.97 ± 15.43 μg .ml-1.h for plasma. Based on the results, the optimized NPs accumulated better in lung tissues, exhibiting a twofold longer residence time (MRT 4.78 ± 0.55 h) than the IVM-dispersion (MRT 2.64 ± 0.64 h). The optimized nanoparticle formulation also achieved higher cmax (194.90 ± 5.01 μg/ml), and lower kel (0.21 ± 0.04 h-1) in lungs. Additionally, the level of inflammatory mediators was markedly reduced. To conclude, inhalable IVM-PCL-NPs formulation was suitable for the pulmonary delivery and may be one of the most promising approaches to increase IVM bioavailability for the successful treatment of a variety of lung diseases.
Collapse
Affiliation(s)
- Sabaa Wafiq Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Nagia Ahmed El-Megrab
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Azza A Hasan
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
38
|
Mehta CH, Velagacherla V, Manandhar S, Nayak Y, Pai SRK, Acharya S, Nayak UY. Development of Epigallocatechin 3-gallate-Loaded Hydrogel Nanocomposites for Oral Submucous Fibrosis. AAPS PharmSciTech 2024; 25:66. [PMID: 38519779 DOI: 10.1208/s12249-024-02787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic progressive disease associated with increased collagen deposition and TGF-β1 release. The current therapy and management have been a limited success due to low efficacy and adverse drug reactions. This study aimed to evaluate epigallocatechin 3-gallate (EGCG) encapsulated nanoparticles loaded mucoadhesive hydrogel nanocomposite (HNC) for OSF. Developed HNC formulations were evaluated for their permeation behaviour using in vitro as well as ex vivo studies, followed by evaluation of efficacy and safety by in vivo studies using areca nut extract-induced OSF in rats. The disease condition in OSF-induced rats was assessed by mouth-opening and biochemical markers. The optimized polymeric nanoparticles exhibited the required particle size (162.93 ± 13.81 nm), positive zeta potential (22.50 ± 2.94 mV) with better mucoadhesive strength (0.40 ± 0.002 N), and faster permeation due to interactions of the positively charged surface with the negatively charged buccal mucosal membrane. HNC significantly improved disease conditions by reducing TGF-β1 and collagen concentration without showing toxicity and reverting the fibroid buccal mucosa to normal. Hence, the optimized formulation can be further tested to develop a clinically alternate therapeutic strategy for OSF.
Collapse
Affiliation(s)
- Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shruthi Acharya
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
39
|
Hassan M, Abdelnabi HA, Mohsin S. Harnessing the Potential of PLGA Nanoparticles for Enhanced Bone Regeneration. Pharmaceutics 2024; 16:273. [PMID: 38399327 PMCID: PMC10892810 DOI: 10.3390/pharmaceutics16020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, nanotechnologies have become increasingly prominent in the field of bone tissue engineering (BTE), offering substantial potential to advance the field forward. These advancements manifest in two primary ways: the localized application of nanoengineered materials to enhance bone regeneration and their use as nanovehicles for delivering bioactive compounds. Despite significant progress in the development of bone substitutes over the past few decades, it is worth noting that the quest to identify the optimal biomaterial for bone regeneration remains a subject of intense debate. Ever since its initial discovery, poly(lactic-co-glycolic acid) (PLGA) has found widespread use in BTE due to its favorable biocompatibility and customizable biodegradability. This review provides an overview of contemporary advancements in the development of bone regeneration materials using PLGA polymers. The review covers some of the properties of PLGA, with a special focus on modifications of these properties towards bone regeneration. Furthermore, we delve into the techniques for synthesizing PLGA nanoparticles (NPs), the diverse forms in which these NPs can be fabricated, and the bioactive molecules that exhibit therapeutic potential for promoting bone regeneration. Additionally, we addressed some of the current concerns regarding the safety of PLGA NPs and PLGA-based products available on the market. Finally, we briefly discussed some of the current challenges and proposed some strategies to functionally enhance the fabrication of PLGA NPs towards BTE. We envisage that the utilization of PLGA NP holds significant potential as a potent tool in advancing therapies for intractable bone diseases.
Collapse
Affiliation(s)
| | | | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
40
|
Kouhjani M, Jaafari MR, Kamali H, Abbasi A, Tafaghodi M, Mousavi Shaegh SA. Microfluidic-assisted preparation of PLGA nanoparticles loaded with insulin: a comparison with double emulsion solvent evaporation method. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:306-329. [PMID: 38100556 DOI: 10.1080/09205063.2023.2287247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Poly lactic-co-glycolic acid (PLGA) is an ideal polymer for the delivery of small and macromolecule drugs. Conventional preparation methods of PLGA nanoparticles (NPs) result in poor control over NPs properties. In this research, a microfluidic mixer was designed to produce insulin-loaded PLGA NPs with tuned properties. Importantly; aggregation of the NPs through the mixer was diminished due to the coaxial mixing of the precursors. The micromixer allowed for the production of NPs with small size and narrow size distribution compared to the double emulsion solvent evaporation (DESE) method. Furthermore, encapsulation efficiency and loading capacity indicated a significant increase in optimized NPs produced through the microfluidic method in comparison to DESE method. NPs prepared by the microfluidic method were able to achieve a more reduction of trans-epithelial electrical resistance values in the Caco-2 cells compared to those developed by the DESE technique that leads to greater paracellular permeation. Compatibility and interaction between components were evaluated by differential scanning calorimetry and fourier transform infrared analysis. Also, the effect of NPs on cell toxicity was investigated using MTT test. Numerical simulations were conducted to analyze the effect of mixing patterns on the properties of the NPs. It was revealed that by decreasing flow rate ratio, i.e. flow rate of the organic phase to the flow rate of the aqueous phase, mixing of the two streams increases. As an alternative to the DESE method, high flexibility in modulating hydrodynamic conditions of the microfluidic mixer allowed for nanoassembly of NPs with superior insulin encapsulation at smaller particle sizes.
Collapse
Affiliation(s)
- Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology and Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Abbasi
- Laboratory of Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology and Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Patel P, Pathak A, Jain K. Novel ligand decorated theranostic zein nanoparticles coloaded with paclitaxel and carbon quantum dots: formulation and optimization. Nanomedicine (Lond) 2024; 19:367-382. [PMID: 38305304 DOI: 10.2217/nnm-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aim: The present research focused on development and optimization of ligand decorated theranostic nanocarrier encapsulating paclitaxel and carbon quantum dots (CQDs). Methods: CQDs were prepared by microwave-assisted pyrolysis and were characterized for particle size and fluorescence behavior. Ligand decorated zein nanoparticles, coloaded with paclitaxel and CQDs, were formulated using a one-step nanoprecipitation method and optimized for various process parameters. Results: Particle size for coated and uncoated nanoparticles was 90.16 ± 1.65 and 179.26 ± 3.61 nm, respectively, and entrapment efficiency was >80%. The circular dichroism spectroscopy showed zein retained its secondary structure and release study showed biphasic release behavior. Conclusion: The prepared theranostic nanocarrier showed optimal fluorescence and desired release behavior without altering the secondary structure of zein.
Collapse
Affiliation(s)
- Parth Patel
- Drug Delivery & Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER) - Raebareli, Lucknow, 226002, India
| | - Anchal Pathak
- Drug Delivery & Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER) - Raebareli, Lucknow, 226002, India
| | - Keerti Jain
- Drug Delivery & Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER) - Raebareli, Lucknow, 226002, India
| |
Collapse
|
42
|
Wani A, Prabhakar B, Shende P. Competitive inhibition of nicotine acetylcholine receptors using microneedles of nicotine and varenicline for smoking withdrawal therapy. Eur J Pharm Biopharm 2024; 195:114171. [PMID: 38159871 DOI: 10.1016/j.ejpb.2023.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Current strategies for smoking withdrawal conditions involve monotherapy of nicotine and combinational therapy of nicotine with varenicline or bupropion as per the CDC and FDA. The available dosage forms for nicotine are patches, gums, inhalers and nasal sprays, bupropion and varenicline are available in tablet form. This research work focused on developing a microneedle delivery system to deliver combination drug for overcoming the obstacles encountered by oral route of administration of varenicline such as severe side effects (mood swings, agitation, depressed behaviour, seizures, etc), and nicotine therapy challenges such as short half-life, repeated dosing, nausea, and vomiting. The nanoparticles of nicotine prepared by nanoprecipitation method showed particle size PTZ (356.6 ± 65.98), percentage entrapment efficiency (35.55 % ± 0.007), in-vitro drug release (47.89 % ± 0.7) for 72 h. Microneedles showed height (600 μm), width (350 μm), and tip diameter (10 μm). The nanoparticles encapsulated in microneedles showed in-vitro sustained delivery of nicotine (67.00 % ± 4.92) and varenicline (79.78 % ± 1.09) in 48 h. Nicotine released in a sustained manner attaches to the nicotine acetylcholine receptors (nAchR) to release dopamine for controlling the withdrawal challenges such as anxiety, irritability, cravings, disturbed sleep pattern, etc. The varenicline released from microneedles binds to the nAchR and inhibits dopamine release responsible for the euphoric effect induced by nicotine, and thus assists in curbing the nicotine withdrawal symptoms. This combination microneedle system offers prolonged treatment in a single application for smoking withdrawal conditions wherein patients are not in stage of oral dosing because of repeated dosing resulting in adverse effects like seizures, hypertension, sleep disturbances, insomnia, and nausea.
Collapse
Affiliation(s)
- Ashwini Wani
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
43
|
Manjit M, Kumar M, Jha A, Bharti K, Kumar K, Tiwari P, Tilak R, Singh V, Koch B, Mishra B. Formulation and characterization of polyvinyl alcohol/chitosan composite nanofiber co-loaded with silver nanoparticle & luliconazole encapsulated poly lactic-co-glycolic acid nanoparticle for treatment of diabetic foot ulcer. Int J Biol Macromol 2024; 258:128978. [PMID: 38145692 DOI: 10.1016/j.ijbiomac.2023.128978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Chronic wounds are prone to fungal infections, possess a significant challenge, and result in substantial mortality. Diabetic wounds infected with Candida strains are extremely common. It can create biofilm at the wound site, which can lead to antibiotic resistance. As a result, developing innovative dressing materials that combat fungal infections while also providing wound healing is a viable strategy to treat infected wounds and address the issue of antibiotic resistance. Present work proposed anti-infective dressing material for the treatment of fungal strains Candida-infected diabetic foot ulcer (DFU). The nanofiber was fabricated using polyvinyl Alcohol/chitosan as hydrogel base and co-loaded with silver nanoparticles (AgNP) and luliconazole-nanoparticles (LZNP) nanoparticles, prepared using PLGA. Fabricated nanofibers had pH close to target area and exhibited hydrophilic surface suitable for adhesion to wound area. The nanofibers showed strong antifungal and antibiofilm properties against different strains of Candida; mainly C. albicans, C. auris, C. krusei, C. parapsilosis and C. tropicalis. Nanofibers exhibited excellent water retention potential and water vapour transmission rate. The nanofibers had sufficient payload capacity towards AgNP and LZNP, and provided controlled release of payload, which was also confirmed by in-vivo imaging. In-vitro studies confirmed the biocompatibility and enhanced proliferation of Human keratinocytes cells (HaCaT). In-vivo studies showed accelerated wound closure by providing ant-infective action, supporting cellular proliferation and improving blood flow, all collectively contributing in expedited wound healing.
Collapse
Affiliation(s)
- Manjit Manjit
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Manish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Abhishek Jha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Krishan Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Punit Tiwari
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ragini Tilak
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Virendra Singh
- Cancer Biology Laboratory, Department of Zoology Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Biplob Koch
- Cancer Biology Laboratory, Department of Zoology Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
44
|
Gao X, Lang X, El Khoury E, Wei M, Qian N, Min W. Quantitative Label-Free Chemical Imaging of PLGA Nanoparticles in Cells and Tissues with Single-Particle Sensitivity. NANO LETTERS 2024; 24:1024-1033. [PMID: 38207237 DOI: 10.1021/acs.nanolett.3c04463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nanomedicine has brought significant advancements to healthcare by utilizing nanotechnology in medicine. Despite much promise, the further development of nanocarriers for clinical use has been hindered by a lack of understanding and visualization of nano-bio interactions. Conventional imaging methods have limitations in resolution, sensitivity, and specificity. This study introduces a label-free optical approach using stimulated Raman scattering (SRS) microscopy to image poly(lactic-co-glycolic acid) (PLGA) nanocarriers, the most widely used polymeric nanocarrier for delivery therapeutic agents, with single-particle sensitivity and quantification capabilities. A unique Raman peak was identified for PLGA ester, enabling generalized bio-orthogonal bond imaging. We demonstrated quantitative SRS imaging of PLGA nanocarriers across different biological systems from cells to animal tissues. This label-free imaging method provides a powerful tool for studying this prevalent nanocarrier and quantitatively visualizing their distribution, interaction, and clearance in vivo.
Collapse
Affiliation(s)
- Xin Gao
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Xiaoqi Lang
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Elsy El Khoury
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Mian Wei
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Naixin Qian
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Wei Min
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, New York 10027, United States
| |
Collapse
|
45
|
Adekiya TA, Moore M, Thomas M, Lake G, Hudson T, Adesina SK. Preparation, Optimization, and In-Vitro Evaluation of Brusatol- and Docetaxel-Loaded Nanoparticles for the Treatment of Prostate Cancer. Pharmaceutics 2024; 16:114. [PMID: 38258124 PMCID: PMC10819281 DOI: 10.3390/pharmaceutics16010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Challenges to docetaxel use in prostate cancer treatment include several resistance mechanisms as well as toxicity. To overcome these challenges and to improve the therapeutic efficacy in heterogeneous prostate cancer, the use of multiple agents that can destroy different subpopulations of the tumor is required. Brusatol, a multitarget inhibitor, has been shown to exhibit potent anticancer activity and play an important role in drug response and chemoresistance. Thus, the combination of brusatol and docetaxel in a nanoparticle platform for the treatment of prostate cancer is expected to produce synergistic effects. In this study, we reported the development of polymeric nanoparticles for the delivery of brusatol and docetaxel in the treatment of prostate cancer. The one-factor-at-a-time method was used to screen for formulation and process variables that impacted particle size. Subsequently, factors that had modifiable effects on particle size were evaluated using a 24 full factorial statistical experimental design followed by the optimization of drug loading. The optimization of blank nanoparticles gave a formulation with a mean size of 169.1 nm ± 4.8 nm, in agreement with the predicted size of 168.333 nm. Transmission electron microscopy showed smooth spherical nanoparticles. The drug release profile showed that the encapsulated drugs were released over 24 h. Combination index data showed a synergistic interaction between the drugs. Cell cycle analysis and the evaluation of caspase activity showed differences in PC-3 and LNCaP prostate cancer cell responses to the agents. Additionally, immunoblots showed differences in survivin expression in LNCaP cells after treatment with the different agents and formulations for 24 h and 72 h. Therefore, the nanoparticles are potentially suitable for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Madison Moore
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Michael Thomas
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Gabriel Lake
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Tamaro Hudson
- Cancer Center, Howard University, Washington, DC 20059, USA
| | - Simeon K. Adesina
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| |
Collapse
|
46
|
Kuche K, Yadav V, Patel M, Chaudhari D, Date T, Jain S. Enhancing anti-cancer potential by delivering synergistic drug combinations via phenylboronic acid modified PLGA nanoparticles through ferroptosis-based therapy. BIOMATERIALS ADVANCES 2024; 156:213700. [PMID: 38042001 DOI: 10.1016/j.bioadv.2023.213700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
In this study, we investigated the potential of the sorafenib (SOR) and simvastatin (SIM) combination to induce ferroptosis-mediated cancer therapy. To enhance targeted drug delivery, we encapsulated the SOR + SIM combination within 4-carboxy phenylboronic acid (CPBA) modified PLGA nanoparticles (CPBA-PLGA(SOR + SIM)-NPs). The developed CPBA-PLGA(SOR + SIM)-NPs exhibited a spherical shape with a size of 213.1 ± 10.9 nm, a PDI of 0.22 ± 0.03, and a Z-potential of -22.9 ± 3.2 mV. Notably, these nanoparticles displayed faster drug release at acidic pH compared to physiological pH. In cellular experiments, CPBA-PLGA(SOR + SIM)-NPs demonstrated remarkable improvements, leading to a 2.51, 2.69, and 2.61-fold decrease in IC50 compared to SOR alone, and a 7.50, 16.71, and 5.11-fold decrease in IC50 compared to SIM alone in MDA-MB-231, A549, and HeLa cells, respectively. Furthermore, CPBA-PLGA(SOR + SIM)-NPs triggered a reduction in glutathione (GSH) levels, an increase in malondialdehyde (MDA) levels, and mitochondrial membrane depolarization in all three cell lines. Pharmacokinetic evaluation revealed a 2.50- and 2.63-fold increase in AUC0-∞, as well as a 1.53- and 2.46-fold increase in mean residence time (MRT) for SOR and SIM, respectively, compared to the free drug groups. Notably, the CPBA-PLGA(SOR + SIM)-NPs group exhibited significant reduction in tumor volume, approximately 9.17, 2.45, and 1.63-fold lower than the control, SOR + SIM, and PLGA(SOR + SIM)-NPs groups, respectively. Histological examination and biomarker analysis showed no significant differences compared to the control group, suggesting the biocompatibility of the developed particles for in-vivo applications. Altogether, our findings demonstrate that CPBA-PLGA(SOR + SIM)-NPs hold tremendous potential as an efficient drug delivery system for inducing ferroptosis, providing a promising therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Meet Patel
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India.
| |
Collapse
|
47
|
Fischer D. Sustainability in Drug and Nanoparticle Processing. Handb Exp Pharmacol 2024; 284:45-68. [PMID: 37306814 DOI: 10.1007/164_2023_659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formulation of drugs in poly(lactic-co-glycolic acid) (PLGA) nanoparticles can be accomplished by various methods, with nanoprecipitation and nanoemulsion being among the most commonly used manufacturing techniques to provide access to high-quality nanomaterials with reproducible quality. Current trends turned to sustainability and green concepts leading to a re-thinking of these techniques, particularly as the conventional solvents for the dissolution of the polymer suffer from limitations like hazards for human health and natural environment. This chapter gives an overview about the different excipients used in classical nanoformulations with a special focus on the currently applied organic solvents. As alternatives, the status quo of green, sustainable, and alternative solvents regarding their application, advantages, and limitations will be highlighted as well as the role of physicochemical solvent characteristics like water miscibility, viscosity, and vapor pressure for the selection of the formulation process, and for particle characteristics. New alternative solvents will be introduced for PLGA nanoparticle formation and compared regarding particle characteristics and biological effects as well as for in situ particle formation in a matrix consisting of nanocellulose. Conclusively, new alternative solvents are available that present a significant advancement toward the replacement of organic solvents in PLGA nanoparticle formulations.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
48
|
Hernández-Giottonini K, Arellano-Reynoso B, Rodríguez-Córdova RJ, de la Vega-Olivas J, Díaz-Aparicio E, Lucero-Acuña A. Enhancing Therapeutic Efficacy against Brucella canis Infection in a Murine Model Using Rifampicin-Loaded PLGA Nanoparticles. ACS OMEGA 2023; 8:49362-49371. [PMID: 38162745 PMCID: PMC10753543 DOI: 10.1021/acsomega.3c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
The in vivo efficacy of rifampicin encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles was evaluated for the treatment of BALB/c mice experimentally infected with Brucella canis. The PLGA nanoparticles loaded with rifampicin (RNP) were prepared using the single emulsification-solvent evaporation technique, resulting in nanoparticles with a hydrodynamic diameter of 138 ± 6 nm. The zeta potential and polydispersity index values indicated that the system was relatively stable with a narrow size distribution. The release of rifampicin from the nanoparticles was studied in phosphate buffer at pH 7.4 and 37 °C. The release profile showed an initial burst phase, followed by a slower release stage attributed to nanoparticle degradation and relaxation, which continued for approximately 30 days until complete drug release. A combined model of rifampicin release, accounting for both the initial burst and the degradation-relaxation of the nanoparticles, effectively described the experimental data. The efficacy of RNP was studied in vivo; infected mice were treated with free rifampicin at concentrations of 2 mg per kilogram of mice per day (C1) and 4 mg per kilogram of mice per day (C2), as well as equivalent doses of RNP. Administration of four doses of the nanoparticles significantly reduced the B. canis load in the spleen of infected BALB/c mice. RNP demonstrated superior effectiveness compared to the free drug in the spleen, achieving reductions of 85.4 and 49.4%, respectively, when using C1 and 93.3 and 61.8%, respectively, when using C2. These results highlight the improved efficacy of the antibiotic when delivered through nanoparticles in experimentally infected mice. Therefore, the RNP holds promise as a potential alternative for the treatment of B. canis.
Collapse
Affiliation(s)
- Karol
Yesenia Hernández-Giottonini
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Beatriz Arellano-Reynoso
- Facultad
de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma
de México, Circuito Exterior Ciudad
Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Rosalva Josefina Rodríguez-Córdova
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | | | - Efrén Díaz-Aparicio
- CENID
Salud Animal e Inocuidad, Instituto Nacional
de Investigaciones Forestales, Agrícolas y Pecuarias, Carretera Federal México-Toluca
Km. 15.5, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Armando Lucero-Acuña
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
49
|
Zhu Y, Cui M, Liu Y, Ma Z, Xi J, Tian Y, Hu J, Song C, Fan L, Li Q. Uptake Quantification of Antigen Carried by Nanoparticles and Its Impact on Carrier Adjuvanticity Evaluation. Vaccines (Basel) 2023; 12:28. [PMID: 38250841 PMCID: PMC10818693 DOI: 10.3390/vaccines12010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Nanoparticles have been identified in numerous studies as effective antigen delivery systems that enhance immune responses. However, it remains unclear whether this enhancement is a result of increased antigen uptake when carried by nanoparticles or the adjuvanticity of the nanoparticle carriers. Consequently, it is important to quantify antigen uptake by dendritic cells in a manner that is free from artifacts in order to analyze the immune response when antigens are carried by nanoparticles. In this study, we demonstrated several scenarios (antigens on nanoparticles or inside cells) that are likely to contribute to the generation of artifacts in conventional fluorescence-based quantification. Furthermore, we developed the necessary assay for accurate uptake quantification. PLGA NPs were selected as the model carrier system to deliver EsxB protein (a Staphylococcus aureus antigen) in order to testify to the feasibility of the established method. The results showed that for the same antigen uptake amount, the antigen delivered by PLGA nanoparticles could elicit 3.6 times IL-2 secretion (representative of cellular immune response activation) and 1.5 times IL-12 secretion (representative of DC maturation level) compared with pure antigen feeding. The findings above give direct evidence of the extra adjuvanticity of PLGA nanoparticles, except for their delivery functions. The developed methodology allows for the evaluation of immune cell responses on an antigen uptake basis, thus providing a better understanding of the origin of the adjuvanticity of nanoparticle carriers. Ultimately, this research provides general guidelines for the formulation of nano-vaccines.
Collapse
Affiliation(s)
- Yupu Zhu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Minxuan Cui
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Yutao Liu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Zhengjun Ma
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Jiayue Xi
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Yi Tian
- Department of Oncology, Airforce Medical Center of PLA, 30th Fu Cheng Road, Beijing 100142, China;
| | - Jinwei Hu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Chaojun Song
- School of Life Science, Northwestern Polytechnical University, 127th Youyi West Road, Xi’an 710072, China;
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
50
|
Cao X, Li Q, Li X, Liu Q, Liu K, Deng T, Weng X, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Enhancing Anticancer Efficacy of Formononetin Microspheres via Microfluidic Fabrication. AAPS PharmSciTech 2023; 24:241. [PMID: 38017231 DOI: 10.1208/s12249-023-02691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Formononetin is a flavonoid compound with anti-tumor and anti-inflammatory properties. However, its low solubility limits its clinical use. We employed microfluidic technology to prepare formononetin-loaded PLGA-PEGDA microspheres (Degradable polymer PLGA, Crosslinking agent PEGDA), which can encapsulate and release drugs in a controlled manner. We optimized and characterized the microspheres, and evaluated their antitumor effects. The microspheres had uniform size, high drug loading efficiency, high encapsulation efficiency, and stable release for 35 days. They also inhibited the proliferation, migration, and apoptosis. The antitumor mechanism involved the induction of reactive oxygen species and modulation of Bcl-2 family proteins. These findings suggested that formononetin-loaded PLGA-PEGDA microspheres, created using microfluidic technology, could be a novel drug delivery system that can overcome the limitations of formononetin and enhance its antitumor activity.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qingwen Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Xiaoli Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qintong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China.
| |
Collapse
|