1
|
Li J, Li L, Brink HA, Allegri G, Lindhoud S. Polyelectrolyte complex-based materials for separations: progress, challenges and opportunities. MATERIALS HORIZONS 2025. [PMID: 40237352 DOI: 10.1039/d4mh01840k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Polyelectrolyte complex (PEC) based materials could provide a sustainable alternative to conventional materials, especially for separation applications. However, reproducible production remains a challenge due to the many parameters influencing the polyelectrolyte complexation process, eventually affecting the properties and performance of the final material. Here, we provide an overview of how different parameters affect polyelectrolyte complexation and discuss promising PEC-based materials for separation applications, i.e., porous membranes, functional and barrier coatings, adhesives, saloplastics, and extraction media. Additionally, we highlight the challenges and opportunities and discuss what is needed to get to the next level. We envision that collaboration between experimentalists and theoreticians can leverage experimental datasets with accurate descriptions of all the parameters for multiscale modelling, machine learning and artificial intelligence approaches that can be used to design PEC materials and predict their properties.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Lijie Li
- Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
- Department of Membrane Science and Technology, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Hestie A Brink
- Department of Membrane Science and Technology, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Giulia Allegri
- Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Saskia Lindhoud
- Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
2
|
Sha X, Li Y, Ding J, Gu C, Zhang L, Jia L, Meng D, Liang L, Zhang Y, Sun S, Yang R. Cage-like ferritin and lysozyme heteroprotein complexes coacervation for encapsulation, stabilization, and sustained release of bioactive compounds. Int J Biol Macromol 2025; 304:140786. [PMID: 39924041 DOI: 10.1016/j.ijbiomac.2025.140786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The ferritin (FRT) with a modifiable cavity can interact with the lysozyme (LYS) to form a heteroprotein complex coacervation (HPCC). This interaction is believed to combine the unique properties of FRT and LYS to form a novel structure with enhanced characteristics. The study aimed to explore the pH-dependent complexation between FRT and LYS and evaluate the protective effects of the heteroprotein complex on curcumin (Cur). Results showed that pH and protein ratios influenced the formation of the complex. ζ-potential measurements indicated that interactions between oppositely the charged molecules and hydrogen bonding drove the formation of FRT-LYS (FL) complexes, enhancing their hydrophobicity and thermal stability. Cur-encapsulated in FL (FCL) demonstrated an increased stability when exposed to heat, natural light, and ultraviolet light (FL/Cur, 1:50) treatments, and showed a controlled and sustained release behavior. This study emphasizes the potential of FL heteroprotein complexes as nanocarriers for encapsulation and protection of bioactive molecules.
Collapse
Affiliation(s)
- Xinmei Sha
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yichen Li
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiaqi Ding
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chunkai Gu
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lingling Zhang
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Longgang Jia
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Demei Meng
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China
| | - Shihao Sun
- Beijing Life Science Academy, Beijing 102209, PR China
| | - Rui Yang
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Khongkomolsakul W, Yang E, Dadmohammadi Y, Dong H, Lin T, Huang Y, Abbaspourrad A. Enzyme immobilization with plant-based polysaccharides through complex coacervation. Lebensm Wiss Technol 2025; 219:117537. [PMID: 40027172 PMCID: PMC11867993 DOI: 10.1016/j.lwt.2025.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
Plant-based polysaccharides (PSs) were used to immobilize phytase in a coacervate system. Molecular docking predicted the intermolecular interactions and conformations between the phytase and the polysaccharide and correlated them to the activity recovery of phytase in the coacervate complex. PSs with two different functional groups, sulfate (iota (IC), lambda (LC), and kappa (KC) carrageenan) and carboxylate (low methoxyl pectin (LMP) and sodium alginate (SA)) were investigated. The optimized conditions for coacervation and activity recovery were pH 4 with a phytase-to-polysaccharide volume ratio of 12:1. Zeta potential measurements, FTIR spectroscopy, and molecular docking confirmed that electrostatic interactions and hydrogen bonding were the main driving forces for coacervate formation. Coacervate complexes of phytase formed with LMP, SA, or KC showed a high activity retention after immobilization, with approximately 30% yield of complex and 75% immobilization efficiency of the phytase. The lower enzyme activity retention observed for IC and LC complexes is attributed to these PSs binding to the enzyme's active site. Overall, this work contributes to the body of knowledge about intermolecular interactions between phytase and polysaccharides and can serve as a guide to formulating stable, functional ingredients for a plant-based diet.
Collapse
Affiliation(s)
- Waritsara Khongkomolsakul
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 243 Stocking Hall, Ithaca, NY, USA
| | - Eunhye Yang
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 243 Stocking Hall, Ithaca, NY, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 243 Stocking Hall, Ithaca, NY, USA
| | - Hongmin Dong
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 243 Stocking Hall, Ithaca, NY, USA
| | - Tiantian Lin
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 243 Stocking Hall, Ithaca, NY, USA
| | - Yunan Huang
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 243 Stocking Hall, Ithaca, NY, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 243 Stocking Hall, Ithaca, NY, USA
| |
Collapse
|
4
|
Apuzzo E, Cathcarth M, Picco AS, von Bilderling C, Azzaroni O, Agazzi ML, Herrera SE. Insights into the Mechanism of Protein Loading by Chain-Length Asymmetric Complex Coacervates. Biomacromolecules 2025; 26:1171-1183. [PMID: 39807630 DOI: 10.1021/acs.biomac.4c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The study of the phase behavior of polyelectrolyte complex coacervates has attracted significant attention in recent years due to their potential use as membrane-less organelles, microreactors, and drug delivery platforms. In this work, we investigate the mechanism of protein loading in chain-length asymmetric complex coacervates composed of a polyelectrolyte and an oppositely charged multivalent ion. Unlike the symmetric case (polycation + polyanion), we show that protein loading is highly selective based on the protein's net charge: only proteins with charges opposite to the polyelectrolyte can be loaded. Through a series of systematic experiments, we identified that the protein loading process relies on the formation of a neutral three-component coacervate in which both the protein and the multivalent ion serve as complexing agents for the polyelectrolyte. Lastly, we demonstrated that this mechanism extends to the sequestration of other charged small molecules, offering valuable insights into designing functional multicomponent coacervates.
Collapse
Affiliation(s)
- Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CONICET, Universidad Nacional de La Plata, Diagonal 113 y 64, La Plata (Buenos Aires) 1900, Argentina
| | - Marilina Cathcarth
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CONICET, Universidad Nacional de La Plata, Diagonal 113 y 64, La Plata (Buenos Aires) 1900, Argentina
| | - Agustín S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CONICET, Universidad Nacional de La Plata, Diagonal 113 y 64, La Plata (Buenos Aires) 1900, Argentina
| | - Catalina von Bilderling
- Departamento de Tecnología y Administración, CONICET, Universidad Nacional de Avellaneda, Avellaneda, Mario Bravo 1460, Avellaneda (Buenos Aires) B1868, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CONICET, Universidad Nacional de La Plata, Diagonal 113 y 64, La Plata (Buenos Aires) 1900, Argentina
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud, CONICET, Universidad Nacional de Río Cuarto, Ruta Nacional 36 KM 601, Río Cuarto (Córdoba) 5800, Argentina
| | - Santiago E Herrera
- Instituto de Química de los Materiales, Ambiente y Energía, CONICET, Universidad de Buenos Aires, Intendente Güiraldes 2160, CABA (Buenos Aires) 1428, Argentina
| |
Collapse
|
5
|
Mirlohi K, Blocher McTigue WC. Coacervation for biomedical applications: innovations involving nucleic acids. SOFT MATTER 2024; 21:8-26. [PMID: 39641131 DOI: 10.1039/d4sm01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Gene therapies, drug delivery systems, vaccines, and many other therapeutics, although seeing breakthroughs over the past few decades, still suffer from poor stability, biocompatibility, and targeting. Coacervation, a liquid-liquid phase separation phenomenon, is a pivotal technique increasingly employed to enhance the effectiveness of therapeutics. Through coacervation strategies, many current challenges in therapeutic formulations can be addressed due to the tunable nature of this technique. However, much remains to be explored to enhance these strategies further and scale them from the benchtop to industrial applications. In this review, we highlight the underlying mechanisms of coacervation, elucidating how factors such as pH, ionic strength, temperature, chirality, and charge patterning influence the formation of coacervates and the encapsulation of active ingredients. We then present a perspective on current strategies harnessing these systems, specifically for nucleic acid-based therapeutics. These include peptide-, protein-, and polymer-based approaches, nanocarriers, and hybrid methods, each offering unique advantages and challenges. Nucleic acid-based therapeutics are crucial for designing rapid responses to diseases, particularly in pandemics. While these exciting systems offer many advantages, they also present limitations and challenges which are explored in this work. Exploring coacervation in the biomedical frontier opens new avenues for innovative nucleic acid-based treatments, marking a significant stride towards advanced therapeutic solutions.
Collapse
Affiliation(s)
- Kimiasadat Mirlohi
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
6
|
Lim C, Blocher McTigue WC. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomater Sci Eng 2024; 10:6766-6789. [PMID: 39423330 PMCID: PMC11558567 DOI: 10.1021/acsbiomaterials.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Complex coacervates, formed through electrostatic interactions between oppositely charged polymers, present a versatile platform for drug delivery, providing rapid assembly, selective encapsulation, and responsiveness to environmental stimuli. The architecture and properties of coacervates can be tuned by controlling structural and environmental design factors, which significantly impact the stability and delivery efficiency of the drugs. While environmental design factors such as salt, pH, and temperature play a crucial role in coacervate formation, structural design factors such as polymer concentration, polymer structure, mixing ratio, and chain length serve as the core framework that shapes coacervate architecture. These elements modulate the phase behavior and material properties of coacervates, allowing for a highly tunable system. In this review, we primarily analyze how these structural design factors contribute to the formation of diverse coacervate architecture, ranging from bulk coacervates to polyion complex micelles, vesicles, and cross-linked gels, though environmental design factors are considered. We then examine the effectiveness of these architectures in enhancing the delivery and efficacy of drugs across various administration routes, such as noninvasive (e.g., oral and transdermal) and invasive delivery. This review aims to provide foundational insights into the design of advanced drug delivery systems by examining how the origin and chemical structure of polymers influence coacervate architecture, which in turn defines their material properties. We then explore how the architecture can be tailored to optimize drug delivery for specific administration routes. This approach leverages the intrinsic properties derived from the coacervate architecture to enable targeted, controlled, and efficient drug release, ultimately enhancing therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Chaeyoung Lim
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Whitney C. Blocher McTigue
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
7
|
Ahn SY, Obermeyer AC. Selectivity of Complex Coacervation in Multiprotein Mixtures. JACS AU 2024; 4:3800-3812. [PMID: 39483238 PMCID: PMC11522905 DOI: 10.1021/jacsau.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 11/03/2024]
Abstract
Liquid-liquid phase separation of biomolecules is increasingly recognized as being relevant to various cellular functions, and complex coacervation of biomacromolecules, particularly proteins, is emerging as a key mechanism for this phenomenon. Complex coacervation is also being explored as a potential protein purification method due to its potential scalability, aqueous operation, and ability to produce a highly concentrated product. However, to date, most studies of complex coacervation have evaluated the phase behavior of a binary mixture of two oppositely charged macromolecules. Therefore, a comprehensive understanding of the phase behavior of complex biological mixtures is yet to be established. To address this, a panel of engineered proteins was designed to allow for quantitative analysis of the complex coacervation of individual proteins within a multicomponent mixture. The behavior of individual proteins was evaluated using a defined mixture of proteins that mimics the charge profile of the Escherichia coli proteome. To allow for the direct quantification of proteins in each phase, spectrally separated fluorescent proteins were used to construct the protein mixture. From this quantitative analysis, we observed that protein coacervation was synchronized in the mixture, which was distinctive from the behavior when each protein was evaluated in a single-protein system. Subtle differences in biophysical properties between the proteins, such as the ionization of individual charged residues and overall charge density, became noticeable in the mixture, which allowed us to elucidate parameters for protein complex coacervation. With this understanding, we successfully designed methods to enrich a range of proteins of interest from a mixture of proteins.
Collapse
Affiliation(s)
- So Yeon Ahn
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Allie C. Obermeyer
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Hazegh Nikroo A, Altenburg WJ, van Veldhuisen TW, Brunsveld L, van Hest JCM. Spatiotemporal Control Over Protein Release from Artificial Cells via a Light-Activatable Protease. Adv Biol (Weinh) 2024:e2400353. [PMID: 39334525 DOI: 10.1002/adbi.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
The regulation of protein uptake and secretion by cells is paramount for intercellular signaling and complex multicellular behavior. Mimicking protein-mediated communication in artificial cells holds great promise to elucidate the underlying working principles, but remains challenging without the stimulus-responsive regulatory machinery of living cells. Therefore, systems to precisely control when and where protein release occurs should be incorporated in artificial cells. Here, a light-activatable TEV protease (LaTEV) is presented that enables spatiotemporal control over protein release from a coacervate-based artificial cell platform. Due to the presence of Ni2+-nitrilotriacetic acid moieties within the coacervates, His-tagged proteins are effectively sequestered into the coacervates. LaTEV is first photocaged, effectively blocking its activity. Upon activation by irradiation with 365 nm light, LaTEV cleaves the His-tags from sequestered cargo proteins, resulting in their release. The successful blocking and activation of LaTEV provides control over protein release rate and triggerable protein release from specific coacervates via selective irradiation. Furthermore, light-activated directional transfer of proteins between two artificial cell populations is demonstrated. Overall, this system opens up avenues to engineer light-responsive protein-mediated communication in artificial cell context, which can advance the probing of intercellular signaling and the development of protein delivery platforms.
Collapse
Affiliation(s)
- Arjan Hazegh Nikroo
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Wiggert J Altenburg
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Thijs W van Veldhuisen
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jan C M van Hest
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
9
|
Hoover SC, Margossian KO, Muthukumar M. Theory and quantitative assessment of pH-responsive polyzwitterion-polyelectrolyte complexation. SOFT MATTER 2024; 20:7199-7213. [PMID: 39222025 DOI: 10.1039/d4sm00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We introduce a theoretical framework to describe the pH-sensitive phase behavior of polyzwitterion-polyelectrolyte complex coacervates that reasonably captures the phenomenon from recent experimental observations. The polyzwitterion is described by a combinatorial sequence of the four states in which each zwitterionic monomer can occupy: dipolar, quasi-cationic, quasi-anionic, and fully neutralized. We explore the effects of various modifiable chemical and physical properties of the polymers-such as, pKa of the pH-active charged group on the zwitterion, equilibrium constant of salt condensation on the permanently charged group on the zwitterion, degrees of polymerization, hydrophobicity (via the Flory-Huggins interaction parameter), and dipole lengths-on the window of complexation across many stoichiometric mixing ratios of polyzwitterion and polyelectrolyte. The properties that determine the net charge of the polyzwitterion have the strongest effect on the pH range in which polyzwitterion-polyelectrolyte complexation occurs. We finish with general guidance for those interested in molecular design of polyzwitterion-polyelectrolyte complex coacervates and opportunities for future investigation.
Collapse
Affiliation(s)
- Samuel C Hoover
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Khatcher O Margossian
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
- Rush University Medical Center and John H. Stroger Hospital of Cook County, both in Chicago, IL 60612, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
10
|
Wang Y, Zou R, Zhou Y, Zheng Y, Peng C, Liu Y, Tan H, Fu Q, Ding M. Unraveling mechanisms of protein encapsulation and release in coacervates via molecular dynamics and machine learning. Chem Sci 2024; 15:13442-13451. [PMID: 39183928 PMCID: PMC11339950 DOI: 10.1039/d4sc03061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Coacervates play a pivotal role in protein-based drug delivery research, yet their drug encapsulation and release mechanisms remain poorly understood. Here, we utilized the Martini model to investigate bovine serum albumin (BSA) protein encapsulation and release within polylysine/polyglutamate (PLys/PGlu) coacervates. Our findings emphasize the importance of ingredient addition sequence in coacervate formation and encapsulation rates, attributed to preference contact between oppositely charged proteins and poly(amino acid)s. Notably, coacervates composed of β-sheet poly(amino acid)s demonstrate greater BSA encapsulation efficiency due to their reduced entropy and flexibility. Furthermore, we examined the pH responsiveness of coacervates, shedding light on the dissolution process driven by Coulomb forces. By leveraging machine learning algorithms to analyze simulation results, our research advances the understanding of coacervate-based drug delivery systems, with the ultimate goal of optimizing therapeutic outcomes.
Collapse
Affiliation(s)
- Yiwei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Rongrong Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
11
|
Oliveira MCS, Nascimento DM, Ferreira ES, Bernardes JS. Combining and concentrating nanocelluloses for cryogels with remarkable strength and wet resilience. Carbohydr Polym 2024; 330:121740. [PMID: 38368119 DOI: 10.1016/j.carbpol.2023.121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 02/19/2024]
Abstract
Cellulose cryogels are promising eco-friendly materials that exhibit low density, high porosity, and renewability. However, the applications of these materials are limited by their lower mechanical and water resistance compared to petrochemical-based lightweight materials. In this work, nanocelluloses were functionalized with cationic and anionic groups, and these nanomaterials were combined to obtain strong and water-resilient cryogels. To prepare the cryogels, anionic and cationic micro- and nanofibrils (CNFs) were produced at three different sizes and combined in various weight ratios, forming electrostatic complexes. The complex phase was concentrated by centrifugation and freeze-dried. Porous and open cellular structures were assembled in all compositions tested (porosity >90 %). Compressive testing revealed that the most resistant cryogels (1.7 MPa) were obtained with equivalent amounts of negatively and positively charged CNFs with lengths between 100 and 1200 nm. The strength at this condition was achieved as CNF electrostatic complexes assembled in thick cells, as observed by synchrotron X-ray tomography. In addition to mechanical strength, electrostatic complexation provided remarkable structural stability in water for the CNF cryogels, without compromising their biodegradability. This route by electrostatic complexation is a practical strategy to combine and concentrate nanocelluloses to tailor biodegradable lightweight materials with high strength and wet stability.
Collapse
Affiliation(s)
- Maria C S Oliveira
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Diego M Nascimento
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Elisa S Ferreira
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Juliana S Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil; Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil.
| |
Collapse
|
12
|
Wilcox K, Yamagami KR, Roopnarine BK, Linscott A, Morozova S. Effect of Polymer Gel Elasticity on Complex Coacervate Phase Behavior. ACS POLYMERS AU 2024; 4:109-119. [PMID: 38618006 PMCID: PMC11010254 DOI: 10.1021/acspolymersau.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 04/16/2024]
Abstract
Gels are key materials in biological systems such as tissues and may control biocondensate formation and structure. To further understand the effects of elastic environments on biomacromolecular assembly, we have investigated the phase behavior and radii of complex coacervate droplets in polyacrylamide (PAM) networks as a function of gel modulus. Poly-l-lysine (PLL) and sodium hyaluronate (HA) complex coacervate phases were prepared in PAM gels with moduli varying from 0.035 to 15.0 kPa. The size of the complex coacervate droplets is reported from bright-field microscopy and confocal fluorescence microscopy. Overall, the complex coacervate droplet volume decreases inversely with the modulus. Fluorescence microscopy is also used to determine the phase behavior and concentration of fluorescently tagged HA in the complex coacervate phases as a function of ionic strength (100-270 mM). We find that the critical ionic strength and complex coacervate stability are nonmonotonic as a function of the network modulus and that the local gel concentration can be used to control phase behavior and complex coacervate droplet size scale. By understanding how elastic environments influence simple electrostatic assembly, we can further understand how biomacromolecules exist in complex, crowded, and elastic cellular environments.
Collapse
Affiliation(s)
- Kathryn
G. Wilcox
- Department of Macromolecular
Science and Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Kai R. Yamagami
- Department of Macromolecular
Science and Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Brittany K. Roopnarine
- Department of Macromolecular
Science and Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Adam Linscott
- Department of Macromolecular
Science and Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| | - Svetlana Morozova
- Department of Macromolecular
Science and Engineering, Case Western Reserve
University, Cleveland, Ohio 44106, United States
| |
Collapse
|
13
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
14
|
Ahn SY, Obermeyer AC. Selectivity of Complex Coacervation in Multi-Protein Mixtures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587643. [PMID: 38617366 PMCID: PMC11014547 DOI: 10.1101/2024.04.02.587643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Liquid-liquid phase separation of biomolecules is increasingly recognized as relevant to various cellular functions, and complex coacervation of biomacromolecules, particularly proteins, is emerging as a key mechanism for this phenomenon. Complex coacervation is also being explored as a potential protein purification method due to its potential scalability, aqueous operation, and ability to produce a highly concentrated product. However, to date most studies of complex coacervation have evaluated the phase behavior of a binary mixture of two oppositely charged macromolecules. Therefore, a comprehensive understanding of the phase behavior of complex biological mixtures has yet to be established. To address this, a panel of engineered proteins was designed to allow for quantitative analysis of the complex coacervation of individual proteins within a multi-component mixture. The behavior of individual proteins was evaluated using a defined mixture of proteins that mimics the charge profile of the E. coli proteome. To allow for direct quantification of proteins in each phase, spectrally separated fluorescent proteins were used to construct the protein mixture. From this quantitative analysis, we observed that the coacervation behavior of individual proteins in the mixture was consistent with each other, which was distinctive from the behavior when each protein was evaluated in a single-protein system. Subtle differences in biophysical properties between the proteins became noticeable in the mixture, which allowed us to elucidate parameters for protein complex coacervation. With this understanding, we successfully designed methods to enrich a range of proteins of interest from a mixture of proteins.
Collapse
Affiliation(s)
- So Yeon Ahn
- Department of Chemical Engineering, Columbia University, New York, NY
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY
| |
Collapse
|
15
|
Just PN, Slater MJ. Potential of alginate, chitosan and polyethylene glycol as substances for colloidal drug delivery as determined by protein release and digestion. Vet Anim Sci 2024; 23:100335. [PMID: 38283333 PMCID: PMC10810738 DOI: 10.1016/j.vas.2024.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Colloidal encapsulations can be applied as protective matrices in aquaculture feeds. They promise an ideal approach to protect bioactive substances such as oral vaccines, pre- or probiotics against degradation due to acidic environments or untimely lixiviation. Alginate, chitosan and polyethylene glycol (PEG) are substances frequently applied in encapsulations as protective matrices. However, essential information on their direct and comparable characteristics and their effects on digestion speeds after oral application in aquaculture are lacking. The current study evaluated in vitro release and retention profiles of a model protein bovine serum albumin (BSA) after encapsulation with four experimental formulations of protective matrices: ALG - alginate; AC -alginate and chitosan, AP - alginate and PEG and APC - alginate, PEG and chitosan. The iron marked treatment diets were fed to juvenile rainbow trout and digestion speed was investigated using radiographic imaging. Digestion speeds did not differ significantly between treatments, with all test diets reaching the anterior fish intestine 10 h after feeding. The BSA retention under low pH was highest for the alginate-chitosan PM (84.7 ± 5.8 %). The inclusion of PEG reduced the retention rate in low pH but significantly increased the absolute BSA release. An oil coating significantly reduced the BSA release during the initial burst for the alginate, alginate-PEG and alginate-chitosan-PEG treatments and significantly reduced retention potential under neutral pH conditions. The feeding simulation trial showed that an oil-coated diet containing alginate-chitosan as a protective matrix can be used to protect the model protein during feeding (release to the water) and against the harmful milieu of the fish stomach. Different combinations of the investigated encapsulation substances can be used to achieve optimal encapsulation and protective characteristics depending on the application objective.
Collapse
Affiliation(s)
- Philip N. Just
- Sustainable Bioeconomy, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Matthew J. Slater
- Sustainable Bioeconomy, Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| |
Collapse
|
16
|
Staňo R, van Lente J, Lindhoud S, Košovan P. Sequestration of Small Ions and Weak Acids and Bases by a Polyelectrolyte Complex Studied by Simulation and Experiment. Macromolecules 2024; 57:1383-1398. [PMID: 38370910 PMCID: PMC10867894 DOI: 10.1021/acs.macromol.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024]
Abstract
Mixing of oppositely charged polyelectrolytes can result in phase separation into a polymer-poor supernatant and a polymer-rich polyelectrolyte complex (PEC). We present a new coarse-grained model for the Grand-reaction method that enables us to determine the composition of the coexisting phases in a broad range of pH and salt concentrations. We validate the model by comparing it to recent simulations and experimental studies, as well as our own experiments on poly(acrylic acid)/poly(allylamine hydrochloride) complexes. The simulations using our model predict that monovalent ions partition approximately equally between both phases, whereas divalent ones accumulate in the PEC phase. On a semiquantitative level, these results agree with our own experiments, as well as with other experiments and simulations in the literature. In the sequel, we use the model to study the partitioning of a weak diprotic acid at various pH values of the supernatant. Our results show that the ionization of the acid is enhanced in the PEC phase, resulting in its preferential accumulation in this phase, which monotonically increases with the pH. Currently, this effect is still waiting to be confirmed experimentally. We explore how the model parameters (particle size, charge density, permittivity, and solvent quality) affect the measured partition coefficients, showing that fine-tuning of these parameters can make the agreement with the experiments almost quantitative. Nevertheless, our results show that charge regulation in multivalent solutes can potentially be exploited in engineering the partitioning of charged molecules in PEC-based systems at various pH values.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
| | - Jéré
J. van Lente
- Department
of Molecules & Materials, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Saskia Lindhoud
- Department
of Molecules & Materials, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Peter Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
17
|
Joshi P, Decker C, Zeng X, Sathyavageeswaran A, Perry SL, Heldt CL. Design Rules for the Sequestration of Viruses into Polypeptide Complex Coacervates. Biomacromolecules 2024; 25:741-753. [PMID: 38103178 PMCID: PMC10866146 DOI: 10.1021/acs.biomac.3c00938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Encapsulation is a strategy that has been used to facilitate the delivery and increase the stability of proteins and viruses. Here, we investigate the encapsulation of viruses via complex coacervation, which is a liquid-liquid phase separation resulting from the complexation of oppositely charged polymers. In particular, we utilized polypeptide-based coacervates and explored the effects of peptide chemistry, chain length, charge patterning, and hydrophobicity to better understand the effects of the coacervating polypeptides on virus incorporation. Our study utilized two nonenveloped viruses, porcine parvovirus (PPV) and human rhinovirus (HRV). PPV has a higher charge density than HRV, and they both appear to be relatively hydrophobic. These viruses were compared to characterize how the charge, hydrophobicity, and patterning of chemistry on the surface of the virus capsid affects encapsulation. Consistent with the electrostatic nature of complex coacervation, our results suggest that electrostatic effects associated with the net charge of both the virus and polypeptide dominated the potential for incorporating the virus into a coacervate, with clustering of charges also playing a significant role. Additionally, the hydrophobicity of a virus appears to determine the degree to which increasing the hydrophobicity of the coacervating peptides can enhance virus uptake. Nonintuitive trends in uptake were observed with regard to both charge patterning and polypeptide chain length, with these parameters having a significant effect on the range of coacervate compositions over which virus incorporation was observed. These results provide insights into biophysical mechanisms, where sequence effects can control the uptake of proteins or viruses into biological condensates and provide insights for use in formulation strategies.
Collapse
Affiliation(s)
- Pratik
U. Joshi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Claire Decker
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Xianci Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Arvind Sathyavageeswaran
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Institute
for Applied Life Sciences, University of
Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Caryn L. Heldt
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| |
Collapse
|
18
|
Sathyavageeswaran A, Bonesso Sabadini J, Perry SL. Self-Assembling Polypeptides in Complex Coacervation. Acc Chem Res 2024; 57:386-398. [PMID: 38252962 DOI: 10.1021/acs.accounts.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Intracellular compartmentalization plays a pivotal role in cellular function, with membrane-bound organelles and membrane-less biomolecular "condensates" playing key roles. These condensates, formed through liquid-liquid phase separation (LLPS), enable selective compartmentalization without the barrier of a lipid bilayer, thereby facilitating rapid formation and dissolution in response to stimuli. Intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs), which are often rich in charged and polar amino acid sequences, scaffold many condensates, often in conjunction with RNA.Comprehending the impact of IDP/IDR sequences on phase separation poses a challenge due to the extensive chemical diversity resulting from the myriad amino acids and post-translational modifications. To tackle this hurdle, one approach has been to investigate LLPS in simplified polypeptide systems, which offer a narrower scope within the chemical space for exploration. This strategy is supported by studies that have demonstrated how IDP function can largely be understood based on general chemical features, such as clusters or patterns of charged amino acids, rather than residue-level effects, and the ways in which these kinds of motifs give rise to an ensemble of conformations.Our laboratory has utilized complex coacervates assembled from oppositely charged polypeptides as a simplified material analogue to the complexity of liquid-liquid phase separated biological condensates. Complex coacervation is an associative LLPS that occurs due to the electrostatic complexation of oppositely charged macro-ions. This process is believed to be driven by the entropic gains resulting from the release of bound counterions and the reorganization of water upon complex formation. Apart from their direct applicability to IDPs, polypeptides also serve as excellent model polymers for investigating molecular interactions due to the wide range of available side-chain functionalities and the capacity to finely regulate their sequence, thus enabling precise control over interactions with guest molecules.Here, we discuss fundamental studies examining how charge patterning, hydrophobicity, chirality, and architecture affect the phase separation of polypeptide-based complex coacervates. These efforts have leveraged a combination of experimental and computational approaches that provide insight into molecular level interactions. We also examine how these parameters affect the ability of complex coacervates to incorporate globular proteins and viruses. These efforts couple directly with our fundamental studies into coacervate formation, as such "guest" molecules should not be considered as experiencing simple encapsulation and are instead active participants in the electrostatic assembly of coacervate materials. Interestingly, we observed trends in the incorporation of proteins and viruses into coacervates formed using different chain length polypeptides that are not well explained by simple electrostatic arguments and may be the result of more complex interactions between globular and polymeric species. Additionally, we describe experimental evidence supporting the potential for complex coacervates to improve the thermal stability of embedded biomolecules, such as viral vaccines.Ultimately, peptide-based coacervates have the potential to help unravel the physics behind biological condensates, while paving the way for innovative methods in compartmentalization, purification, and biomolecule stabilization. These advancements could have implications spanning medicine to biocatalysis.
Collapse
Affiliation(s)
- Arvind Sathyavageeswaran
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 10003, United States
| | - Júlia Bonesso Sabadini
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 10003, United States
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 10003, United States
| |
Collapse
|
19
|
Sabadini JB, Oliveira CLP, Loh W. Assessing the Structure and Equilibrium Conditions of Complex Coacervate Core Micelles by Varying Their Shell Composition and Medium Ionic Strength. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2015-2027. [PMID: 38240211 DOI: 10.1021/acs.langmuir.3c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Complex coacervates result from an associative phase separation commonly involving oppositely charged polyelectrolytes. When this associative interaction occurs between charged-neutral diblock copolymers and oppositely charged homopolymers, a nanometric aggregate called a complex coacervate core micelle, C3M, is formed. Recent studies have addressed the issue of their thermodynamic or kinetic stability but without a clear consensus. To further investigate this issue, we have studied C3Ms formed by the combination of poly(diallyldimethylammonium) and copolymer poly(acrylamide)-b-poly(acrylate) using different preparation protocols. Dynamic light scattering and small-angle X-ray scattering measurements suggest that these structures are in an equilibrium condition because the aggregates do not vary with different preparation protocols or upon aging. In addition, their stability and structures are critically dependent on several parameters such as the density of neutral blocks in their shell and the ionic strength of the medium. Decreasing the amount of copolymer in the system and, hence, the density of neutral blocks in the shell results in an increase in the aggregate size because of the core growth, although their globular shape is retained. On the other hand, larger clusters of micelles were formed at higher ionic strengths. Partially replacing 77% of the copolymer with a homopolymer of the same charge or increasing the ionic strength of the system (above 100 mmol L-1 NaCl) leads to a metastable state, after which phase separation is eventually observed. SAXS analyses reveal that this phase separation above a certain salt concentration occurs due to the coagulation of individual micelles that seem to retain their individual globular structures. Overall, these results confirm earlier claims that equilibrium C3Ms are achieved close to 1:1 charge stoichiometry but also reveal that these conditions may vary at different shell densities or higher ionic strengths, which constitute vital information for envisioning future applications of C3Ms.
Collapse
Affiliation(s)
- Júlia Bonesso Sabadini
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, São Paulo, Brazil
| | | | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
20
|
Tabandeh S, Ateeq T, Leon L. Drug Encapsulation via Peptide-Based Polyelectrolyte Complexes. Chembiochem 2024; 25:e202300440. [PMID: 37875787 DOI: 10.1002/cbic.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Peptide-based polyelectrolyte complexes are biocompatible materials that can encapsulate molecules with different polarities due to their ability to be precisely designed. Here we use UV-Vis spectroscopy, fluorescence microscopy, and infrared spectroscopy to investigate the encapsulation of model drugs, doxorubicin (DOX) and methylene blue (MB) using a series of rationally designed polypeptides. For both drugs, we find an overall higher encapsulation efficiency with sequences that have higher charge density, highlighting the importance of ionic interactions between the small molecules and the peptides. However, comparing molecules with the same charge density, illustrated that the most hydrophobic sequence pairs had the highest encapsulation of both DOX and MB molecules. The phase behavior and stability of DOX-containing complexes did not change compared to the complexes without drugs. However, MB encapsulation caused changes in the stabilities of the complexes. The sequence pair with the highest charge density and hydrophobicity had the most dramatic increase in stability, which coincided with a phase change from liquid to solid. This study illustrates how multiple types of molecular interactions are required for efficient encapsulation of poorly soluble drugs and provides insights into the molecular design of delivery carriers.
Collapse
Affiliation(s)
- Sara Tabandeh
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Tahoora Ateeq
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Lorraine Leon
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
- NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy #400, Orlando, FL-32826, USA
| |
Collapse
|
21
|
Nguyen MVT, Dolph K, Delaney KT, Shen K, Sherck N, Köhler S, Gupta R, Francis MB, Shell MS, Fredrickson GH. Molecularly informed field theory for estimating critical micelle concentrations of intrinsically disordered protein surfactants. J Chem Phys 2023; 159:244904. [PMID: 38149742 PMCID: PMC10754628 DOI: 10.1063/5.0178910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
The critical micelle concentration (CMC) is a crucial parameter in understanding the self-assembly behavior of surfactants. In this study, we combine simulation and experiment to demonstrate the predictive capability of molecularly informed field theories in estimating the CMC of biologically based protein surfactants. Our simulation approach combines the relative entropy coarse-graining of small-scale atomistic simulations with large-scale field-theoretic simulations, allowing us to efficiently compute the free energy of micelle formation necessary for the CMC calculation while preserving chemistry-specific information about the underlying surfactant building blocks. We apply this methodology to a unique intrinsically disordered protein platform capable of a wide variety of tailored sequences that enable tunable micelle self-assembly. The computational predictions of the CMC closely match experimental measurements, demonstrating the potential of molecularly informed field theories as a valuable tool to investigate self-assembly in bio-based macromolecules systematically.
Collapse
Affiliation(s)
- My. V. T. Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Kate Dolph
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | | | | | | | - Rohini Gupta
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, USA
| | | | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
22
|
Perin GB, Moreno S, Zhou Y, Günther M, Boye S, Voit B, Felisberti MI, Appelhans D. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction. Biomacromolecules 2023; 24:5807-5822. [PMID: 37984848 DOI: 10.1021/acs.biomac.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been growing attention to designing synthetic protocells, capable of mimicking micrometric and multicompartmental structures and highly complex physicochemical and biological processes with spatiotemporal control. Controlling metabolism-like cascade reactions in coacervate protocells is still challenging since signal transduction has to be involved in sequential and parallelized actions mediated by a pH change. Herein, we report the hierarchical construction of membraneless and multicompartmentalized protocells composed of (i) a cytosol-like scaffold based on complex coacervate droplets stable under flow conditions, (ii) enzyme-active artificial organelles and a substrate nanoreservoir capable of triggering a cascade reaction between them in response to a pH increase, and (iii) a signal transduction component based on the urease enzyme capable of the conversion of an exogenous biological fuel (urea) into an endogenous signal (ammonia and pH increase). Overall, this strategy allows a synergistic communication between their components within the membraneless and multicompartment protocells and, thus, metabolism-like enzymatic cascade reactions. This signal communication is transmitted through a scaffold protocell from an "inactive state" (nonfluorescent protocell) to an "active state" (fluorescent protocell capable of consuming stored metabolites).
Collapse
Affiliation(s)
- Giovanni B Perin
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Markus Günther
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Maria I Felisberti
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
23
|
Zhou J, Wan Y, Cohen Stuart MA, Wang M, Wang J. Effects of Control Factors on Protein-Polyelectrolyte Complex Coacervation. Biomacromolecules 2023; 24:5759-5768. [PMID: 37955264 DOI: 10.1021/acs.biomac.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Protein-polyelectrolyte complex coacervation is of particular interest for mimicking intracellular phase separation and organization. Yet, the challenge arises from regulating the coacervation due to the globular structure and anisotropic distributed charges of protein. Herein, we fully investigate the different control factors and reveal their effects on protein-polyelectrolyte coacervation. We prepared mixtures of BSA (bovine serum albumin) with different cationic polymers, which include linear and branched polyelectrolytes covering different spacer and charge groups, chain lengths, and polymer structures. With BSA-PDMAEMA [poly(N,N-dimethylaminomethyl methacrylate)] as the main investigated pair, we find that the moderate pH and ionic strength are essential for the adequate electrostatic interaction and formation of coacervate droplets. For most BSA-polymer mixtures, excess polyelectrolytes are required to achieve the full complexation, as evidenced by the deviated optimal charge mixing ratios from the charge stoichiometry. Polymers with longer chains or primary amine groups and a branched structure endow a strong electrostatic interaction with BSA and cause a bigger charge ratio deviation associated with the formation of solid-like coacervate complexes. Nevertheless, both the liquid- and solid-like coacervates hardly interrupt the BSA structure and activity, indicating the safe encapsulation of proteins by the coacervation with polyelectrolytes. Our study validates the crucial control of the diverse factors in regulating protein-polyelectrolyte coacervation, and the revealed principles shall be instructive for establishing other protein-based coacervations and boosting their potential applications.
Collapse
Affiliation(s)
- Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Lin T, Zhou Y, Dadmohammadi Y, Yaghoobi M, Meletharayil G, Kapoor R, Abbaspourrad A. Encapsulation and stabilization of lactoferrin in polyelectrolyte ternary complexes. Food Hydrocoll 2023; 145:109064. [PMID: 37545760 PMCID: PMC10399645 DOI: 10.1016/j.foodhyd.2023.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Effective delivery of the bioactive protein, lactoferrin (LF), remains a challenge as it is sensitive to environmental changes and easily denatured during heating, restricting its application in functional food products. To overcome these challenges, we formulated novel polyelectrolyte ternary complexes of LF with gelatin (G) and negatively charged polysaccharides, to improve the thermal stability of LF with retained antibacterial activity. Linear, highly charged polysaccharides were able to form interpolymeric complexes with LF and G, while coacervates were formed with branched polysaccharides. A unique multiphase coacervate was observed in the gum Arabic GA-LF-G complex, where a special coacervate-in-coacervate structure was found. The ternary complexes made with GA, soy soluble polysaccharide (SSP), or high methoxyl pectin (HMP) preserved the protein structures and demonstrated enhanced thermal stability of LF. The GA-LF-G complex was especially stable with >90% retention of the native LF after treatment at 90 °C for 2 min in a water bath or at 145 °C for 30 s, while the LF control had only ~ 7% undenatured LF under both conditions. In comparison to untreated LF, LF in ternary complex retained significant antibacterial activity on both Gram-positive and Gram-negative bacteria, even after heat treatment. These ternary complexes of LF maintain the desired functionality of LF, thermal stability and antibacterial activity, in the final products. The ternary complex structure, particularly the multiphase coacervate, may serve as a template for the encapsulation and stabilization of other bioactives and peptides.
Collapse
Affiliation(s)
- Tiantian Lin
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Yufeng Zhou
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Mohammad Yaghoobi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
26
|
Apuzzo E, Agazzi M, Herrera SE, Picco A, Rizzo G, Chavero C, Bianchi D, Smaldini P, Cortez ML, Marmisollé WA, Padula G, Seoane A, Alomar ML, Denofrio MP, Docena G, Azzaroni O. Poly(allylamine)-tripolyphosphate Ionic Assemblies as Nanocarriers: Friend or Foe? ACS APPLIED BIO MATERIALS 2023; 6:4714-4727. [PMID: 37863908 DOI: 10.1021/acsabm.3c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Designing effective drug nanocarriers that are easy to synthesize, robust, and nontoxic is a significant challenge in nanomedicine. Polyamine-multivalent molecule nanocomplexes are promising drug carriers due to their simple and all-aqueous manufacturing process. However, these systems can present issues of colloidal instability over time and cellular toxicity due to the cationic polymer. In this study, we finely modulate the formation parameters of poly(allylamine-tripolyphosphate) complexes to jointly optimize the robustness and safety. Polyallylamine was ionically assembled with tripolyphosphate anions to form liquid-like nanocomplexes with a size of around 200 nm and a zeta potential of -30 mV. We found that nanocomplexes exhibit tremendous long-term stability (9 months of storage) in colloidal dispersion and that they are suitable as protein-loading agents. Moreover, the formation of nanocomplexes induced by tripolyphosphate anions produces a switch-off in the toxicity of the system by altering the overall charge from positive to negative. In addition, we demonstrate that nanocomplexes can be internalized by bone-marrow-derived macrophage cells. Altogether, these nanocomplexes have attractive and promising properties as delivery nanoplatforms for potential therapies based on the immune system activation.
Collapse
Affiliation(s)
- Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Maximiliano Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Córdoba, Argentina
| | - Santiago E Herrera
- Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), (UBA, CONICET), C1428EGA Buenos Aires, Argentina
| | - Agustín Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Gastón Rizzo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Camila Chavero
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Daiana Bianchi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Paola Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - María Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Gisel Padula
- Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo (FCNyM), (UNLP, CONICET), 1900 La Plata, Buenos Aires ,Argentina
| | - Analía Seoane
- Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| | - Maria Lis Alomar
- Instituto Tecnológico de Chascomús (INTECH), (UNSAM, CONICET) 7130, Chascomús, Buenos Aires ,Argentina
| | - Maria Paula Denofrio
- Instituto Tecnológico de Chascomús (INTECH), (UNSAM, CONICET) 7130, Chascomús, Buenos Aires ,Argentina
| | - Guillermo Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP, CONICET), asociado a CIC-PBA, 1900 La Plata, Buenos Aires ,Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
27
|
Zhou J, Cai Y, Wan Y, Wu B, Liu J, Zhang X, Hu W, Cohen Stuart MA, Wang J. Protein separation by sequential selective complex coacervation. J Colloid Interface Sci 2023; 650:2065-2074. [PMID: 37355354 DOI: 10.1016/j.jcis.2023.06.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/21/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
In food manufacturing and particular biomedical products selected proteins are often required. Obtaining the desired proteins in a pure form from natural resources is therefore important, but often very challenging. Herein, we design a sequential coacervation process that allows to efficiently isolate and purify proteins with different isoelectric points (pIs) from a mixed solution, namely Bovine Serum Albumin (BSA, pI = 4.9) and Peroxidase from Horseradish (HRP, pI = 7.2). The key to separation is introducing a suitable polyelectrolyte that causes selective complex coacervation at appropriate pH and ionic strength. Specifically, polyethyleneimine (PEI), when added into the mixture at pH 6.0, produces a coacervation which exclusively contains BSA, leading to a supernatant solution containing 100 % HRP with a purity of 91 %. After separating the dilute and dense phases, BSA is recovered by adding poly(acrylic acid) (PAA) to the concentrated phase, which displaces BSA from the complex because it interacts more strongly with PEI. The supernatant phase after this step contains approximately 75 % of the initial amount of BSA with a purity of 99 %. Our results confirm that coacervation under well-defined conditions can be selective, enabling separation of proteins with adequate purity. Therefore, the established approach demonstrates a facile and sustainable strategy with potential for protein separation at industrial scale.
Collapse
Affiliation(s)
- Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Ying Cai
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Bohang Wu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jinbo Liu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Xinxin Zhang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Weiwei Hu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China.
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
28
|
Yu B, Liang H, Nealey PF, Tirrell MV, Rumyantsev AM, de Pablo JJ. Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates: Insights from Molecular Simulations. Macromolecules 2023; 56:7256-7270. [PMID: 37781214 PMCID: PMC10538443 DOI: 10.1021/acs.macromol.3c01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Indexed: 10/03/2023]
Abstract
Electrostatic interactions in polymeric systems are responsible for a wide range of liquid-liquid phase transitions that are of importance for biology and materials science. Such transitions are referred to as complex coacervation, and recent studies have sought to understand the underlying physics and chemistry. Most theoretical and simulation efforts to date have focused on oppositely charged linear polyelectrolytes, which adopt nearly ideal-coil conformations in the condensed phase. However, when one of the coacervate components is a globular protein, a better model of complexation should replace one of the species with a spherical charged particle or colloid. In this work, we perform coarse-grained simulations of colloid-polyelectrolyte coacervation using a spherical model for the colloid. Simulation results indicate that the electroneutral cell of the resulting (hybrid) coacervates consists of a polyelectrolyte layer adsorbed on the colloid. Power laws for the structure and the density of the condensed phase, which are extracted from simulations, are found to be consistent with the adsorption-based scaling theory of hybrid coacervation. The coacervates remain amorphous (disordered) at a moderate colloid charge, Q, while an intra-coacervate colloidal crystal is formed above a certain threshold, at Q > Q*. In the disordered coacervate, if Q is sufficiently low, colloids diffuse as neutral nonsticky nanoparticles in the semidilute polymer solution. For higher Q, adsorption is strong and colloids become effectively sticky. Our findings are relevant for the coacervation of polyelectrolytes with proteins, spherical micelles of ionic surfactants, and solid organic or inorganic nanoparticles.
Collapse
Affiliation(s)
- Boyuan Yu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Heyi Liang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Artem M. Rumyantsev
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
29
|
Coria-Oriundo LL, Debais G, Apuzzo E, Herrera SE, Ceolín M, Azzaroni O, Battaglini F, Tagliazucchi M. Phase Behavior and Electrochemical Properties of Highly Asymmetric Redox Coacervates. J Phys Chem B 2023; 127:7636-7647. [PMID: 37639479 DOI: 10.1021/acs.jpcb.3c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
This work reports the phase behavior and electrochemical properties of liquid coacervates made of ferricyanide and poly(ethylenimine). In contrast to the typical polyanion/polycation pairs used in liquid coacervates, the ferricyanide/poly(ethylenimine) system is highly asymmetric because poly(ethylenimine) has approximately 170 charges per molecule, while ferricyanide has only 3. Two types of phase diagrams were measured and fitted with a theoretical model. In the first type of diagram, the stability of the coacervate was studied in the plane given by the concentration of poly(ethylenimine) versus the concentration of ferricyanide for a fixed concentration of added monovalent salt (NaCl). The second type of diagram involved the plane given by the concentration of poly(ethylenimine) vs the concentration of the added monovalent salt for a fixed poly(ethyleneimine)/ferricyanide ratio. Interestingly, these phase diagrams displayed qualitative similarities to those of symmetric polyanion/polycation systems, suggesting that coacervates formed by a polyelectrolyte and a small multivalent ion can be treated as a specific case of polyelectrolyte coacervate. The characterization of the electrochemical properties of the coacervate revealed that the addition of monovalent salt greatly enhances charge transport, presumably by breaking ion pairs between ferricyanide and poly(ethylenimine). This finding highlights the significant influence of added salt on the transport properties of coacervates. This study provides the first comprehensive characterization of the phase behavior and transport properties of asymmetric coacervates and places these results within the broader context of the better-known symmetric polyelectrolyte coacervates.
Collapse
Affiliation(s)
- Lucy L Coria-Oriundo
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Debais
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Santiago E Herrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Fernando Battaglini
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
30
|
K C B, Nii T, Mori T, Katayama Y. Dynamic frustrated charge hotspots created by charge density modulation sequester globular proteins into complex coacervates. Chem Sci 2023; 14:6608-6620. [PMID: 37350836 PMCID: PMC10283495 DOI: 10.1039/d3sc00993a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
This study presents a simple strategy for the sequestration of globular proteins as clients into synthetic polypeptide-based complex coacervates as a scaffold, thereby recapitulating the scaffold-client interaction found in biological condensates. Considering the low net charges of scaffold proteins participating in biological condensates, the linear charge density (σ) on the polyanion, polyethylene glycol-b-poly(aspartic acids), was reduced by introducing hydroxypropyl or butyl moieties as a charge-neutral pendant group. Complex coacervate prepared from the series of reduced-σ polyanions and the polycation, homo-poly-l-lysine, could act as a scaffold that sequestered various globular proteins with high encapsulation efficiency (>80%), which sometimes involved further agglomerations in the coacervates. The sequestration of proteins was basically driven by electrostatic interaction, and therefore depended on the ionic strength and charges of the proteins. However, based on the results of polymer partitioning in the coacervate in the presence or absence of proteins, charge ratios between cationic and anionic polymers were maintained at the charge ratio of unity. Therefore, the origin of the electrostatic interaction with proteins is considered to be dynamic frustrated charges in the complex coacervates created by non-neutralized charges on polymer chains. Furthermore, fluorescence recovery after photobleaching (FRAP) measurements showed that the interaction of side-chains and proteins changed the dynamic property of coacervates. It also suggested that the physical properties of the condensate are tunable before and after the sequestration of globular proteins. The present rational design approach of the scaffold-client interaction is helpful for basic life-science research and the applied frontier of artificial organelles.
Collapse
Affiliation(s)
- Biplab K C
- Graduate School of Systems Life Sciences, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Teruki Nii
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Future Chemistry, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Future Chemistry, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Advanced Medical Open Innovation, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
- Department of Biomedical Engineering, Chung Yuan Christian University 200 Chung Pei Rd. Chung Li Taiwan 32023 ROC
| |
Collapse
|
31
|
Wang J, Waltmann C, Harms C, Hu S, Hegarty J, Shindel B, Wang Q, Dravid V, Shull KR, Torkelson JM, Olvera de la Cruz M. Tailoring Interactions of Random Copolymer Polyelectrolyte Complexes to Remove Nanoplastic Contaminants from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7514-7523. [PMID: 37196238 DOI: 10.1021/acs.langmuir.3c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We investigate the usage of polyelectrolyte complex materials for water remediation purposes, specifically their ability to remove nanoplastics from water, on which there is currently little to no prior research. We demonstrate that oppositely charged random copolymers are effective at quantitatively removing nanoplastic contamination from aqueous solution. The mechanisms underlying this remediation ability are explored through computational simulations, with corroborating quartz crystal microbalance adsorption experiments. We find that hydrophobic nanostructures and interactions likely play an important role.
Collapse
Affiliation(s)
- Jeremy Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Caroline Harms
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sumeng Hu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John Hegarty
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin Shindel
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Qifeng Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R Shull
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John M Torkelson
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Modi N, Chen S, Adjei INA, Franco BL, Bishop KJM, Obermeyer AC. Designing negative feedback loops in enzymatic coacervate droplets. Chem Sci 2023; 14:4735-4744. [PMID: 37181760 PMCID: PMC10171067 DOI: 10.1039/d2sc03838b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
Membraneless organelles within the living cell use phase separation of biomolecules coupled with enzymatic reactions to regulate cellular processes. The diverse functions of these biomolecular condensates motivate the pursuit of simpler in vitro models that exhibit primitive forms of self-regulation based on internal feedback mechanisms. Here, we investigate one such model based on complex coacervation of the enzyme catalase with an oppositely charge polyelectrolyte DEAE-dextran to form pH-responsive catalytic droplets. Upon addition of hydrogen peroxide "fuel", enzyme activity localized within the droplets causes a rapid increase in the pH. Under appropriate conditions, this reaction-induced pH change triggers coacervate dissolution owing to its pH-responsive phase behavior. Notably, this destabilizing effect of the enzymatic reaction on phase separation depends on droplet size owing to the diffusive delivery and removal of reaction components. Reaction-diffusion models informed by the experimental data show that larger drops support larger changes in the local pH thereby enhancing their dissolution relative to smaller droplets. Together, these results provide a basis for achieving droplet size control based on negative feedback between pH-dependent phase separation and pH-changing enzymatic reactions.
Collapse
Affiliation(s)
- Nisha Modi
- Department of Chemical Engineering, Columbia University New York USA
| | - Siwei Chen
- Department of Chemical Engineering, Columbia University New York USA
| | - Imelda N A Adjei
- Department of Biomedical Engineering, Columbia University New York USA
| | - Briana L Franco
- Department of Chemical Engineering, Columbia University New York USA
| | - Kyle J M Bishop
- Department of Chemical Engineering, Columbia University New York USA
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University New York USA
| |
Collapse
|
33
|
Heldt CL, Areo O, Joshi PU, Mi X, Ivanova Y, Berrill A. Empty and Full AAV Capsid Charge and Hydrophobicity Differences Measured with Single-Particle AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5641-5648. [PMID: 37040364 PMCID: PMC10135413 DOI: 10.1021/acs.langmuir.2c02643] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/22/2023] [Indexed: 05/07/2023]
Abstract
Adeno-associated virus (AAV) is showing promise as a therapy for diseases that contain a single-gene deletion or mutation. One major scale-up challenge is the removal of empty or non-gene of interest containing AAV capsids. Analytically, the empty capsids can be separated from full capsids using anion exchange chromatography. However, when scaled up to manufacturing, the minute changes in conductivity are difficult to consistently obtain. To better understand the differences in the empty and full AAV capsids, we have developed a single-particle atomic force microscopy (AFM) method to measure the differences in the charge and hydrophobicity of AAV capsids at the single-particle level. The atomic force microscope tip was functionalized with either a charged or a hydrophobic molecule, and the adhesion force between the functionalized atomic force microscope tip and the virus was measured. We measured a change in the charge and hydrophobicity between empty and full AAV2 and AAV8 capsids. The charge and hydrophobicity differences between AAV2 and AAV8 are related to the distribution of charge on the surface and not the total charge. We propose that the presence of nucleic acids inside the capsid causes minor but measurable changes in the capsid structure that lead to measurable surface changes in charge and hydrophobicity.
Collapse
Affiliation(s)
- Caryn L. Heldt
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United
States
| | - Oluwatoyin Areo
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United
States
| | - Pratik U. Joshi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United
States
| | - Xue Mi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Yulia Ivanova
- Gene
Therapy Process Development, Bioprocess Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer, Chesterfield, Missouri 63017, United States
| | - Alex Berrill
- Gene
Therapy Process Development, Bioprocess Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer, Chesterfield, Missouri 63017, United States
| |
Collapse
|
34
|
Herrera SE, Agazzi ML, Apuzzo E, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. SOFT MATTER 2023; 19:2013-2041. [PMID: 36811333 DOI: 10.1039/d2sm01507b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.
Collapse
Affiliation(s)
- Santiago E Herrera
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Argentina.
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|
35
|
Paganini C, Capasso Palmiero U, Picciotto S, Molinelli A, Porello I, Adamo G, Manno M, Bongiovanni A, Arosio P. High-Yield Separation of Extracellular Vesicles Using Programmable Zwitterionic Coacervates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204736. [PMID: 36367966 DOI: 10.1002/smll.202204736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Programmable coacervates based on zwitterionic polymers are designed as dynamic materials for ion exchange bioseparation. These coacervates are proposed as promising materials for the purification of soft nanoparticles such as liposomes and extracellular vesicles (EVs). It is shown that the stimulus-responsiveness of the coacervates and the recruitment of desired molecules can be independently programmed by polymer design. Moreover, the polymeric coacervates can recruit and release intact liposomes, human EVs, and nanoalgosomes in high yields and separate vesicles from different types of impurities, including proteins and nucleic acids. This approach combines the speed and simplicity of precipitation methods and the programmability of chromatography with the gentleness of aqueous two-phase separation, thereby guaranteeing product stability. This material represents a promising alternative for providing a low-shear, gentle, and selective purification method for EVs.
Collapse
Affiliation(s)
- Carolina Paganini
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, 90146, Italy
| | - Alessandro Molinelli
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Ilaria Porello
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| |
Collapse
|
36
|
A mini-review on bio-inspired polymer self-assembly: single-component and interactive polymer systems. Emerg Top Life Sci 2022; 6:593-607. [PMID: 36254846 DOI: 10.1042/etls20220057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 12/30/2022]
Abstract
Biology demonstrates meticulous ways to control biomaterials self-assemble into ordered and disordered structures to carry out necessary bioprocesses. Empowering the synthetic polymers to self-assemble like biomaterials is a hallmark of polymer physics studies. Unlike protein engineering, polymer science demystifies self-assembly by purposely embedding particular functional groups into the backbone of the polymer while isolating others. The polymer field has now entered an era of advancing materials design by mimicking nature to a very large extend. For example, we can make sequence-specific polymers to study highly ordered mesostructures similar to studying proteins, and use charged polymers to study liquid-liquid phase separation as in membraneless organelles. This mini-review summarizes recent advances in studying self-assembly using bio-inspired strategies on single-component and multi-component systems. Sequence-defined techniques are used to make on-demand hybrid materials to isolate the effects of chirality and chemistry in synthetic block copolymer self-assembly. In the meantime, sequence patterning leads to more hierarchical assemblies comprised of only hydrophobic and hydrophilic comonomers. The second half of the review discusses complex coacervates formed as a result of the associative charge interactions of oppositely charged polyelectrolytes. The tunable phase behavior and viscoelasticity are unique in studying liquid macrophase separation because the slow polymer relaxation comes primarily from charge interactions. Studies of bio-inspired polymer self-assembly significantly impact how we optimize user-defined materials on a molecular level.
Collapse
|
37
|
Kapelner RA, Fisher RS, Elbaum-Garfinkle S, Obermeyer AC. Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles. Chem Sci 2022; 13:14346-14356. [PMID: 36545145 PMCID: PMC9749388 DOI: 10.1039/d2sc00192f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Proteins are an important class of biologics, but there are several recurring challenges to address when designing protein-based therapeutics. These challenges include: the propensity of proteins to aggregate during formulation, relatively low loading in traditional hydrophobic delivery vehicles, and inefficient cellular uptake. This last criterion is particularly challenging for anionic proteins as they cannot cross the anionic plasma membrane. Here we investigated the complex coacervation of anionic proteins with a block copolymer of opposite charge to form polyelectrolyte complex (PEC) micelles for use as a protein delivery vehicle. Using genetically modified variants of the model protein green fluorescent protein (GFP), we evaluated the role of protein charge and charge localization in the formation and stability of PEC micelles. A neutral-cationic block copolymer, poly(oligoethylene glycol methacrylate-block-quaternized 4-vinylpyridine), POEGMA79-b-qP4VP175, was prepared via RAFT polymerization for complexation and microphase separation with the panel of engineered anionic GFPs. We found that isotropically supercharged proteins formed micelles at higher ionic strength relative to protein variants with charge localized to a polypeptide tag. We then studied GFP delivery by PEC micelles and found that they effectively delivered the protein cargo to mammalian cells. However, cellular delivery varied as a function of protein charge and charge distribution and we found an inverse relationship between the PEC micelle critical salt concentration and delivery efficiency. This model system has highlighted the potential of polyelectrolyte complexes to deliver anionic proteins intracellularly. Using this model system, we have identified requirements for the formation of PEC micelles that are stable at physiological ionic strength and that smaller protein-polyelectrolyte complexes effectively deliver proteins to Jurkat cells.
Collapse
Affiliation(s)
- Rachel A Kapelner
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1215
| | - Rachel S Fisher
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1215
- Structural Biology Initiative, CUNY Advanced Science Research Center New York NY USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, CUNY Advanced Science Research Center New York NY USA
- PhD Programs in Biochemistry and Biology at the Graduate Center, City University of New York NY USA
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1215
| |
Collapse
|
38
|
Encapsulation behavior of curcumin in heteroprotein complex coacervates and precipitates fabricated from β-conglycinin and lysozyme. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Nguyen M, Sherck N, Shen K, Edwards CER, Yoo B, Köhler S, Speros JC, Helgeson ME, Delaney KT, Shell MS, Fredrickson GH. Predicting Polyelectrolyte Coacervation from a Molecularly Informed Field-Theoretic Model. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Chelsea E. R. Edwards
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, United States
| | | | - Joshua C. Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, United States
| | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
40
|
Ban E, Kim A. Coacervates: recent developments as nanostructure delivery platforms for therapeutic biomolecules. Int J Pharm 2022; 624:122058. [PMID: 35905931 DOI: 10.1016/j.ijpharm.2022.122058] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Coacervation is a liquid-liquid phase separation that can occur in solutions of macromolecules through self-assembly or electrostatic interactions. Recently, coacervates composed of biocompatible macromolecules have been actively investigated as nanostructure platforms to encapsulate and deliver biomolecules such as proteins, RNAs, and DNAs. One particular advantage of coacervates is that they are derived from aqueous solutions, unlike other nanoparticle delivery systems that often require organic solvents. In addition, coacervates achieve high loading while maintaining the viability of the cargo material. Here, we review recent developments in the applications of coacervates and their limitations in the delivery of therapeutic biomolecules. Important factors for coacervation include molecular structures of the polyelectrolytes, mixing ratio, the concentration of polyelectrolytes, and reaction conditions such as ionic strength, pH, and temperature. Various compositions of coacervates have been shown to deliver biomolecules in vitro and in vivo with encouraging activities. However, major hurdles remain for the systemic route of administration other than topical or local delivery. The scale-up of manufacturing methods suitable for preclinical and clinical evaluations remains to be addressed. We conclude with a few research directions to overcome current challenges, which may lead to successful translation into the clinic.
Collapse
Affiliation(s)
- Eunmi Ban
- College of Pharmacy, CHA University, Seongnam 13488, Korea
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam 13488, Korea.
| |
Collapse
|
41
|
Mashima T, van Stevendaal MHME, Cornelissens FRA, Mason AF, Rosier BJHM, Altenburg WJ, Oohora K, Hirayama S, Hayashi T, van Hest JCM, Brunsveld L. DNA-Mediated Protein Shuttling between Coacervate-Based Artificial Cells. Angew Chem Int Ed Engl 2022; 61:e202115041. [PMID: 35133040 PMCID: PMC9303767 DOI: 10.1002/anie.202115041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/30/2022]
Abstract
The regulation of protein uptake and secretion is crucial for (inter)cellular signaling. Mimicking these molecular events is essential when engineering synthetic cellular systems. A first step towards achieving this goal is obtaining control over the uptake and release of proteins from synthetic cells in response to an external trigger. Herein, we have developed an artificial cell that sequesters and releases proteinaceous cargo upon addition of a coded chemical signal: single‐stranded DNA oligos (ssDNA) were employed to independently control the localization of a set of three different ssDNA‐modified proteins. The molecular coded signal allows for multiple iterations of triggered uptake and release, regulation of the amount and rate of protein release and the sequential release of the three different proteins. This signaling concept was furthermore used to directionally transfer a protein between two artificial cell populations, providing novel directions for engineering lifelike communication pathways inside higher order (proto)cellular structures.
Collapse
Affiliation(s)
- Tsuyoshi Mashima
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Marleen H M E van Stevendaal
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Femke R A Cornelissens
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Alexander F Mason
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Bas J H M Rosier
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Wiggert J Altenburg
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Shota Hirayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Jan C M van Hest
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| |
Collapse
|
42
|
Waltmann C, Mills CE, Wang J, Qiao B, Torkelson JM, Tullman-Ercek D, de la Cruz MO. Functional enzyme-polymer complexes. Proc Natl Acad Sci U S A 2022; 119:e2119509119. [PMID: 35312375 PMCID: PMC9060439 DOI: 10.1073/pnas.2119509119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/21/2022] [Indexed: 01/23/2023] Open
Abstract
SignificanceThe use of biological enzyme catalysts could have huge ramifications for chemical industries. However, these enzymes are often inactive in nonbiological conditions, such as high temperatures, present in industrial settings. Here, we show that the enzyme PETase (polyethylene terephthalate [PET]), with potential application in plastic recycling, is stabilized at elevated temperature through complexation with random copolymers. We demonstrate this through simulations and experiments on different types of substrates. Our simulations also provide strategies for designing more enzymatically active complexes by altering polymer composition and enzyme charge distribution.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Carolyn E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Jeremy Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - John M. Torkelson
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
43
|
Mashima T, Stevendaal MHME, Cornelissens FRA, Mason AF, Rosier BJHM, Altenburg WJ, Oohora K, Hirayama S, Hayashi T, Hest JCM, Brunsveld L. DNA‐Mediated Protein Shuttling between Coacervate‐Based Artificial Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tsuyoshi Mashima
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Marleen H. M. E. Stevendaal
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Femke R. A. Cornelissens
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Alexander F. Mason
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Bas J. H. M. Rosier
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Wiggert J. Altenburg
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Koji Oohora
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Shota Hirayama
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Takashi Hayashi
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Jan C. M. Hest
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| |
Collapse
|
44
|
van Lente JJ, Lindhoud S. Extraction of Lysozyme from Chicken Albumen Using Polyelectrolyte Complexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105147. [PMID: 34877780 DOI: 10.1002/smll.202105147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Cells use droplet-like membrane-less organelles (MLOs) to compartmentalize and selectively take-up molecules, such as proteins, from their internal environment. These membraneless organelles can be mimicked by polyelectrolyte complexes (PECs) consisting of oppositely charged polyelectrolytes. Previous research has demonstrated that protein uptake strongly depends on the PEC composition. This suggests that PECs can be used to selectively extract proteins from a multi-protein mixture. With this in mind, the partitioning of the protein lysozyme in four PEC systems consisting of different weak and strong polyelectrolyte combinations is investigated. All systems show similar trends in lysozyme partitioning as a function of the complex composition. The release of lysozyme from complexes at their optimal lysozyme uptake composition is investigated by increasing the salt concentration to 500 mm NaCl or lowering the pH from 7 to 4. Complexes of poly(allylamine hydrochloride) and poly(acrylic acid) have the best uptake and release properties. These are used for selective extraction of lysozyme from a hen-egg white protein matrix. The (back)-extracted lysozyme retains its enzymatic activity, showing the capability of PECs to function as extraction media for proteins.
Collapse
Affiliation(s)
- Jéré J van Lente
- Department of Molecules & Materials, Membrane Science & Technology cluster, Nanobiophysics Group and MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Saskia Lindhoud
- Department of Molecules & Materials nd MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| |
Collapse
|
45
|
Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022; 20:31. [PMID: 35012546 PMCID: PMC8751315 DOI: 10.1186/s12951-021-01221-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, 264003, People's Republic of China
| |
Collapse
|
46
|
Bobbili SV, Milner ST. Closed-Loop Phase Behavior of Nonstoichiometric Coacervates in Coarse-Grained Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sai Vineeth Bobbili
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott T. Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
47
|
Haas KT, Wightman R, Peaucelle A, Höfte H. The role of pectin phase separation in plant cell wall assembly and growth. Cell Surf 2021; 7:100054. [PMID: 34141960 PMCID: PMC8185244 DOI: 10.1016/j.tcsw.2021.100054] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
A rapidly increasing body of literature suggests that many biological processes are driven by phase separation within polymer mixtures. Liquid-liquid phase separation can lead to the formation of membrane-less organelles, which are thought to play a wide variety of roles in cell metabolism, gene regulation or signaling. One of the characteristics of these systems is that they are poised at phase transition boundaries, which makes them perfectly suited to elicit robust cellular responses to often very small changes in the cell's "environment". Recent observations suggest that, also in the semi-solid environment of plant cell walls, phase separation not only plays a role in wall patterning, hydration and stress relaxation during growth, but also may provide a driving force for cell wall expansion. In this context, pectins, the major polyanionic polysaccharides in the walls of growing cells, appear to play a critical role. Here, we will discuss (i) our current understanding of the structure-function relationship of pectins, (ii) in vivo evidence that pectin modification can drive critical phase transitions in the cell wall, (iii) how such phase transitions may drive cell wall expansion in addition to turgor pressure and (iv) the periodic cellular processes that may control phase transitions underlying cell wall assembly and expansion.
Collapse
Affiliation(s)
- Kalina T. Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
48
|
van Lente J, Pazos Urrea M, Brouwer T, Schuur B, Lindhoud S. Complex coacervates as extraction media. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:5812-5824. [PMID: 34456626 PMCID: PMC8366913 DOI: 10.1039/d1gc01880a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/02/2021] [Indexed: 05/29/2023]
Abstract
Various solvents such as ionic liquids, deep eutectic solvents, and aqueous two phase systems have been suggested as greener alternatives to existing extraction processes. We propose to add macroscopic complex coacervates to this list. Complex coacervates are liquid-like forms of polyion condensates and consist of a complex of oppositely charged polyions and water. Previous research focussing on the biological significance of these polyion-rich phases has shown that polyion condensates have the ability to extract certain solutes from water and back-extract them by changing parameters such as ionic strength and pH. In this study, we present the distribution coefficients of five commonly used industrial chemicals, namely lactic acid, butanol, and three types of lipase enzymes in poly(ethylenimine)/poly(acrylic acid) complex coacervates. It was found that the distribution coefficients can vary strongly upon variation of tunable parameters such as polyion ratio, ionic strength, polyion and compound concentrations, and temperature. Distribution coefficients ranged from approximately 2 to 50 depending on the tuning of the system parameters. It was also demonstrated that a temperature-swing extraction is possible, with back-extraction of butanol from complex coacervates with a recovery of 21.1%, demonstrating their potential as extraction media.
Collapse
Affiliation(s)
- Jéré van Lente
- Department of Molecules & Materials, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
- Nanobiophysics group, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
- Membrane Science & Technology cluster, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Monica Pazos Urrea
- Department of Chemical Engineering, Norwegian University of Science and Technology NO-7491 Trondheim Norway
| | - Thomas Brouwer
- Sustainable Process Technology group, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Boelo Schuur
- Sustainable Process Technology group, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Saskia Lindhoud
- Department of Molecules & Materials, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
| |
Collapse
|
49
|
Knoerdel AR, Blocher McTigue WC, Sing CE. Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation. J Phys Chem B 2021; 125:8965-8980. [PMID: 34328340 DOI: 10.1021/acs.jpcb.1c03065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oppositely charged polyelectrolytes can undergo an associative phase separation, in a process known as polymeric complex coacervation. This phenomenon is driven by the electrostatic attraction between polyanion and polycation species, leading to the formation of a polymer-dense coacervate phase and a coexisting polymer-dilute supernatant phase. There has been significant recent interest in the physical origin and features of coacervation; yet notably, experiments often use weak polyelectrolytes the charge state of which depends on solution pH, while theoretical or computational efforts typically assume strong polyelectrolytes that remain fully charged. There have been only a few efforts to address this limitation, and thus there has been little exploration of how pH can affect complex coacervation. In this paper, we modify a transfer matrix theory of coacervation to account for acid-base equilibria, taking advantage of its ability to directly account for some local ion correlations that will affect monomer charging. We show that coacervation can stabilize the charged state of a weak polyelectrolyte via the proximity of oppositely charged monomers, and can lead to asymmetric phase diagrams where the positively and negatively charged polyelectrolytes exhibit different behaviors near the pKa of either chain. Specifically, there is a partitioning of one of the salt species to a coacervate to maintain electroneutrality when one of the polyelectrolytes is only partially charged. This results in the depletion of the same salt species in the supernatant, and overall can suppress phase separation. We also demonstrate that, when one of the species is only partially charged, mixtures that are off-stoichiometric in volume fraction but stoichiometric in charge exhibit the greatest propensity to form coacervate phases.
Collapse
Affiliation(s)
- Ashley R Knoerdel
- Program in Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Whitney C Blocher McTigue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Zervoudis NA, Obermeyer AC. The effects of protein charge patterning on complex coacervation. SOFT MATTER 2021; 17:6637-6645. [PMID: 34151335 DOI: 10.1039/d1sm00543j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex coacervation of proteins with other macromolecules has applications in protein encapsulation and delivery and for determining the function of cellular coacervates. Theoretical or empirical predictions for protein coacervates would enable the design of these coacervates with tunable and predictable structure-function relationships; unfortunately, no such theories exist. To help establish predictive models, the impact of protein-specific parameters on complex coacervation were probed in this study. The complex coacervation of sequence-specific, polypeptide-tagged, GFP variants and a strong synthetic polyelectrolyte was used to evaluate the effects of protein charge patterning on phase behavior. Phase portraits for the protein coacervates demonstrated that charge patterning dictates the protein's binodal phase boundary. Protein concentrations over 100 mg mL-1 were achieved in the coacervate phase, with concentrations dependent on the tag polypeptide sequence covalently attached to the globular protein domain. In addition to shifting the binodal phase boundary, polypeptide charge patterning provided entropic advantages over isotropically patterned proteins. Together, these results show that modest changes of only a few amino acids in the tag polypeptide sequence alter the coacervation thermodynamics and can be used to tune the phase behavior of polypeptides or proteins of interest.
Collapse
Affiliation(s)
- Nicholas A Zervoudis
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|