1
|
Dai P, Ma Z, Xie K, Li Y, Zhang Y, Li C, Sun Y, Gu YC, Xia Q, Zhang W. Discovery of Novel Pyrazole/Thiazole Derivatives Containing Cyano/Thiocyanato Groups as Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6231-6240. [PMID: 40029986 DOI: 10.1021/acs.jafc.4c09156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
The introduction of groups with high drug activity is an effective strategy for discovering novel succinate dehydrogenase inhibitor (SDHI) fungicides, providing insights for the future design of SDHI fungicides with higher efficacy and resistance. In this study, we designed and synthesized a series of novel pyrazole/thiazole derivatives containing cyano/thiocyanato groups and evaluated them for antifungal activity. Some of the designed compounds exhibited promising antifungal activities against tested fungi, among them, compounds B31 and B35 displayed excellent in vitro activity against Rhizoctonia solani with EC50 values of 1.83 and 1.08 μg/mL, which were in close proximity to the commercial fungicide boscalid (EC50 = 0.87 μg/mL). For Altemaria solani, compound B35 (11.14 μg/mL) showed good antifungal activity against Altemaria solani with EC50 values below boscalid (15.31 μg/mL). SAR studies further reveal that induced and conjugated interactions between B35 and the target receptor facilitate an electron transport process, contributing to its antifungal activity. In preliminary mechanistic studies, compound B35 induced the mycelium and cells of Rhizoctonia solani showed irregular abnormal state under SEM and TEM observation and caused the production and accumulation of ROS. Molecular docking results and SDH enzyme assays indicate that compound B35 has the potential to be an effective SDHI fungicide.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihua Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaili Xie
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yafang Sun
- College of Economics and Management, Huaibei Institute of Technology, Anhui 235000, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell RG42 6EY, U.K
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Panda S, Orimoloye MO, Poudel TN, De Jonghe S, Jochmans D, Neyts J, Aldrich CC. Protecting Group Control of Hydroxyketone-Hemiketal Tautomeric Equilibrium Enables the Stereoselective Synthesis of a 1 '-Azido C-Nucleoside. J Org Chem 2024; 89:17389-17399. [PMID: 39561024 DOI: 10.1021/acs.joc.4c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The synthesis of 1'-azido C-nucleosides is described to expand the set of azide-functionalized nucleosides for bioorthogonal applications and as potential antiviral drugs. Lewis acid-promoted azidation of a nucleoside hemiketal resulted in the formation of a tetrazole through a Schmidt reaction manifold. Conformational control to prevent ring-chain tautomerism enabled efficient 1'-azidation with complete β-diastereoselectivity. The unique reactivity and further derivation of the 1'-azido C-nucleosides are also reported.
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tej Narayan Poudel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven De Jonghe
- Department of Microbiology, Immunology & Transplantation, Faculty of Medicine, University of Leuven, (KU Leuven), Leuven 3000, Belgium
| | - Dirk Jochmans
- Department of Microbiology, Immunology & Transplantation, Faculty of Medicine, University of Leuven, (KU Leuven), Leuven 3000, Belgium
| | - Johan Neyts
- Department of Microbiology, Immunology & Transplantation, Faculty of Medicine, University of Leuven, (KU Leuven), Leuven 3000, Belgium
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Sama B, Selisko B, Falcou C, Fattorini V, Piorkowski G, Touret F, Donckers K, Neyts J, Jochmans D, Shannon A, Coutard B, Canard B. The effects of Remdesivir's functional groups on its antiviral potency and resistance against the SARS-CoV-2 polymerase. Antiviral Res 2024; 232:106034. [PMID: 39510431 DOI: 10.1016/j.antiviral.2024.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Remdesivir (RDV, Veklury®) is the first FDA-approved antiviral treatment for COVID-19. It is a nucleotide analogue (NA) carrying a 1'-cyano (1'-CN) group on the ribose and a pseudo-adenine nucleobase whose contributions to the mode of action (MoA) are not clear. Here, we dissect these independent contributions by employing RDV-TP analogues. We show that while the 1'-CN group is directly responsible for transient stalling of the SARS-CoV-2 replication/transcription complex (RTC), the nucleobase plays a role in the strength of this stalling. Conversely, RNA extension assays show that the 1'-CN group plays a role in fidelity and that RDV-TP can be incorporated as a GTP analogue, albeit with lower efficiency. However, a mutagenic effect by the viral polymerase is not ascertained by deep sequencing of viral RNA from cells treated with RDV. We observe that once added to the 3' end of RNA, RDV-MP is sensitive to excision and its 1'-CN group does not impact its nsp14-mediated removal. A >14-fold RDV-resistant SARS-CoV-2 isolate can be selected carrying two mutations in the nsp12 sequence, S759A and A777S. They confer both RDV-TP discrimination over ATP by nsp12 and stalling during RNA synthesis, leaving more time for excision-repair and potentially dampening RDV efficiency. We conclude that RDV presents a multi-faced MoA. It slows down or stalls overall RNA synthesis but is efficiently repaired from the primer strand, whereas once in the template, read-through inhibition adds to this effect. Its efficient incorporation may corrupt proviral RNA, likely disturbing downstream functions in the virus life cycle.
Collapse
Affiliation(s)
- Bhawna Sama
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Barbara Selisko
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Camille Falcou
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Véronique Fattorini
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE), Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA, France
| | - Franck Touret
- Unité des Virus Émergents (UVE), Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA, France
| | | | | | | | - Ashleigh Shannon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Bruno Coutard
- Unité des Virus Émergents (UVE), Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA, France
| | - Bruno Canard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France; European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany.
| |
Collapse
|
4
|
Jena NR, Shukla PK. Hydroxyl radical-induced C1'-H abstraction reaction of different artificial nucleotides. J Mol Model 2024; 30:330. [PMID: 39269493 DOI: 10.1007/s00894-024-06126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
CONTEXT Recently, a few antiviral drugs viz Molnupiravir (EIDD-1931), Favipiravir, Ribavirin, Sofosbuvir, Galidesivir, and Remdesivir are shown to be beneficial against COVID-19 disease. These drugs bind to the viral RNA single strand to inhibit the virus genome replication. Similarly, recently, some artificial nucleotides, such as P, J, B, X, Z, V, S, and K were proposed to behave as potent antiviral candidates. However, their activity in the presence of the most reactive hydroxyl (OH) radical is not yet known. Here, the possibility of RNA strand break due to the OH radical-induced C1'-hydrogen (H) abstraction reaction of the above molecules (except Remdesivir) is studied in detail by considering their nucleotide conformation. The results are compared with those of the natural RNA nucleotides (G, C, A, and U). Due to low Gibbs barrier-free energy and high exothermicity, all these nucleotides (except Remdesivir) are prone to OH radical-induced C1'-H abstraction reaction. As Remdesivir contains a C1'-CN bond, the OH radical substitution reactions at the CN and C1' sites would likely liberate the catalytically important CN group, thereby downgrading its activity. METHOD Initially, the B3LYP-D3 dispersion-corrected density functional theory method and 6-31 + G* basis set were used to optimize all reactant, transition state, and product complexes in the implicit aqueous medium. Subsequently, the structures of these complexes were further optimized by using the ωB97X-D dispersion-corrected density functional theory method and cc-PVTZ basis set in the aqueous medium. The IEFPCM method was used to model the aqueous medium.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India.
| | - P K Shukla
- Department of Physics, Assam University, Silcharm, 788011, India
| |
Collapse
|
5
|
Romero ME, McElhenney SJ, Yu J. Trapping a non-cognate nucleotide upon initial binding for replication fidelity control in SARS-CoV-2 RNA dependent RNA polymerase. Phys Chem Chem Phys 2024; 26:1792-1808. [PMID: 38168789 DOI: 10.1039/d3cp04410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The RNA dependent RNA polymerase (RdRp) in SARS-CoV-2 is a highly conserved enzyme responsible for viral genome replication/transcription. To understand how the viral RdRp achieves fidelity control during such processes, here we computationally investigate the natural non-cognate vs. cognate nucleotide addition and selectivity during viral RdRp elongation. We focus on the nucleotide substrate initial binding (RdRp active site open) to the prechemical insertion (active site closed) of the RdRp. The current studies were first carried out using microsecond ensemble equilibrium all-atom molecular dynamics (MD) simulations. Due to the slow conformational changes (from open to closed) during nucleotide insertion and selection, enhanced or umbrella sampling methods have been further employed to calculate the free energy profiles of the nucleotide insertion. Our studies find notable stability of noncognate dATP and GTP upon initial binding in the active-site open state. The results indicate that while natural cognate ATP and Remdesivir drug analogue (RDV-TP) are biased toward stabilization in the closed state to facilitate insertion, the natural non-cognate dATP and GTP can be well trapped in off-path initial binding configurations and prevented from insertion so that to be further rejected. The current work thus presents the intrinsic nucleotide selectivity of SARS-CoV-2 RdRp for natural substrate fidelity control, which should be considered in antiviral drug design.
Collapse
Affiliation(s)
- Moises E Romero
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | | | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simmons Center for Multi-scale Cell Fate Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
6
|
Wang X, Xu T, Yao Y, Cheung PPH, Gao X, Zhang L. SARS-CoV-2 RNA-Dependent RNA Polymerase Follows Asynchronous Translocation Pathway for Viral Transcription and Replication. J Phys Chem Lett 2023; 14:10119-10128. [PMID: 37922192 DOI: 10.1021/acs.jpclett.3c01249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Translocation is one essential step for the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) to exert viral replication and transcription. Although cryo-EM structures of SARS-CoV-2 RdRp are available, the molecular mechanisms of dynamic translocation remain elusive. Herein, we constructed a Markov state model based on extensive molecular dynamics simulations to elucidate the translocation dynamics of the SARS-CoV-2 RdRp. We identified two intermediates that pinpoint the rate-limiting step of translocation and characterize the asynchronous movement of the template-primer duplex. The 3'-terminal nucleotide in the primer strand lags behind due to the uneven distribution of protein-RNA interactions, while the translocation of the template strand is delayed by the hurdle residue K500. Even so, the two strands share the same "ratchet" to stabilize the polymerase in the post-translocation state, suggesting a Brownian-ratchet model. Overall, our study provides intriguing insights into SARS-CoV-2 replication and transcription, which would open a new avenue for drug discoveries.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Chemical and Biological Engineering and Department of Mathematics, Hong Kong University of Science and Technology Kowloon, Clear Water Bay, Hong Kong
| | - Tiantian Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yao
- Department of Chemical and Biological Engineering and Department of Mathematics, Hong Kong University of Science and Technology Kowloon, Clear Water Bay, Hong Kong
| | - Peter Pak-Hang Cheung
- Li Ka Shing Institute of Health Sciences, Department of Chemical Pathology, Chinese University of Hong Kong, 999077, Hong Kong
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Fuzhou, Fujian 361005, China
| |
Collapse
|
7
|
Xu T, Zhang L. Current understanding of nucleoside analogs inhibiting the SARS-CoV-2 RNA-dependent RNA polymerase. Comput Struct Biotechnol J 2023; 21:4385-4394. [PMID: 37711189 PMCID: PMC10498173 DOI: 10.1016/j.csbj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Since the outbreak of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) has become a main target for antiviral therapeutics due to its essential role in viral replication and transcription. Thus, nucleoside analogs structurally resemble the natural RdRp substrate and hold great potential as inhibitors. Until now, extensive experimental investigations have been performed to explore nucleoside analogs to inhibit the RdRp, and concerted efforts have been made to elucidate the underlying molecular mechanisms further. This review begins by discussing the nucleoside analogs that have demonstrated inhibition in the experiments. Second, we examine the current understanding of the molecular mechanisms underlying the action of nucleoside analogs on the SARS-CoV-2 RdRp. Recent findings in structural biology and computational research are presented through the classification of inhibitory mechanisms. This review summarizes previous experimental findings and mechanistic investigations of nucleoside analogs inhibiting SARS-CoV-2 RdRp. It would guide the rational design of antiviral medications and research into viral transcriptional mechanisms.
Collapse
Affiliation(s)
- Tiantian Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Fujian 361005, China
| |
Collapse
|
8
|
Yan D, Yan B. Viral target and metabolism-based rationale for combined use of recently authorized small molecule COVID-19 medicines: Molnupiravir, nirmatrelvir, and remdesivir. Fundam Clin Pharmacol 2023; 37:726-738. [PMID: 36931725 PMCID: PMC10505250 DOI: 10.1111/fcp.12889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023]
Abstract
The COVID-19 pandemic remains a major health concern worldwide, and SARS-CoV-2 is continuously evolving. There is an urgent need to identify new antiviral drugs and develop novel therapeutic strategies. Combined use of newly authorized COVID-19 medicines including molnupiravir, nirmatrelvir, and remdesivir has been actively pursued. Mechanistically, nirmatrelvir inhibits SARS-CoV-2 replication by targeting the viral main protease (Mpro ), a critical enzyme in the processing of the immediately translated coronavirus polyproteins for viral replication. Molnupiravir and remdesivir, on the other hand, inhibit SARS-CoV-2 replication by targeting RNA-dependent RNA-polymerase (RdRp), which is directly responsible for genome replication and production of subgenomic RNAs. Molnupiravir targets RdRp and induces severe viral RNA mutations (genome), commonly referred to as error catastrophe. Remdesivir, in contrast, targets RdRp and causes chain termination and arrests RNA synthesis of the viral genome. In addition, all three medicines undergo extensive metabolism with strong therapeutic significance. Molnupiravir is hydrolytically activated by carboxylesterase-2 (CES2), nirmatrelvir is inactivated by cytochrome P450-based oxidation (e.g., CYP3A4), and remdesivir is hydrolytically activated by CES1 but covalently inhibits CES2. Additionally, remdesivir and nirmatrelvir are oxidized by the same CYP enzymes. The distinct mechanisms of action provide strong rationale for their combined use. On the other hand, these drugs undergo extensive metabolism that determines their therapeutic potential. This review discusses how metabolism pathways and enzymes involved should be carefully considered during their combined use for therapeutic synergy.
Collapse
Affiliation(s)
- Daisy Yan
- Department of Dermatology, Boston University School of Medicine 609 Albany Street Boston, MA 02118
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229
| |
Collapse
|
9
|
Sharma PP, Kumar S, Srivastava S, Srivastava M, Jee B, Gorobets NY, Kumar D, Kumar M, Asthana S, Zhang P, Poonam, Zoltner M, Rathi B. Computational study of novel inhibitory molecule, 1-(4-((2 S,3 S)-3-amino-2-hydroxy-4-phenylbutyl)piperazin-1-yl)-3-phenylurea, with high potential to competitively block ATP binding to the RNA dependent RNA polymerase of SARS-CoV-2 virus. J Biomol Struct Dyn 2022; 40:10162-10180. [PMID: 34151735 DOI: 10.1080/07391102.2021.1940281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
For coronaviruses, RNA-dependent RNA polymerase (RdRp) is an essential enzyme that catalyses the replication from RNA template and therefore remains an attractive therapeutic target for anti-COVID drug discovery. In the present study, we performed a comprehensive in silico screening for 16,776 potential molecules from recently established drug libraries based on two important pharmacophores (3-amino-4-phenylbutan-2-ol and piperazine). Based on initial assessment, 4042 molecules were obtained suitable as drug candidates, which were following Lipinski's rule. Molecular docking implemented for the analysis of molecular interactions narrowed this number of compounds down to 19. Subsequent to screening filtering criteria and considering the critical parameters viz. docking score and MM-GBSA binding free energy, 1-(4-((2S,3S)-3-amino-2-hydroxy-4-phenylbutyl)piperazin-1-yl)-3-phenylurea (compound 1) was accomplished to score highest in comparison to the remaining 18 shortlisted drug candidates. Notably, compound 1 displayed higher docking score (-8.069 kcal/mol) and MM-GBSA binding free energy (-49.56 kcal/mol) than the control drug, remdesivir triphosphate, the active form of remdesivir as well as adenosine triphosphate. Furthermore, a molecular dynamics simulation was carried out (100 ns), which substantiated the candidacy of compound 1 as better inhibitor. Overall, our systematic in silico study predicts the potential of compound 1 to exhibit a more favourable specific activity than remdesivir triphosphate. Hence, we suggest compound 1 as a novel potential drug candidate, which should be considered for further exploration and validation of its potential against SARS-CoV-2 in wet lab experimental studies.Communicated by Ramasawamy H. Sarma.
Collapse
Affiliation(s)
- Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Sukrit Srivastava
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India.,Infection Biology Group, Indian Foundation for Fundamental Research, Rae Bareli, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare Government of India, New Delhi, India
| | - Nikolay Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution 'Institute for Single Crystals' of National Academy of Science of Ukraine, Kharkiv, Ukraine
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, India
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, USA
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| | - Peng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Martin Zoltner
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Poudel TN, Panda S, Orimoloye M, Hegde P, Aldrich CC. 1'-Cyano Intermediate Enables Rapid and Stereoretentive Access to 1'-Modified Remdesivir Nucleosides. J Org Chem 2022; 87:14452-14462. [PMID: 36223099 DOI: 10.1021/acs.joc.2c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While biochemical, structural, and computational studies have shown the importance of remdesivir's C1'-substituent in its perturbation of SARS-CoV-2 RdRp action, we recognized the paucity of methods to stereoselectively install substituents at this position as an obstacle to rigorous explorations of SAR and mechanism. We report the utilization of an anomerically pure 1'-cyano intermediate as an entry point to a chemically diverse set of substitutions, allowing for 1'diversification while obviating the need for the tedious separation of anomeric mixtures.
Collapse
Affiliation(s)
- Tej Narayan Poudel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Moyosore Orimoloye
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Shi Y, Wang J, Batista VS. Translocation pause of remdesivir-containing primer/template RNA duplex within SARS-CoV-2’s RNA polymerase complexes. Front Mol Biosci 2022; 9:999291. [PMID: 36387272 PMCID: PMC9640752 DOI: 10.3389/fmolb.2022.999291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/07/2022] [Indexed: 01/18/2023] Open
Abstract
The mechanism of remdesivir incorporation into the RNA primer by the RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains to be fully established at the molecular level. Here, we compare molecular dynamics (MD) simulations after incorporation of either remdesivir monophosphate (RMP) or adenosine monophosphate (AMP). We find that the Mg2+-pyrophosphate (PPi) binds more tightly to the polymerase when the added RMP is at the third primer position than in the AMP added complex. The increased affinity of Mg2+-PPi to the RMP-added primer/template (P/T) RNA duplex complex introduces a new hydrogen bond of a substituted cyano group in RMP with the K593 sidechain. The new interactions disrupt a switching mechanism of a hydrogen bond network that is essential for translocation of the P/T duplex product and for opening of a vacant NTP-binding site necessary for next primer extension. Furthermore, steric interactions between the sidechain of S861 and the 1′-cyano group of RMP at position i+3 hinders translocation of RMP to the i + 4 position, where i labels the insertion site. These findings are particularly valuable to guide the design of more effective inhibitors of SARS-CoV-2 RNA polymerase.
Collapse
Affiliation(s)
- Yuanjun Shi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- *Correspondence: Jimin Wang, ; Victor S. Batista,
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, CT, United States
- *Correspondence: Jimin Wang, ; Victor S. Batista,
| |
Collapse
|
12
|
Madariaga-Mazón A, Naveja JJ, Becerra A, Alberto Campillo-Balderas J, Hernández-Morales R, Jácome R, Lazcano A, Martinez-Mayorga K. Subtle structural differences of nucleotide analogs may impact SARS-CoV-2 RNA-dependent RNA polymerase and exoribonuclease activity. Comput Struct Biotechnol J 2022; 20:5181-5192. [PMID: 36097553 PMCID: PMC9452397 DOI: 10.1016/j.csbj.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The rapid spread and public health impact of the novel SARS-CoV-2 variants that cause COVID-19 continue to produce major global impacts and social distress. Several vaccines were developed in record time to prevent and limit the spread of the infection, thus playing a pivotal role in controlling the pandemic. Although the repurposing of available drugs attempts to provide therapies of immediate access against COVID-19, there is still a need for developing specific treatments for this disease. Remdesivir, molnupiravir and Paxlovid remain the only evidence-supported antiviral drugs to treat COVID-19 patients, and only in severe cases. To contribute on the search of potential Covid-19 therapeutic agents, we targeted the viral RNA-dependent RNA polymerase (RdRp) and the exoribonuclease (ExoN) following two strategies. First, we modeled and analyzed nucleoside analogs sofosbuvir, remdesivir, favipiravir, ribavirin, and molnupiravir at three key binding sites on the RdRp-ExoN complex. Second, we curated and virtually screened a database containing 517 nucleotide analogs in the same binding sites. Finally, we characterized key interactions and pharmacophoric features presumably involved in viral replication halting at multiple sites. Our results highlight structural modifications that might lead to more potent SARS-CoV-2 inhibitors against an expansive range of variants and provide a collection of nucleotide analogs useful for screening campaigns.
Collapse
Affiliation(s)
- Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacál Mérida, Yucatán 97302, Mexico
| | - José J Naveja
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Institute for Molecular Biology and University Cancer Center (UCT) Mainz, Germany
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.,El Colegio Nacional, Mexico City, Mexico
| | - Karina Martinez-Mayorga
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacál Mérida, Yucatán 97302, Mexico
| |
Collapse
|
13
|
Tanimoto S, Itoh SG, Okumura H. State-of-the-Art Molecular Dynamics Simulation Studies of RNA-Dependent RNA Polymerase of SARS-CoV-2. Int J Mol Sci 2022; 23:ijms231810358. [PMID: 36142270 PMCID: PMC9499461 DOI: 10.3390/ijms231810358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023] Open
Abstract
Molecular dynamics (MD) simulations are powerful theoretical methods that can reveal biomolecular properties, such as structure, fluctuations, and ligand binding, at the level of atomic detail. In this review article, recent MD simulation studies on these biomolecular properties of the RNA-dependent RNA polymerase (RdRp), which is a multidomain protein, of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are presented. Although the tertiary structures of RdRps in SARS-CoV-2 and SARS-CoV are almost identical, the RNA synthesis activity of RdRp of SARS-CoV is higher than SARS-CoV-2. Recent MD simulations observed a difference in the dynamic properties of the two RdRps, which may cause activity differences. RdRp is also a drug target for Coronavirus disease 2019 (COVID-19). Nucleotide analogs, such as remdesivir and favipiravir, are considered to be taken up by RdRp and inhibit RNA replication. Recent MD simulations revealed the recognition mechanism of RdRp for these drug molecules and adenosine triphosphate (ATP). The ligand-recognition ability of RdRp decreases in the order of remdesivir, favipiravir, and ATP. As a typical recognition process, it was found that several lysine residues of RdRp transfer these ligand molecules to the binding site such as a “bucket brigade.” This finding will contribute to understanding the mechanism of the efficient ligand recognition by RdRp. In addition, various simulation studies on the complexes of SARS-CoV-2 RdRp with several nucleotide analogs are reviewed, and the molecular mechanisms by which these compounds inhibit the function of RdRp are discussed. The simulation studies presented in this review will provide useful insights into how nucleotide analogs are recognized by RdRp and inhibit the RNA replication.
Collapse
Affiliation(s)
- Shoichi Tanimoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
| | - Satoru G. Itoh
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Aichi, Japan
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Aichi, Japan
- Correspondence:
| |
Collapse
|
14
|
Shen Y, Eades W, Liu W, Yan B. The COVID-19 Oral Drug Molnupiravir Is a CES2 Substrate: Potential Drug-Drug Interactions and Impact of CES2 Genetic Polymorphism In Vitro. Drug Metab Dispos 2022; 50:1151-1160. [PMID: 35790245 PMCID: PMC9450960 DOI: 10.1124/dmd.122.000918] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 01/20/2023] Open
Abstract
Molnupiravir is one of the two coronavirus disease 2019 (COVID-19) oral drugs that were recently granted the emergency use authorization by the Food and Drug Administration (FDA). Molnupiravir is an ester and requires hydrolysis to exert antiviral activity. Carboxylesterases constitute a class of hydrolases with high catalytic efficiency. Humans express two major carboxylesterases (CES1 and CES2) that differ in substrate specificity. Based on the structural characteristics of molnupiravir, this study was performed to test the hypothesis that molnupiravir is preferably hydrolyzed by CES2. Several complementary approaches were used to test this hypothesis. As many as 24 individual human liver samples were tested and the hydrolysis of molnupiravir was significantly correlated with the level of CES2 but not CES1. Microsomes from the intestine, kidney, and liver, but not lung, all rapidly hydrolyzed molnupiravir and the magnitude of hydrolysis was related closely to the level of CES2 expression among these organs. Importantly, recombinant CES2 but not CES1 hydrolyzed molnupiravir, collectively establishing that molnupiravir is a CES2-selective substrate. In addition, several CES2 polymorphic variants (e.g., R180H) differed from the wild-type CES2 in the hydrolysis of molnupiravir. Molecular docking revealed that wild-type CES2 and its variant R180H used different sets of amino acids to interact with molnupiravir. Furthermore, molnupiravir hydrolysis was significantly inhibited by remdesivir, the first COVID-19 drug granted the full approval by the FDA. The results presented raise the possibility that CES2 expression and genetic variation may impact therapeutic efficacy in clinical situations and warrants further investigation. SIGNIFICANCE STATEMENT: COVID-19 remains a global health crisis, and molnupiravir is one of the two recently approved oral COVID-19 therapeutics. In this study, we have shown that molnupiravir is hydrolytically activated by CES2, a major hydrolase whose activity is impacted by genetic polymorphic variants, disease mediators, and many potentially coadministered medicines. These results presented raise the possibility that CES2 expression and genetic variation may impact therapeutic efficacy in clinical situations and warrants further investigation.
Collapse
Affiliation(s)
- Yue Shen
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - William Eades
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - William Liu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
15
|
Frazier MN, Riccio AA, Wilson IM, Copeland WC, Stanley RE. Recent insights into the structure and function of coronavirus ribonucleases. FEBS Open Bio 2022; 12:1567-1583. [PMID: 35445579 PMCID: PMC9110870 DOI: 10.1002/2211-5463.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Coronaviruses use approximately two-thirds of their 30-kb genomes to encode nonstructural proteins (nsps) with diverse functions that assist in viral replication and transcription, and evasion of the host immune response. The SARS-CoV-2 pandemic has led to renewed interest in the molecular mechanisms used by coronaviruses to infect cells and replicate. Among the 16 Nsps involved in replication and transcription, coronaviruses encode two ribonucleases that process the viral RNA-an exonuclease (Nsp14) and an endonuclease (Nsp15). In this review, we discuss recent structural and biochemical studies of these nucleases and the implications for drug discovery.
Collapse
Affiliation(s)
- Meredith N. Frazier
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Amanda A. Riccio
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Isha M. Wilson
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - William C. Copeland
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Robin E. Stanley
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| |
Collapse
|
16
|
Luo X, Wang X, Yao Y, Gao X, Zhang L. Unveiling the "Template-Dependent" Inhibition on the Viral Transcription of SARS-CoV-2. J Phys Chem Lett 2022; 13:7197-7205. [PMID: 35912566 PMCID: PMC9363016 DOI: 10.1021/acs.jpclett.2c01314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Remdesivir is one nucleotide analogue prodrug capable to terminate RNA synthesis in SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by two distinct mechanisms. Although the "delayed chain termination" mechanism has been extensively investigated, the "template-dependent" inhibitory mechanism remains elusive. In this study, we have demonstrated that remdesivir embedded in the template strand seldom directly disrupted the complementary NTP incorporation at the active site. Instead, the translocation of remdesivir from the +2 to the +1 site was hindered due to the steric clash with V557. Moreover, we have elucidated the molecular mechanism characterizing the drug resistance upon V557L mutation. Overall, our studies have provided valuable insight into the "template-dependent" inhibitory mechanism exerted by remdesivir on SARS-CoV-2 RdRp and paved venues for an alternative antiviral strategy for the COVID-19 pandemic. As the "template-dependent" inhibition occurs across diverse viral RdRps, our findings may also shed light on a common acting mechanism of inhibitors.
Collapse
Affiliation(s)
- Xueying Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002 Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaowei Wang
- Department
of Chemical and Biological Engineering, Department of Mathematics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yuan Yao
- Department
of Mathematics, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xin Gao
- Computer
Science Program, Computer, Electrical and Mathematical Sciences and
Engineering (CEMSE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002 Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
- Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, 361005 Fujian, China
| |
Collapse
|
17
|
Komiyama M. Molecular Mechanisms of the Medicines for COVID-19. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
18
|
Roy V, Agrofoglio LA. Nucleosides and emerging viruses: A new story. Drug Discov Today 2022; 27:1945-1953. [PMID: 35189369 PMCID: PMC8856764 DOI: 10.1016/j.drudis.2022.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 12/24/2022]
Abstract
With several US Food and Drug Administration (FDA)-approved drugs and high barriers to resistance, nucleoside and nucleotide analogs remain the cornerstone of antiviral therapies for not only herpesviruses, but also HIV and hepatitis viruses (B and C); however, with the exception of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which vaccines have been developed at unprecedented speed, there are no vaccines or small antivirals yet available for (re)emerging viruses, which are primarily RNA viruses. Thus, herein, we present an overview of ribonucleoside analogs recently developed and acting as inhibitors of the viral RNA-dependent RNA polymerase (RdRp). They are new lead structures that will be exploited for the discovery of new antiviral nucleosides.
Collapse
Affiliation(s)
- Vincent Roy
- ICOA, University of Orléans, CNRS UMR 7311, Rue de Chartres, 45067 Orléans, France
| | - Luigi A Agrofoglio
- ICOA, University of Orléans, CNRS UMR 7311, Rue de Chartres, 45067 Orléans, France.
| |
Collapse
|
19
|
Rahman MM, Islam MR, Shohag S, Hossain ME, Shah M, Shuvo SK, Khan H, Chowdhury MAR, Bulbul IJ, Hossain MS, Sultana S, Ahmed M, Akhtar MF, Saleem A, Rahman MH. Multifaceted role of natural sources for COVID-19 pandemic as marine drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46527-46550. [PMID: 35507224 PMCID: PMC9065247 DOI: 10.1007/s11356-022-20328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
COVID-19, which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread over the world, posing a global health concern. The ongoing epidemic has necessitated the development of novel drugs and potential therapies for patients infected with SARS-CoV-2. Advances in vaccination and medication development, no preventative vaccinations, or viable therapeutics against SARS-CoV-2 infection have been developed to date. As a result, additional research is needed in order to find a long-term solution to this devastating condition. Clinical studies are being conducted to determine the efficacy of bioactive compounds retrieved or synthesized from marine species starting material. The present study focuses on the anti-SARS-CoV-2 potential of marine-derived phytochemicals, which has been investigated utilizing in in silico, in vitro, and in vivo models to determine their effectiveness. Marine-derived biologically active substances, such as flavonoids, tannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, and lipids, can affect SARS-CoV-2 during the viral particle's penetration and entry into the cell, replication of the viral nucleic acid, and virion release from the cell; they can also act on the host's cellular targets. COVID-19 has been proven to be resistant to several contaminants produced from marine resources. This paper gives an overview and summary of the various marine resources as marine drugs and their potential for treating SARS-CoV-2. We discussed at numerous natural compounds as marine drugs generated from natural sources for treating COVID-19 and controlling the current pandemic scenario.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Gopalganj, Bangladesh
| | - Md Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Hosneara Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | | | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea.
| |
Collapse
|
20
|
Luo X, Xu T, Gao X, Zhang L. Alternative role of motif B in template dependent polymerase inhibition. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2203053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on the central molecular machine RNA-dependent RNA polymerase (RdRp) for the viral replication and transcription. Remdesivir at the template strand has been shown to effectively inhibit the RNA synthesis in SARS-CoV-2 RdRp by deactivating not only the complementary UTP incorporation but also the next nucleotide addition. How-ever, the underlying molecular mechanism of the second inhibitory point remains unclear. In this work, we have performed molecular dynamics simulations and demonstrated that such inhibition has not directly acted on the nucleotide addition at the active site. Instead, the translocation of Remdesivir from + 1 to − 1 site is hindered thermodynamically as the post-translocation state is less stable than the pre-translocation state due to the motif B residue G683. Moreover, another conserved residue S682 on motif B further hinders the dynamic translocation of Remdesivir due to the steric clash with the 1′-cyano substitution. Overall, our study has unveiled an alternative role of motif B in mediating the translocation when Remdesivir is present in the template strand and complemented our understanding about the inhibitory mechanisms exerted by Remdesivir on the RNA synthesis in SARS-CoV-2 RdRp.
Collapse
Affiliation(s)
- Xueying Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| |
Collapse
|
21
|
Li Y, Zhang D, Gao X, Wang X, Zhang L. 2'- and 3'-Ribose Modifications of Nucleotide Analogues Establish the Structural Basis to Inhibit the Viral Replication of SARS-CoV-2. J Phys Chem Lett 2022; 13:4111-4118. [PMID: 35503748 PMCID: PMC9088111 DOI: 10.1021/acs.jpclett.2c00087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/27/2022] [Indexed: 05/12/2023]
Abstract
Inhibition of RNA-dependent RNA polymerase (RdRp) by nucleotide analogues with ribose modification provides a promising antiviral strategy for the treatment of SARS-CoV-2. Previous works have shown that remdesivir carrying 1'-substitution can act as a "delayed chain terminator", while nucleotide analogues with 2'-methyl group substitution could immediately terminate the chain extension. However, how the inhibition can be established by the 3'-ribose modification as well as other 2'-ribose modifications is not fully understood. Herein, we have evaluated the potential of several adenosine analogues with 2'- and/or 3'-modifications as obligate chain terminators by comprehensive structural analysis based on extensive molecular dynamics simulations. Our results suggest that 2'-modification couples with the protein environment to affect the structural stability, while 3'-hydrogen substitution inherently exerts "immediate termination" without compromising the structural stability in the active site. Our study provides an alternative promising modification scheme to orientate the further optimization of obligate terminators for SARS-CoV-2 RdRp.
Collapse
Affiliation(s)
- Yongfang Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002, Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100864, Beijing, China
| | - Dong Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002, Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100864, Beijing, China
| | - Xin Gao
- Computational
Bioscience Research Center (CBRC), Computer, Electrical and Mathematical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaowei Wang
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong
| | - Lu Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002, Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100864, Beijing, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, 361005, Xiamen, Fujian, China
| |
Collapse
|
22
|
Naseem-Khan S, Berger MB, Leddin EM, Maghsoud Y, Cisneros GA. Impact of Remdesivir Incorporation along the Primer Strand on SARS-CoV-2 RNA-Dependent RNA Polymerase. J Chem Inf Model 2022; 62:2456-2465. [PMID: 35435671 DOI: 10.1021/acs.jcim.2c00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Remdesivir was the first antiviral drug that received emergency use authorization from the United States Food and Drug Administration and is now formally approved to treat COVID-19. Remdesivir is a nucleotide analogue that targets the RNA-dependent RNA polymerase (RdRp) of coronaviruses, including SARS-CoV-2. The solution of multiple RdRp structures has been one of the main axes of research in the race against the SARS-CoV-2 virus. Several hypotheses of the mechanism of inhibition of RdRp by remdesivir have been proposed, although open questions remain. This work uses molecular dynamics simulations to explore the impact of remdesivir and two analogues as incoming nucleotides and of up to four incorporations of remdesivir along the primer strand on RdRp. The simulation results suggest that the overall structure and the dynamical behavior of RdRp are destabilized by remdesivir and the two analogues in the incoming position. The incorporation of remdesivir along the primer strand impacts specific non-bonded interactions between the nascent RNA and the polymerase subunit, as well as the overall dynamical networks on RdRp. The strongest impact on the structure and dynamics are observed after three incorporations, when remdesivir is located at position -A3, in agreement with previously reported experimental and computational results. Our results provide atomic-level details of the role played by remdesivir on the disruption of RNA synthesis by RdRp and the main drivers of these disruptions.
Collapse
Affiliation(s)
- Sehr Naseem-Khan
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Madison B Berger
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Emmett M Leddin
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Yazdan Maghsoud
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
23
|
Abstract
Remdesivir (GS-5734, Veklury®) has remained the only antiviral drug formally approved by the US FDA for the treatment of Covid-19 (SARS-CoV-2 infection). Its key structural features are the fact that it is a C-nucleoside (adenosine) analogue, contains a 1'-cyano function, and could be considered as a ProTide based on the presence of a phosphoramidate group. Its antiviral spectrum and activity in animal models have been well established and so has been its molecular mode of action as a delayed chain terminator of the viral RdRp (RNA-dependent RNA polymerase). Its clinical efficacy has been evaluated, but needs to be optimized with regard to timing, dosage and duration of treatment, and route of administration. Safety, toxicity and pharmacokinetics need to be further addressed, and so are its potential combinations with other drugs such as corticosteroids (i.e. dexamethasone) and ribavirin.
Collapse
|
24
|
Yuan C, Goonetilleke EC, Unarta IC, Huang X. Incorporation efficiency and inhibition mechanism of 2'-substituted nucleotide analogs against SARS-CoV-2 RNA-dependent RNA polymerase. Phys Chem Chem Phys 2021; 23:20117-20128. [PMID: 34514487 DOI: 10.1039/d1cp03049c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ongoing pandemic caused by SARS-CoV-2 emphasizes the need for effective therapeutics. Inhibition of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by nucleotide analogs provides a promising antiviral strategy. One common group of RdRp inhibitors, 2'-modified nucleotides, are reported to exhibit different behaviors in the SARS-CoV-2 RdRp transcription assay. Three of these analogs, 2'-O-methyl UTP, Sofosbuvir, and 2'-methyl CTP, act as effective inhibitors in previous biochemical experiments, while Gemcitabine and ara-UTP show no inhibitory activity. To understand the impact of the 2'-modification on their inhibitory effects, we conducted extensive molecular dynamics simulations and relative binding free energy calculations using the free energy perturbation method on SARS-CoV-2 replication-transcription complex (RTC) with these five nucleotide analogs. Our results reveal that the five nucleotide analogs display comparable binding affinities to SARS-CoV-2 RdRp and they can all be added to the nascent RNA chain. Moreover, we examine how the incorporation of these nucleotide triphosphate (NTP) analogs will impact the addition of the next nucleotide. Our results indicate that 2'-O-methyl UTP can weaken the binding of the subsequent NTP and consequently lead to partial chain termination. Additionally, Sofosbuvir and 2'-methyl CTP can cause immediate termination due to the strong steric hindrance introduced by their bulky 2'-methyl groups. In contrast, nucleotide analogs with smaller substitutions, such as the fluorine atoms and the ara-hydroxyl group in Gemcitabine and ara-UTP, have a marginal impact on the polymerization process. Our findings are consistent with experimental observations, and more importantly, shed light on the detailed molecular mechanism of SARS-CoV-2 RdRp inhibition by 2'-substituted nucleotide analogs, and may facilitate the rational design of antiviral agents to inhibit SARS-CoV-2 RdRp.
Collapse
Affiliation(s)
- Congmin Yuan
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| | - Eshani C Goonetilleke
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| | - Ilona Christy Unarta
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong
| |
Collapse
|
25
|
Wei D, Hu T, Zhang Y, Zheng W, Xue H, Shen J, Xie Y, Aisa HA. Potency and pharmacokinetics of GS-441524 derivatives against SARS-CoV-2. Bioorg Med Chem 2021; 46:116364. [PMID: 34450570 PMCID: PMC8354861 DOI: 10.1016/j.bmc.2021.116364] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 01/27/2023]
Abstract
The nucleoside metabolite of remdesivir, GS-441524 displays potent anti-SARS-CoV-2 efficacy, and is being evaluated in clinical as an oral antiviral therapeutic for COVID-19. However, this nucleoside has a poor oral bioavailability in non-human primates, which may affect its therapeutic efficacy. Herein, we reported a variety of GS-441524 analogs with modifications on the base or the sugar moiety, as well as some prodrug forms, including five isobutyryl esters, two l-valine esters, and one carbamate. Among the new nucleosides, only the 7-fluoro analog 3c had moderate anti-SARS-CoV-2 activity, and its phosphoramidate prodrug 7 exhibited reduced activity in Vero E6 cells. As for the prodrugs, the 3'-isobutyryl ester 5a, the 5'-isobutyryl ester 5c, and the tri-isobutyryl ester 5g hydrobromide showed excellent oral bioavailabilities (F = 71.6%, 86.6% and 98.7%, respectively) in mice, which provided good insight into the pharmacokinetic optimization of GS-441524.
Collapse
Affiliation(s)
- Daibao Wei
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tianwen Hu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Wei Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Haitao Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jingshan Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuanchao Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Haji A Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
26
|
Tanimoto S, Itoh SG, Okumura H. "Bucket brigade" using lysine residues in RNA-dependent RNA polymerase of SARS-CoV-2. Biophys J 2021; 120:3615-3627. [PMID: 34339634 PMCID: PMC8324383 DOI: 10.1016/j.bpj.2021.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a promising drug target for coronavirus disease 2019 (COVID-19) because it plays the most important role in the replication of the RNA genome. Nucleotide analogs such as remdesivir and favipiravir are thought to interfere with the RNA replication by RdRp. More specifically, they are expected to compete with nucleoside triphosphates, such as ATP. However, the process in which these drug molecules and nucleoside triphosphates are taken up by RdRp remains unknown. In this study, we performed all-atom molecular dynamics simulations to clarify the recognition mechanism of RdRp for these drug molecules and ATP that were at a distance. The ligand recognition ability of RdRp decreased in the order of remdesivir, favipiravir, and ATP. We also identified six recognition paths. Three of them were commonly found in all ligands, and the remaining three paths were ligand-dependent ones. In the common two paths, it was observed that the multiple lysine residues of RdRp carried the ligands to the binding site like a "bucket brigade." In the remaining common path, the ligands directly reached the binding site. Our findings contribute to the understanding of the efficient ligand recognition by RdRp at the atomic level.
Collapse
Affiliation(s)
- Shoichi Tanimoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Satoru G Itoh
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
27
|
Wang Z, Yang L, Zhao XE. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Comput Struct Biotechnol J 2021; 19:4684-4701. [PMID: 34426762 PMCID: PMC8373586 DOI: 10.1016/j.csbj.2021.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Safer and more-effective drugs are urgently needed to counter infections with the highly pathogenic SARS-CoV-2, cause of the COVID-19 pandemic. Identification of efficient inhibitors to treat and prevent SARS-CoV-2 infection is a predominant focus. Encouragingly, using X-ray crystal structures of therapeutically relevant drug targets (PLpro, Mpro, RdRp, and S glycoprotein) offers a valuable direction for anti-SARS-CoV-2 drug discovery and lead optimization through direct visualization of interactions. Computational analyses based primarily on MMPBSA calculations have also been proposed for assessing the binding stability of biomolecular structures involving the ligand and receptor. In this study, we focused on state-of-the-art X-ray co-crystal structures of the abovementioned targets complexed with newly identified small-molecule inhibitors (natural products, FDA-approved drugs, candidate drugs, and their analogues) with the assistance of computational analyses to support the precision design and screening of anti-SARS-CoV-2 drugs.
Collapse
Key Words
- 3CLpro, 3C-Like protease
- ACE2, angiotensin-converting enzyme 2
- COVID-19, coronavirus disease 2019
- Candidate drugs
- Co-crystal structures
- DyKAT, dynamic kinetic asymmetric transformation
- EBOV, Ebola virus
- EC50, half maximal effective concentration
- EMD, Electron Microscopy Data
- FDA, U.S. Food and Drug Administration
- FDA-approved drugs
- HCoV-229E, human coronavirus 229E
- HPLC, high-performance liquid chromatography
- IC50, half maximal inhibitory concentration
- MD, molecular dynamics
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MMPBSA, molecular mechanics Poisson-Boltzmann surface area
- MTase, methyltransferase
- Mpro, main protease
- Natural products
- Nsp, nonstructural protein
- PDB, Protein Data Bank
- PLpro, papain-like protease
- RTP, ribonucleoside triphosphate
- RdRp, RNA-dependent RNA polymerase
- SAM, S-adenosylmethionine
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SI, selectivity index
- Ugi-4CR, Ugi four-component reaction
- cryo-EM, cryo-electron microscopy
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xian-En Zhao
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
28
|
Long C, Romero ME, La Rocco D, Yu J. Dissecting nucleotide selectivity in viral RNA polymerases. Comput Struct Biotechnol J 2021; 19:3339-3348. [PMID: 34104356 PMCID: PMC8175102 DOI: 10.1016/j.csbj.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Designing antiviral therapeutics is of great concern per current pandemics caused by novel coronavirus or SARS-CoV-2. The core polymerase enzyme in the viral replication/transcription machinery is generally conserved and serves well for drug target. In this work we briefly review structural biology and computational clues on representative single-subunit viral polymerases that are more or less connected with SARS-CoV-2 RNA dependent RNA polymerase (RdRp), in particular, to elucidate how nucleotide substrates and potential drug analogs are selected in the viral genome synthesis. To do that, we first survey two well studied RdRps from Polio virus and hepatitis C virus in regard to structural motifs and key residues that have been identified for the nucleotide selectivity. Then we focus on related structural and biochemical characteristics discovered for the SARS-CoV-2 RdRp. To further compare, we summarize what we have learned computationally from phage T7 RNA polymerase (RNAP) on its stepwise nucleotide selectivity, and extend discussion to a structurally similar human mitochondria RNAP, which deserves special attention as it cannot be adversely affected by antiviral treatments. We also include viral phi29 DNA polymerase for comparison, which has both helicase and proofreading activities on top of nucleotide selectivity for replication fidelity control. The helicase and proofreading functions are achieved by protein components in addition to RdRp in the coronavirus replication-transcription machine, with the proofreading strategy important for the fidelity control in synthesizing a comparatively large viral genome.
Collapse
Affiliation(s)
- Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | | | - Daniel La Rocco
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| |
Collapse
|
29
|
Hamoda AM, Fayed B, Ashmawy NS, El-Shorbagi ANA, Hamdy R, Soliman SSM. Marine Sponge is a Promising Natural Source of Anti-SARS-CoV-2 Scaffold. Front Pharmacol 2021; 12:666664. [PMID: 34079462 PMCID: PMC8165660 DOI: 10.3389/fphar.2021.666664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
The current pandemic caused by SARS-CoV2 and named COVID-19 urgent the need for novel lead antiviral drugs. Recently, United States Food and Drug Administration (FDA) approved the use of remdesivir as anti-SARS-CoV-2. Remdesivir is a natural product-inspired nucleoside analogue with significant broad-spectrum antiviral activity. Nucleosides analogues from marine sponge including spongouridine and spongothymidine have been used as lead for the evolutionary synthesis of various antiviral drugs such as vidarabine and cytarabine. Furthermore, the marine sponge is a rich source of compounds with unique activities. Marine sponge produces classes of compounds that can inhibit the viral cysteine protease (Mpro) such as esculetin and ilimaquinone and human serine protease (TMPRSS2) such as pseudotheonamide C and D and aeruginosin 98B. Additionally, sponge-derived compounds such as dihydrogracilin A and avarol showed immunomodulatory activity that can target the cytokines storm. Here, we reviewed the potential use of sponge-derived compounds as promising therapeutics against SARS-CoV-2. Despite the reported antiviral activity of isolated marine metabolites, structural modifications showed the importance in targeting and efficacy. On that basis, we are proposing a novel structure with bifunctional scaffolds and dual pharmacophores that can be superiorly employed in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alshaimaa M. Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Naglaa S. Ashmawy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdel-Nasser A. El-Shorbagi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
30
|
Croll TI, Diederichs K, Fischer F, Fyfe CD, Gao Y, Horrell S, Joseph AP, Kandler L, Kippes O, Kirsten F, Müller K, Nolte K, Payne AM, Reeves M, Richardson JS, Santoni G, Stäb S, Tronrud DE, von Soosten LC, Williams CJ, Thorn A. Making the invisible enemy visible. Nat Struct Mol Biol 2021; 28:404-408. [PMID: 33972785 DOI: 10.1038/s41594-021-00593-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Florens Fischer
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany.,Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | - Yunyun Gao
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany.,Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | | | - Luise Kandler
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany.,Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Oliver Kippes
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany.,Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ferdinand Kirsten
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany.,Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Konstantin Müller
- Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Kristopher Nolte
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany.,Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | - Matthew Reeves
- Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | | | - Sabrina Stäb
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany.,Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | - Lea C von Soosten
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany.,Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | - Andrea Thorn
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany. .,Rudolf-Virchow-Zentrum, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|