1
|
Teymouri S, Pourhajibagher M, Bahador A. The relationship between the skin microbiome and probiotics in the healing of burn injuries. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01262-8. [PMID: 40227389 DOI: 10.1007/s12223-025-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
The relationship between the skin microbiome and probiotics in the healing of burn injuries has garnered significant attention in recent years. Burn injuries disrupt the delicate balance of the skin microbiome, leading to complications in the healing process. Probiotic therapies have emerged as promising interventions to restore microbial balance, inhibit biofilm formation, and accelerate tissue repair. Probiotics may also mitigate the risk of antibiotic-resistant infections, which is a major concern in burn units. By enhancing immune responses and stimulating the production of antimicrobial peptides, probiotics can effectively combat bacterial colonization and prevent the emergence of drug-resistant strains. A combination of probiotics with other therapies, such as phages or nanoparticles, holds significant promise for enhancing burn healing. This approach can effectively treat burn wounds by promoting wound healing synergy, preventing infection, modulating the immune response, and disrupting biofilms. Overall, the relationship between the skin microbiome and probiotics in burn wound healing has substantial potential to advance the field of burn wound management.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
2
|
Esam RM, Hafez RS, Khafaga NIM, Ahmed LI, Soliman TN, Fahim KM. Novel utilization of micro-encapsulated Lactobacillus acidophilus and bacterial /yeast combination enhanced the AFM 1 reduction in spiked yoghurt. Int J Food Microbiol 2025; 436:111205. [PMID: 40239292 DOI: 10.1016/j.ijfoodmicro.2025.111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Aflatoxin M1 (AFM1) is a significant public health hazard threatening dairy food safety and the dairy industry. Therefore, the present study evaluated the effectiveness of five probiotic (viable) and parabiotic (non-viable: heat and acid-treated) strains (Bifidobacterium bifidum, Lactobacillus acidophilus, Bacillus subtilis, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae) in reducing AFM1 in yoghurt over two weeks. It also explored the ability of the micro-encapsulated L. acidophilus and the viable and non-viable new bacterial/yeast combinations (L. acidophilus- B. bifidum- S. cerevisiae) as promising and new strategies to eliminate and control AFM1 in the dairy plant. All the studied strains reduced AFM1 efficiently in pro and parabiotic yoghurt compared to the control yoghurt (without fortification) (P < 0.05), with the highest efficacy in L. acidophilus. Furthermore, the bacterial/yeast combination scored a better AFM1 reduction percentage than the single treatments, with a binding percentage of 90 % in acid-treated co-culture. However, the innovative application of the encapsulated L. acidophilus with chitosan-CaCl2-alginate (Alg/CaCl2/CH) and chitosan‑sodium tripolyphosphate (CH/TPP) was considered the best treatment as they achieved fast and significant AFM1 reduction percentages of 68 and 81 %, respectively, from the first day of storage. In conclusion, these findings provided a safe and effective solution for AFM1 control in the dairy industry. Additionally, the effective reduction percentages obtained by parabiotics open the door for extensive application in non-fermented dairy foods.
Collapse
Affiliation(s)
| | - Ragaa Shehata Hafez
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | | | - Lamiaa Ibrahim Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Tarek Nour Soliman
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Karima Mogahed Fahim
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| |
Collapse
|
3
|
Kadam O, Dalai S, Chauhan B, Guru RR, Mitra S, Raytekar N, Kumar R. Nanobiotechnology Unveils the Power of Probiotics: A Comprehensive Review on the Synergistic Role of Probiotics and Advanced Nanotechnology in Enhancing Geriatric Health. Cureus 2025; 17:e80478. [PMID: 40225478 PMCID: PMC11990693 DOI: 10.7759/cureus.80478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The geriatric population, comprising ages 65 and above, encounters distinct health obstacles because of physiological changes and heightened vulnerability to diseases. New technologies are being investigated to tackle the intricate health requirements of this population. Recent advancements in probiotics and nanotechnology offer promising strategies to enhance geriatric health by improving nutrient absorption, modulating gut microbiota, and delivering targeted therapeutic agents. Probiotics play a crucial role in maintaining gut homeostasis, reducing inflammation, and supporting metabolic functions. However, challenges such as limited viability and efficacy in harsh gastrointestinal conditions hinder their therapeutic potential. Advanced nanotechnology can overcome these constraints by enhancing the efficacy of probiotics through nano-encapsulation, controlled delivery, and improvement of bioavailability. This review explores the synergistic potential of probiotics and advanced nanotechnology in addressing age-related health concerns. It highlights key developments in probiotic formulations, nano-based delivery systems, and their combined impact on gut health, immunity, and neuroprotection. The convergence of probiotics and nanotechnology represents a novel and transformative approach to promoting healthy aging, paving the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Onkar Kadam
- Biotechnology, Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed) University, Pune, IND
| | - Swayamprava Dalai
- Biotechnology, Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed) University, Pune, IND
| | - Bhawna Chauhan
- School of Biotech Engineering and Food Technology, Chandigarh University, Chandigarh, IND
| | - Rashmi Ranjan Guru
- Hospital Administration, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
- Hospital Administration, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, IND
| | - Subhodip Mitra
- Hospital Administration, All India Institute of Medical Sciences, Kalyani, Kolkata, IND
| | - Namita Raytekar
- Medical Technology, Symbiosis Institute of Health Sciences, Pune, IND
| | - Rahul Kumar
- Hospital Administration, Symbiosis University Hospital & Research Centre, Pune, IND
| |
Collapse
|
4
|
Vanare SP, Singh RK, Chen J, Kong F. Double Emulsion Microencapsulation System for Lactobacillus rhamnosus GG Using Pea Protein and Cellulose Nanocrystals. Foods 2025; 14:831. [PMID: 40077534 PMCID: PMC11898448 DOI: 10.3390/foods14050831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Microencapsulation using a double emulsion system can improve the viability of probiotic cells during storage and digestion. In this study, a double emulsion system WC/O/WF was designed to microencapsulate Lactobacillus rhamnosus GG using pea protein (PP) and cellulose nanocrystals (CNCs) at various proportions, and the effect of their proportions on the stability and efficacy of the encapsulation system was studied. The double emulsions were prepared by a two-step emulsification process: the internal aqueous phase containing probiotic strain (WC) was homogenized into the oil phase (O), which was then homogenized into the external aqueous phase (WF) containing 15% wall materials with varying proportions of PP and CNCs [F1 (100:0), F2 (96:4), F3 (92:8), F4 (88:12), F5 (84:16), F6 (80:20)]. The incorporation of CNCs significantly lowered the average particle size and improved the stability of the emulsions. The encapsulation efficiency did not differ significantly across the tested formulations (63-68%). To check the effectiveness of the designed system, a simulated digestion study was conducted in two phases: gastric phase and intestinal phase. The double emulsion microencapsulation significantly improved the viability of encapsulated cells during digestion compared against free cells. Microscopic analysis along with assessment of protein hydrolysis of the double emulsions during the simulated digestion demonstrated a two-stage protection mechanism. This study presented promising results for employing a double emulsion system for the microencapsulation of probiotics and the potential of PP and CNCs in designing such systems.
Collapse
Affiliation(s)
| | | | | | - Fanbin Kong
- Department of Food Science & Technology, The University of Georgia, 100 Cedar St #211, Athens, GA 30602, USA; (S.P.V.); (R.K.S.)
| |
Collapse
|
5
|
Garfias Noguez C, Ramírez Damián M, Ortiz Moreno A, Márquez Flores YK, Alamilla Beltrán L, Márquez Lemus M, Bermúdez Humarán LG, Sánchez Pardo ME. Microencapsulation and Probiotic Characterization of Lactiplantibacillus plantarum LM-20: Therapeutic Application in a Murine Model of Ulcerative Colitis. Nutrients 2025; 17:749. [PMID: 40077619 PMCID: PMC11901509 DOI: 10.3390/nu17050749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Microencapsulation improves the storage, handling, and administration of probiotics by protecting them from environmental factors and adverse conditions in the gastrointestinal tract. This process facilitates their controlled delivery in the body, which can simplify their use in therapies without compromising their therapeutic efficacy. OBJECTIVES This study investigates the microencapsulation of Lactiplantibacillus plantarum LM-20, its probiotic properties, and its effects in a murine model of ulcerative colitis. METHODS/RESULTS Synbiotic microencapsulation was carried out using spray drying with maltodextrin, gum Arabic, and inulin, achieving an encapsulation efficiency of 90.76%. The resulting microcapsules exhibited remarkable resistance to simulated gastrointestinal conditions in vitro, maintaining a survival rate of 90%. The drying process did not compromise the probiotic characteristics of the bacteria, as they demonstrated enhanced auto-aggregation, hydrophobicity, and phenol tolerance. The therapeutic potential of the microencapsulated synbiotic was evaluated in a murine model of dextran sodium sulfate-induced ulcerative colitis. The results revealed that mice treated with microencapsulated Lactiplantibacillus plantarum LM-20 showed an 83.3% reduction in the disease activity index (DAI) compared to the ulcerative colitis control group. Moreover, a significant decrease was observed in pro-inflammatory cytokine levels (IL-1β and TNF-α) and myeloperoxidase activity, with values comparable to those of the healthy control group. CONCLUSIONS These findings suggest that microencapsulated Lactiplantibacillus plantarum LM-20 could be a promising candidate for therapeutic applications in the prevention and management of ulcerative colitis.
Collapse
Affiliation(s)
- Cynthia Garfias Noguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Morayma Ramírez Damián
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Alicia Ortiz Moreno
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Yazmín Karina Márquez Flores
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Liliana Alamilla Beltrán
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Mario Márquez Lemus
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Luis G. Bermúdez Humarán
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domain de Vilvert, 78350 Jouy-en-Josas, France;
| | - María Elena Sánchez Pardo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| |
Collapse
|
6
|
Brishti MR, Venkatraman G, Baba ASBH, Yajit NLM, Karsani SA. Natural Bioactive Compounds Enriched Functional Yogurt: Impact on the Probiotic Bacteria and Its Potential Health Benefits. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10461-1. [PMID: 39934501 DOI: 10.1007/s12602-025-10461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Recently, there has been a high demand for the development of yogurt-based nutraceuticals and functional medications. This surge is primarily driven by the increasing global need for pharmaceutical and nutraceutical products, arising from widespread nutrient deficiencies and the emergence of various communicable and non-communicable diseases (NCDs), including respiratory infections, cancer, gastrointestinal, diabetes, obesity, and cardiovascular diseases. Probiotic yogurt provides an effective medium for delivering essential nutrients to the human body. Additionally, various prebiotic combinations, such as bioactive compounds from plants, animals, and microbes, can enrich the viability of probiotics, nutritional value, and efficacy. However, the gastric environment can significantly impact the viability of probiotic microorganisms as well as the absorption of nutrients and bioactive molecules. Therefore, utilizing biopolymer-based encapsulation for functional nutrients, metal nanostructures, and medications can improve the bioavailability of these compounds, protect the probiotics from gastric enzymes, increase nutrient and microbial absorption in colonic fluids, and enhance the antioxidant level in the body. This review investigates various methods for producing yogurt enriched with prebiotic and probiotic combinations alongside techniques such as microencapsulation, emulsification, and the incorporation of metal nanoparticles. Key factors such as viability, texture, and syneresis are examined to optimize yogurt-based nutraceuticals and functional medications.
Collapse
Affiliation(s)
- Moumika Rahman Brishti
- Department of Biochemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical @ Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | | | - Noor Liana Mat Yajit
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Department of Biochemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Zhang B, Wang C, Liang S, Song S, Fu Y, Ai C, Yang J, Wen C, Yan C. Construction, characterization, and properties of a probiotic delivery system based on oxidized high amylose starch. Food Res Int 2025; 203:115809. [PMID: 40022338 DOI: 10.1016/j.foodres.2025.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 03/03/2025]
Abstract
This study demonstrates the preparation of oxidized high amylose starch (OHAS) and its effect on the survival and release of Lacticaseibacillus rhamnosus GG (LGG) in the gastrointestinal tract when combined with sodium alginate (SA). OHAS with different degrees of oxidation was combined with SA, and through rheological analysis, an SA/OHAS composite with good viscoelasticity, stable structure, and favorable for probiotic colonization was selected as the probiotic carrier. Specifically, SA/OHAS showed a good encapsulation efficiency of 46.21 % and maintained good viability after gastric juice digestion, with a surviving probiotic count of 5.87 × 106 CFU/mL. It exhibits good release efficiency in intestinal fluid, with a release rate reaching 85.67 % within 2 h. In vivo intestinal transit visualization evaluation after feeding mice showed that SA/OHAS could effectively prolong the retention time of probiotics in the intestine. In vitro experiments further proved that SA/OHAS could significantly enhance the resistance of probiotics in gastric juice and provide a targeted release for intestine-specific delivery. These results provide a promising strategy for the delivery system of SA/OHAS encapsulated probiotics in oral food applications.
Collapse
Affiliation(s)
- Bin Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Chenxin Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Shuang Liang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Yinghuan Fu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China.
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Jingfeng Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Chengrong Wen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| | - Chunhong Yan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034 PR China
| |
Collapse
|
8
|
Popa-Tudor I, Tritean N, Dima ȘO, Trică B, Ghiurea M, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Kombucha Versus Vegetal Cellulose for Affordable Mucoadhesive (nano)Formulations. Gels 2025; 11:37. [PMID: 39852008 PMCID: PMC11765165 DOI: 10.3390/gels11010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
Cellulose nanofibers gained increasing interest in the production of medical devices such as mucoadhesive nanohydrogels due to their ability to retain moisture (high hydrophilicity), flexibility, superior porosity and durability, biodegradability, non-toxicity, and biocompatibility. In this work, we aimed to compare the suitability of selected bacterial and vegetal nanocellulose to form hydrogels for biomedical applications. The vegetal and bacterial cellulose nanofibers were synthesized from brewer's spent grains (BSG) and kombucha membranes, respectively. Two hydrogels were prepared, one based on the vegetal and the other based on the bacterial cellulose nanofibers (VNC and BNC, respectively). VNC was less opaque and more fluid than BNC. The cytocompatibility and in vitro antioxidant activity of the nanocellulose-based hydrogels were investigated using human gingival fibroblasts (HGF-1, ATCC CRL-2014). The investigation of the hydrogel-mucin interaction revealed that the BNC hydrogel had an approx. 2× higher mucin binding efficiency than the VNC hydrogel at a hydrogel/mucin ratio (mg/mg) = 4. The BNC hydrogel exhibited the highest potential to increase the number of metabolically active viable cells (107.60 ± 0.98% of cytotoxicity negative control) among all culture conditions. VNC reduced the amount of reactive oxygen species (ROS) by about 23% (105.5 ± 2.2% of C-) in comparison with the positive control, whereas the ROS level was slightly higher (120.2 ± 3.9% of C-) following the BNC hydrogel treatment. Neither of the two hydrogels showed antibacterial activity when assessed by the diffusion method. The data suggest that the BNC hydrogel based on nanocellulose from kombucha fermentation could be a better candidate for cytocompatible and mucoadhesive nanoformulations than the VNC hydrogel based on nanocellulose from brewer's spent grains. The antioxidant and antibacterial activity of BNC and both BNC and VNC, respectively, should be improved.
Collapse
Affiliation(s)
- Ioana Popa-Tudor
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| | - Naomi Tritean
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei nr. 91-95, Sector 5, 050095 Bucharest, Romania;
| | - Ștefan-Ovidiu Dima
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| | - Bogdan Trică
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| | - Marius Ghiurea
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, Splaiul Independentei nr. 91-95, Sector 5, 050095 Bucharest, Romania;
| | - Florin Oancea
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| | - Diana Constantinescu-Aruxandei
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| |
Collapse
|
9
|
Edo GI, Mafe AN, Razooqi NF, Umelo EC, Gaaz TS, Isoje EF, Igbuku UA, Akpoghelie PO, Opiti RA, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Advances in bio-polymer coatings for probiotic microencapsulation: chitosan and beyond for enhanced stability and controlled release. Des Monomers Polym 2024; 28:1-34. [PMID: 39777298 PMCID: PMC11703421 DOI: 10.1080/15685551.2024.2448122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
This review paper analyzes recent advancements in bio-polymer coatings for probiotic microencapsulation, with a particular emphasis on chitosan and its synergistic combinations with other materials. Probiotic microencapsulation is essential for protecting probiotics from environmental stresses, enhancing their stability, and ensuring effective delivery to the gut. The review begins with an overview of probiotic microencapsulation, highlighting its significance in safeguarding probiotics through processing, storage, and gastrointestinal transit. Advances in chitosan-based encapsulation are explored, including the integration of chitosan with other bio-polymers such as alginate, gelatin, and pectin, as well as the application of nanotechnology and innovative encapsulation techniques like spray drying and layer-by-layer assembly. Detailed mechanistic insights are integrated, illustrating how chitosan influences gut microbiota by promoting beneficial bacteria and suppressing pathogens, thus enhancing its role as a prebiotic or synbiotic. Furthermore, the review delves into chitosan's immunomodulatory effects, particularly in the context of inflammatory bowel disease (IBD) and autoimmune diseases, describing the immune signaling pathways influenced by chitosan and linking gut microbiota changes to improvements in systemic immunity. Recent clinical trials and human studies assessing the efficacy of chitosan-coated probiotics are presented, alongside a discussion of practical applications and a comparison of in vitro and in vivo findings to highlight real-world relevance. The sustainability of chitosan sources and their environmental impact are addressed, along with the novel concept of chitosan's role in the gut-brain axis. Finally, the review emphasizes future research needs, including the development of personalized probiotic therapies and the exploration of novel bio-polymers and encapsulation techniques.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Nawar. F. Razooqi
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Ebuka Chukwuma Umelo
- Department of Healthcare Organisation Management, Cyprus International University, Nicosia, Turkey
| | - Tayser Sumer Gaaz
- Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Rapheal Ajiri Opiti
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S. Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Ramírez-Rodríguez GB, Sabio L, Cerezo-Collado L, Garcés V, Domínguez-Vera JM, Delgado-López JM. Probiotic-Based Mineralized Living Materials to Produce Antimicrobial Yogurts. Adv Healthc Mater 2024:e2402793. [PMID: 39648506 DOI: 10.1002/adhm.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Indexed: 12/10/2024]
Abstract
Mineralization of living cells represents an evolutionary adaptation that enhances cellular resilience to physicochemical stress. Inspired by this strategy, we have here developed hybrid living materials (HLMs), incorporating probiotics into mineralized collagen 3D matrices, with the aim of protecting and promoting the successful oral delivery of the bacteria. Collagen fibrils are simultaneously self-assembled and mineralized in the presence of the probiotics (Lactobacillus acidophilus, La, was used as model), resulting in the integration of the probiotics into the hybrid matrix (i.e., bulk encapsulation). During this process, probiotics are also coated with a nanofilm of apatite mineral (single-cell encapsulation), which provides them with extra protection and reinforces their viability and activity. In fact, the resulting HLM is metabolically active, and maintain the capacity to ferment milk into yogurt with antibacterial activity against the two major foodborne pathogens Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa). Interestingly, the HLM provides probiotics an additional protection in the gastrointestinal environment (i.e., simulated gastric fluid), which is of special interest for healthcare materials for oral administration. The results pave the way for the creation of innovative healthcare materials with enhanced functionalities and the potential to produce probiotic foods with notable antimicrobial properties.
Collapse
Affiliation(s)
- Gloria B Ramírez-Rodríguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Laura Sabio
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Laura Cerezo-Collado
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Víctor Garcés
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Jose M Domínguez-Vera
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - José M Delgado-López
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| |
Collapse
|
11
|
Rufino Vieira ÉN, Caroline de Oliveira V, Gomes AT, Lourenço MT, do Amaral e Paiva MJ, Santos TC, Guerra DJR, Saldaña MD. Perspectives of high-pressure technology in probiotic food production: A comprehensive review. FOOD BIOSCI 2024; 62:105179. [DOI: 10.1016/j.fbio.2024.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Kaymak Ertekin F, Köprüalan Aydın Ö, Altay Ö. Enhancing Viability of Lactobacillus plantarumBG24 Through Optimized Spray Drying: Insights Into Process Parameters, Carrier Agents, Comparative Analysis With Freeze Drying, and Storage Condition Influences. Food Sci Nutr 2024; 12:10330-10346. [PMID: 39723077 PMCID: PMC11666833 DOI: 10.1002/fsn3.4572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/09/2024] [Accepted: 10/13/2024] [Indexed: 12/28/2024] Open
Abstract
This study investigated the survival dynamics of Lactobacillus plantarum BG24, a probiotic strain, within reconstituted skim milk (RSM) and yeast extract (YE) matrices during the spray-drying (SD) process, encompassing of inlet/outlet air temperatures. Notably, optimum SD parameters were found to be an inlet air temperature of 150°C and outlet air temperature of 83°C, that achieving high viability (92.23%), and reducing both moisture content (MC) (3.57%) and water activity (a w) (0.266). The use of soy protein isolate (SPI), gum Arabic (GA), RSM, maltodextrin (MD), sucrose (SUC), and lactose in binary mixtures or alone was investigated in terms of the best survival rate of probiotic bacteria, and RSM alone and RSM + GA and SPI alone were found to be the best drying carriers giving higher viability during SD. SD at optimum process temperatures and freeze drying (FD) were compared in the survival rate of probiotic bacteria in the carrier of RSM with YE, and FD samples showed a higher survival rate (97.69%) than SD samples. It was determined that the storage temperature (4°C and 20°C) had an impact on the glass transition temperature, MC, a w, and cell viability. Increased storage temperature led to a greater decrease in cell viability, especially for SD probiotic powders. These findings furnish critical insights into the intricate interplay among process parameters, carrier agents, drying techniques, and storage conditions, thereby elucidating avenues for refining probiotic preservation strategies within the ambit of SD, and by extension, in the domains of food and pharmaceutical sciences.
Collapse
Affiliation(s)
| | | | - Özgül Altay
- Department of Food Engineering, Faculty of EngineeringEge UniversityİzmirTurkey
| |
Collapse
|
13
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
14
|
Lavanya M, Namasivayam SKR, Priyanka S, Abiraamavalli T. Microencapsulation and nanoencapsulation of bacterial probiotics: new frontiers in Alzheimer's disease treatment. 3 Biotech 2024; 14:313. [PMID: 39611008 PMCID: PMC11599650 DOI: 10.1007/s13205-024-04158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative disorder marked by cognitive decline, affects millions worldwide. The presence of amyloid plaques and neurofibrillary tangles in the brain is the key pathological feature, leading to neuronal dysfunction and cell death. Current treatment options include pharmacological approaches such as cholinesterase inhibitors, as well as non-pharmacological strategies like cognitive training and lifestyle modifications. Recently, the potential role of probiotics, particularly strains, such as Lactobacillus and Bifidobacterium, in managing neurodegenerative diseases through the gut-brain axis has garnered significant attention. Probiotics can modulate inflammation, produce neurotransmitters, and support neuronal health, potentially slowing disease progression and alleviating symptoms, such as stress and anxiety. Optimizing the pharmacotherapeutic effects of probiotics is critical and involves advanced formulation techniques, such as microencapsulation and nanoencapsulation. Microencapsulation employs natural or synthetic polymers to protect probiotic cells, enhancing their viability and stability against environmental stressors. Methods like extrusion, emulsion, and spray-drying are used to create microcapsules suited for various applications. Nanoencapsulation, on the other hand, operates at the nanoscale, utilizing polymeric or lipid-based nanoparticles to improve the bioavailability and shelf life of probiotics. Techniques, such as nanoprecipitation and emulsification, are employed to ensure stable nanocapsule formation, thereby augmenting the therapeutic potential of probiotics as nutraceutical agents. This study delves into the essential formulation aspects of microencapsulation and nanoencapsulation for beneficial probiotic strains, aimed at managing Alzheimer's disease by optimizing the gut-brain axis. The insights gained from these advanced techniques promise to enhance probiotic delivery efficacy, potentially leading to improved health outcomes for patients suffering from neurodegenerative disorders.
Collapse
Affiliation(s)
- M. Lavanya
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| | - S. Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| | - S. Priyanka
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| | - T. Abiraamavalli
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| |
Collapse
|
15
|
Ta LP, Corrigan S, Horniblow RD. Novel pectin-carboxymethylcellulose-based double-layered mucin/chitosan microcomposites successfully protect the next-generation probiotic Akkermansia muciniphila through simulated gastrointestinal transit and alter microbial communities within colonic ex vivo bioreactors. Int J Pharm 2024; 665:124670. [PMID: 39244071 DOI: 10.1016/j.ijpharm.2024.124670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The rapid acceleration of microbiome research has identified many potential Next Generation Probiotics (NGPs). Conventional formulation processing methods are non-compatible, leading to reduced viability and unconfirmed incorporation into intestinal microbial communities; consequently, demand for more bespoke formulation strategies of such NGPs is apparent. In this study, Akkermansia muciniphila (A.muciniphila) as a candidate NGP was investigated for its growth and metabolism properties, based on which a novel microcomposite-based oral formulation was formed. Initially, a chitosan-based microcomposite was coated with mucin to establish a surface culture of A.muciniphila. This was followed by 'double encapsulation' with pectin (PEC) using a novel Entrapment Deposition by Prilling method to create core-shell double-encapsulated microcapsules. The formulation of A.muciniphila was verified to require no oxygen-restriction properties, and additionally, biopolymers were selected, including carboxymethylcellulose (CMC), that support and enhance its growth; consequently, a high viability (6 log CFU/g) of A.muciniphila microencapsulated in PEC-CMC double-encapsulates was obtained. Subsequently, the high stability of the PEC-CMC double-encapsulates was verified in simulated gastric fluid, successfully protecting and then releasing the A.muciniphila under intestinal conditions. Finally, employing a model of gastrointestinal transit and faecal-inoculated colonic bioreactors, significant alterations in microbial communities following administration and successful establishment of A.muciniphila were demonstrated.
Collapse
Affiliation(s)
- Linh Phuong Ta
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah Corrigan
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard D Horniblow
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
16
|
Rahmanian M, Fathi M, Eftekhari M, Vakili K, Deravi N, Yaghoobpoor S, Sharifi H, Zeinodini R, Babajani A, Niknejad H. Developing a novel hypothesis to enhance mental resilience via targeting Faecalibacterium prausnitzii in gut-brain axis. Med Hypotheses 2024; 192:111468. [DOI: 10.1016/j.mehy.2024.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
17
|
Lee Y, Shin S, Kim MJ. Production of CaCO 3-single-coated probiotics and evaluation of their spectroscopic properties, morphological characteristics, viability, and intestinal delivery efficiency. Food Chem 2024; 457:140076. [PMID: 38879960 DOI: 10.1016/j.foodchem.2024.140076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
The intake of probiotics offers various health benefits; however, their efficacy depends on the maintenance of viability during industrial processing and digestion. Probiotic viability can be compromised during encapsulation, freeze-drying, storage, and digestion, necessitating multiple coatings. This complicates production and raises costs. In this study, CaCO3-single-coated probiotics (CSCPs) were prepared, an approach rarely reported before. Through instrumental analyses, the encapsulation of probiotics within CaCO3 was confirmed, ensuring their high viability. This proposed technology effectively preserves the viability of probiotics during the encapsulation and freeze-drying processes, resulting in minimal cell loss. Moreover, CSCPs demonstrated exceptional viability performance under simulated gastric and intestinal conditions. Notably, 100% of these microorganisms reached the intestines, delivering over 10 billion CFUs of probiotics in a viable state. This study highlights the potential of CSCPs as a feasible solution for overcoming probiotic encapsulation challenges and optimizing therapeutic benefits.
Collapse
Affiliation(s)
- Youjeong Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Seonmi Shin
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Myoung-Jin Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
| |
Collapse
|
18
|
Shin S, Lee Y, Kim MJ. Oyster shell based indirect carbonation integrated with probiotic encapsulation. Sci Rep 2024; 14:24709. [PMID: 39433771 PMCID: PMC11494112 DOI: 10.1038/s41598-024-72976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Recycling oyster shells-an abundant industrial waste-is essential to reduce marine pollution. Indirect carbonation is promising; however, is cost-prohibitive. This study is a pioneering endeavor to merge indirect carbonation and probiotic encapsulation technologies using oyster shells. Probiotics were encapsulated in the CaCO3 produced through indirect carbonation with oyster shells, and the performance was evaluated. Confocal laser scanning microscopy certified the survival of a substantial proportion of the encased probiotics. Importantly, the majority of the enveloped probiotics demonstrated robust survivability while passing through gastrointestinal and bile fluids. These findings underscore the applicability of oyster shells as an optimal precursor for probiotic encapsulation which is eco-friendly and addresses the challenges faced in industrial waste recycling. This novel approach overcomes the economic limitations associated with indirect carbonation and mitigates the shortcomings of existing probiotic encapsulation methods. Convergence of indirect carbonation and probiotic encapsulation technologies can chart new routes for the environmental sector.
Collapse
Affiliation(s)
- Seonmi Shin
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Youjeong Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Myoung-Jin Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
| |
Collapse
|
19
|
Abdelgadir A, Adnan M, Patel M, Saxena J, Alam MJ, Alshahrani MM, Singh R, Sachidanandan M, Badraoui R, Siddiqui AJ. Probiotic Lactobacillus salivarius mediated synthesis of silver nanoparticles (AgNPs-LS): A sustainable approach and multifaceted biomedical application. Heliyon 2024; 10:e37987. [PMID: 39347420 PMCID: PMC11437860 DOI: 10.1016/j.heliyon.2024.e37987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Biogenic synthesis of silver nanoparticles (AgNPs) has emerged as an eco-friendly and sustainable approach with diverse biological applications. This study presents synthesis of AgNPs-LS using a probiotic strain Lactobacillus salivarius (L. salivarius) and explores their multifaceted biological activities, including antibacterial, antibiofilm, anti-quorum sensing, antifungal, antioxidant, anticancer, anticoagulant and thrombolytic properties. The biosynthesis of AgNPs-LS was successfully achieved using L. salivarius cell free supernatants, resulting in well-characterized nanoparticles as confirmed by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) and zeta potential analysis. The AgNPs-LS demonstrated potent antibacterial activity against different pathogenic bacteria (C. violaceum, P. aeruginosa, S. aureus, E. coli and S. marcescens), emphasizing their potential in combating bacterial infections. Moreover, these AgNPs-LS were effective in inhibiting biofilm formation (>60 % at 1/2 MIC), a key mechanism of bacterial virulence, highlighting their utility in preventing biofilm-related infections. AgNPs-LS exhibited anti-quorum sensing activity, disrupting bacterial communication systems and potentially reducing virulence factor such as, violacein production in C. violaceum, pyocyanin production in P. aeruginosa and prodigiosin production in S. marcescens. Additionally, AgNPs-LS also exhibited notable antifungal activity towards a different pathogenic fungus (F. proliferatum, P. purpurogenum, A. niger and R. stolonifer). In terms of health applications, the AgNPs-LS displayed significant antioxidant activity, effectively scavenging DPPH• (IC50 = 42.65 μg/mL) and ABTS•+ (IC50 = 53.77 μg/mL) free radicals. Furthermore, AgNPs-LS showed cytotoxicity against breast cancer cells (MCF-7) (IC50 = 52.29 μg/mL), positioning them as promising candidates for cancer therapy. Moreover, AgNPs-LS were also shown promising anticoagulant and thrombolytic activities under practical conditions. Therefore, the biogenic synthesis of AgNPs-LS using L. salivarius offers a sustainable and cost-effective route for producing AgNPs with an array of biological activities. These AgNPs-LS have the potential to address various challenges in healthcare, ranging from antimicrobial, anticancer applications to biofilm inhibition, antioxidant therapy, anticoagulant and thrombolytic agents.
Collapse
Affiliation(s)
- Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, 391760, India
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran, 61441, Saudi Arabia
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| |
Collapse
|
20
|
Rojas-Muñoz YV, de Jesús Perea-Flores M, Quintanilla-Carvajal MX. Probiotic Encapsulation: Bead Design Improves Bacterial Performance during In Vitro Digestion (Part 2: Operational Conditions of Vibrational Technology). Polymers (Basel) 2024; 16:2492. [PMID: 39274126 PMCID: PMC11397813 DOI: 10.3390/polym16172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
The development of functional foods is a viable alternative for the prevention of numerous diseases. However, the food industry faces significant challenges in producing functional foods based on probiotics due to their high sensitivity to various processing and gastrointestinal tract conditions. This study aimed to evaluate the effect of the operational conditions during the extrusion encapsulation process using vibrating technology on the viability of Lactobacillus fermentum K73, a lactic acid bacterium with hypocholesterolemia probiotic potential. An optimal experimental design approach was employed to produce sweet whey-sodium alginate (SW-SA) beads with high bacterial content and good morphological characteristics. In this study, the effects of frequency, voltage, and pumping rate were optimized for a 300 μm nozzle. The microspheres were characterized using RAMAN spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. The optimal conditions for bead production were found: 70 Hz, 250 V, and 20 mL/min with a final cell count of 8.43 Log10 (CFU/mL). The mean particle diameter was 620 ± 5.3 µm, and the experimental encapsulation yield was 94.3 ± 0.8%. The INFOGEST model was used to evaluate the survival of probiotic beads under gastrointestinal tract conditions. Upon exposure to in vitro conditions of oral, gastric, and intestinal phases, the encapsulated viability of L. fermentum was 7.6 Log10 (CFU/mL) using the optimal encapsulation parameters, which significantly improved the survival of probiotic bacteria during both the encapsulation process and under gastrointestinal conditions compared to free cells.
Collapse
Affiliation(s)
- Yesica Vanesa Rojas-Muñoz
- Universidad de La Sabana, Facultad de Ingeniería, Maestría en Diseño y Gestión de Procesos, Campus Universitario del Puente del Común, Chía 250001, Cundinamarca, Colombia
| | - María de Jesús Perea-Flores
- Instituto Politécnico Nacional, Centro de Nanociencias y Micro y Nanotecnologías, Unidad Profesional "Adolfo López Mateos", Luis Enrique Erro s/n, Zacatenco, CDMX C.P. 07738, Mexico
| | - María Ximena Quintanilla-Carvajal
- Universidad de La Sabana, Facultad de Ingeniería, Maestría en Diseño y Gestión de Procesos, Campus Universitario del Puente del Común, Chía 250001, Cundinamarca, Colombia
- Universidad de La Sabana, Facultad de Ingeniería, Grupo de Investigación de Procesos Agroindustriales (GIPA), Campus Universitario del Puente del Común, Chía 250001, Cundinamarca, Colombia
| |
Collapse
|
21
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
22
|
Zhang Z, Chang R, Yue Q, Liu B, Li Z, Yuan Y, Liang S, Li Y. Nanoparticle delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:51-88. [PMID: 39218508 DOI: 10.1016/bs.afnr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Foodborne functional substances have received much attention for their functional benefits in health and disease. However, these substances are easily affected by the adverse environment during production, transportation, or storage. They will also be damaged by the gastric environment and limited by the mucosal barrier after entering the human body, thus affecting the bioavailability of functional substances in the body. The construction of nanoparticle delivery systems is helpful to protect the biological activity of functional substances and improve their solubility, stability, and absorption of substances. Responsive delivery systems help control the release of functional substances in specific environments and targeted sites to achieve nutritional intervention, disease prevention, and treatment. In this chapter, the main types of foodborne functional substances and their commonly used delivery systems were reviewed, and the application of delivery systems in precision nutrition was described from the aspects of environmental stimuli-responsive delivery systems, site-specific delivery systems, and disease-targeted delivery systems.
Collapse
Affiliation(s)
- Ziyi Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Qing Yue
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
23
|
Bani Saeid A, De Rubis G, Williams KA, Yeung S, Chellappan DK, Singh SK, Gupta G, Hansbro PM, Shahbazi MA, Gulati M, Kaur IP, Santos HA, Paudel KR, Dua K. Revolutionizing lung health: Exploring the latest breakthroughs and future prospects of synbiotic nanostructures in lung diseases. Chem Biol Interact 2024; 395:111009. [PMID: 38641145 DOI: 10.1016/j.cbi.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands
| | - Monica Gulati
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands; Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
24
|
Dameshghian M, Tafvizi F, Tajabadi Ebrahimi M, Hosseini Doust R. Anticancer Potential of Postbiotic Derived from Lactobacillus brevis and Lactobacillus casei: In vitro Analysis of Breast Cancer Cell Line. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10288-2. [PMID: 38758482 DOI: 10.1007/s12602-024-10288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Breast cancer has emerged as the most widespread and dangerous type of malignancy among women worldwide. Postbiotics have recently emerged as a promising novel adjunct in breast cancer therapy, due to their immunomodulatory effects and the potential to mitigate the adverse effects of conventional treatments. This study aims to investigate the therapeutic effects of postbiotics derived from Lactobacillus brevis (CSF2) and Lactobacillus casei (CFS5), specifically examining their ability to inhibit cell proliferation and induce apoptosis in MCF-7 breast cancer cells. In the current study, the anticancer activity of the cell-free supernatant of L. brevis and L. casei was investigated against MCF-7 cells using MTT assay, flow cytometry, and qRT-PCR technique. Both bacteria showed a high potential for the induction of cell death in MCF-7 cells. However, CFS2 cytotoxicity was significantly higher than CFS5. Flow cytometry results showed significant induction of early apoptosis in cells treated with both CFS2 and CFS5 within 48 h. The induction was notably higher in cells treated with CFS2 compared to CFS5. Overall, CFS2 therapy resulted in a greater increase in BAX and CASP9 gene expression, as well as an elevated BAX/BCL2 ratio within 48 h. These findings indicate that the CFS2 treatment showed a higher level of apoptotic activity than the CFS5 treatment. High biocompatibility was demonstrated following treatment with CFS2 and CFS5. These CFSs may serve as adjunctive medications for suppressing the proliferation of cancer cells. The results of the current study highlight the potential of postbiotics in cancer treatment and suggest that supernatants may serve as effective agents for suppressing cancer cell growth and viability.
Collapse
Affiliation(s)
- Mahsa Dameshghian
- Department of Microbiology, Faculty of Advanced Science & Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | | | - Reza Hosseini Doust
- Department of Microbiology, Faculty of Advanced Science & Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Mosquera FEC, Guevara-Montoya MC, Serna-Ramirez V, Liscano Y. Neuroinflammation and Schizophrenia: New Therapeutic Strategies through Psychobiotics, Nanotechnology, and Artificial Intelligence (AI). J Pers Med 2024; 14:391. [PMID: 38673018 PMCID: PMC11051547 DOI: 10.3390/jpm14040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of schizophrenia, affecting approximately 1% of the global population, underscores the urgency for innovative therapeutic strategies. Recent insights into the role of neuroinflammation, the gut-brain axis, and the microbiota in schizophrenia pathogenesis have paved the way for the exploration of psychobiotics as a novel treatment avenue. These interventions, targeting the gut microbiome, offer a promising approach to ameliorating psychiatric symptoms. Furthermore, advancements in artificial intelligence and nanotechnology are set to revolutionize psychobiotic development and application, promising to enhance their production, precision, and effectiveness. This interdisciplinary approach heralds a new era in schizophrenia management, potentially transforming patient outcomes and offering a beacon of hope for those afflicted by this complex disorder.
Collapse
Affiliation(s)
| | | | | | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia; (F.E.C.M.); (M.C.G.-M.); (V.S.-R.)
| |
Collapse
|
26
|
Hahn J, Ding S, Im J, Harimoto T, Leong KW, Danino T. Bacterial therapies at the interface of synthetic biology and nanomedicine. NATURE REVIEWS BIOENGINEERING 2024; 2:120-135. [PMID: 38962719 PMCID: PMC11218715 DOI: 10.1038/s44222-023-00119-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 07/05/2024]
Abstract
Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.
Collapse
Affiliation(s)
- Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Mohamadzadeh M, Fazeli A, Shojaosadati SA. Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. Int J Biol Macromol 2024; 259:129287. [PMID: 38211924 DOI: 10.1016/j.ijbiomac.2024.129287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Probiotics have recently received significant attention due to their various benefits, such as the modulation of gut flora, reduction of blood sugar and insulin resistance, prevention and treatment of digestive disorders, and strengthening of the immune system. One of the major issues concerning probiotics is the maintenance of their viability in the presence of digestive conditions and extended shelf life during storage. To address this concern, numerous techniques have been explored to achieve success. Among these methods, the microencapsulation of probiotics has been proposed as the most effective way to overcome this challenge. The combination of nanomaterials with biopolymer coating is considered a novel approach to improve its viability and effective delivery. The use of polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics has emerged as an efficient and promising approach for maintaining cell viability and targeted delivery. This review article aims to investigate the use of different bionanocomposites in microencapsulation of probiotics and their effect on cell survival in long-term storage and harsh conditions in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Ahmad Fazeli
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
28
|
Ramirez-Olea H, Herrera-Cruz S, Chavez-Santoscoy RA. Microencapsulation and controlled release of Bacillus clausii through a novel non-digestible carbohydrate formulation as revolutionizing probiotic delivery. Heliyon 2024; 10:e24923. [PMID: 38304817 PMCID: PMC10830856 DOI: 10.1016/j.heliyon.2024.e24923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Probiotics have gained significant attention in recent years due to the growing awareness of physical health and well-being. However, maintaining high concentrations of probiotics throughout the product's shelf life and during the gastrointestinal tract is crucial for ensuring their health-promoting effects. After determining an optimal formulation through a fractional factorial model, this study optimizes probiotic Bacillus Clausii delivery through spray-drying microencapsulation using a novel maltodextrin-alginate-inulin (MDX-ALG-IN) formulation (optimized ratio: 7:2:1). Notably, this formulation exclusively comprises non-digestible carbohydrates, marking a novel approach in probiotic encapsulation. Achieving a high Product Yield (51.06 %) and Encapsulation Efficiency (80.53 %), the study employed SEM for morphological analysis, revealing an irregular form and extensive surface in dentations characteristic of maltodextrin involvement. With a low moisture content of 3.02 % (±0.23 %) and 90.52 % solubility, the powder displayed exceptional properties. Probiotic viability remained robust, surviving up to 60 % even after 180 days at 4 °C, 25 °C, and 37 °C. Thermal characterization unveiled microcapsule resilience, exhibiting a glass transition temperature (Tg) at 138.61 °C and a melting point of 177.28 °C. The study systematically addresses crucial aspects of microencapsulation, including formulation optimization, morphological characteristics, and powder properties. Notably, the MDX-ALG-IN microcapsules demonstrated stability in simulated gastrointestinal conditions, indicating potential application for supplements and complex food matrices. In summary, this research contributes to microencapsulation understanding, emphasizing the MDX-ALG-IN formulation's efficacy in preserving probiotic viability across production stages and simulated digestive processes.
Collapse
Affiliation(s)
- Hugo Ramirez-Olea
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada, 2501 Sur, C. P. 64849 Monterrey, N. L., Mexico
| | - Sebastian Herrera-Cruz
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada, 2501 Sur, C. P. 64849 Monterrey, N. L., Mexico
| | - Rocio Alejandra Chavez-Santoscoy
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada, 2501 Sur, C. P. 64849 Monterrey, N. L., Mexico
| |
Collapse
|
29
|
Pandey RP, Gunjan, Himanshu, Mukherjee R, Chang CM. Nanocarrier-mediated probiotic delivery: a systematic meta-analysis assessing the biological effects. Sci Rep 2024; 14:631. [PMID: 38182678 PMCID: PMC10770044 DOI: 10.1038/s41598-023-50972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Probiotics have gained a significant attention as a promising way to improve gut health and overall well-being. The increasing recognition of the potential health advantages associated with functional food products, leading to a specific emphasis on co-encapsulating probiotic bacteria and bioactive compounds within a unified matrix. To further explore this concept, a meta-analysis was performed to assess the effects of probiotics encapsulated in nanoparticles. A comprehensive meta-analysis was conducted, encompassing 10 papers published from 2017 to 2022, focusing on the encapsulation of probiotics within nanoparticles and their viability in various gastrointestinal conditions. The selection of these papers was based on their direct relevance to the research topic. Random-effect models were used to aggregate study-specific risk estimates. In the majority of studies, it was observed that nano-encapsulated nanoparticles showed improved viability over time compared to their free state counterparts. At various time intervals, the odds ratios (OR) with 95% confidence intervals (CI) were estimated using fixed and random effect models. At 0 min, the OR (95%CI) was 2.79 (2.79; 2.80) and 2.38 (2.14; 2.64) for. At 30 and 60 min observation was at similar rate of 2.23 (2.23; 2.24) and 2.05 (1.73; 2.43). However, at 90 min it was 1.39 (1.39; 1.39) and 1.66 (1.29; 2.14) and at 120 min 2.41 (2.41; 2.42) and 2.03 (1.63; 2.52). Overall evaluation of encapsulation revealed an improvement in probiotic bacterial viability in simulated the gastrointestinal environments.
Collapse
Affiliation(s)
- Ramendra Pati Pandey
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Gunjan
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
| | - Himanshu
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.)
| | - Chung-Ming Chang
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 33302, Taiwan (R.O.C.).
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan city 33302, Taiwan (R.O.C.).
| |
Collapse
|
30
|
Yang K, Han HS, An SH, Park KH, Nam K, Hwang S, Lee Y, Cho SY, Kim T, Choe D, Kim SW, Yu W, Lee H, Park J, You S, Jo DG, Choi KY, Roh YH, Park JH. Mucoadhesive chitosan microcapsules for controlled gastrointestinal delivery and oral bioavailability enhancement of low molecular weight peptides. J Control Release 2024; 365:422-434. [PMID: 37863357 DOI: 10.1016/j.jconrel.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/21/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
A bioactive compound, collagen peptide (CP), is widely used for biological activities such as anti-photoaging and antioxidant effects, with increased oral bioavailability because of its low molecular weight and high hydrophilicity. However, controlling release time and increasing retention time in the digestive tract for a more convenient oral administration is still a challenge. We developed CP-loaded chitosan (CS) microcapsules via strong and rapid ionic gelation using a highly negative phytic acid (PA) crosslinker. The platform enhanced the oral bioavailability of CP with controlled gastrointestinal delivery by utilizing the mucoadhesiveness and tight junction-opening properties of CS. CS and CP concentrations varied from 1.5 to 3.5% and 0-30%, respectively, for optimal and stable microcapsule synthesis. The physicochemical properties, in vitro release profile with intestinal permeability, in vivo oral bioavailability, in vivo biodistribution, anti-photoaging effect, and antioxidant effect of optimized CS microcapsules were analyzed to investigate the impact of controlling parameters. The structure of CS microcapsules was tuned by PA diffused gradient ionic cross-linking degree, resulting in a controlled CP release region in the gastrointestinal tract. The optimized microcapsules increased Cmax, AUC, and tmax by 1.5-, 3.4-, and 8.0-fold, respectively. Furthermore, CP in microcapsules showed anti-photoaging effects by downregulating matrix metalloproteinases-1 via antioxidant effects. According to our knowledge, this is the first study to microencapsulate CP for oral bioavailability enhancement. The peptide delivery method employed is simple, economical, and can be applied to customize bioactive compound administration.
Collapse
Affiliation(s)
- Kyungjik Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hwa Seung Han
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 120, Republic of Korea
| | - Seung Hwan An
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyung Hoon Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Keonwook Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Shinha Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yuyeon Lee
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung Yeon Cho
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taehyung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Deokyeong Choe
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang Won Kim
- Yonsei University Dairy R&D Center, Asan, Republic of Korea
| | - Wonkyu Yu
- Yonsei University Dairy R&D Center, Asan, Republic of Korea
| | - Hyunah Lee
- Department of Bio-Convergence Engineering, Dongyang Mirae University, 445-8, Gyeongin-ro, Guro-gu, Seoul 02841, Republic of Korea
| | - Jiyong Park
- Nutrex Technology, 670 Daewangpangyo-ro, Seongnam 13494, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 120, Republic of Korea; East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Ki Young Choi
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 120, Republic of Korea.
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jae Hyung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
31
|
Nezamdoost-Sani N, Khaledabad MA, Amiri S, Phimolsiripol Y, Mousavi Khaneghah A. A comprehensive review on the utilization of biopolymer hydrogels to encapsulate and protect probiotics in foods. Int J Biol Macromol 2024; 254:127907. [PMID: 37935287 DOI: 10.1016/j.ijbiomac.2023.127907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Probiotics must survive in foods and passage through the human mouth, stomach, and small intestine to reach the colon in a viable state and exhibit their beneficial health effects. Probiotic viability can be improved by encapsulating them inside hydrogel-based delivery systems. These systems typically comprise a 3D network of cross-linked polymers that retain large amounts of water within their pores. This study discussed the stability of probiotics and morphology of hydrogel beads after encapsulation, encapsulation efficiency, utilization of natural polymers, and encapsulation mechanisms. Examples of the application of these hydrogel-based delivery systems are then given. These studies show that encapsulation of probiotics in hydrogels can improve their viability, provide favorable conditions in the food matrix, and control their release for efficient colonization in the large intestine. Finally, we highlight areas where future research is required, such as the large-scale production of encapsulated probiotics and the in vivo testing of their efficacy using animal and human studies.
Collapse
Affiliation(s)
- Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | | | - Amin Mousavi Khaneghah
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland.
| |
Collapse
|
32
|
Rathod P, Yadav RP. Gut microbiome as therapeutic target for diabesity management: opportunity for nanonutraceuticals and associated challenges. Drug Deliv Transl Res 2024; 14:17-29. [PMID: 37552394 DOI: 10.1007/s13346-023-01404-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Diabesity is showing rising prevalence. Current treatment modalities include pharmacological and non-pharmacological approaches, yet associated with various drawbacks. Recently, gut microbial dysbiosis is documented as a crucial factor in the pathogenesis of diabesity. Targeting gut microbiome using modulators shows promising therapeutic strategy for diabesity management. In this line, nanonutraceuticals represent new class of gut microbial modulators. The present article explores the potential of nanonutraceuticals including nanoprobiotics, nanoprebiotics, and plant-derived nanovesicles that are fabricated on the ecofriendly food based scaffold with gut microbial modulatory potential for diabesity management. A number of compelling evidences from different studies support Bifidobacterium, Enterococcus, and Bacteroides genera and Lactobacillus plantarum and Akkermansia muciniphila species significant in diabesity management. The probable mechanisms reported for gut microbial dysbiosis-induced diabesity are mentioned. The review findings suggest gut microbiome as significant therapeutic target for diabesity management. Moreover, ecofriendly nanonutraceuticals developed using natural products including food-grade materials are efficient modulators of gut microbiome and indicate next-generation diabesity therapeutics. Clinical studies are imperative as further exploration may provide new dimensions to the future research.
Collapse
Affiliation(s)
- Priyanka Rathod
- MGMIHS OMICS Research Center, MGM Central Research Laboratory, MGM Medical College and Hospital, Navi Mumbai, Maharashtra, India
- Department of Medical Biotechnology, MGM School of Biomedical Sciences, MGM Institute of Health Sciences, Kamothe-410209, Navi Mumbai, Maharashtra, India
| | - Raman P Yadav
- MGMIHS OMICS Research Center, MGM Central Research Laboratory, MGM Medical College and Hospital, Navi Mumbai, Maharashtra, India.
- Department of Medical Biotechnology, MGM School of Biomedical Sciences, MGM Institute of Health Sciences, Kamothe-410209, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
33
|
Lopes SA, Roque-Borda CA, Duarte JL, Di Filippo LD, Borges Cardoso VM, Pavan FR, Chorilli M, Meneguin AB. Delivery Strategies of Probiotics from Nano- and Microparticles: Trends in the Treatment of Inflammatory Bowel Disease-An Overview. Pharmaceutics 2023; 15:2600. [PMID: 38004578 PMCID: PMC10674632 DOI: 10.3390/pharmaceutics15112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder, most known as ulcerative colitis (UC) and Crohn's disease (CD), that affects the gastrointestinal tract (GIT), causing considerable symptoms to millions of people around the world. Conventional therapeutic strategies have limitations and side effects, prompting the exploration of innovative approaches. Probiotics, known for their potential to restore gut homeostasis, have emerged as promising candidates for IBD management. Probiotics have been shown to minimize disease symptoms, particularly in patients affected by UC, opening important opportunities to better treat this disease. However, they exhibit limitations in terms of stability and targeted delivery. As several studies demonstrate, the encapsulation of the probiotics, as well as the synthetic drug, into micro- and nanoparticles of organic materials offers great potential to solve this problem. They resist the harsh conditions of the upper GIT portions and, thus, protect the probiotic and drug inside, allowing for the delivery of adequate amounts directly into the colon. An overview of UC and CD, the benefits of the use of probiotics, and the potential of micro- and nanoencapsulation technologies to improve IBD treatment are presented. This review sheds light on the remarkable potential of nano- and microparticles loaded with probiotics as a novel and efficient strategy for managing IBD. Nonetheless, further investigations and clinical trials are warranted to validate their long-term safety and efficacy, paving the way for a new era in IBD therapeutics.
Collapse
Affiliation(s)
- Sílvio André Lopes
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | | | - Jonatas Lobato Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | - Vinícius Martinho Borges Cardoso
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | - Fernando Rogério Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| |
Collapse
|
34
|
Wang J, Ghosh D, Maniruzzaman M. Using bugs as drugs: administration of bacteria-related microbes to fight cancer. Adv Drug Deliv Rev 2023; 197:114825. [PMID: 37075953 DOI: 10.1016/j.addr.2023.114825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Driven by the advancement of microbiology and cancer biology, bioengineering of bacteria-related microbes has demonstrated great potential in targeted cancer therapy. Presently, the major administration routes of bacteria-related microbes for cancer treatment include intravenous injection, intratumoral injection, intraperitoneal injection, and oral delivery. Administration routes of bacteria play a key role in anticancer therapeutic efficacy since different delivery approaches might exert an anticancer effect through diverse mechanisms. Herein, we provide an overview of the primary routes of bacteria administration as well as their advantages and limitations. Furthermore, we discuss that microencapsulation can overcome the current challenges of direct administration of free bacteria. We also review the latest advancements in combining functional particles with engineered bacteria to fight against cancer, which can be further coupled with conventional anticancer therapies to improve the therapeutic effect. Eventually, we highlight the application prospect of bioprinting in cancer bacteriotherapy, which enables the long-term sustained delivery and individualized dose regimen, representing a new paradigm for personalized cancer treatment.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
35
|
Geng Z, Wang X, Wu F, Cao Z, Liu J. Biointerface mineralization generates ultraresistant gut microbes as oral biotherapeutics. SCIENCE ADVANCES 2023; 9:eade0997. [PMID: 36930714 PMCID: PMC10022893 DOI: 10.1126/sciadv.ade0997] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Despite the fact that oral microecologics are effective in modulating the gut microbiome, they always suffer from multiple insults during the journey from manufacture to arrival at the intestine. Inspired by the protective mechanism of mineralization, we describe a cytocompatible approach of biointerface mineralization that can generate an ultraresistant and self-removable coating on bacterial surface to solve these challenges. Mineral coating endows bacteria with robust resistances against manufacture-associated oxygen exposure, ultraviolet irradiation, and 75% ethanol. Following oral ingestion, the coating is able to actively neutralize gastric acid and release encapsulated bacteria through spontaneous yet rapid double-decomposition reaction. In addition to acid neutralization, the generated calcium ions can trigger micellar aggregation of bile acid, enabling dual exemptions from the insults of gastric acid and bile acid to achieve uncompromised bacterial viability. Further supported by the therapeutic efficacy of coated bacteria toward colitis mice, biointerface mineralization provides a versatile platform for developing next-generation living oral biotherapeutics.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
36
|
Dangi P, Chaudhary N, Chaudhary V, Virdi AS, Kajla P, Khanna P, Jha SK, Jha NK, Alkhanani MF, Singh V, Haque S. Nanotechnology impacting probiotics and prebiotics: a paradigm shift in nutraceuticals technology. Int J Food Microbiol 2023; 388:110083. [PMID: 36708610 DOI: 10.1016/j.ijfoodmicro.2022.110083] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
This is proven for a long that the incorporation of probiotics and prebiotics in diet exhibits beneficial effects on intestinal and intrinsic health. Nevertheless, this may encounter loss of vitality all along the absorption in the gastrointestinal tract, leading to meager intestinal delivery of probiotic active ingredients. In recent times, nanotechnology has been passionately used to escalate the bioavailability of active ingredients. Versatile forms of nanoparticles (NPs) are devised to be used with probiotics/prebiotics/synbiotics or their different combinations. The NPs currently in trend are constituted of distinctive organic compounds like carbohydrates, proteins, fats, or inorganics such as oxides of silver and titanium or magnesium etc. This review critically explicates the emerging relationship of nanotechnology with probiotics and prebiotics for different applications in neutraceuticals. Here in this review, formulations of nanoprobiotics and nanoprebiotics are discussed in detail, which behave as an effective drug delivery system. In addition, these formulations exhibit anti-cancerous, anti-microbial, anti-oxidant and photo-protective properties. Limited availability of scientific research on nanotechnology concerning probiotics and prebiotics implies dynamic research studies on the bioavailability of loaded active ingredients and the effective drug delivery system by including the safety issues of food and the environment.
Collapse
Affiliation(s)
- Priya Dangi
- Department of Food & Nutrition and Food Technology, University of Delhi, Institute of Home Economics, New Delhi, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Nagaur, Agriculture University, Jodhpur, Rajasthan, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Amardeep Singh Virdi
- Department of Food Science and Technology, Amity University, Mohali, Punjab, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | | | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mustfa F Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafr Al Batin 31991, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226021, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
37
|
Han SY, Nguyen DT, Kim BJ, Kim N, Kang EK, Park JH, Choi IS. Cytoprotection of Probiotic Lactobacillus acidophilus with Artificial Nanoshells of Nature-Derived Eggshell Membrane Hydrolysates and Coffee Melanoidins in Single-Cell Nanoencapsulation. Polymers (Basel) 2023; 15:polym15051104. [PMID: 36904345 PMCID: PMC10007236 DOI: 10.3390/polym15051104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
One-step fabrication method for thin films and shells is developed with nature-derived eggshell membrane hydrolysates (ESMHs) and coffee melanoidins (CMs) that have been discarded as food waste. The nature-derived polymeric materials, ESMHs and CMs, prove highly biocompatible with living cells, and the one-step method enables cytocompatible construction of cell-in-shell nanobiohybrid structures. Nanometric ESMH-CM shells are formed on individual probiotic Lactobacillus acidophilus, without any noticeable decrease in viability, and the ESMH-CM shells effectively protected L. acidophilus in the simulated gastric fluid (SGF). The cytoprotection power is further enhanced by Fe3+-mediated shell augmentation. For example, after 2 h of incubation in SGF, the viability of native L. acidophilus is 30%, whereas nanoencapsulated L. acidophilus, armed with the Fe3+-fortified ESMH-CM shells, show 79% in viability. The simple, time-efficient, and easy-to-process method developed in this work would contribute to many technological developments, including microbial biotherapeutics, as well as waste upcycling.
Collapse
Affiliation(s)
- Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Duc Tai Nguyen
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Beom Jin Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
- Correspondence: (B.J.K.); (I.S.C.)
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Eunhye K. Kang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- Correspondence: (B.J.K.); (I.S.C.)
| |
Collapse
|
38
|
Microencapsulation in the chitosan-coated alginate-inulin matrix of Limosilactobacillus reuteri SW23 and Lactobacillus salivarius RBL50 and their characterization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
39
|
Sharifi E, Yazdani Z, Najafi M, Hosseini‐khah Z, Jafarpour A, Rafiei A. The combined effect of fish oil containing Omega-3 fatty acids and Lactobacillus plantarum on colorectal cancer. Food Sci Nutr 2022; 10:4411-4418. [PMID: 36514755 PMCID: PMC9731559 DOI: 10.1002/fsn3.3037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies. Recent attempts have indicated the role of diet in the etiology of CRC. Natural dietary compounds such as probiotics and Omega-3 fatty acids that act synergistically can be beneficial in finding a tremendous solution against CRC. To date, the combined effect of fish oil containing Omega-3 fatty acids (Omega-3) and Lactobacillus plantarum (L. plantarum) on CRC has been left behind. We here evaluated the effects of co-encapsulation of Omega-3 and probiotic bacteria on CRC cell lines compared to normal cells. Omega-3 and L. plantarum bacteria were co-encapsulated in three ways, including gelatin-gum Arabic, gelatin-chitosan, and chitosan-gum Arabic complex coacervate microcapsules. After treatment of cells (Normal [L929] and colorectal [C26]) by L. plantarum, Omega-3, and microcapsules, viability and growth capacity of cell lines were measured using the MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay. Isolated total RNA was used to evaluate the expression profile of BCL2-associated X protein (BAX), B-cell lymphoma 2 (BCL-2), and Caspase-3 (CASP3) genes by real-time polymerase chain reaction (PCR). Statistical analysis was performed with SPSS 25 software. A value of p < .05 was considered statistically significant. The results indicated a significant reduction in cell viability of C26 in a concentration-dependent manner in the treated cells with all treatments, except gelatin-gum Arabic microcapsules. The messenger RNA (mRNA) expression level of the BAX and CASP3 genes in C26 cells being treated with all treatments significantly increased than in untreated cells, and the expression level of the anti-apoptotic factor of the BCL-2 gene decreased in C26 cells simultaneously (p < .05). Although, the combined effect of Omega-3 and L. plantarum and microcapsulated treatments had no more effect on viability and apoptosis gene expression of cancer cells compared to Omega-3 or L. plantarum. In conclusion, combination therapy with fish oil containing Omega-3 and L. plantarum does not improve the anticancer effect of each alone.
Collapse
Affiliation(s)
- Elahe Sharifi
- Department of Fisheries, Faculty of Marine SciencesChabahar Maritime UniversityChabaharIran
| | - Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of MedicineMazandaran University of Medical SciencesSariIran
- Student Research CommitteeMazandaran University of Medical SciencesSariIran
| | - Mojtaba Najafi
- Genetics and Animal Breeding DepartmentGorgan University of Agricultural Sciences and Natural ResourcesGolestanIran
| | | | - Ali Jafarpour
- Department of Fisheries, Faculty of Animal Science and FisheriesSari Agricultural Sciences and Natural Resources UniversitySariIran
- Food R&D teamUPSIDE FOODS IncBerkeleyUSA
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of MedicineMazandaran University of Medical SciencesSariIran
| |
Collapse
|
40
|
Microorganisms-An Effective Tool to Intensify the Utilization of Sulforaphane. Foods 2022; 11:foods11233775. [PMID: 36496582 PMCID: PMC9737538 DOI: 10.3390/foods11233775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sulforaphane (SFN) was generated by the hydrolysis of glucoraphanin under the action of myrosinase. However, due to the instability of SFN, the bioavailability of SFN was limited. Meanwhile, the gut flora obtained the ability to synthesize myrosinase and glucoraphanin, which could be converted into SFN in the intestine. However, the ability of microorganisms to synthesize myrosinase in the gut was limited. Therefore, microorganisms with myrosinase synthesis ability need to be supplemented. With the development of research, microorganisms with high levels of myrosinase synthesis could be obtained by artificial selection and gene modification. Researchers found the SFN production rate of the transformed microorganisms could be significantly improved. However, despite applying transformation technology and regulating nutrients to microorganisms, it still could not provide the best efficiency during generating SFN and could not accomplish colonization in the intestine. Due to the great effect of microencapsulation on improving the colonization ability of microorganisms, microencapsulation is currently an important way to deliver microorganisms into the gut. This article mainly analyzed the possibility of obtaining SFN-producing microorganisms through gene modification and delivering them to the gut via microencapsulation to improve the utilization rate of SFN. It could provide a theoretical basis for expanding the application scope of SFN.
Collapse
|
41
|
Singh S, Gupta R, Chawla S, Gauba P, Singh M, Tiwari RK, Upadhyay S, Sharma S, Chanda S, Gaur S. Natural sources and encapsulating materials for probiotics delivery systems: Recent applications and challenges in functional food development. Front Nutr 2022; 9:971784. [PMID: 36211518 PMCID: PMC9534265 DOI: 10.3389/fnut.2022.971784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics are known as the live microorganisms which upon adequate administration elicit a health beneficial response inside the host by decreasing the luminal pH, eliminating the pathogenic bacteria in the gut as well as producing short chain fatty acids (SCFA). With advancements in research; probiotics have been explored as potential ingredients in foods. However, their use and applications in food industry have been limited due to restrictions of maintaining the viability of probiotic cells and targeting the successful delivery to gut. Encapsulation techniques have significant influence on increasing the viability rates of probiotic cells with the successful delivery of cells to the target site. Moreover, encapsulating techniques also prevent the live cells from harsh physiological conditions of gut. This review discusses several encapsulating techniques as well as materials derived from natural sources and nutraceutical compounds. In addition to this, this paper also comprehensively discusses the factors affecting the probiotics viability and evaluation of successful release and survival of probiotics under simulated gastric, intestinal conditions as well as bile, acid tolerant conditions. Lastly applications and challenges of using encapsulated bacteria in food industry for the development of novel functional foods have also been discussed in detail too. Future studies must include investigating the use of encapsulated bacterial formulations in in-vivo models for effective health beneficial properties as well as exploring the mechanisms behind the successful release of these formulations in gut, hence helping us to understand the encapsulation of probiotic cells in a meticulous manner.
Collapse
Affiliation(s)
- Shubhi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Rishibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Raj Kumar Tiwari
- School of Health Sciences, Pharmaceutical Sciences, The University of Petroleum & Energy Studies (UPES), Dehradun, India
| | - Shuchi Upadhyay
- Department of Allied Health Sciences, School of Health Sciences and Technology, The University of Petroleum & Energy Studies (UPES), Dehradun, India
| | | | - Silpi Chanda
- Department of Pharmacognosy, Parmarth College of Pharmacy, Hapur, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
42
|
Amiri S, Nezamdoost-Sani N, Mostashari P, McClements DJ, Marszałek K, Mousavi Khaneghah A. Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Crit Rev Food Sci Nutr 2022; 64:2130-2156. [PMID: 36121429 DOI: 10.1080/10408398.2022.2121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotic products' economic value and market popularity have grown over time as more people discover their health advantages and adopt healthier lifestyles. There is a significant societal and cultural interest in these products known as foods or medicines. Products containing probiotics that claim to provide health advantages must maintain a "minimum therapeutic" level (107-106 CFU/g) of bacteria during their entire shelf lives. Since probiotic bacteria are susceptible to degradation and reduction by physical and chemical conditions (including acidity, natural antimicrobial agents, nutrient contents, redox potential, temperature, water activity, the existence of other bacteria, and sensitivity to metabolites), the most challenging problem for a food manufacturer is ensuring probiotic cells' survival and stability enhancement throughout the manufacturing stage. Currently, the use of plant-based hydrogels for improved and targeted probiotic delivery has gained substantial attention as a potential approach to overcoming the mentioned restrictions. To achieve the best possible results from hydrogels, whether used as a coating for encapsulated probiotics (with the goal of stomach protection) or as carriers for direct encapsulation of live microorganisms should be applied kind of procedures that ensure high bacterial survival during hydrogels application. This paper summarizes polysaccharides, proteins, and lipid-based hydrogels as carriers of encapsulated probiotics in delivery systems, reviews their structures, analyzes their advantages and disadvantages, studies their mechanical characteristics, and draws comparisons between them. The discussion then turns to how the criterion affects encapsulation, applications, and future possibilities.
Collapse
Affiliation(s)
- Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| |
Collapse
|
43
|
Wang X, Gao S, Yun S, Zhang M, Peng L, Li Y, Zhou Y. Microencapsulating Alginate-Based Polymers for Probiotics Delivery Systems and Their Application. Pharmaceuticals (Basel) 2022; 15:644. [PMID: 35631470 PMCID: PMC9144165 DOI: 10.3390/ph15050644] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Probiotics exhibit many health benefits and a great potential for broad applications in pharmaceutical fields, such as prevention and treatment of gastrointestinal tract diseases (irritable bowel syndrome), prevention and therapy of allergies, certain anticancer effects, and immunomodulation. However, their applications are limited by the low viability and metabolic activity of the probiotics during processing, storage, and delivery in the digestive tract. To overcome the mentioned limitations, probiotic delivery systems have attracted much attention. This review focuses on alginate as a preferred polymer and presents recent advances in alginate-based polymers for probiotic delivery systems. We highlight several alginate-based delivery systems containing various types of probiotics and the physical and chemical modifications with chitosan, cellulose, starch, protein, fish gel, and many other materials to enhance their performance, of which the viability and protective mechanisms are discussed. Withal, various challenges in alginate-based polymers for probiotics delivery systems are traced out, and future directions, specifically on the use of nanomaterials as well as prebiotics, are delineated to further facilitate subsequent researchers in selecting more favorable materials and technology for probiotic delivery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanxia Zhou
- Marine College, Shandong University, Weihai 264209, China; (X.W.); (S.G.); (S.Y.); (M.Z.); (L.P.); (Y.L.)
| |
Collapse
|
44
|
Novel Developments on Stimuli-Responsive Probiotic Encapsulates: From Smart Hydrogels to Nanostructured Platforms. FERMENTATION 2022. [DOI: 10.3390/fermentation8030117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsulation with encouraging results in assuring sufficient bioactivity. However, some major challenges remain to be addressed, and these include maintaining stability in different compartments of the gastrointestinal tract (GIT), favoring adhesion only at the site of action, and increasing residence times. An alternative to addressing such challenges is to manufacture encapsulates with stimuli-responsive polymers, such that controlled release is achievable by incorporating moieties that respond to chemical and physical stimuli present along the GIT. This review highlights, therefore, such emerging delivery matrices going from a comprehensive description of addressable stimuli in each GIT compartment to novel synthesis and functionalization techniques to currently employed materials used for probiotic’s encapsulation and achieving multi-modal delivery and multi-stimuli responses. Next, we explored the routes for encapsulates design to enhance their performance in terms of degradation kinetics, adsorption, and mucus and gut microbiome interactions. Finally, we present the clinical perspectives of implementing novel probiotics and the challenges to assure scalability and cost-effectiveness, prerequisites for an eventual niche market penetration.
Collapse
|
45
|
Hernández‐Arriaga AM, Campano C, Rivero‐Buceta V, Prieto MA. When microbial biotechnology meets material engineering. Microb Biotechnol 2022; 15:149-163. [PMID: 34818460 PMCID: PMC8719833 DOI: 10.1111/1751-7915.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial biopolymers such as bacterial cellulose (BC), alginate or polyhydroxyalkanotes (PHAs) have aroused the interest of researchers in many fields, for instance biomedicine and packaging, due to their being biodegradable, biocompatible and renewable. Their properties can easily be tuned by means of microbial biotechnology strategies combined with materials science. This provides them with highly diverse properties, conferring them non-native features. Herein we highlight the enormous structural diversity of these macromolecules, how are they produced, as well as their wide range of potential applications in our daily lives. The emergence of new technologies, such as synthetic biology, enables the creation of next-generation-advanced materials presenting smart functional properties, for example the ability to sense and respond to stimuli as well as the capacity for self-repair. All this has given rise to the recent emergence of biohybrid materials, in which a synthetic component is brought to life with living organisms. Two different subfields have recently garnered particular attention: hybrid living materials (HLMs), such as encapsulation or bioprinting, and engineered living materials (ELMs), in which the material is created bottom-up with the use of microbial biotechnology tools. Early studies showed the strong potential of alginate and PHAs as HLMs, whilst BC constituted the most currently promising material for the creation of ELMs.
Collapse
Affiliation(s)
- Ana M. Hernández‐Arriaga
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - Cristina Campano
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - Virginia Rivero‐Buceta
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Plant and Microbial BiotechnologyBiological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
46
|
Baral KC, Bajracharya R, Lee SH, Han HK. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. Int J Nanomedicine 2021; 16:7535-7556. [PMID: 34795482 PMCID: PMC8594788 DOI: 10.2147/ijn.s337427] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics have demonstrated their high potential to treat and/or prevent various diseases including neurodegenerative disorders, cancers, cardiovascular diseases, and inflammatory diseases. Probiotics are also effective against multidrug-resistant pathogens and help maintain a balanced gut microbiota ecosystem. Accordingly, the global market of probiotics is growing rapidly, and research efforts to develop probiotics into therapeutic adjuvants are gaining momentum. However, because probiotics are living microorganisms, many biological and biopharmaceutical barriers limit their clinical application. Probiotics may lose their activity in the harsh gastric conditions of the stomach or in the presence of bile salts. Moreover, they easily lose their viability under thermal or oxidative stress during their preparation and storage. Therefore, stable formulations of probiotics are required to overcome the various physicochemical, biopharmaceutical, and biological barriers and to maximize their therapeutic effectiveness and clinical applicability. This review provides an overview of the pharmaceutical applications of probiotics and covers recent formulation approaches to optimize the delivery of probiotics with particular emphasis on various dosage forms and formulation technologies.
Collapse
Affiliation(s)
- Kshitis Chandra Baral
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Rajiv Bajracharya
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Sang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| |
Collapse
|
47
|
Gheorghita R, Anchidin-Norocel L, Filip R, Dimian M, Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers (Basel) 2021; 13:2729. [PMID: 34451268 PMCID: PMC8399127 DOI: 10.3390/polym13162729] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
Research regarding the use of biopolymers has been of great interest to scientists, the medical community, and the industry especially in recent years. Initially used for food applications, the special properties extended their use to the pharmaceutical and medical industries. The practical applications of natural drug encapsulation materials have emerged as a result of the benefits of the use of biopolymers as edible coatings and films in the food industry. This review highlights the use of polysaccharides in the pharmaceutical industries and as encapsulation materials for controlled drug delivery systems including probiotics, focusing on their development, various applications, and benefits. The paper provides evidence in support of research studying the use of biopolymers in the development of new drug delivery systems, explores the challenges and limitations in integrating polymer-derived materials with product delivery optimization, and examines the host biological/metabolic parameters that can be used in the development of new applications.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Liliana Anchidin-Norocel
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
| | - Roxana Filip
- Hipocrat Clinical Laboratory, 720003 Suceava, Romania;
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.); (L.A.-N.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
48
|
Ye J, Erland LAE, Gill SK, Bishop SL, Verdugo-Meza A, Murch SJ, Gibson DL. Metabolomics-Guided Hypothesis Generation for Mechanisms of Intestinal Protection by Live Biotherapeutic Products. Biomolecules 2021; 11:738. [PMID: 34063522 PMCID: PMC8156236 DOI: 10.3390/biom11050738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The use of live biotherapeutic products (LBPs), including single strains of beneficial probiotic bacteria or consortiums, is gaining traction as a viable option to treat inflammatory-mediated diseases like inflammatory bowel disease (IBD). However, LBPs' persistence in the intestine is heterogeneous since many beneficial bacteria lack mechanisms to tolerate the inflammation and the oxidative stress associated with IBD. We rationalized that optimizing LBPs with enhanced colonization and persistence in the inflamed intestine would help beneficial bacteria increase their bioavailability and sustain their beneficial responses. Our lab developed two bioengineered LBPs (SBT001/BioPersist and SBT002/BioColoniz) modified to enhance colonization or persistence in the inflamed intestine. In this study, we examined colon-derived metabolites via ultra-high performance liquid chromatography-mass spectrometry in colitic mice treated with either BioPersist or BioColoniz as compared to their unmodified parent strains (Escherichia coli Nissle 1917 [EcN] and Lactobacillus reuteri, respectively) or to each other. BioPersist administration resulted in lowered concentrations of inflammatory prostaglandins, decreased stress hormones such as adrenaline and corticosterone, increased serotonin, and decreased bile acid in comparison to EcN. In comparison to BioColoniz, BioPersist increased serotonin and antioxidant production, limited bile acid accumulation, and enhanced tissue restoration via activated purine and pyrimidine metabolism. These data generated several novel hypotheses for the beneficial roles that LBPs may play during colitis.
Collapse
Affiliation(s)
- Jiayu Ye
- Department of Biology, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Lauren A E Erland
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Sandeep K Gill
- Department of Biology, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Stephanie L Bishop
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Andrea Verdugo-Meza
- Department of Biology, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
- Department of Medicine, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V1V7, Canada
| |
Collapse
|