1
|
Zhang F, Zhao D, Wu Y, Li L. Prenylated bacterial natural products: occurrence, chemical diversity, biosynthesis and bioactivity. Nat Prod Rep 2025. [PMID: 40370079 DOI: 10.1039/d5np00011d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Covering: 2000 to 2024Prenylated bacterial natural products (NPs), catalyzed by cluster-situated prenyltransferases (PTs), exhibit large structural diversity and broad biological activities and have received increasing attention for novel drug discovery and development. This review provides a comprehensive summary of the recent progress in the investigation of prenylated bacterial NPs. To highlight the structural and chemical space of prenylated bacterial NPs, we discuss their occurrence, structures, biosynthesis and bioactivities. Representative examples are summarized with illustrations of PT-catalyzed biosynthetic pathways of distinct NP classes, which present new opportunities for the discovery of novel prenylated bacterial NPs. The mechanistic study of PTs involved in bacterial NP biosynthesis has been outlined, and prenylated bacterial NPs hold great promise as novel biocatalysts for the synthesis of novel drug leads in modern medicine.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Di Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuzhu Wu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Noguchi T, Zhao F, Moriwaki Y, Yamamoto H, Kudo K, Nagata R, Tomita T, Terada T, Shimizu K, Nishiyama M, Kuzuyama T. Biosynthesis of the tetrahydroxynaphthalene-derived meroterpenoid furaquinocin via reductive deamination and intramolecular hydroalkoxylation of an alkene. Chem Sci 2025; 16:7912-7920. [PMID: 40191119 PMCID: PMC11969235 DOI: 10.1039/d4sc08319a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/29/2025] [Indexed: 04/09/2025] Open
Abstract
Hybrid isoprenoid-polyketides, known as meroterpenoids, are a family of natural products that exhibit various bioactivities and are promising drug scaffolds. Despite the structural diversity of 1,3,6,8-tetrahydroxynaphthalene (THN)-derived meroterpenoids, such as furaquinocin, naphterpin, and furanonaphthoquinone, several biosynthetic genes for these compounds are conserved, suggesting a shared biosynthetic mechanism. However, the common biosynthetic mechanism and pathway-specific structural diversification mechanisms of these meroterpenoids are not yet fully understood. This study reveals the biosynthetic pathway for furaquinocin, demonstrating that it involves reductive deamination to form a key hydroquinone intermediate essential for subsequent reactions, including a unique cyclization step. We identified the mechanism of reductive deamination of the biosynthetic intermediate 8-amino-flaviolin through transient diazotization, leading to the formation of the hydroquinone intermediate 1,2,4,5,7-pentahydroxynaphthalene (PHN). Structural and computational studies confirmed that PHN is a key substrate for the subsequent methylation. We also showed that the hydroquinone intermediates are prerequisites for the subsequent pathway-specific reactions, including prenylation and novel intramolecular hydroalkoxylation of an alkene. This hydroalkoxylation reaction is notable in that a methyltransferase homolog catalyzes it in an S-adenosylmethionine-independent manner. Our findings provide a new model for furaquinocin biosynthesis, offering insights into the biosynthetic strategies for THN-derived meroterpenoids.
Collapse
Affiliation(s)
- Tomohiro Noguchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Fan Zhao
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Yoshitaka Moriwaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hideaki Yamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Kei Kudo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Takeo Tomita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tohru Terada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Kentaro Shimizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
3
|
Hao M, Qu C, Deng Y, Guo L, Jin T, Xu M, Wang P, Guo W, Kou L, Zhang S, Hou G, Xie Z. Canumycins A-E, Macrocyclic Napyradiomycins from a Marine-Derived Streptomyces canus. Org Lett 2025. [PMID: 40184492 DOI: 10.1021/acs.orglett.5c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Five new macrocyclic napyradiomycins with different types of scaffolds were isolated from marine-derived Streptomyces canus SJ-019. Compounds 1 and 2 are uniquely typified by a spirocyclic core, while 1, 2 and 4 also contain a unique macrolide structure not known in any other napyradiomycins. Compound 3 is composed of a dearomatized napyradiomycin core and an intramolecular double-arch bridge system. Compound 4 displays potent inhibition of Staphylococcus aureus, while C-type napyradiomycin 5 shows notable anti-inflammatory effect.
Collapse
Affiliation(s)
- Min Hao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chenglei Qu
- Shandong Boyuan Biomedical Co., Ltd, Yantai 264670, China
| | - Yuyang Deng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Tianyun Jin
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Maolei Xu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Pei Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Wei Guo
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lijuan Kou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shumin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
4
|
Kakumu Y, Chaudhri AA, Helfrich EJN. The role and mechanisms of canonical and non-canonical tailoring enzymes in bacterial terpenoid biosynthesis. Nat Prod Rep 2025; 42:501-539. [PMID: 39895377 DOI: 10.1039/d4np00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Covering: up to April 2024Terpenoids represent the largest and structurally most diverse class of natural products. According to textbook knowledge, this diversity arises from a two-step biosynthetic process: first, terpene cyclases generate a vast array of mono- and polycyclic hydrocarbon scaffolds with multiple stereocenters from a limited set of achiral precursors, a process extensively studied over the past two decades. Subsequently, tailoring enzymes further modify these complex scaffolds through regio- and stereocontrolled oxidation and other functionalization reactions, a topic of increasing interest in recent years. The resulting highly functionalized terpenoids exhibit a broad spectrum of unique biological activities, making them promising candidates for drug development. Recent advances in genome sequencing technologies along with the development and application of sophisticated genome mining tools have revealed bacteria as a largely untapped resource for the discovery of complex terpenoids. Functional characterization of a limited number of bacterial terpenoid biosynthetic pathways, combined with in-depth mechanistic studies of key enzymes, has begun to reveal the versatility of bacterial enzymatic processes involved in terpenoid modification. In this review, we examine the various tailoring reactions leading to complex bacterial terpenoids. We first discuss canonical terpene-modifying enzymes, that catalyze the functionalization of unactivated C-H bonds, incorporation of diverse functional groups, and oxidative and non-oxidative rearrangements. We then explore non-canonical terpene-modifying enzymes that facilitate oxidative rearrangement, cyclization, isomerization, and dimerization reactions. The increasing number of characterized tailoring enzymes that participate in terpene hydrocarbon scaffold fomation, rather than merely decorating pre-formed scaffolds suggests that a re-evaluation of the traditional two-phase model for terpenoid biosynthesis might be warranted. Finally, we address the potential and challenges of mining bacterial genomes to identify terpene biosynthetic gene clusters and expand the bacterial terpene biosynthetic and chemical space.
Collapse
Affiliation(s)
- Yuya Kakumu
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Ayesha Ahmed Chaudhri
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Zhang YN, Liu ML, Liu F, Zhang ZG, Wu ZY, Shi LQ, Wan ZY, Wang YY, Zhang F, Wang KM, Fang W. Three new naphthoquinone-based meroterpenoids from Streptomyces sp. HBERC-16614 with antibacterial activities. Nat Prod Res 2025:1-7. [PMID: 40096854 DOI: 10.1080/14786419.2025.2478528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/16/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Three new naphthoquinone-based meroterpenoids (1-3), including spironaphthomeroterpenoid (1), a novel naphthoquinone-based meroterpenoid with a rare [5, 6] spiro-ring skeleton, and naphthablins D and E (2-3), along with three known analogues (4-6) were isolated from Streptomyces sp. HBERC-16614. The structures of these compounds, including their absolute configurations, were established by extensive spectroscopic analysis and electronic circular dichroism (ECD) spectrum. The antibacterial activities of compounds (1-6) were evaluated against Staphylococcus aureus, Streptococcus suis, and Escherichia coli. Among them, compound 1 demonstrated potent antibacterial activity against S. aureus, with a minimum inhibitory concentration (MIC) value of 3.13 µg/mL.
Collapse
Affiliation(s)
- Ya-Ni Zhang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| | - Man-Li Liu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| | - Fang Liu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| | - Zhi-Gang Zhang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| | - Zhao-Yuan Wu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| | - Li-Qiao Shi
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| | - Zhong-Yi Wan
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| | - Yue-Ying Wang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| | - Fei Zhang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| | - Kai-Mei Wang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| | - Wei Fang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Plant Protection Microbial Germplasm Resource Bank (Hubei), Wuhan, China
| |
Collapse
|
6
|
Chen N, Zhang Z, Lan H, Wei H, Zhi S, Liu L. Insights for napyradiomycin family: structures, bioactivities and biosynthetic pathways. Arch Microbiol 2025; 207:85. [PMID: 40080144 DOI: 10.1007/s00203-025-04291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/27/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Napyradiomycins (NPDs), a family of structurally diverse terpenoids isolated from Streptomyces, have attracted significant scientific interest due to their unique halogenation patterns and potent bioactivities. Since identifying the first member from Streptomyces in 1986, over 50 NPDs have been characterized, demonstrating remarkable efficacy against drug-resistant bacteria and cancer cells, making them promising candidates for novel drug development. In this review, we provided an in-depth exploration of the complex chemical structure of NPDs, their diverse bioactivities, and the biosynthetic pathways involved in their formation. In particular, we collectively concluded the structure-activity relationship data to highlight the importance of the molecular features of napyradiomycins determining their therapeutic potential. Recent discoveries have shed light on the unique role of halogenases, which contribute to the structural diversity and enhance the biological potency of napyradiomycins, thus refining the known biosynthetic pathways. The data presented here aims to stimulate further research and facilitate the advancement of NPDs toward becoming first-line therapies for infectious diseases and cancer.
Collapse
Affiliation(s)
- Nuo Chen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Zinian Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Hangzhen Lan
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Huamao Wei
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
7
|
Zeides P, Bellmann-Sickert K, Zhang R, Seel CJ, Most V, Schoeder CT, Groll M, Gulder T. Unraveling the molecular basis of substrate specificity and halogen activation in vanadium-dependent haloperoxidases. Nat Commun 2025; 16:2083. [PMID: 40021637 PMCID: PMC11871015 DOI: 10.1038/s41467-025-57023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/10/2025] [Indexed: 03/03/2025] Open
Abstract
Vanadium-dependent haloperoxidases (VHPOs) are biotechnologically valuable and operationally versatile biocatalysts. VHPOs share remarkable active-site structural similarities yet display variable reactivity and selectivity. The factors dictating substrate specificity and, thus, a general understanding of VHPO reaction control still need to be discovered. This work's strategic single-point mutation in the cyanobacterial bromoperoxidase AmVHPO facilitates a selectivity switch to allow aryl chlorination. This mutation induces loop formation that interacts with the neighboring protein monomer, creating a tunnel to the active sites. Structural analysis of the substrate-R425S-mutant complex reveals a substrate-binding site at the interface of two adjacent units. There, residues Glu139 and Phe401 interact with arenes, extending the substrate residence time close to the vanadate cofactor and stabilizing intermediates. Our findings validate the long-debated existence of direct substrate binding and provide a detailed VHPO mechanistic understanding. This work will pave the way for a broader application of VHPOs in diverse chemical processes.
Collapse
Affiliation(s)
- P Zeides
- Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
- Faculty of Chemistry and Mineralogy, Institute of Organic Chemistry, Leipzig University, Leipzig, Germany
| | - K Bellmann-Sickert
- Faculty of Chemistry and Mineralogy, Institute of Organic Chemistry, Leipzig University, Leipzig, Germany
| | - Ru Zhang
- Faculty of Chemistry and Mineralogy, Institute of Organic Chemistry, Leipzig University, Leipzig, Germany
- Organic Chemistry, Saarland University, Saarbruecken, Germany
| | - C J Seel
- Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - V Most
- Faculty of Medicine, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - C T Schoeder
- Faculty of Medicine, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - M Groll
- Department of Bioscience, Center for Protein Assemblies, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - T Gulder
- Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Faculty of Chemistry and Mineralogy, Institute of Organic Chemistry, Leipzig University, Leipzig, Germany.
- Organic Chemistry, Saarland University, Saarbruecken, Germany.
- Synthesis of Natural-Product Derived Drugs, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
| |
Collapse
|
8
|
Chen JL, Yang SY, Deng LF, Zhang JH, Qiu ML, Li YL, Wang JH, Shao M, Lu JX, Zhang YB, Wang GC, Chen NH. Filicinic Acid-Based Meroterpenoids with Antiproliferative Activity against Prostate Cancer PC-3 Cells from Dryopteris wallichiana. J Org Chem 2025; 90:636-647. [PMID: 39731571 DOI: 10.1021/acs.joc.4c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Nine new structurally diverse filicinic acid-based meroterpenoids (1-9) with four kinds of carbon skeletons were isolated from the rhizomes of Dryopteris wallichiana. Their structures, including the absolute configurations, were elucidated by comprehensive analysis of spectroscopic data, quantum chemical calculations, and single-crystal X-ray diffraction. Structurally, compounds 1-4 feature an unprecedented 6/6/5/6/6/6 hexacyclic system with a rare oxaspiro[4.5]decane core linking the filicinic acid and ent-kaurane-type diterpene moieties. Compounds 5-6 are rare hybrids of filicinic acid and carotane-type sesquiterpene. Compound 7 is an unusual rearranged filicinic acid-carotane-type sesquiterpene meroterpenoid. Compounds 8-9 are two enantiomeric pairs of new meroterpenoids constructed by filicinic acid and a germarane-type sesquiterpene. A plausible biosynthetic pathway for the nine compounds was proposed. Notably, compounds 5, 6, (+)/(-)-8, and (+)/(-)-9 were discovered to possess antiproliferative activity against PC-3 cells based on virtual screening, and in vitro bioassay. An interactive preprint version of the article can be found at https://www.authorea.com/doi/full/10.22541/au.172666991.17272585/v1.
Collapse
Affiliation(s)
- Jin-Lin Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Si-Yu Yang
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Li-Feng Deng
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Ji-Hui Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Man-Lan Qiu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Jing-Hao Wang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Meng Shao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese medicine, Southern Medical University, Guangzhou 510515, China
| | - Jun-Xiong Lu
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510310, Guangdong, China
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Neng-Hua Chen
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
9
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
10
|
Wang Z, Alsup TA, Pan X, Li LL, Tian J, Yang Z, Lin X, Xu HM, Rudolf JD, Dong LB. Biosynthesis of a bacterial meroterpenoid reveals a non-canonical class II meroterpenoid cyclase. Chem Sci 2024; 16:310-317. [PMID: 39611033 PMCID: PMC11600129 DOI: 10.1039/d4sc06010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Meroterpenoids are hybrid natural products that arise from the integration of terpenoid and non-terpenoid biosynthetic pathways. While the biosynthesis of fungal meroterpenoids typically follows a well-established sequence of prenylation, epoxidation, and cyclization, the pathways for bacterial perhydrophenanthrene meroterpenoids remain poorly understood. In this study, we report the construction of an engineered metabolic pathway in Streptomyces for the production of the bacterial meroterpenoid, atolypene A (1). Our research reveals a novel biosynthetic pathway wherein the structure of 1 is assembled through a distinct sequence of epoxidation, prenylation, and cyclization, divergent from its fungal counterparts. We demonstrate that the noncanonical class II meroterpenoid cyclase (MTC) AtoE initiates cyclization by protonating the epoxide via the E314 residue, which acts as a Brønsted acid within the characteristic xxxE314TAE motif. Additionally, bioinformatic analysis of biosynthetic gene clusters (BGCs) that contain AtoE-like MTCs supports that bacteria have the potential to produce a wide array of meroterpenoids.
Collapse
Affiliation(s)
- Zengyuan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Tyler A Alsup
- Department of Chemistry, University of Florida Gainesville Florida 32611-7011 USA
| | - Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Lu-Lu Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Jupeng Tian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Ziyi Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Xiaoxu Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University Nanjing 211198 China
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida Gainesville Florida 32611-7011 USA
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| |
Collapse
|
11
|
Wissner JL, Almeida JR, Grilo IR, Oliveira JF, Brízida C, Escobedo-Hinojosa W, Pissaridou P, Vasquez MI, Cunha I, Sobral RG, Vasconcelos V, Gaudêncio SP. Novel metabolite madeirone and neomarinone extracted from Streptomyces aculeoletus as marine antibiofilm and antifouling agents. Front Chem 2024; 12:1425953. [PMID: 39119516 PMCID: PMC11306024 DOI: 10.3389/fchem.2024.1425953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Biofouling poses a significant economic threat to various marine industries, leading to financial losses that can reach billions of euros annually. This study highlights the urgent need for effective alternatives to traditional antifouling agents, particularly following the global ban on organotin compounds. Material and methods: Streptomyces aculeolatus PTM-346 was isolated from sediment samples on the shores of the Madeira Archipelago, Portugal. The crude extract was fractionated using silica flash chromatography and preparative HPLC, resulting in two isolated marinone compounds: madeirone (1), a novel marinone derivative discovered in this study, and neomarinone (2). The antifouling activities of these compounds were tested against five marine bacterial species and the larvae of the mussel Mytilus galloprovincialis. Additionally, in silico and in vivo environmental toxicity evaluations of madeirone (1) and neomarinone (2) were conducted. Results: Madeirone (1) demonstrated significant antibiofilm efficacy, inhibiting Phaeobacter inhibens by up to 66%, Marinobacter hydrocarbonoclasticus by up to 60%, and Cobetia marina by up to 40%. Neomarinone (2) also exhibited substantial antibiofilm activity, with inhibition rates of up to 41% against P. inhibens, 40% against Pseudo-oceanicola batsensis, 56% against M. hydrocarbonoclasticus, 46% against C. marina, and 40% against Micrococcus luteus. The growth inhibition activity at the same concentrations of these compounds remained below 20% for the respective bacteria, highlighting their effectiveness as potent antibiofilm agents without significantly affecting bacterial viability. Additionally, both compounds showed potent effects against the settlement of Mytilus galloprovincialis larvae, with EC50 values of 1.76 µg/mL and 0.12 µg/mL for compounds (1) and (2), respectively, without impairing the viability of the targeted macrofouling species. In silico toxicity predictions and in vivo toxicity assays both support their potential for further development as antifouling agents. Conclusion: The newly discovered metabolite madeirone (1) and neomarinone (2) effectively inhibit both micro- and macrofouling. This distinct capability sets them apart from existing commercial antifouling agents and positions them as promising candidates for biofouling prevention. Consequently, these compounds represent a viable and environmentally friendly alternative for incorporation into paints, primers, varnishes, and sealants, offering significant advantages over traditional copper-based compounds.
Collapse
Affiliation(s)
- Julian L. Wissner
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Joana R. Almeida
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Inês R. Grilo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Jhenifer F. Oliveira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Carolina Brízida
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wendy Escobedo-Hinojosa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Panayiota Pissaridou
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Marlen I. Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Isabel Cunha
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Biology Department, Faculty of Sciences, Porto University, Porto, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
12
|
Ma Q, Zhong Y, Huang P, Li A, Jiang T, Jiang L, Yang H, Wang Z, Wu G, Huang X, Pu H, Liu J. Bioactive Naphthoquinone and Phenazine Analogs from the Endophytic Streptomyces sp. PH9030 as α-Glucosidase Inhibitors. Molecules 2024; 29:3450. [PMID: 39124856 PMCID: PMC11313965 DOI: 10.3390/molecules29153450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
A talented endophytic Streptomyces sp. PH9030 is derived from the medicinal plant Kadsura coccinea (Lem.) A.C. Smith. The undescribed naphthoquinone naphthgeranine G (5) and seven previously identified compounds, 6-12, were obtained from Streptomyces sp. PH9030. The structure of 5 was identified by comprehensive examination of its HRESIMS, 1D NMR, 2D NMR and ECD data. The inhibitory activities of all the compounds toward α-glucosidase and their antibacterial properties were investigated. The α-glucosidase inhibitory activities of 5, 6, 7 and 9 were reported for the first time, with IC50 values ranging from 66.4 ± 6.7 to 185.9 ± 0.2 μM, as compared with acarbose (IC50 = 671.5 ± 0.2 μM). The molecular docking and molecular dynamics analysis of 5 with α-glucosidase further indicated that it may have a good binding ability with α-glucosidase. Both 9 and 12 exhibited moderate antibacterial activity against methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentration (MIC) values of 16 μg/mL. These results indicate that 5, together with the naphthoquinone scaffold, has the potential to be further developed as a possible inhibitor of α-glucosidase.
Collapse
Affiliation(s)
- Qingxian Ma
- China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (Q.M.); (Y.Z.); (P.H.); (A.L.); (H.Y.); (Z.W.); (G.W.)
| | - Yani Zhong
- China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (Q.M.); (Y.Z.); (P.H.); (A.L.); (H.Y.); (Z.W.); (G.W.)
| | - Pingzhi Huang
- China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (Q.M.); (Y.Z.); (P.H.); (A.L.); (H.Y.); (Z.W.); (G.W.)
| | - Aijie Li
- China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (Q.M.); (Y.Z.); (P.H.); (A.L.); (H.Y.); (Z.W.); (G.W.)
| | - Ting Jiang
- Jiangxi Drug Inspection Center, Nanchang 330029, China;
| | - Lin Jiang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Hao Yang
- China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (Q.M.); (Y.Z.); (P.H.); (A.L.); (H.Y.); (Z.W.); (G.W.)
| | - Zhong Wang
- China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (Q.M.); (Y.Z.); (P.H.); (A.L.); (H.Y.); (Z.W.); (G.W.)
| | - Guangling Wu
- China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (Q.M.); (Y.Z.); (P.H.); (A.L.); (H.Y.); (Z.W.); (G.W.)
| | - Xueshuang Huang
- China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (Q.M.); (Y.Z.); (P.H.); (A.L.); (H.Y.); (Z.W.); (G.W.)
| | - Hong Pu
- China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (Q.M.); (Y.Z.); (P.H.); (A.L.); (H.Y.); (Z.W.); (G.W.)
| | - Jianxin Liu
- China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (Q.M.); (Y.Z.); (P.H.); (A.L.); (H.Y.); (Z.W.); (G.W.)
| |
Collapse
|
13
|
Baumgartner JT, Lozano Salazar LI, Varga LA, Lefebre GH, McKinnie SMK. Vanadium haloperoxidases as noncanonical terpene synthases. Methods Enzymol 2024; 699:447-475. [PMID: 38942514 PMCID: PMC12052527 DOI: 10.1016/bs.mie.2024.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Vanadium-dependent haloperoxidases (VHPOs) are a unique family of enzymes that utilize vanadate, an aqueous halide ion, and hydrogen peroxide to produce an electrophilic halogen species that can be incorporated into electron rich organic substrates. This halogen species can react with terpene substrates and trigger halonium-induced cyclization in a manner reminiscent of class II terpene synthases. While not all VHPOs act in this capacity, several notable examples from algal and actinobacterial species have been characterized to catalyze regio- and enantioselective reactions on terpene and meroterpenoid substrates, resulting in complex halogenated cyclic terpenes through the action of single enzyme. In this article, we describe the expression, purification, and chemical assays of NapH4, a difficult to express characterized VHPO that catalyzes the chloronium-induced cyclization of its meroterpenoid substrate.
Collapse
Affiliation(s)
- Jackson T Baumgartner
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Lia I Lozano Salazar
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Lukas A Varga
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Gabriel H Lefebre
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Shaun M K McKinnie
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
14
|
Abstract
Covering: up to July 2023Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid-base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (e.g., squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
15
|
Sweeney D, Chase AB, Bogdanov A, Jensen PR. MAR4 Streptomyces: A Unique Resource for Natural Product Discovery. JOURNAL OF NATURAL PRODUCTS 2024; 87:439-452. [PMID: 38353658 PMCID: PMC10897937 DOI: 10.1021/acs.jnatprod.3c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Marine-derived Streptomyces have long been recognized as a source of novel, pharmaceutically relevant natural products. Among these bacteria, the MAR4 clade within the genus Streptomyces has been identified as metabolically rich, yielding over 93 different compounds to date. MAR4 strains are particularly noteworthy for the production of halogenated hybrid isoprenoid natural products, a relatively rare class of bacterial metabolites that possess a wide range of biological activities. MAR4 genomes are enriched in vanadium haloperoxidase and prenyltransferase genes, thus accounting for the production of these compounds. Functional characterization of the enzymes encoded in MAR4 genomes has advanced our understanding of halogenated, hybrid isoprenoid biosynthesis. Despite the exceptional biosynthetic capabilities of MAR4 bacteria, the large body of research they have stimulated has yet to be compiled. Here we review 35 years of natural product research on MAR4 strains and update the molecular diversity of this unique group of bacteria.
Collapse
Affiliation(s)
- Douglas Sweeney
- Scripps
Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Alexander B. Chase
- Department
of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, United States
| | - Alexander Bogdanov
- Scripps
Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Paul R. Jensen
- Scripps
Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Peng XR, Unsicker SB, Gershenzon J, Qiu MH. Structural diversity, hypothetical biosynthesis, chemical synthesis, and biological activity of Ganoderma meroterpenoids. Nat Prod Rep 2023; 40:1354-1392. [PMID: 37051770 DOI: 10.1039/d3np00006k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Covering: 2018 to 2022Meroterpenoids found in fungal species of the genus Ganoderma and known as Ganoderma meroterpenoids (GMs) are substances composed of a 1,2,4-trisubstituted benzene and a polyunsaturated side chain. These substances have attracted the attention of chemists and pharmacologists due to their diverse structures and significant bioactivity. In this review, we present the structures and possible biosynthesis of representative GMs newly found from 2018 to 2022, as well as chemical synthesis and biological activity of some interesting GMs. We propose for the first time a plausible biosynthetic pathway for GMs, which will certainly motivate further research on the biosynthetic pathway in Ganoderma species, as well as on chemical synthesis of GMs as important bioactive compounds for the purpose of drug development.
Collapse
Affiliation(s)
- Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Sybille B Unsicker
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
17
|
Li G, Li D, Zeng W, Qin Z, Chen J, Zhou J. Efficient production of 2-keto-L-gulonic acid from D-glucose in Gluconobacter oxydans ATCC9937 by mining key enzyme and transporter. BIORESOURCE TECHNOLOGY 2023:129316. [PMID: 37315626 DOI: 10.1016/j.biortech.2023.129316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Direct production of 2-keto-L-gulonic acid (2-KLG, the precursor of vitamin C) from D-glucose through 2,5-diketo-D-gluconic acid (2,5-DKG) is a promising alternative route. To explore the pathway of producing 2-KLG from D-glucose, Gluconobacter oxydans ATCC9937 was selected as a chassis strain. It was found that the chassis strain naturally has the ability to synthesize 2-KLG from D-glucose, and a new 2,5-DKG reductase (DKGR) was found on its genome. Several major issues limiting production were identified, including the insufficient catalytic capacity of DKGR, poor transmembrane movement of 2,5-DKG and imbalanced D-glucose consumption flux inside and outside of the host strain cells. By identifying novel DKGR and 2,5-DKG transporter, the whole 2-KLG biosynthesis pathway was systematically enhanced by balancing intracellular and extracellular D-glucose metabolic flux. The engineered strain produced 30.5 g/L 2-KLG with a conversion ratio of 39.0%. The results pave the way for a more economical large-scale fermentation process for vitamin C.
Collapse
Affiliation(s)
- Guang Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
19
|
Lacey HJ, Chen R, Vuong D, Lacey E, Rutledge PJ, Chooi YH, Piggott AM, Booth TJ. Resorculins: hybrid polyketide macrolides from Streptomyces sp. MST-91080. Org Biomol Chem 2023; 21:2531-2538. [PMID: 36876905 DOI: 10.1039/d2ob02332f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Fourteen-membered macrolides are a class of compounds with significant clinical value as antibacterial agents. As part of our ongoing investigation into the metabolites of Streptomyces sp. MST-91080, we report the discovery of resorculins A and B, unprecedented 3,5-dihydroxybenzoic acid (α-resorcylic acid)-containing 14-membered macrolides. We sequenced the genome of MST-91080 and identified the putative resorculin biosynthetic gene cluster (rsn BGC). The rsn BGC is hybrid of type I and type III polyketide synthases. Bioinformatic analysis revealed that the resorculins are relatives of known hybrid polyketides: kendomycin and venemycin. Resorculin A exhibited antibacterial activity against Bacillus subtilis (MIC 19.8 μg mL-1), while resorculin B showed cytotoxic activity against the NS-1 mouse myeloma cell line (IC50 3.6 μg mL-1).
Collapse
Affiliation(s)
- Heather J Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Rachel Chen
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
- School of Natural Sciences, Macquarie University, NSW 2109, Australia
| | - Peter J Rutledge
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, NSW 2109, Australia
| | - Thomas J Booth
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
20
|
He XX, Chang HH, Zhao YX, Li XJ, Liu SA, Zang ZL, Zhou CH, Cai GX. CuCl 2 -Catalyzed α-Chloroketonation of Aromatic Alkenes via Visible-Light-Induced LMCT. Chem Asian J 2023; 18:e202200954. [PMID: 36378015 DOI: 10.1002/asia.202200954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Here we report a copper-catalyzed protocol for the synthesis of α-chloroketones from aromatic alkenes including electron-deficient olefins under visible-light irradiation. Preliminary mechanistic studies show that the peroxo Cu(II) species is the key intermediate and hydroperoxyl (HOO⋅) and chlorine (Cl⋅) radicals can be generated by ligand-to-metal charge transfer (LMCT).
Collapse
Affiliation(s)
- Xing-Xian He
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Huan-Huan Chang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Ying-Xue Zhao
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Xiang-Jie Li
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Sheng-An Liu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry, Chemical Engineering, Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
21
|
Yang P, Jia Q, Song S, Huang X. [2 + 2]-Cycloaddition-derived cyclobutane natural products: structural diversity, sources, bioactivities, and biomimetic syntheses. Nat Prod Rep 2023. [DOI: 10.1039/d2np00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the structural diversity, bioactivities, and biomimetic synthesis of [2 + 2]-type cyclobutane natural products, along with discussion of their biosynthesis, stereochemical analysis, racemic occurrence, and biomimetic synthesis.
Collapse
Affiliation(s)
- Peiyuan Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qi Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shaojiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoxiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
22
|
French SA, Sumby CJ, Huang DM, George JH. Total Synthesis of Atrachinenins A and B. J Am Chem Soc 2022; 144:22844-22849. [DOI: 10.1021/jacs.2c09978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sarah A. French
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher J. Sumby
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - David M. Huang
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jonathan H. George
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
23
|
Tistechok S, Stierhof M, Myronovskyi M, Zapp J, Gromyko O, Luzhetskyy A. Furaquinocins K and L: Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369. Antibiotics (Basel) 2022; 11:1587. [PMID: 36358243 PMCID: PMC9686526 DOI: 10.3390/antibiotics11111587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
Actinomycetes are the most prominent group of microorganisms that produce biologically active compounds. Among them, special attention is focused on bacteria in the genus Streptomyces. Streptomycetes are an important source of biologically active natural compounds that could be considered therapeutic agents. In this study, we described the identification, purification, and structure elucidation of two new naphthoquinone-based meroterpenoids, furaquinocins K and L, from Streptomyces sp. Je 1-369 strain, which was isolated from the rhizosphere soil of Juniperus excelsa (Bieb.). The main difference between furaquinocins K and L and the described furaquinocins was a modification in the polyketide naphthoquinone skeleton. In addition, the structure of furaquinocin L contained an acetylhydrazone fragment, which is quite rare for natural compounds. We also identified a furaquinocin biosynthetic gene cluster in the Je 1-369 strain, which showed similarity (60%) with the furaquinocin B biosynthetic gene cluster from Streptomyces sp. KO-3988. Furaquinocin L showed activity against Gram-positive bacteria without cytotoxic effects.
Collapse
Affiliation(s)
- Stepan Tistechok
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Marc Stierhof
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Oleksandr Gromyko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
- Microbial Culture Collection of Antibiotic Producers, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
| |
Collapse
|
24
|
Harunari E, Mae S, Fukaya K, Tashiro E, Urabe D, Igarashi Y. Bisprenyl naphthoquinone and chlorinated calcimycin congener bearing thiazole ring from an actinomycete of the genus Phytohabitans. J Antibiot (Tokyo) 2022; 75:542-551. [PMID: 36071213 DOI: 10.1038/s41429-022-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
A bisprenyl naphthoquinone, phytohabinone (1), and a calcimycin congener with unusual modifications, phytohabimicin (2), were isolated from the culture extract of Phytohabitans sp. RD003013. The structures of 1 and 2 were determined by NMR and MS analyses, and the absolute configuration of 2 was established by using electronic circular dichroism (ECD) calculation. The prenylation pattern of 1 was unprecedented among the known prenylated naphthoquinones. Compound 2 represents a spiroacetal core of polyketide origin substituted with a thiazole carboxylic acid and a dichrolopyrrole moiety, which is an unprecedented modification pattern in the known calcimycin family natural products. Remarkably, 2 showed moderate antimicrobial activity against a Gram-negative bacterium Ralstonia solanacearum while calcimycin was inactive. Additionally, 2 inhibits the migration of EC17 cancer cells at noncytotoxic concentrations.
Collapse
Affiliation(s)
- Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shunsuke Mae
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Etsu Tashiro
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
25
|
Vanable EP, Habgood LG, Patrone JD. Current Progress in the Chemoenzymatic Synthesis of Natural Products. Molecules 2022; 27:molecules27196373. [PMID: 36234909 PMCID: PMC9571504 DOI: 10.3390/molecules27196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products, with their array of structural complexity, diversity, and biological activity, have inspired generations of chemists and driven the advancement of techniques in their total syntheses. The field of natural product synthesis continuously evolves through the development of methodologies to improve stereoselectivity, yield, scalability, substrate scope, late-stage functionalization, and/or enable novel reactions. One of the more interesting and unique techniques to emerge in the last thirty years is the use of chemoenzymatic reactions in the synthesis of natural products. This review highlights some of the recent examples and progress in the chemoenzymatic synthesis of natural products from 2019–2022.
Collapse
Affiliation(s)
- Evan P. Vanable
- Department of Chemistry and Biochemistry, Elmhurst University, Elmhurst, IL 60126, USA
| | - Laurel G. Habgood
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
| | - James D. Patrone
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
- Correspondence:
| |
Collapse
|
26
|
Huang G, Kouklovsky C, de la Torre A. Gram-Scale Enantioselective Synthesis of (+)-Lucidumone. J Am Chem Soc 2022; 144:17803-17807. [PMID: 36150082 DOI: 10.1021/jacs.2c08760] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first enantioselective total synthesis of (+)-lucidumone is described through a 13-step synthetic pathway (longest linear sequence). The key steps involve the formation of a bridged bicyclic lactone by an enantioselective inverse-electron-demand Diels-Alder cycloaddition, C-O bond formation to assemble two fragments, and a one-pot retro-[4 + 2]/[4 + 2] cycloaddition cascade. The synthesis is scalable, and more than one gram of natural product was synthesized in one batch.
Collapse
Affiliation(s)
- Guanghao Huang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 15 rue Georges Clémenceau, 91405 Orsay, Cedex, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 15 rue Georges Clémenceau, 91405 Orsay, Cedex, France
| | - Aurélien de la Torre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 15 rue Georges Clémenceau, 91405 Orsay, Cedex, France
| |
Collapse
|
27
|
Zheng X, Li Y, Guan M, Wang L, Wei S, Li YC, Chang CY, Xu Z. Biomimetic Total Synthesis of the Spiroindimicin Family of Natural Products. Angew Chem Int Ed Engl 2022; 61:e202208802. [PMID: 35904849 DOI: 10.1002/anie.202208802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 12/24/2022]
Abstract
A unified strategy for the biomimetic total synthesis of the spiroindimicin family of natural products was reported. Key transformations include a one-pot two-enzyme-catalyzed oxidative dimerization of L-tryptophan/5-chloro-L-tryptophan to afford the bis-indole precursors chromopyrrolic acid/5',5''-dichloro-chromopyrrolic acid, and regioselective C3'-C2'' and C3'-C4'' bond formation converting a common bis-indole skeleton to two skeletally different natural products, including (±)-spiroindimicins D and G with a [5,5] spiro-ring skeleton, and (±)-spiroindimicins A and H with a [5,6] spiro-ring skeleton, respectively.
Collapse
Affiliation(s)
- Xikang Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Mengtie Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Lingyue Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Shilong Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yi-Cheng Li
- Department of Biological Sciences and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, P. R. China
| | - Chin-Yuan Chang
- Department of Biological Sciences and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, P. R. China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
28
|
Chen PYT, Adak S, Chekan JR, Liscombe DK, Miyanaga A, Bernhardt P, Diethelm S, Fielding EN, George JH, Miles ZD, Murray LAM, Steele TS, Winter JM, Noel JP, Moore BS. Structural Basis of Stereospecific Vanadium-Dependent Haloperoxidase Family Enzymes in Napyradiomycin Biosynthesis. Biochemistry 2022; 61:1844-1852. [PMID: 35985031 PMCID: PMC10978243 DOI: 10.1021/acs.biochem.2c00338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vanadium-dependent haloperoxidases (VHPOs) from Streptomyces bacteria differ from their counterparts in fungi, macroalgae, and other bacteria by catalyzing organohalogenating reactions with strict regiochemical and stereochemical control. While this group of enzymes collectively uses hydrogen peroxide to oxidize halides for incorporation into electron-rich organic molecules, the mechanism for the controlled transfer of highly reactive chloronium ions in the biosynthesis of napyradiomycin and merochlorin antibiotics sets the Streptomyces vanadium-dependent chloroperoxidases apart. Here we report high-resolution crystal structures of two homologous VHPO family members associated with napyradiomycin biosynthesis, NapH1 and NapH3, that catalyze distinctive chemical reactions in the construction of meroterpenoid natural products. The structures, combined with site-directed mutagenesis and intact protein mass spectrometry studies, afforded a mechanistic model for the asymmetric alkene and arene chlorination reactions catalyzed by NapH1 and the isomerase activity catalyzed by NapH3. A key lysine residue in NapH1 situated between the coordinated vanadate and the putative substrate binding pocket was shown to be essential for catalysis. This observation suggested the involvement of the ε-NH2, possibly through formation of a transient chloramine, as the chlorinating species much as proposed in structurally distinct flavin-dependent halogenases. Unexpectedly, NapH3 is modified post-translationally by phosphorylation of an active site His (τ-pHis) consistent with its repurposed halogenation-independent, α-hydroxyketone isomerase activity. These structural studies deepen our understanding of the mechanistic underpinnings of VHPO enzymes and their evolution as enantioselective biocatalysts.
Collapse
Affiliation(s)
- Percival Yang-Ting Chen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Jonathan R Chekan
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - David K Liscombe
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Akimasa Miyanaga
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Peter Bernhardt
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Stefan Diethelm
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Elisha N Fielding
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Jonathan H George
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zachary D Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Lauren A M Murray
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Taylor S Steele
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Jaclyn M Winter
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Zheng X, Li Y, Guan M, Wang L, Wei S, Li YC, Chang CY, Xu Z. Biomimetic Total Synthesis of the Spiroindimicin Family of Natural Products. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xikang Zheng
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences CHINA
| | - Yan Li
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences CHINA
| | - Mengtie Guan
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences CHINA
| | - Lingyue Wang
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences CHINA
| | - Shilong Wei
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences CHINA
| | - Yi-Cheng Li
- National Yang Ming Chiao Tung University Department of Biological Sciences and Technology TAIWAN
| | - Chin-Yuan Chang
- National Yang Ming Chiao Tung University Department of Biological Sciences and Technology TAIWAN
| | - Zhengren Xu
- Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences 38 Xueyuan Road, Haidian District 100191 Beijing CHINA
| |
Collapse
|
30
|
Zeng T, Hess BA, Zhang F, Wu R. Bio-inspired chemical space exploration of terpenoids. Brief Bioinform 2022; 23:6586263. [PMID: 35576010 DOI: 10.1093/bib/bbac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022] Open
Abstract
Many computational methods are devoted to rapidly generating pseudo-natural products to expand the open-ended border of chemical spaces for natural products. However, the accessibility and chemical interpretation were often ignored or underestimated in conventional library/fragment-based or rule-based strategies, thus hampering experimental synthesis. Herein, a bio-inspired strategy (named TeroGen) is developed to mimic the two key biosynthetic stages (cyclization and decoration) of terpenoid natural products, by utilizing physically based simulations and deep learning models, respectively. The precision and efficiency are validated for different categories of terpenoids, and in practice, more than 30 000 sesterterpenoids (10 times as many as the known sesterterpenoids) are predicted to be linked in a reaction network, and their synthetic accessibility and chemical interpretation are estimated by thermodynamics and kinetics. Since it could not only greatly expand the chemical space of terpenoids but also numerate plausible biosynthetic routes, TeroGen is promising for accelerating heterologous biosynthesis, bio-mimic and chemical synthesis of complicated terpenoids and derivatives.
Collapse
Affiliation(s)
- Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | | | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
31
|
Noguchi T, Isogai S, Terada T, Nishiyama M, Kuzuyama T. Cryptic Oxidative Transamination of Hydroxynaphthoquinone in Natural Product Biosynthesis. J Am Chem Soc 2022; 144:5435-5440. [PMID: 35293722 DOI: 10.1021/jacs.1c13074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are a group of versatile enzymes that catalyze various reactions, but only a small number of them react with O2. Here, we report an unprecedented PLP-dependent enzyme, NphE, that catalyzes both transamination and two-electron oxidation using O2 as an oxidant. Our intensive analysis reveals that NphE transfers the l-glutamate-derived amine to 1,3,6,8-tetrahydroxynaphthalene-derived mompain to form 8-amino-flaviolin (8-AF) via a highly conjugated quinonoid intermediate that is reactive with O2. During the NphE reaction, O2 is reduced to yield H2O2. An integrated technique involving NphE structure prediction by AlphaFold v2.0 and molecular dynamics simulation suggested the O2-accessible cavity. Our in vivo results demonstrated that 8-AF is a genuine biosynthetic intermediate for the 1,3,6,8-tetrahydroxynaphthalene-derived meroterpenoid naphterpin without an amino group, which was supported by site-directed mutagenesis. This study clearly establishes the NphE reaction product 8-AF as a common intermediate with a cryptic amino group for the biosynthesis of terpenoid-polyketide hybrid natural products.
Collapse
Affiliation(s)
- Tomohiro Noguchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, JAPAN
| | - Shota Isogai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, JAPAN
| | - Tohru Terada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, JAPAN.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, JAPAN
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, JAPAN.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, JAPAN
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, JAPAN.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, JAPAN
| |
Collapse
|
32
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
33
|
Yahiaoui O, Murray LAM, Zhao F, Moore BS, Houk KN, Liu F, George JH. A Diazo-Hooker Reaction, Inspired by the Biosynthesis of Azamerone. Org Lett 2022; 24:490-495. [PMID: 34994200 PMCID: PMC9006554 DOI: 10.1021/acs.orglett.1c03810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Motivated by the biosynthesis of azamerone, we report the first example of a diazo-Hooker reaction, which involves the formation of a phthalazine ring system by the oxidative rearrangement of a diazoketone. Computational studies indicate that the diazo-Hooker reaction proceeds via an 8π-electrocyclization followed by ring contraction and aromatization. The biosynthetic origin of the diazoketone functional group was also chemically mimicked using a related natural product, naphterpin, as a model system.
Collapse
Affiliation(s)
- Oussama Yahiaoui
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lauren A M Murray
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fengyue Zhao
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jonathan H George
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
34
|
Wu Y, Du X, Wang X, Liu H, Zhou L, Tang Y, Li D. Bio-inspired construction of a tetracyclic ring system with an avarane skeleton: total synthesis of dactyloquinone A. Org Chem Front 2022. [DOI: 10.1039/d2qo00792d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the asymmetric construction of an avarane skeleton. The strategy involves a Lewis acid-catalyzed cyclization reaction, which drives the methyl groups of two different configurations at the C-4 site to migrate by 1, 2-rearrangement.
Collapse
Affiliation(s)
- Yumeng Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xuanxuan Du
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xianyang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Hainan Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
35
|
Chen F, Liu D, Fu J, Yang J, Bai L, Zhang W, Jiang Z, Zhu G. (±)‐Atrachinenins A—C, Three Pairs of Caged
C
27
Meroterpenoids from the Rhizomes of
Atractylodes chinensis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fei‐Long Chen
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Dong‐Li Liu
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Jing Fu
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Ji Yang
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Li‐Ping Bai
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Wei Zhang
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Zhi‐Hong Jiang
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Guo‐Yuan Zhu
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| |
Collapse
|
36
|
Bauman KD, Butler KS, Moore BS, Chekan JR. Genome mining methods to discover bioactive natural products. Nat Prod Rep 2021; 38:2100-2129. [PMID: 34734626 PMCID: PMC8597713 DOI: 10.1039/d1np00032b] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 12/22/2022]
Abstract
Covering: 2016 to 2021With genetic information available for hundreds of thousands of organisms in publicly accessible databases, scientists have an unprecedented opportunity to meticulously survey the diversity and inner workings of life. The natural product research community has harnessed this breadth of sequence information to mine microbes, plants, and animals for biosynthetic enzymes capable of producing bioactive compounds. Several orthogonal genome mining strategies have been developed in recent years to target specific chemical features or biological properties of bioactive molecules using biosynthetic, resistance, or transporter proteins. These "biosynthetic hooks" allow researchers to query for biosynthetic gene clusters with a high probability of encoding previously undiscovered, bioactive compounds. This review highlights recent case studies that feature orthogonal approaches that exploit genomic information to specifically discover bioactive natural products and their gene clusters.
Collapse
Affiliation(s)
- Katherine D Bauman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Keelie S Butler
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, 27402, USA.
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
37
|
Investigating the Role of Vanadium-Dependent Haloperoxidase Enzymology in Microbial Secondary Metabolism and Chemical Ecology. mSystems 2021; 6:e0078021. [PMID: 34427499 PMCID: PMC8407465 DOI: 10.1128/msystems.00780-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The chemical diversity of natural products is established by an elegant network of biosynthetic machinery and controlled by a suite of intracellular and environmental cues. Advances in genomics, transcriptomics, and metabolomics have provided useful insight to understand how organisms respond to abiotic and biotic factors to adjust their chemical output; this has permitted researchers to begin asking bigger-picture questions regarding the ecological significance of these molecules to the producing organism and its community. Our lab is motivated by understanding how select microbes construct and manipulate bioactive molecules by utilizing vanadium-dependent haloperoxidase (VHPO) enzymology. This commentary will give perspective into our efforts to understand the unique VHPO-catalyzed conversions which modulate the activities within two ecologically relevant natural product families. Through enhancing our knowledge of microbial natural product biosynthesis, we can understand how and why these bioactive molecules are created.
Collapse
|
38
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
39
|
Zong Y, Xu Z, Zhu R, Su A, Liu X, Zhu M, Han J, Zhang J, Xu Y, Lou H. Enantioselective Total Syntheses of Manginoids A and C and Guignardones A and C. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yan Zong
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Ze‐Jun Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Rong‐Xiu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Ai‐Hong Su
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Xu‐Yuan Liu
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Ming‐Zhu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Jing‐Jing Han
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Jiao‐Zhen Zhang
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Yu‐Liang Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| | - Hong‐Xiang Lou
- Department of Natural Products Chemistry Key Lab of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250012 China
| |
Collapse
|
40
|
Zong Y, Xu ZJ, Zhu RX, Su AH, Liu XY, Zhu MZ, Han JJ, Zhang JZ, Xu YL, Lou HX. Enantioselective Total Syntheses of Manginoids A and C and Guignardones A and C. Angew Chem Int Ed Engl 2021; 60:15286-15290. [PMID: 33876516 DOI: 10.1002/anie.202104182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Indexed: 12/23/2022]
Abstract
An enantioselective synthetic approach for preparing manginoids and guignardones, two types of biogenetically related meroterpenoids, is reported. This bioinspired and divergent synthesis employs an oxidative 1,3-dicarbonyl radical-initiated cyclization and cyclodehydration of the common precursor to forge the central ring of the manginoids and guignardones, respectively, at a late stage. Key synthetic steps include silica-gel-promoted semipinacol rearrangement to form the 6-oxabicyclo[3.2.1]octane skeleton and the Suzuki-Miyaura reaction of vinyl bromide to achieve fragment coupling. This synthesis protocol enables the asymmetric syntheses of four fungal meroterpenoids from commercially available materials.
Collapse
Affiliation(s)
- Yan Zong
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Rong-Xiu Zhu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.,School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Ai-Hong Su
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xu-Yuan Liu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ming-Zhu Zhu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jing-Jing Han
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jiao-Zhen Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yu-Liang Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| |
Collapse
|
41
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
42
|
Han J, Jiang L, Zhang L, Quinn RJ, Liu X, Feng Y. Peculiarities of meroterpenoids and their bioproduction. Appl Microbiol Biotechnol 2021; 105:3987-4003. [PMID: 33937926 DOI: 10.1007/s00253-021-11312-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Meroterpenoids are a class of terpenoid-containing hybrid natural products with impressive structural architectures and remarkable pharmacological activities. Remarkable advances in enzymology and synthetic biology have greatly contributed to the elucidation of the molecular basis for their biosynthesis. Here, we review structurally unique meroterpenoids catalyzed by novel enzymes and unusual enzymatic reactions over the period of last 5 years. We also discuss recent progress on the biomimetic synthesis of chrome meroterpenoids and synthetic biology-driven biomanufacturing of tropolone sesquiterpenoids, merochlorins, and plant-derived meroterpenoid cannabinoids. In particular, we focus on the novel enzymes involved in the biosynthesis of polyketide-terpenoids, nonribosomal peptide-terpenoids, terpenoid alkaloids, and meroterpenoid with unique structures. The biological activities of these meroterpenoids are also discussed. The information reviewed here might provide useful clues and lay the foundation for developing new meroterpenoid-derived drugs. KEY POINTS: • Meroterpenoids possess intriguing structural features and relevant biological activities. • Novel enzymes are involved in the biosynthesis of meroterpenoids with unique structures. • Biomimetic synthesis and synthetic biology enable the construction and manufacturing of complex meroterpenoids.
Collapse
Affiliation(s)
- Jianying Han
- Griffith Institute for Drug Discovery, Griffith University, QLD, Brisbane, 4111, Australia
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, QLD, Brisbane, 4111, Australia
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, QLD, Brisbane, 4111, Australia.
| |
Collapse
|
43
|
George JH. Biomimetic Dearomatization Strategies in the Total Synthesis of Meroterpenoid Natural Products. Acc Chem Res 2021; 54:1843-1855. [PMID: 33793197 DOI: 10.1021/acs.accounts.1c00019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products are biosynthesized from a limited pool of starting materials via pathways that obey the same chemical logic as textbook organic reactions. Given the structure of a natural product, it is therefore often possible to predict its likely biosynthesis. Although biosynthesis mainly occurs in the highly specific chemical environments of enzymes, the field of biomimetic total synthesis attempts to replicate predisposed pathways using chemical reagents.We have followed several guidelines in our biomimetic approach to total synthesis. The overarching aim is to construct the same skeletal C-C and C-heteroatom bonds and in the same order as our biosynthetic hypothesis. In order to explore the innate reactivity of (bio)synthetic intermediates, the use of protecting groups is avoided or at least minimized. The key step, which is usually a cascade reaction, should be predisposed to selectively generate molecular complexity under substrate control (e.g., cycloadditions, radical cyclizations, carbocation rearrangements). In general, simple reagents and mild conditions are used; many of the total syntheses presented in this Account could be achieved using pre-1980s methodology. We have focused almost exclusively on the synthesis of meroterpenoids, that is, natural products of mixed terpene and aromatic polyketide origin, using commercially available terpenes and electron-rich aromatic compounds as starting materials. Finally, all of the syntheses in this Account involve a dearomatization step as a means to trigger a cascade reaction or to construct stereochemical complexity from a planar, aromatic intermediate.A biomimetic strategy can offer several advantages to a total synthesis project. Most obviously, successful biomimetic syntheses are usually concise and efficient, naturally adhering to the atom, step, and redox economies of synthesis. For example, in this Account, we describe a four-step synthesis of garcibracteatone and a three-step synthesis of nyingchinoid A. It is difficult to imagine shorter, non-biomimetic syntheses of these intricate molecules. Furthermore, biomimetic synthesis gives insight into biosynthesis by revealing the chemical relationships between biosynthetic intermediates. Access to these natural substrates allows collaboration with biochemists to help uncover the function of newly discovered enzymes and elucidate biosynthetic pathways, as demonstrated in our work on the napyradiomycin family. Third, by making biosynthetic connections between natural products, we can sometimes highlight incorrect structural assignments, and herein we discuss structure revisions of siphonodictyal B, rasumatranin D, and furoerioaustralasine. Last, biomimetic synthesis motivates the prediction of "undiscovered natural products" (i.e., missing links in biosynthesis), which inspired the isolation of prenylbruceol A and isobruceol.
Collapse
Affiliation(s)
- Jonathan H. George
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
44
|
Yan D, Matsuda Y. Genome Mining-Driven Discovery of 5-Methylorsellinate-Derived Meroterpenoids from Aspergillus funiculosus. Org Lett 2021; 23:3211-3215. [PMID: 33821662 DOI: 10.1021/acs.orglett.1c00951] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterologous expression of a cryptic gene cluster in the fungus Aspergillus funiculosus CBS 116.56 led to the discovery of four new meroterpenoids, funiculolides A-D (1-4), derived from the aromatic polyketide 5-methylorsellinic acid (5-MOA). Intriguingly, funiculolide D (4), the apparent end product of the pathway, harbors an unusual spirocyclopentanone moiety, which is synthesized by the oxidative rearrangement catalyzed by the ferrous iron and α-ketoglutarate-dependent dioxygenase FncG.
Collapse
Affiliation(s)
- Dexiu Yan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
45
|
Mo TX, Huang XS, Zhang WX, Schäberle TF, Qin JK, Zhou DX, Qin XY, Xu ZL, Li J, Yang RY. A series of meroterpenoids with rearranged skeletons from an endophytic fungus Penicillium sp. GDGJ-285. Org Chem Front 2021. [DOI: 10.1039/d1qo00173f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Five new meroterpenoids (1–5), including three novel skeleton meroterpenoids, peniclactones A–C (1–3), and two new isoaustinone analogues (4 and 5), 6-hydroxyisoaustinone (4) and 6-ketoisoaustinone (5), were isolated from the fungus Penicillium sp. GDGJ-285.
Collapse
|
46
|
Hou A, Dickschat JS. The Biosynthetic Gene Cluster for Sestermobaraenes-Discovery of a Geranylfarnesyl Diphosphate Synthase and a Multiproduct Sesterterpene Synthase from Streptomyces mobaraensis. Angew Chem Int Ed Engl 2020; 59:19961-19965. [PMID: 32749032 PMCID: PMC7693059 DOI: 10.1002/anie.202010084] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 01/23/2023]
Abstract
A biosynthetic gene cluster from Streptomyces mobaraensis encoding the first cases of a bacterial geranylfarnesyl diphosphate synthase and a type I sesterterpene synthase was identified. The structures of seven sesterterpenes produced by these enzymes were elucidated, including their absolute configurations. The enzyme mechanism of the sesterterpene synthase was investigated by extensive isotope labeling experiments.
Collapse
Affiliation(s)
- Anwei Hou
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
47
|
Abstract
Covering: up to July 2020Fungal meroterpenoid cyclases are a recently discovered emerging family of membrane-integrated, non-canonical terpene cyclases. They catalyze the conversion of hybrid isoprenic precursors towards complex scaffolds and are therefore of great importance in the structure diversification in meroterpenoid biosynthesis. The products of these pathways exhibit intriguing molecular scaffolds and highly potent bioactivities, making them privileged structures from Nature and attractive candidates for drug development or industrial applications. This review will provide a comprehensive and comparative view on fungal meroterpenoid cyclases, their intriguing chemistries and importance for the scaffold formation step towards polycyclic meroterpenoid natural products.
Collapse
Affiliation(s)
- Lena Barra
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
48
|
Li H, Feng W, Li X, Kang X, Yan S, Chao M, Mo S, Sun W, Lu Y, Chen C, Wang J, Zhu H, Zhang Y. Terreuspyridine: An Unexpected Pyridine-Fused Meroterpenoid Alkaloid with a Tetracyclic 6/6/6/6 Skeleton from Aspergillus terreus. Org Lett 2020; 22:7041-7046. [PMID: 32841036 DOI: 10.1021/acs.orglett.0c02641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Terreuspyridine (1), the first 3,5-demethylorsellinic acid (DMOA) derived meroterpenoid alkaloid, was isolated from the fungus Aspergillus terreus, which represents a new type of meroterpenoid possessing an unexpected tetracyclic 6/6/6/6 architecture. The structure of 1 with absolute configuration was determined by X-ray diffraction analysis. Biogenetically, it was proposed to be derived from the fusion of a DMOA-meroterpenoid and a glutamate. Terreuspyridine (1) exhibited moderate inhibitory activity against the BChE with an IC50 value of 16.4 μM.
Collapse
Affiliation(s)
- Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenya Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoxin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Menghang Chao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
49
|
Ran H, Li SM. Fungal benzene carbaldehydes: occurrence, structural diversity, activities and biosynthesis. Nat Prod Rep 2020; 38:240-263. [PMID: 32779678 DOI: 10.1039/d0np00026d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to April 2020Fungal benzene carbaldehydes with salicylaldehydes as predominant representatives carry usually hydroxyl groups, prenyl moieties and alkyl side chains. They are found in both basidiomycetes and ascomycetes as key intermediates or end products of various biosynthetic pathways and exhibit diverse biological and pharmacological activities. The skeletons of the benzene carbaldehydes are usually derived from polyketide pathways catalysed by iterative fungal polyketide synthases. The aldehyde groups are formed by direct PKS releasing, reduction of benzoic acids or oxidation of benzyl alcohols.
Collapse
Affiliation(s)
- Huomiao Ran
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| | | |
Collapse
|
50
|
Marchbank DH, Ptycia-Lamky VC, Decken A, Haltli BA, Kerr RG. Guanahanolide A, a Meroterpenoid with a Sesterterpene Skeleton from Coral-Derived Streptomyces sp. Org Lett 2020; 22:6399-6403. [DOI: 10.1021/acs.orglett.0c02208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Douglas H. Marchbank
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Vernon C. Ptycia-Lamky
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB, Canada E3B 5A3
| | - Bradley A. Haltli
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Russell G. Kerr
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| |
Collapse
|