1
|
Lu Y, Li Z, Cheng H, Wang M, Tian Z. d-Band Center Regulation Facilitated by Asymmetrical Ligand in the Atomically Dispersed Iron Site toward Promoting Oxygen Electrocatalysis Activities. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25299-25311. [PMID: 40260677 DOI: 10.1021/acsami.5c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The prosperity of aqueous rechargeable Zn-air batteries is hindered by the discontent performance of the oxygen electrocatalyst in the cathode. An important catalyst for oxygen electrocatalyst is an atomically dispersed iron atom embedded in the nitrogen-doped carbon (Fe-NC) material. However, the unsuitable binding energy between the center Fe atom and the reaction intermediate leads to the sluggish oxygen electrocatalyst reaction rate. The regulation of the electron structure of the Fe atom by adjusting the coordinate structure is one effective solution. Here, we prose the substitution of nitrogen atom by sulfur atom, who has weak electronegativity and can donor electron to Fe atom, so the d-band center of Fe atom is elevated. Thus, the Fe-NS active site facilitates the fast *OOH adsorption and the *OH desorption, compared with counterpart Fe-N active site. As a result, the oxygen electrocatalyst reaction kinetics is accelerated. The Fe-NSC catalyst has good compatibility and performance in aqueous rechargeable Zn-air batteries, affording stable charge/discharge process for 1000 h/3000 cycles with a high voltage tolerance (0.74-0.96 V voltage gap) under 10 mA cm-2. This work brings referential sights to the modification of electron structure of the center atom in the M-N-C-type catalyst.
Collapse
Affiliation(s)
- Yao Lu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zheng Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hao Cheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Mengran Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhongliang Tian
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Quirós‐Díez EP, Herreros‐Lucas C, Vila‐Fungueiriño JM, Vizcaíno‐Anaya L, Sabater‐Algarra Y, Giménez‐López MDC. Boosting Oxygen Reduction Reaction Selectivity in Metal Nanoparticles with Polyoxometalates. SMALL METHODS 2024; 8:e2301805. [PMID: 38517266 PMCID: PMC11672175 DOI: 10.1002/smtd.202301805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Indexed: 03/23/2024]
Abstract
The lack of selectivity toward the oxygen reduction reaction (ORR) in metal nanoparticles can be linked to the generation of intermediates. This constitutes a crucial constraint on the performance of specific electrochemical devices, such as fuel cells and metal-air batteries. To boost selectivity of metal nanoparticles, a novel methodology that harnesses the unique electrocatalytic properties of polyoxometalates (POM) to scavenge undesired intermediates of the ORR (such as HO2 -) promoting selectivity is proposed. It involves the covalent functionalization of metal nanoparticle's surface with an electrochemically active capping layer containing a new sulfur-functionalized vanadium-based POM (AuNP@POM). To demonstrate this approach, preformed thiolate Au(111) nanoparticles with a relatively poor ORR selectivity are chosen. The dispersion of AuNP@POM on the surface of carbon nanofibers (CNF) enhances oxygen diffusion, and therefore the ORR activity. The resulting electrocatalyst (AuNP@POM/CNF) exhibits superior stability against impurities like methanol and a higher pH tolerance range compared to the standard commercial Pt/C. The work demonstrates for the first time, the use of a POM-based electrochemically active capping layer to switch on the selectivity of poorly selective gold nanoparticles, offering a promising avenue for the preparation of electrocatalyst materials with improved selectivity, performance, and stability for ORR-based devices.
Collapse
Affiliation(s)
- Eugenia Pilar Quirós‐Díez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Carlos Herreros‐Lucas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - José Manuel Vila‐Fungueiriño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química FísicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Lucía Vizcaíno‐Anaya
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Yolanda Sabater‐Algarra
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - María del Carmen Giménez‐López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| |
Collapse
|
3
|
Kundu J, Kwon T, Lee K, Choi S. Exploration of metal-free 2D electrocatalysts toward the oxygen electroreduction. EXPLORATION (BEIJING, CHINA) 2024; 4:20220174. [PMID: 39175883 PMCID: PMC11335471 DOI: 10.1002/exp.20220174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 08/24/2024]
Abstract
The advancement of economical and readily available electrocatalysts for the oxygen reduction reaction (ORR) holds paramount importance in the advancement of fuel cells and metal-air batteries. Recently, 2D non-metallic materials have obtained substantial attention as viable alternatives for ORR catalysts due to their manifold advantages, encompassing low cost, ample availability, substantial surface-to-volume ratio, high conductivity, exceptional durability, and competitive activity. The augmented ORR performances observed in metal-free 2D materials typically arise from heteroatom doping, defects, or the formation of heterostructures. Here, the authors delve into the realm of electrocatalysts for the ORR, pivoting around metal-free 2D materials. Initially, the merits of metal-free 2D materials are explored and the reaction mechanism of the ORR is dissected. Subsequently, a comprehensive survey of diverse metal-free 2D materials is presented, tracing their evolutionary journey from fundamental concepts to pragmatic applications in the context of ORR. Substantial importance is given on the exploration of various strategies for enhancing metal-free 2D materials and assessing their impact on inherent material performance, including electronic properties. Finally, the challenges and future prospects that lie ahead for metal-free 2D materials are underscored, as they aspire to serve as efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Joyjit Kundu
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute of Basic SciencesIncheon National UniversityIncheonRepublic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoulRepublic of Korea
| | - Sang‐Il Choi
- Department of Chemistry and Green‐Nano Materials Research CenterKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
4
|
Jagdale PB, Manippady SR, Anand R, Lee G, Samal AK, Khan Z, Saxena M. Agri-waste derived electroactive carbon-iron oxide nanocomposite for oxygen reduction reaction: an experimental and theoretical study. RSC Adv 2024; 14:12171-12178. [PMID: 38628491 PMCID: PMC11019505 DOI: 10.1039/d4ra01264j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Herein, we have utilized agri-waste and amalgamating low Fe3+, to develop an economic iron oxide-carbon hybrid-based electrocatalyst for oxygen reduction reaction (ORR) with water as a main product following close to 4e- transfer process. The electrocatalytic activity is justified by electrochemical active surface area, synergetic effect, and density functional theory calculations.
Collapse
Affiliation(s)
- Pallavi B Jagdale
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Bengaluru Karnataka-562112 India
| | - Sai Rashmi Manippady
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Bengaluru Karnataka-562112 India
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Rohit Anand
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 South Korea
| | - Geunsik Lee
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 South Korea
| | - Akshaya Kumar Samal
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Bengaluru Karnataka-562112 India
| | - Ziyauddin Khan
- Laboratory of Organic Electronics Department of Science and Technology, Linköping University Norrköping SE-60174 Sweden
| | - Manav Saxena
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Bengaluru Karnataka-562112 India
| |
Collapse
|
5
|
Payattikul L, Chen CY, Chen YS, Raja Pugalenthi M, Punyawudho K. Recent Advances and Synergistic Effects of Non-Precious Carbon-Based Nanomaterials as ORR Electrocatalysts: A Review. Molecules 2023; 28:7751. [PMID: 38067478 PMCID: PMC10708244 DOI: 10.3390/molecules28237751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 02/07/2025] Open
Abstract
The use of platinum-free (Pt) cathode electrocatalysts for oxygen reduction reactions (ORRs) has been significantly studied over the past decade, improving slow reaction mechanisms. For many significant energy conversion and storage technologies, including fuel cells and metal-air batteries, the ORR is a crucial process. These have motivated the development of highly active and long-lasting platinum-free electrocatalysts, which cost less than proton exchange membrane fuel cells (PEMFCs). Researchers have identified a novel, non-precious carbon-based electrocatalyst material as the most effective substitute for platinum (Pt) electrocatalysts. Rich sources, outstanding electrical conductivity, adaptable molecular structures, and environmental compatibility are just a few of its benefits. Additionally, the increased surface area and the simplicity of regulating its structure can significantly improve the electrocatalyst's reactive sites and mass transport. Other benefits include the use of heteroatoms and single or multiple metal atoms, which are capable of acting as extremely effective ORR electrocatalysts. The rapid innovations in non-precious carbon-based nanomaterials in the ORR electrocatalyst field are the main topics of this review. As a result, this review provides an overview of the basic ORR reaction and the mechanism of the active sites in non-precious carbon-based electrocatalysts. Further analysis of the development, performance, and evaluation of these systems is provided in more detail. Furthermore, the significance of doping is highlighted and discussed, which shows how researchers can enhance the properties of electrocatalysts. Finally, this review discusses the existing challenges and expectations for the development of highly efficient and inexpensive electrocatalysts that are linked to crucial technologies in this expanding field.
Collapse
Affiliation(s)
- Laksamee Payattikul
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chen-Yu Chen
- Department of Mechanical Engineering, National Central University, Taoyuan 320317, Taiwan;
| | - Yong-Song Chen
- Advanced Institute of Manufacturing with High-Tech Innovations, Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Mariyappan Raja Pugalenthi
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Konlayutt Punyawudho
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Energy Harvesting and Storage Laboratory, Mechanical Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Fiorio JL, Garcia MA, Gothe ML, Galvan D, Troise PC, Conte-Junior CA, Vidinha P, Camargo PH, Rossi LM. Recent advances in the use of nitrogen-doped carbon materials for the design of noble metal catalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
7
|
Lu X, Liu X, Li J, Yao Y, Ma Z, Chang Y, Bao J, Liu Y. Revealing the atomic-scale configuration modulation effect of boron dopant on carbon layers for H 2O 2 production. Chem Commun (Camb) 2023; 59:2267-2270. [PMID: 36734356 DOI: 10.1039/d2cc06249f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This work reports an atomic-scale carbon layer configuration tuning strategy induced by a boron dopant. Through regulating the doping level of boron, it was found that the boron dopant not only favors carbon layer growth by strengthening the metallic state of the Ni core, but also enhances the abundance of pyrrolic N species and graphitization degree of carbon by tailoring the carbon/nitrogen atom configuration, thereby contributing to more active pyrrolic N/carbon sites and accelerated interface reaction dynamics. Consequently, the developed Ni@B,N-C catalyst achieves remarkable electrochemical H2O2 production performances with a high selectivity of 95.5% and a yield of 795 mmol g-1 h-1. In comparison with previous reports in which the boron dopant mainly acts as an electronic structure regulator, this study reveals the tuning effect of boron dopants on the atomic-scale carbon layer configuration, opening up a new avenue for the development of advanced catalysts.
Collapse
Affiliation(s)
- Xuyun Lu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianing Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Ye Yao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Zhangyu Ma
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yanan Chang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jianchun Bao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Ying Liu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Lim JS, Kim J, Lee KS, Sa YJ, Joo SH. Impact of Catalyst Loading of Atomically Dispersed Transition Metal Catalysts on H2O2 Electrosynthesis Selectivity. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
9
|
Li X, Hu Y, Zhang C, Xiao C, Cheng J, Chen Y. Electro-activating of peroxymonosulfate via boron and sulfur co-doped macroporous carbon nanofibers cathode for high-efficient degradation of levofloxacin. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130016. [PMID: 36179625 DOI: 10.1016/j.jhazmat.2022.130016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
To address the difficulty of precisely regulating the two-electron oxygen reduction reaction (2e-ORR) and investigate the synergistic effect of hydrogen peroxide (H2O2) and peroxymonosulfate (PMS), a heterogeneous electro-catalyst was synthesized via carbonation of boron (B) and sulfur (S) co-doping electrospun nanofibers containing iron and cobalt (B, S-Fe/Co@C-NCNFs-900), and used to degrade levofloxacin (Levo) in the electro-activating PMS with self-made cathode material (E-cathode-PMS) system. The morphological, structural, and electrochemical characteristics have been investigated. The results showed that B and S co-doping could remarkably enhance electron transfer and manage two-electron oxygen reduction, which was more favorable for H2O2 generation. Levo degradation efficiency could reach 99.63% with a reaction rate of 0.3056 min-1 in 20 min under the appropriate conditions (pH = 4, current = 20 mA, and [PMS] = 8.0 mM). The steady-state concentration of singlet oxygen (1O2) was calculated to be 669.17 × 10-14 M, which was 15.42, 29.74, and 45.00 times respectively than that of HO2·/O2·- (43.40 × 10-14 M), ·OH (22.25 × 10-14 M) and SO4-·(14.87 × 10-14 M), signifying that 1O2 was the predominant reactive oxygen species (ROS) involved in Levo removal. The high TOC removal (74.19%), low energy consumption (0.14 kWh m-3 order-1), few intermediates toxicity, and excellent Levo degradation efficiency for complex wastewater with various anions and matrixes showed the prospective practical applications of the E-cathode-PMS system. Overall, this study provides a useful strategy to regulate and control the 2e-ORR pathway.
Collapse
Affiliation(s)
- Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China.
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
10
|
Polidoro D, Rodriguez-Padron D, Perosa A, Luque R, Selva M. Chitin-Derived Nanocatalysts for Reductive Amination Reactions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:575. [PMID: 36676310 PMCID: PMC9864054 DOI: 10.3390/ma16020575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Chitin, the second most abundant biopolymer in the planet after cellulose, represents a renewable carbon and nitrogen source. A thrilling opportunity for the valorization of chitin is focused on the preparation of biomass-derived N-doped carbonaceous materials. In this contribution, chitin-derived N-doped carbons were successfully prepared and functionalized with palladium metal nanoparticles. The physicochemical properties of these nanocomposites were investigated following a multi-technique strategy and their catalytic activity in reductive amination reactions was explored. In particular, a biomass-derived platform molecule, namely furfural, was upgraded to valuable bi-cyclic compounds under continuous flow conditions.
Collapse
Affiliation(s)
- Daniele Polidoro
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30175 Venezia Mestre, Italy
| | - Daily Rodriguez-Padron
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30175 Venezia Mestre, Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30175 Venezia Mestre, Italy
| | - Rafael Luque
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
- Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador
| | - Maurizio Selva
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30175 Venezia Mestre, Italy
| |
Collapse
|
11
|
Quasi-Fe-/Zn-phthalocyanine polymer derived 2D Fe-N-C single-atom catalyst for highly efficient ORR and H2O2 sensing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Liu Y, Zuo L, Zhou Z, Zhang J, Kang Z, Zhu J, Zhu G. Ultrathin Ru-Ni nanounits as hydrogen oxidation catalysts with an alkaline electrolyte. Dalton Trans 2022; 51:15467-15474. [PMID: 36156615 DOI: 10.1039/d2dt02373c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of hydrogen-oxygen fuel cells with an alkaline electrolyte was highly limited by the sluggish kinetics of the hydrogen oxidation reaction (HOR). Here, with a pyrolysis-reduction route, a new RuNi-based electrocatalyst was prepared, which presents an ultrathin nanowire-like structure. In alkaline media, this catalyst shows an excellent catalytic performance with an exchange current density of 1.10 mA cm-2disk for hydrogen oxidation. The exchange current density and mass activity of this catalyst are much higher than those of its single-metal counterparts and even the commercial Pt/C catalyst containing 20% Pt. Such a remarkable catalytic activity can be explained by the interaction between Ru and Ni; the incorporation of Ni may induce an electronic effect on the optimization of the Ru-Had strength and provide a functional surface that can absorb OH species, thus boosting the catalytic activity. These findings may cast a new light on the exploration of low-cost but high-efficiency catalysts for fuel cells.
Collapse
Affiliation(s)
- Yuanjun Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Longkun Zuo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Zhihang Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Junhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Ziliang Kang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China.
| | - Jun Zhu
- Faculty of Transportation Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
Kim JH, Sa YJ, Lim T, Woo J, Joo SH. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production. Acc Chem Res 2022; 55:2672-2684. [PMID: 36067418 DOI: 10.1021/acs.accounts.2c00409] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electrocatalysis is a key driver in promoting the paradigm shift from the current fossil-fuel-based hydrocarbon economy to a renewable-energy-driven hydrogen economy. The success of electrocatalysis hinges primarily on achieving high catalytic selectivity along with maximum activity and sustained longevity. Many electrochemical reactions proceed through multiple pathways, requiring highly selective catalysts.Atomically dispersed metal catalysts have emerged as a new frontier in heterogeneous catalysis. In addition to the widely perceived advantages of maximized active site utilization and substantially reduced metal content, they have shown different catalytic selectivities in some electrocatalytic reactions compared to the traditional nanoparticle (NP)-based catalysts. Although there have been significant advances in their synthesis, the highly energetic nature of a single atomic site has made the preparation of atomically dispersed metal catalysts rely on empiricism rather than rational design. Consequently, the structural comprehension of a single atomic site and the understanding of its unusual electrocatalytic selectivity remain largely elusive.In this Account, we describe our endeavors toward developing general synthetic approaches for atomically dispersed metal catalysts for the discovery of new selective and active electrocatalysts and to understand their catalytic nature. We introduce synthetic approaches to produce a wide range of nonprecious- and precious-metal-based atomically dispersed catalysts and control their coordination environments. Metallomacrocyclic-compound-driven top-down and metal salt/heteroatom layer-based bottom-up strategies, coupled with a SiO2-protective-layer-assisted method, have been developed that can effectively generate single atomic sites while mitigating the formation of metallic NPs. The low-temperature gas-phase ligand exchange method can reversibly tune the coordination structure of the atomically dispersed metal sites. We have used the prepared atomically dispersed metal catalysts as model systems to investigate their electrocatalytic reactivity for renewable energy conversion and commodity chemical production reactions, in which high selectivity is important. The reactions of our interest include the following: (i) the oxygen reduction reaction, where O2 is reduced to either H2O or H2O2 via the four-electron or two electron pathway, respectively; (ii) the CO2 reduction reaction, which should suppress the hydrogen evolution reaction; and (iii) the chlorine evolution reaction, which competes with the oxygen evolution reaction. The type of metal center to which the reactant is directly bound is found to be the most important in determining the selectivity, which originates from the dramatic changes in the binding energy of each metal center with the reactants. The coordination structure surrounding the metal center also has a significant effect on the selectivity; its control can modulate the oxidation state of the metal center, thereby altering the binding strength with the reactants.We envisage that future advances in the synthesis of atomically dispersed metal catalysts, combined with the growing power of computational, spectroscopic, and microscopic methods, will bring their synthesis to the level of rational design. Elaborately designed catalysts can overcome the current limits of catalytic selectivity, which will help establish the field of atomically dispersed metal catalysts as an important branch of catalysis.
Collapse
Affiliation(s)
- Jae Hyung Kim
- Clean Fuel Research Laboratory, Korea Institute of Energy Research, Daejeon34129, Republic of Korea
| | - Young Jin Sa
- Department of Chemistry, Kwangwoon University, Seoul01897, Republic of Korea
| | - Taejung Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Jinwoo Woo
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
14
|
Baek DS, Joo SH. Non‐siliceous
ordered mesoporous materials via nanocasting for small molecule conversion electrocatalysis. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Du San Baek
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea
| |
Collapse
|
15
|
Sun ZH, Zhang X, Yang XD, Shi WN, Huang YQ, Men YL, Yang J, Zhou ZY. Identification of a pyrone-type species as the active site for the oxygen reduction reaction. Chem Commun (Camb) 2022; 58:8998-9001. [PMID: 35861624 DOI: 10.1039/d2cc03093d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bicyclic pyrone-type species on oxygen-doped carbon catalysts was identified as the active site for the oxygen reduction reaction in acidic solution. It has much higher activity than that of typical nitrogen-doped carbon catalysts (0.219 e s-1 site-1vs. 0.021-0.088 e s-1 site-1 at 0.6 VRHE). The ortho-carbon atom in the carbonyl ring of the pyrone-type species was revealed as the reactive site by theoretical calculations.
Collapse
Affiliation(s)
- Zhao-Hong Sun
- College of Materials Science and Engineering, Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, Fujian, 362021, People's Republic of China.
| | - Xue Zhang
- Institute of Advanced Materials Science and Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiao-Dong Yang
- College of Materials Science and Engineering, Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, Fujian, 362021, People's Republic of China.
| | - Wen-Na Shi
- College of Materials Science and Engineering, Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, Fujian, 362021, People's Republic of China.
| | - Yan-Qing Huang
- College of Materials Science and Engineering, Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, Fujian, 362021, People's Republic of China.
| | - Yong-Ling Men
- College of Materials Science and Engineering, Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, Fujian, 362021, People's Republic of China.
| | - Jing Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Zhi-You Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| |
Collapse
|
16
|
Besharat F, Ahmadpoor F, Nezafat Z, Nasrollahzadeh M, Manwar NR, Fornasiero P, Gawande MB. Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Farzaneh Besharat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Fatemeh Ahmadpoor
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | | | - Nilesh R. Manwar
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit, ICCOM-CNR Trieste Research Unit, University of Trieste, Via Licio Giorgieri 1, I-34127 Trieste, Italy
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| |
Collapse
|
17
|
Park JH, Shin JH, Ju JM, Lee JH, Choi C, So Y, Lee H, Kim JH. Modulating the electrocatalytic activity of N-doped carbon frameworks via coupling with dual metals for Zn-air batteries. NANO CONVERGENCE 2022; 9:17. [PMID: 35415763 PMCID: PMC9005593 DOI: 10.1186/s40580-022-00308-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
N-Doped carbon electrocatalysts are a promising alternative to precious metal catalysts to promote oxygen reduction reaction (ORR). However, it remains a challenge to design the desired active sites on carbon skeletons in a controllable manner for ORR. Herein, we developed a facile approach based on oxygen-mediated solvothermal radical reaction (OSRR) for preparation of N-doped carbon electrocatalysts with a pre-designed active site and modulated catalytic activity for ORR. In the OSRR, 2-methylimidazole reacted with Co and Mn salts to form an active site precursor (MnCo-MIm) in N-methyl-2-pyrrolidone (NMP) at room temperature. Then, the reaction temperature increased to 140 °C under an oxygen atmosphere to generate NMP radicals, followed by their polymerization with the pre-formed MnCo-MIm to produce Mn-coupled Co nanoparticle-embedded N-doped carbon framework (MnCo-NCF). The MnCo-NCF showed uniform dispersion of nitrogen atoms and Mn-doped Co nanoparticles on the carbon skeleton with micropores and mesopores. The MnCo-NCF exhibited higher electrocatalytic activity for ORR than did a Co nanoparticle only-incorporated carbon framework due to the improved charge transfer from the Mn-doped Co nanoparticles to the carbon skeleton. In addition, the Zn-air battery assembled with MnCo-NCF had superior performance and durability to the battery using commercial Pt/C. This facile approach can be extended for designing carbon electrocatalysts with desired active sites to promote specific reactions.
Collapse
Affiliation(s)
- Jung Hyun Park
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Jae-Hoon Shin
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jong-Min Ju
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jun-Hyeong Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chanhee Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yoonhee So
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyunji Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
18
|
Xu H, Lv XH, Wang HY, Ye JY, Yuan J, Wang YC, Zhou ZY, Sun SG. Impact of Pore Structure on Two-Electron Oxygen Reduction Reaction in Nitrogen-Doped Carbon Materials: Rotating Ring-Disk Electrode vs. Flow Cell. CHEMSUSCHEM 2022; 15:e202102587. [PMID: 35102711 DOI: 10.1002/cssc.202102587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The impact of pore structure on the two-electron oxygen reduction reaction (ORR) in nitrogen-doped carbon materials is currently under debate, and previous studies are mainly limited to the rotating ring-disk electrode (RRDE) rather than the practical flow cell (FC) system. In this study, assisted by a group of reliable pore models, the impact of two pore structure parameters, that is, Brunauer-Emmett-Teller surface area (SBET ) and micropore surface fraction (fmicro ), on ORR activity and selectivity are investigated in both RRDE and FC. The ORR mass activity correlates positively to the SBET in the RRDE and FC because a higher SBET can host more active sites. The H2 O2 selectivity is independent of fmicro in the RRDE but correlates negatively to fmicro in the FC. The inconsistency results from different states of the electrode in the RRDE and the FC. These insights will guide the design of carbon materials for H2 O2 synthesis.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xue-Hui Lv
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Hao-Yu Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jin-Yu Ye
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Yu-Cheng Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhi-You Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Shi-Gang Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|