1
|
Qin Y, Liu K, Nie C, Xie F, Wang X, Ali A, Wang B, Hong Q, Zhao W. One pot preparation of magnetic benzylated cyclodextrin-based hyper-cross-linked polymer for phthalate esters extraction from tea beverages. Food Chem 2025; 475:143253. [PMID: 39938268 DOI: 10.1016/j.foodchem.2025.143253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The increasing popularity of packaged beverages has raised concerns about the health risks associated with phthalate esters (PAEs), which are commonly found in plastics used for packaging. This study presents an eco-friendly approach for synthesizing a magnetic benzylated cyclodextrin-based hyper-cross-linked polymer (Fe3O4/BnCD-HCPP), in which FeCl3serves both as a catalyst for the Friedel-Crafts reaction and as an iron source for Fe3O4 nanoparticles. The Fe3O4/BnCD-HCPP composite was used as an adsorbent to extract of PAEs from tea beverages via magnetic solid-phase extraction, followed by gas chromatography-mass spectrometry analysis. The optimized method exhibited excellent sensitivity, with limits of detection ranging from 0.1 to 0.5 μg L-1. Additionally, the method achieved high recovery rates, ranging from 81.5 % to 118.5 %, and demonstrated precision (relative standard deviations <11.6 %) for PAEs spiked into tea beverages. Mechanistic studies indicated that the high extraction efficiency of Fe3O4/BnCD-HCPP for PAEs is due to its favorable pore size distribution, large specific surface area, and multiple interactions, including π-π stacking, hydrophobic force, and host-guest inclusion. This research not only provides an effective method for determining PAEs in complex aqueous matrices but also introduces a novel and sustainable approach for the fabrication of magnetic composites.
Collapse
Affiliation(s)
- Yaqiong Qin
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Kunling Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Cong Nie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Xiaoyu Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China.
| | - Ashraf Ali
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Bing Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Qunye Hong
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Liu X, Fatieiev Y, Khashab NM. Supramolecular Porous Materials for Biomedical Applications. Adv Healthc Mater 2025:e2501997. [PMID: 40357814 DOI: 10.1002/adhm.202501997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Supramolecular porous materials have been used to tackle some major challenges in modern biomedical science, including disease therapy and diagnosis. Their inherent dynamicity, stimuli-responsiveness, and tunable architectures enable precise control over molecular recognition, cargo encapsulation, and release kinetics. This perspective explores their potential in diagnostics and therapeutics, highlighting adaptability to physiological stimuli and precise control over structure via bottom-up assembly. A visionary framework is proposed for programmable self-assembly, where supramolecular building blocks form porous architectures with customized channels and responsive behavior, facilitating applications in tissue engineering, biosensing, soft robotics, and cargo recognition. Addressing challenges related to building block design, assembly conditions, and scalability will be crucial for translating these materials from bench to bedside. This perspective underscores the transformative potential of supramolecular porous materials in advancing personalized medicine and smart diagnostics.
Collapse
Affiliation(s)
- Xin Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yevhen Fatieiev
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Li MH, Yang Z, Hui H, Wang Y, Yang B, Zhang Z, Yang YW. Proton-Mediated ROS Amplification in Hydrazone-Linked Pillararene Microspheres for Photocatalysis. NANO LETTERS 2025; 25:7524-7532. [PMID: 40293304 DOI: 10.1021/acs.nanolett.5c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Smart materials that adapt to environmental stimuli have massive technological potential. Translating well-established molecular-level responsiveness to macroscopic systems, particularly complex systems for photocatalysis, remains a significant hurdle. Herein, we introduce a new approach using a hydrazone-linked pillararene microsphere (NP5-TF-HPM) as a smart stimuli-responsive photocatalyst. NP5-TF-HPM showcases unique proton responsiveness owing to electron-rich cavities, resulting in a proton-induced structural rearrangement from the enol-imine to keto-amine form. Experiments and density functional theory calculations reveal that pillararenes in the protonated framework function as activity amplifiers. These molecules donate π-electrons from their cavities to another building unit, not only shifting the framework's conduction band to a more negative potential, which enhances its electron-donating capability, but also inducing a nonuniform charge distribution in the donor-acceptor moiety, thereby resulting in an intramolecular built-in electric field. Consequently, protonated HPM exhibits amplified photo-oxidation activity, efficiently catalyzing sulfide photo-oxidation with high conversions (up to 99%).
Collapse
Affiliation(s)
- Meng-Hao Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hui Hui
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yan Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
4
|
Wang ZQ, Li MH, Liang S, Kong Y, Wang C, Li L, Xu JJ, Yang YW. Regulating Enol-to-Keto Tautomerization of Pillararene-Based Conjugated Macrocycle Polymers for H 2O 2 Photosynthesis. J Am Chem Soc 2025; 147:13618-13628. [PMID: 40208010 DOI: 10.1021/jacs.5c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Porous organic polymers have emerged as promising materials for energy conversion, pollutant adsorption, and heterogeneous catalysis because of their tunable pore structures and high surface areas. However, most porous organic polymers are still limited by insufficient conjugation and inefficient electron-hole separation, hindering the tunability of their photoelectric properties and overall functionality. By integrating macrocyclic compounds as a new building block, which feature electron-rich cavities and rigid ring structures, into the polymer network, the resulting conjugated macrocycle polymers are expected to provide an innovative approach to enrich the photoelectric functionalities of porous organic polymers. Herein, an enaminone-based pillararene photocatalyst, TpAP[5], is constructed by covalently linking functionalized pillar[5]arene to conjugated macrocycle polymers through Schiff base condensation for efficient photocatalytic reactions. This material demonstrates exceptional performance in the photocatalytic production of hydrogen peroxide, achieving a rate of 2343 μmol g-1 h-1. In-depth investigations reveal that the incorporation of pillararenes enables synergistic catalysis of water oxidation and oxygen reduction reactions and significantly enhances catalyst stability by regulating molecular tautomerization. This work opens new avenues for designing high-performance multifunctional conjugated macrocycle polymers with significant potential for clean energy conversion.
Collapse
Affiliation(s)
- Zhuo-Qin Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Meng-Hao Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shuang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yuxiang Kong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 P. R. China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012 P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
5
|
Zhao J, Varzhel N, Hokimoto Y, Nakamura T. External Phosphate Binding Triggered Formation of Coordination Bridged Dimer of Macrocyclic Trinuclear Complex. Chemistry 2025; 31:e202500424. [PMID: 39963011 DOI: 10.1002/chem.202500424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/18/2025] [Indexed: 03/08/2025]
Abstract
Macrocyclic complexes with spatially-arranged coordination sites have the potential to create unique supramolecular systems that combine the precise switching of self-assembled structures with the coordinative recognition of specific molecules. We now report a macrocyclic trinuclear Zn complex that undergoes a unique dimerization by molecular binding from the outside. The multinuclear complex was synthesized from a trispap ligand, a designed macrocyclic trimer of an N,N,O-type tridentate chelating unit pap. This macrocyclic ligand is capable of fixing the metal centers and retaining their exchangeable coordination sites. The macrocyclic trimer reacts with zinc acetate to form the trinuclear complex, in which the coordination sites of the three zinc atoms are aligned perpendicular to the macrocyclic plane and capped with the acetates. Subsequently, phosphate anion, PO4 3-, coordinates from one side of the macrocycle in a tripodal manner. This phosphate binding produced an electrically-neutral complex moiety with available coordination sites on the other side of the macrocycle which leads to the formation of the coordination-bridged dimer.
Collapse
Affiliation(s)
- Jiachen Zhao
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Nadiia Varzhel
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, 60 Volodymyrska, Kyiv, 01033, Ukraine
| | - Yuya Hokimoto
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Takashi Nakamura
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
6
|
Ashirov T, Lim J, Robles A, Puangsamlee T, Fritz PW, Crochet A, Wang X, Hewson C, Iacomi P, Miljanić OŠ, Coskun A. Porous Organic Polymers Incorporating Shape-Persistent Cyclobenzoin Macrocycles for Organic Solvent Separation. Angew Chem Int Ed Engl 2025; 64:e202423809. [PMID: 39804699 DOI: 10.1002/anie.202423809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape-persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np-POP) and the corresponding model compound by reacting the cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5-tetraaminobenzene and 1,2-diaminobenzene, respectively, under solvothermal conditions. Co-crystallization of the macrocycle and the model compound with various solvent molecules revealed their size-selective inclusion within the macrocycle. Building on this finding, the np-POP with a hierarchical pore structure and a surface area of 579 m2 g-1 showed solvent uptake strongly correlated with their kinetic diameters. Solvents with kinetic diameters below 0.6 nm - such as acetonitrile and dichloromethane - showed high uptake capacities exceeding 7 mmol g-1. Xylene separation tests revealed a high overall uptake (~34 wt %), with o-xylene displaying a significantly lower uptake (~10 wt % less than other isomers), demonstrating the possibility of size and shape selective separation of organic solvents.
Collapse
Affiliation(s)
- Timur Ashirov
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Jay Lim
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Alexandra Robles
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Thamon Puangsamlee
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Patrick W Fritz
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Aurelien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Xiqu Wang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Connor Hewson
- Surface Measurement Systems Ltd., 5 Wharfside, Rosemont Road, Alperton, Middlesex, HA0 4PE, United Kingdom
| | - Paul Iacomi
- Surface Measurement Systems Ltd., 5 Wharfside, Rosemont Road, Alperton, Middlesex, HA0 4PE, United Kingdom
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71408, Vietnam
| | - Ali Coskun
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| |
Collapse
|
7
|
Huang L, Zhou X, Chang Q, Zhang S, Wang Z, Wang C, Zang X. Tetraphenylmethane based three-dimensional conjugated microporous polymer as adsorbent for solid-phase extraction of trace sulfonamide antibiotics in milk samples. Food Chem 2025; 470:142703. [PMID: 39742600 DOI: 10.1016/j.foodchem.2024.142703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Sulfonamide antibiotics have a broad spectrum of antibacterial action and are widely used, but their overuse poses a threat to human health. In this study, a three-dimensional conjugated microporous polymer, which was designated as TPM-CMP, was synthesized via Friedel-Crafts reaction by using tetraphenylmethane (TPM) and biphenyl dichlorobenzene as monomers, and it was utilized as an adsorbent in solid-phase extraction (SPE) of sulfonamides. The TPM-CMP demonstrated high extraction efficiency for sulfonamides due to π-stacking interactions, hydrophobic forces, and pore-filling effects. Consequently, the SPE was combined with liquid chromatography to detect sulfonamides in milk samples. For this method established in this study, a good linear response was observed in the range of 3.3-300.0 ng g-1, with a detection limit (S/N = 3) between 1.0 and 1.5 ng g-1. The method recoveries of four sulfonamide in milk samples ranged from 83.4 % to 117 %, with relative standard deviations below 10 %.
Collapse
Affiliation(s)
- Luan Huang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xin Zhou
- College of Science and Technology, Hebei Agricultural University, Cangzhou, Hebei 061000, China
| | - Qingyun Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Li ZW, Huang A, Wang Z, Gao R, Lan B, Chen G, Ouyang G. Solvent-mediated subcomponent self-assembly of covalent metallacycles for hierarchical porous materials synthesis. Chem Commun (Camb) 2025; 61:4836-4839. [PMID: 40035481 DOI: 10.1039/d5cc00688k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We report a solvent-mediated subcomponent self-assembly strategy for synthesizing tetranuclear and triangular covalent metallacycles. The results demonstrate that the polarity of solvent significantly influences the structural outcome of metallacycles, and the square-shaped metallacycles can serve as building blocks for the construction of hierarchical porous materials such as metallacycle-based hydrogen-bonded organic frameworks (mHOFs) and metal-organic frameworks (mMOFs).
Collapse
Affiliation(s)
- Zhi-Wei Li
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China.
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Anlian Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhenguo Wang
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China.
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Rui Gao
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China.
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Bang Lan
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China.
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
9
|
Narducci R, Sgreccia E, Montella AV, Ercolani G, Kaciulis S, Syahputra S, Bloch E, Pasquini L, Knauth P, Di Vona ML. One-Component Catalytic Electrodes from Metal-Organic Frameworks Covalently Linked to an Anion Exchange Ionomer. Molecules 2025; 30:1230. [PMID: 40142006 PMCID: PMC11944300 DOI: 10.3390/molecules30061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Anion-conducting organic-inorganic polymers (OIPs), constructed using metal-organic framework (MOF)-like structures with non-toxic, non-rare catalytic metals (Fe3+, Zr4+), have been developed. The incorporation of MOF-like structures imparts porosity to the polymers, classifying them as porous organic polymers (POPs). The combination between catalytic activity, ion conduction, and porosity allows the material to act as one-component catalytic electrodes. A high catalytic activity is expected since the entire surface area contributes to electrocatalysis, rather than being restricted to triple-phase boundaries. The synthesis involved anchoring a synthon onto a commercial polymer, assembling organo-metallic moieties, and functionalizing with quaternary ammonium (QA) groups. Two hybrid materials, Zr-POP-QA and Fe-POP-QA, were thoroughly characterized by NMR, FTIR, XPS, BET surface area (≈200 m2/g), and TGA. The resulting electrodes demonstrated a high electrochemically active surface area and a high efficiency for the oxygen reduction reaction (ORR), a critical process for energy storage and conversion technologies. The performance was characterized by a 4-electron reduction pathway, a high onset potential (≈0.9 V vs. RHE), and a low Tafel slope (≈0.06 V). We attribute this efficiency to the high active surface area, which results from the simultaneous presence of catalytic transition metal ions (Zr or Fe) and ion conducting groups.
Collapse
Affiliation(s)
- Riccardo Narducci
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory-Ionomer Materials for Energy, 00133 Roma, Italy; (E.S.); (A.V.M.)
| | - Emanuela Sgreccia
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory-Ionomer Materials for Energy, 00133 Roma, Italy; (E.S.); (A.V.M.)
| | - Alessio Vincenzo Montella
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory-Ionomer Materials for Energy, 00133 Roma, Italy; (E.S.); (A.V.M.)
| | - Gianfranco Ercolani
- Chemistry Department, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Roma, Italy;
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, ISMN-CNR, Monterotondo Stazione, 00015 Roma, Italy;
| | - Suanto Syahputra
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory-Ionomer Materials for Energy, Campus St Jérôme, 13013 Marseille, France; (S.S.); (E.B.); (L.P.); (P.K.)
| | - Emily Bloch
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory-Ionomer Materials for Energy, Campus St Jérôme, 13013 Marseille, France; (S.S.); (E.B.); (L.P.); (P.K.)
| | - Luca Pasquini
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory-Ionomer Materials for Energy, Campus St Jérôme, 13013 Marseille, France; (S.S.); (E.B.); (L.P.); (P.K.)
| | - Philippe Knauth
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory-Ionomer Materials for Energy, Campus St Jérôme, 13013 Marseille, France; (S.S.); (E.B.); (L.P.); (P.K.)
| | - Maria Luisa Di Vona
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory-Ionomer Materials for Energy, 00133 Roma, Italy; (E.S.); (A.V.M.)
| |
Collapse
|
10
|
Shi TH, Tuo DH, Azuma S, Tokuda S, Masaki M, Yasuhara K, Asakawa H, Furukawa S, Akine S, Ohtani S, Kato K, Ogoshi T. Internal and External Pockets in Pillar[ n]arene Sheets and Their Host-Guest Binding Beyond Cavity Volume Limitations. J Am Chem Soc 2025. [PMID: 40019768 DOI: 10.1021/jacs.4c16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Constructing binding pockets by hierarchically assembling tailored building blocks and understanding structure-property relationships are challenging goals. Herein, amphiphilic pillar[5]arene and pillar[6]arene were prepared and used to construct 2D sheets, which consisted of well-defined hydrophobic and hydrophilic interlayers. In the hydrophobic interlayers, internal hydrophobic pockets were created by packing pairs of pillar[n]arenes, and external hydrophobic pockets were simultaneously generated from gaps between pillar[n]arenes due to electrostatic attractions. Aromatic hydrocarbons were accommodated in these hydrophobic pockets by ball milling. Due to the external pockets, bulky guests larger than the pillar[n]arene cavity sizes were also captured in the sheets.
Collapse
Affiliation(s)
- Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - De-Hui Tuo
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shogo Azuma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shun Tokuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8317, Japan
| | - Minamo Masaki
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Hitoshi Asakawa
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shuhei Furukawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8317, Japan
| | - Shigehisa Akine
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
11
|
Lv J, Li W, Li S, Xu S, Lv Z, Zhu Z, Dai L, Wang B, Li P. 2D Undulated Metal Hydrogen-Bonded Organic Frameworks with Self-Adaption Interlayered Sites for Highly Efficient C-C Coupling in the Electrocatalytic CO 2 Reduction. NANO-MICRO LETTERS 2025; 17:162. [PMID: 39992577 PMCID: PMC11850663 DOI: 10.1007/s40820-025-01679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
The hydrogen-bonded organic frameworks (HOFs) as a new type of porous framework materials have been widely studied in various areas. However, the lack of appropriate active sites, low intrinsic conductivity, and poor stability limited their performance in the field of electrocatalysis. Herein, we designed two 2D metal hydrogen-bonded organic frameworks (2D-M-HOF, M = Cu2+ or Ni2+) with coordination compounds based on 2,3,6,7,14,15-hexahydroxyl cyclotricatechylene and transition metal ions (Cu2+ and Ni2+), respectively. The crystal structure of 2D-Cu-HOF is determined by continuous rotation electron diffraction, indicating an undulated 2D hydrogen-bond network with interlayered π-π stacking. The flexible structure of 2D-M-HOF leads to the formation of self-adaption interlayered sites, resulting in superior activity and selectivity in the electrocatalytic conversion of CO2 to C2 products, achieving a total Faradaic efficiency exceeding 80% due to the high-efficiency C-C coupling. The experimental results and density functional calculations verify that the undulated 2D-M-HOF enables the energetically favorable formation of *OCCHO intermediate. This work provides a promising strategy for designing HOF catalysts in electrocatalysis and related processes.
Collapse
Affiliation(s)
- Jianning Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Wenrui Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Shuai Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Petrochina Petrochemical Research Institute, Beijing, 102206, People's Republic of China
| | - Shuo Xu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zunhang Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhejiaji Zhu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Lu Dai
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Advanced Technology Research Institute (Ji'nan), Beijing Institute of Technology, Ji'nan, 250300, People's Republic of China
| | - Pengfei Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (Zhuhai), Zhuhai, 519088, People's Republic of China.
| |
Collapse
|
12
|
Jabin S, Abbas S, Gupta P, Jadoun S, Rajput A, Rajput P. Recent advances in nanoporous organic polymers (NPOPs) for hydrogen storage applications. NANOSCALE 2025; 17:4226-4249. [PMID: 39810493 DOI: 10.1039/d4nr03623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m2 g-1), and customizable porosity, making them ideal candidates for advanced hydrogen (H2) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H2 storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H2 as a clean energy carrier. The review also highlights recent advancements, such as integrating metal-organic frameworks (MOFs) into NPOPs, further enhancing storage capacities by up to 30%. Their multifaceted properties underpin various applications, from fuel storage and gas separation to water treatment and optical devices. This review explores the significance and versatility of NPOPs in H2 storage due to their unique properties and enhanced storage capacities. Additionally, recent advancements in utilizing NPOPs for H2 storage are highlighted with a detailed discussion of emerging trends and the synthesis of innovative NPOPs. The review concludes with a discussion of the advantages, applications, challenges, research, and future directions for research in this area.
Collapse
Affiliation(s)
- Shagufta Jabin
- Department of Applied Science (Chemistry), School of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India.
| | - Sadiqa Abbas
- Department of Civil Engineering, School of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India
| | - Priti Gupta
- Department of Sciences, School of Sciences, Manav Rachna University, Faridabad, Haryana, India.
| | - Sapana Jadoun
- Sol-ARIS, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Anupama Rajput
- Department of Applied Science (Chemistry), School of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India.
| | - Prachika Rajput
- Department of Chemistry, Netaji Subhas University of Technology, Delhi, India.
| |
Collapse
|
13
|
Lin J, Li G, Hu Y, Zhong Q. Host-guest mediated recognition and rapid extraction of Fusarium mycotoxins in cereals by nickel ferrite magnetic calix[4]arene-derived covalent organic framework fabricated in room-temperature. Food Chem 2025; 464:141887. [PMID: 39522376 DOI: 10.1016/j.foodchem.2024.141887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Fusarium mycotoxins are toxic secondary fungal metabolites and widely distributed in cereals. Herein, a nickel ferrite magnetic calix[4]arene-derived covalent organic framework (NiFe2O4@CX4-COF) was meticulously designed and synthesized using a room-temperature method for the enrichment of mycotoxins. The CX4-COF exhibited a porous crystalline network with an eclipsed AA-stacking configuration. The ingenious integration of NiFe2O4, supramolecular calix[4]arene and COF contributed to host-guest mediated recognition, size-selectivity and high adsorption capacity, rapidly reaching adsorption equilibrium within only 3 min. Simulation calculations revealed that the host-guest interaction, size effect and abundant binding sites facilitated synergistically recognize and capture mycotoxins. NiFe2O4@CX4-COF has successfully applied for simultaneous extraction and analysis of mycotoxins in cereals, achieving negligible matrix effects (-14% to 13%), high sensitivity (LODs of 0.003-0.014 μg/L) and satisfactory recoveries (74.4%-116%). This work provides a prospective platform for constructing tailored macrocycle-based COFs under mild conditions for precise recognition and accurate analysis of trace hazardous substances in food.
Collapse
Affiliation(s)
- Jiana Lin
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
14
|
Talekar S, Tak Y, Joshi A, Ahn K, Yeon KM, Kim J. Magnetic hollow fibers of covalent organic frameworks (COF) for pollutant degradation and adsorptive removal. ENVIRONMENTAL RESEARCH 2024; 259:119519. [PMID: 38964582 DOI: 10.1016/j.envres.2024.119519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
The shaping of covalent organic frameworks (COFs) from non-processible powder forms into applicable architectures with additional functionality remains a challenge. Using pre-electrospun polymer fibers as a sacrificial template, herein, we report a green synthesis of an architecture in the form of COF hollow fibers with an inner layer of peroxidase-like iron oxide nanoparticles as a catalytic material. When compared to peroxidase-like pristine iron oxide nanoparticles, these COF hollow fibers demonstrate higher catalytic breakdown of crystal violet due to their peroxidase-like activity via advanced oxidation process. Furthermore, as a potential adsorbent, hollow COF fibers exhibit significantly effective adsorption capacity and removal efficiency of organic solvent and oil from water. Because of their magnetic nature, COF hollow fibers can be easily recovered and have exhibited high recycling stability for both catalytic dye degradation and organic solvent removal from water.
Collapse
Affiliation(s)
- Sachin Talekar
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Yeojin Tak
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Asavari Joshi
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyungmin Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung-Min Yeon
- Engineering Center, Samsung C&T Corporation, Tower B, 26, Sangil-ro, 6- gil, Gangdong-gu, Seoul, Republic of Korea.
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Ren S, Qiao GY, Wu JR. Supramolecular-macrocycle-based functional organic cocrystals. Chem Soc Rev 2024; 53:10312-10334. [PMID: 39240538 DOI: 10.1039/d4cs00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.
Collapse
Affiliation(s)
- Susu Ren
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| | - Guan-Yu Qiao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jia-Rui Wu
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
16
|
Lin J, Ouyang X, Hu Y, Li G, Zhong Q. β-Cyclodextrin/calix[4]arene hybrid porous organic polymer membrane for synergistic extraction of fluorescent whitening agents migrating from food contact materials. J Chromatogr A 2024; 1734:465298. [PMID: 39216285 DOI: 10.1016/j.chroma.2024.465298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Acurate and sensitive determination of hazards from food contact materials is important to monitor food safety. It is necessary to excavate efficient adsorbent for simultaneous recognition and adsorption of food hazards of trace level for sample preparation. In this work, β-cyclodextrin and calix[4]arene were employed as hybrid functional monomers to prepare macrocyclic porous organic polymer (β-CD-CX4 POP). It was proved that the supramolecular cavities of β-CD-CX4 POP could form inclusion complexes with fluorescent whitening agents (FWAs) through host-guest recognition, which greatly improved the adsorption performance. The hydrophobic cavities of β-cyclodextrin and calix[4]arene of β-CD-CX4 POP exhibited synergistic effect for simultaneous recognition of FWAs. The high-throughput enrichment of FWAs was realized by β-CD-CX4 POP membranes coupled with a multiple-channel syringe pump. Based on membrane-based solid-phase extraction combined with UHPLC-MS/MS, a sensitive analytical method was established to determine six FWAs. The LODs was in range of 3-50 ng/L with the linear range of 0.02-100 μg/L. The developed method was used to quantify FWAs in bread wrapper and bread, and the spiked recoveries ranged from 78.1%-119% with RSD of 2.3%-9.7%. This work indicated that β-CD-CX4 POP was promising for the simultaneous recognition and adsorption of FWAs migrating from food contact materials.
Collapse
Affiliation(s)
- Jiana Lin
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoyan Ouyang
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
17
|
Šorm D, Brus J, Pintar A, Sedláček J, Kovačič S. Hierarchically Porous Polyacetylene Networks: Adsorptive Photocatalysts for Efficient Bisphenol A Removal from Water. ACS POLYMERS AU 2024; 4:420-427. [PMID: 39399892 PMCID: PMC11468696 DOI: 10.1021/acspolymersau.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 10/15/2024]
Abstract
In this article, we report a series of functionalized polyacetylene-type networks formed by chain-growth insertion coordination polymerization in high internal phase emulsions (HIPEs). All polymerized HIPEs (polyHIPEs) contain a hierarchically structured, 3D-interconnected porous framework consisting of a micro-, meso- and macropore system, resulting in exceptionally high specific surface areas (up to 1055 m2·g-1) and total porosities of over 95%. The combination of π-conjugated and hierarchically porous structure in one material enabled the use of these polyacetylene polyHIPEs as adsorptive photocatalysts for the removal of chemical contaminants from water. All polyacetylene polyHIPEs demonstrated high efficiency in the adsorption of bisphenol A from water (up to 48%) and the subsequent photocatalytic degradation. Surprisingly, high adsorption capacity did not affect the photocatalytic efficiency (up to 58%). On the contrary, this dual function seems to be very promising, as some polyacetylene polyHIPEs almost completely removed bisphenol A from water (97%) through the adsorption-photooxidation mechanism. It also appears that the presence of polar functional side groups in the polyacetylene backbone improves the contact of the polyacetylene network with the aqueous bisphenol A solution, which can thus be more easily adsorbed and subsequently oxidized, compensating for the lower specific surface area of some networks, namely, 471 and 308 m2·g-1 in the case of 3-ethynylphenol- and 3-ethynylaniline-based polyacetylene polyHIPEs, respectively.
Collapse
Affiliation(s)
- David Šorm
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2 128 43, Czech Republic
| | - Jiří Brus
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovský
Sq. 2, 162 00 Prague, Czech Republic
| | - Albin Pintar
- Department
of Inorganic Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Jan Sedláček
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2 128 43, Czech Republic
| | - Sebastijan Kovačič
- Department
of Inorganic Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
18
|
Li J, Yuan J, Sun G, Li W, Hao H, Zhou B. Bridging host-guest chemistry with molecule chemistry-covalent organic polyrotaxanes (COPRs): from synthesis to inactivation of bacterial pathogens. RSC Adv 2024; 14:30364-30377. [PMID: 39318465 PMCID: PMC11420781 DOI: 10.1039/d4ra05381h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
As a thriving artificial material, covalent organic frameworks (COFs), boasting inherent structural designability and functional adaptability, and with compositions akin to biological macromolecules, have emerged as a rising star in the field of material science. However, the progression of COFs is significantly impeded by the arduous and intricate preparation procedures of novel building blocks, as well as the inefficient development process of new reactions. An efficient, uncomplicated, and versatile functionalization approach, which has the potential to not only facilitate customized preparation of COFs based on application demands but also enable precise performance control, has become a focal point of research. The formulation of multi-functional COFs through efficient and cost-effective methods poses a critical challenge for the practical application of COFs. This review aims to present the preparation of COFs by amalgamating rigid molecular chemistry with flexible supramolecular host-guest chemistry, adopting a "couple hardness with softness" strategy to meticulously construct intelligent covalent organic polyrotaxanes (COPRs) using conventional reactions. Herein, novel building blocks can be acquired by amalgamating existing macrocycle complexes with framework blocks. The amalgamation of supramolecular chemistry bolsters the capabilities to generate, sense, respond, and amplify distinctive signals, thereby expediting the advancement of multifaceted materials with sophisticated structures. Concurrently, the infusion of supramolecular force endows COPRs with exceptional performance, facilitating multi-mode collaborative antibacterial therapy. This comprehensive review not only promotes the efficient utilization of resources but also stimulates the rapid advancement of framework materials.
Collapse
Affiliation(s)
- Juan Li
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University Weifang 261041 Shandong PR China
- Weifang People's Hospital, Shandong Second Medical University Weifang 261000 Shandong PR China
| | - Jingsong Yuan
- School of Pharmacy, Shandong Second Medical University Weifang 261053 Shandong PR China
| | - Guoli Sun
- Weifang People's Hospital, Shandong Second Medical University Weifang 261000 Shandong PR China
| | - Wentao Li
- School of Basic Medicine, Shandong Second Medical University Weifang 261053 Shandong PR China
| | - Huihui Hao
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University Weifang 261041 Shandong PR China
| | - Baolong Zhou
- School of Pharmacy, Shandong Second Medical University Weifang 261053 Shandong PR China
| |
Collapse
|
19
|
Chen Q, Lin M, Li X, Du Z, Liu Y, Tang Y, Yan Y, Zhu K. Fabrication of Azacrown Ether-Embedded Covalent Organic Frameworks for Enhanced Cathode Performance in Aqueous Ni-Zn Batteries. Angew Chem Int Ed Engl 2024; 63:e202407575. [PMID: 38899382 DOI: 10.1002/anie.202407575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Crown ethers (CEs), known for their exceptional host-guest complexation, offer potential as linkers in covalent organic frameworks (COFs) for enhanced performance in catalysis and host-guest binding. However, their highly flexible conformation and low symmetry limit the diversity of CE-derived COFs. Here, we introduce a novel C3-symmetrical azacrown ether (ACE) building block, tris(pyrido)[18]crown-6 (TPy18C6), for COF fabrication (ACE-COF-1 and ACE-COF-2) via reticular synthesis. This approach enables precise integration of CEs into COFs, enhancing Ni2+ ion immobilization while maintaining crystallinity. The resulting Ni2+-doped COFs (Ni@ACE-COF-1 and Ni@ACE-COF-2) exhibit high discharge capacity (up to 1.27 mAh ⋅ cm-2 at 8 mA ⋅ cm-2) and exceptional cycling stability (>1000 cycles) as cathode materials in aqueous alkaline nickel-zinc batteries. This study serves as an exemplar of the seamless integration of macrocyclic chemistry and reticular chemistry, laying the groundwork for extending the macrocyclic-synthon driven strategy to a diverse array of COF building blocks, ultimately yielding advanced materials tailored for specific applications.
Collapse
Affiliation(s)
- Qing Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mengdi Lin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xia Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhenglin Du
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yandie Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yisong Tang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yong Yan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
20
|
Lin Q, Ding X, Hou Y, Ali W, Li Z, Han X, Meng Z, Sun Y, Liu Y. Adsorption and separation technologies based on supramolecular macrocycles for water treatment. ECO-ENVIRONMENT & HEALTH 2024; 3:381-391. [PMID: 39281072 PMCID: PMC11401079 DOI: 10.1016/j.eehl.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 09/18/2024]
Abstract
The escalating challenges in water treatment, exacerbated by climate change, have catalyzed the emergence of innovative solutions. Novel adsorption separation and membrane filtration methodologies, achieved through molecular structure manipulation, are gaining traction in the environmental and energy sectors. Separation technologies, integral to both the chemical industry and everyday life, encompass concentration and purification processes. Macrocycles, recognized as porous materials, have been prevalent in water treatment due to their inherent benefits: stability, adaptability, and facile modification. These structures typically exhibit high selectivity and reversibility for specific ions or molecules, enhancing their efficacy in water purification processes. The progression of purification methods utilizing macrocyclic frameworks holds promise for improved adsorption separations, membrane filtrations, resource utilization, and broader water treatment applications. This review encapsulates the latest breakthroughs in macrocyclic host-guest chemistry, with a focus on adsorptive and membrane separations. The aim is to spotlight strategies for optimizing macrocycle designs and their subsequent implementation in environmental and energy endeavors, including desalination, elemental extraction, seawater energy harnessing, and sustainable extraction. Hopefully, this review can guide the design and functionality of macrocycles, offering a significantly promising pathway for pollutant removal and resource utilization.
Collapse
Affiliation(s)
- Qian Lin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Xiaolong Ding
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yuansheng Hou
- QingHai Salt Lake Industry Co. Ltd., Golmud 816099, China
| | - Wajahat Ali
- Department of Chemistry, University of Baltistan, Skardu 16100, Pakistan
| | - Zichen Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhen Meng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| |
Collapse
|
21
|
Shreeraj G, Tiwari M, Dugyala VR, Patra A. Unraveling Early-Stage Dynamics of Cage-to-Covalent Organic Framework Transformation at Liquid-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16419-16429. [PMID: 39042836 DOI: 10.1021/acs.langmuir.4c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Postsynthetic linker exchange (PLE) has emerged as an emerging synthetic strategy for constructing high-quality covalent organic frameworks (COFs) from preassembled entities such as linear polymers, amorphous networks, COFs, and porous organic cages by using the principles of dynamic covalent chemistry. The PLE strategy has recently been extended at the liquid-liquid interface to fabricate highly crystalline two-dimensional (2D)-COF membranes at a faster time scale (24 h). Examining the early stages of the interfacial PLE dynamics becomes essential to understanding the expedited COF growth process. In this regard, pendant drop tensiometry has been employed to probe the initial reaction dynamics of the imine cage-to-COF transformation through dynamic interfacial tension (IFT) measurements. The contrasting trends in IFT profiles between PLE-mediated (from cage) and direct COF synthesis (from parent monomers) are in qualitative agreement with the kinetics of bulk-scale interfacial polymerizations. Further, the distinct early-stage interfacial behaviors between the diverse synthetic routes have been experimentally demonstrated using tensiometry, optical microscopy, electron microscopy, and powder X-ray diffraction (PXRD) analysis. The pivotal role of in situ generated imine intermediates (ImIs) and the phenomenon of spontaneous emulsification toward accelerated interfacial COF growth process was delineated. The current study on deploying the pendant drop tensiometric technique to examine early-stage interfacial polymerization dynamics opens up a gripping avenue for mechanistic exploration in PLE-based COF synthesis. The generality of the developed methodology to study the initial COF growth kinetics was extended to a new interfacial PLE-mediated cage-to-COF transformation.
Collapse
Affiliation(s)
- G Shreeraj
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Madhvi Tiwari
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Venkateshwar Rao Dugyala
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
22
|
Liu Q, Pan W, Zhang J, Yang M, Chen Q, Liu F, Li J, Wei S, Zhu G. Porphyrin-based porous organic polymers synthesized using the Alder-Longo method: the most traditional synthetic strategy with exceptional capacity. RSC Adv 2024; 14:20837-20855. [PMID: 38952933 PMCID: PMC11216041 DOI: 10.1039/d4ra02277g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Porphyrin is a typical tetrapyrrole chromophore-based pigment with a special electronic structure and functionalities, which is frequently introduced into various porous organic polymers (POPs). Porphyrin-based POPs are widely used in various fields ranging from environmental and energy to biomedicine-related fields. Currently, most porphyrin-based POPs are prepared via the copolymerization of specific-group-functionalized porphyrins with other building blocks, in which the tedious and inefficient synthesis procedure for the porphyrin greatly hinders the development of such materials. This review aimed to summarize information on porphyrin-based POPs synthesized using the Alder-Longo method, thereby skipping the complex synthesis of porphyrin-bearing monomers, in which the porphyrin macrocycles are formed directly via the cyclic tetramerization of pyrrole with monomers containing multiple aldehyde groups during the polymerization process. The representative applications of porphyrin-based POPs derived using the Alder-Longo method are finally introduced, which pinpoints a clear relationship between the structure and function from the aspect of the building blocks used and porous structures. This review is therefore valuable for the rational design of efficient porphyrin-based porous organic polymer systems that may be utilized in various fields from energy-related conversion/storage technologies to biomedical science.
Collapse
Affiliation(s)
- Qian Liu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University Weifang 261053 Shandong P. R. China
| | - Wen Pan
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Junshan Zhang
- Weifang People's Hospital, Shandong Second Medical University Weifang 261041 Shandong P. R. China
| | - Mei Yang
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Qin Chen
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Feng Liu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Juan Li
- Weifang People's Hospital, Shandong Second Medical University Weifang 261041 Shandong P. R. China
| | - Songrui Wei
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Guoji Zhu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| |
Collapse
|
23
|
Sun T, Song Y, Zhang Y, Ba M, Li W, Cai Z, Hu S, Liu X, Zhang S. High-resolution performance of pillar[6]arene functionalized with imidazolium ionic liquids for gas chromatography. Talanta 2024; 273:125877. [PMID: 38460420 DOI: 10.1016/j.talanta.2024.125877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Pillar[n]arenes (P[n]A, n = 5-10) have attracted much attention because of their highly symmetric pillar-shaped architecture with π-electron rich cavity. Nevertheless, the use of ionic liquid functionalized P[n]A in chromatography has not been reported up to data. This work reports the investigation of the imidazolium ionic liquids functionalized pillar[6]arene (P6A-C10-IM-C8[NTf2]) as the stationary phase for gas chromatography (GC). The statically coated P6A-C10-IM-C8[NTf2] column (0.25 mm i.d.) showed moderate polarity and high column efficiency of 4733 plates/m determined by n-dodecane at 120 °C (k = 2.29). Owing to its unique amphiphilic conformation, the P6A-C10-IM-C8[NTf2] showed good column inertness and resolving capability for a wide range of analytes and isomers. Particularly, the P6A-C10-IM-C8[NTf2] column exhibited distinctly advantageous performance for the challenging isomers of halogenated benzenes, benzaldehydes, phenols and anilines over the common commercial columns, namely 5% phenyl methyl polysiloxane (HP-5) and 35% phenyl methyl polysiloxane (HP-35). In addition, it exhibited good column repeatability and reproducibility with RSD values on the retention times less than 0.05% for run-to-run, 0.38% for day-to-day and 2.94% for column-to-column, respectively. This work demonstrates the promising future of ionic liquid P[n]A stationary phases for chromatographic separations.
Collapse
Affiliation(s)
- Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.
| | - Yanli Song
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - YuanYuan Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - Wen Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China.
| | - Shaoqiang Hu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
24
|
Bermúdez Prieto E, González López EJ, Solis CA, Leon Jaramillo JC, Macor LP, Domínguez RE, Palacios YB, Bongiovanni Abel S, Durantini EN, Otero LA, Gervaldo MA, Heredia DA. An ambipolar PEDOT-perfluorinated porphyrin electropolymer: application as an active material in energy storage systems. RSC Adv 2024; 14:15929-15941. [PMID: 38756855 PMCID: PMC11098003 DOI: 10.1039/d4ra00945b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
The development of functional organic materials is crucial for the advancement of various fields, such as optoelectronics, energy storage, sensing, and biomedicine. In this context, we successfully prepared a stable ambipolar perfluoroporphyrin-based polymeric film by electrochemical synthesis. Our strategy involved the synthesis of a novel tetra-pentafluorophenyl porphyrin covalently linked to four 3,4-ethylenedioxythiophene (EDOT) moieties. The resulting monomer, EDOT-TPPF16, was obtained through a straightforward synthetic approach with a good overall yield. The unique molecular structure of EDOT-TPPF16 serves a dual function, with EDOT moieties allowing electropolymerization for polymeric film formation, while the electron-acceptor porphyrin core enables electrochemical reduction and electron transport. The electrochemical polymerization permits the polymer (PEDOT-TPPF16) synthesis and film formation in a reproducible and controllable manner in one step at room temperature. Spectroelectrochemical experiments confirmed that the porphyrin retained its optoelectronic properties within the polymeric matrix after the electrochemical polymerization. The obtained polymeric material exhibited stable redox capabilities. Current charge-discharge cycles and electrochemical impedance spectroscopy of the electrochemically generated organic film demonstrated that the polymer could be applied as a promising active material in the development of supercapacitor energy storage devices.
Collapse
Affiliation(s)
- Elizabeth Bermúdez Prieto
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3, X5804BYA Río Cuarto Córdoba Argentina +54 358 76233 +54 358 4676538
| | - Edwin J González López
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3, X5804BYA Río Cuarto Córdoba Argentina
| | - Claudia A Solis
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3, X5804BYA Río Cuarto Córdoba Argentina +54 358 76233 +54 358 4676538
| | - Jhair C Leon Jaramillo
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3, X5804BYA Río Cuarto Córdoba Argentina +54 358 76233 +54 358 4676538
| | - Lorena P Macor
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3, X5804BYA Río Cuarto Córdoba Argentina +54 358 76233 +54 358 4676538
| | - Rodrigo E Domínguez
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba Córdoba X5000HUA Argentina
| | - Yohana B Palacios
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3, X5804BYA Río Cuarto Córdoba Argentina
| | - Silvestre Bongiovanni Abel
- INTEMA-CONICET, Facultad de Ingeniería, Universidad Nacional de Mar del Plata B7606WV Mar del Plata Buenos Aires Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3, X5804BYA Río Cuarto Córdoba Argentina
| | - Luis A Otero
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3, X5804BYA Río Cuarto Córdoba Argentina +54 358 76233 +54 358 4676538
| | - Miguel A Gervaldo
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3, X5804BYA Río Cuarto Córdoba Argentina +54 358 76233 +54 358 4676538
| | - Daniel A Heredia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal Nro. 3, X5804BYA Río Cuarto Córdoba Argentina
| |
Collapse
|
25
|
Yang C, Wang K, Lyu W, Liu H, Li J, Wang Y, Jiang R, Yuan J, Liao Y. Nanofibrous Porous Organic Polymers and Their Derivatives: From Synthesis to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400626. [PMID: 38476058 PMCID: PMC11109660 DOI: 10.1002/advs.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Engineering porous organic polymers (POPs) into 1D morphology holds significant promise for diverse applications due to their exceptional processability and increased surface contact for enhanced interactions with guest molecules. This article reviews the latest developments in nanofibrous POPs and their derivatives, encompassing porous organic polymer nanofibers, their composites, and POPs-derived carbon nanofibers. The review delves into the design and fabrication strategies, elucidates the formation mechanisms, explores their functional attributes, and highlights promising applications. The first section systematically outlines two primary fabrication approaches of nanofibrous POPs, i.e., direct bulk synthesis and electrospinning technology. Both routes are discussed and compared in terms of template utilization and post-treatments. Next, performance of nanofibrous POPs and their derivatives are reviewed for applications including water treatment, water/oil separation, gas adsorption, energy storage, heterogeneous catalysis, microwave absorption, and biomedical systems. Finally, highlighting existent challenges and offering future prospects of nanofibrous POPs and their derivatives are concluded.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Kexiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Ruyu Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
26
|
Jia T, Tang H, Qin T, Zhang Y, Huang Y, Xun Z, Liu B, Zhang Z, Xu H, Zhao C. FRET-Based Host-Guest Supramolecular Probe for On-Site and Broad-Spectrum Detection of Pyrethroids in the Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3773-3782. [PMID: 38329040 DOI: 10.1021/acs.jafc.3c05231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The massive use of pyrethroid pesticides in agriculture has brought growing concerns about food safety due to their several harmful effects on human health, especially through the accumulation of the food chain. To date, most of the available analytical methods for pyrethroids still suffer from insufficient detection universality, complicated sample pretreatment, and detection processes, which severely limit their practical applications. Herein, a novel Förster resonance energy transfer (FRET)-assisted host-guest supramolecular nanoassembly is reported, for the first time, successfully realizing ratiometric fluorescent detection of pyrethroids in real samples through the indicator displacement assay (IDA) mechanism. This method is capable of detecting a broad spectrum of pyrethroids, including bifenthrin, cyfluthrin, cypermethrin, deltamethrin, etofenprox, fenvalerate, and permethrin, with ultrahigh detection sensitivity, great selectivity, high anti-interference ability, and, in particular, distinct emission color response from red to green. Such a large chromatic response makes this method available for fast and on-site detection of pyrethroids in real samples with the aid of several simple portable analytical apparatuses.
Collapse
Affiliation(s)
- Tianhao Jia
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haoyao Tang
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Tianyi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Yirui Zhang
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yueran Huang
- Guangzhou Higher Education Mega Center, School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, Guangdong 511447, China
| | - Bin Liu
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Hu S, Zhao H, Liang M, Zhou N, Ding B, Liu X, Zeng Y, Tang B, Hao J, Xue P. Luminescent Porous Organic Crystals for Adsorptive Separation of Toluene and Methylcyclohexane. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4863-4872. [PMID: 38237116 DOI: 10.1021/acsami.3c17865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A butterfly-shaped phenothiazine derivative, PTTCN, was synthesized to obtain pure organic porous crystals for the highly efficient absorptive separation of toluene (Tol) and methylcyclohexane (Mcy). Due to the presence of three polar cyano groups and nonplanar conformation, these molecules self-assembled into a hydrogen-bonded organic framework (X-HOF-5) with distinct cavities capable of accommodating Tol molecules through multiple hydrogen-bonding interactions. Upon solvent removal via heating, the activated X-HOF-5 retained its cavity structure albeit with altered stacking arrangements, accompanied by a remarkable fluorescent color change from cyan to green. X-HOF-5a can undergo a phase transformation into X-HOF-5 upon reabsorption of Tol, while exhibiting no accommodation of Mcy due to the weak intermolecular interaction between PTTCN and Mcy. This suggests that the activated HOF material prefers Tol over Mcy. Moreover, X-HOF-5a may selectively accommodate Tol in a Tol/Mcy equimolar mixture, and the purity of Tol can reach 97% after release from the framework. Additionally, it is noteworthy that the HOF material exhibits recyclability without any discernible loss in performance.
Collapse
Affiliation(s)
- Siwen Hu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - He Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Meng Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Ningning Zhou
- School of Chemical Engineering Qinghai University, Xining 810016, P. R. China
| | - Bo Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xingliang Liu
- School of Chemical Engineering Qinghai University, Xining 810016, P. R. China
| | - Yongfei Zeng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Bo Tang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jingjun Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
28
|
Zhou W, Lavendomme R, Zhang D. Recent progress in iodine capture by macrocycles and cages. Chem Commun (Camb) 2024; 60:779-792. [PMID: 38126398 DOI: 10.1039/d3cc05337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The effective capture of radioiodine is vital to the development of the nuclear industry and ecological environmental protection. There is, therefore, a continuously growing research exploration in various types of solid-state materials for iodine capture. During the last decade, the potential of using macrocycle and cage-based supramolecular materials in effective uptake and separation of radioactive iodine has been demonstrated. Interest in the application of these materials in iodine capture originates from their diversified porous characteristics, abundant host-guest chemistry, high iodine affinity and adsorption capacity, high stability in various environments, facile modification and functionalization, and intrinsic structural flexibility, among other attributes. Herein, recent progress in macrocycle and cage-based solid-state materials, including pure discrete macrocycles and cages, and their polymeric forms, for iodine capture is summarized and discussed with an emphasis on iodine capture capacities, mechanisms, and design strategies.
Collapse
Affiliation(s)
- Weinan Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/08, B-1050 Brussels, Belgium
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
29
|
Cao XM, Zhang AY, Cui WR, Liu LY, Zhang YX, Lin H, Zhang Y. Azo-Linked Porous Polycalix[ n]arenes for the Efficient Removal of Organic Micropollutants from Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:957-965. [PMID: 38151466 DOI: 10.1021/acsami.3c18069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Developing novel porous adsorbents for efficient wastewater treatment is significant to the environment protection. Herein, three porous polycalix[n]arenes (n = 4, 6, and 8) which had varying cavity sizes of the macrocycle (Azo-CX4P, Azo-CX6P, and Azo-CX8P) were prepared under mild conditions and tested for their potential application in water purification. Azo-CX8P with a larger cavity size of the macrocycle outperformed Azo-CX4P and Azo-CX6P in screening studies involving a range of organic micropollutants. It was proved that Azo-CX8P was especially efficient in the removal of cationic dyes because of its high negative surface charge. In terms of the adsorption of Rhodamine B with Azo-CX8P, the pseudo-second-order rate constant reaches 5.025 g·mg-1·min-1 with the maximum adsorption capacity being 1345 mg·g-1. These values are significantly higher compared with those recorded for most adsorbents. In addition, the easily prepared Azo-CX8P can be reused at least six times without a loss of the adsorption efficiency, demonstrating its potential use in water purification.
Collapse
Affiliation(s)
- Xiao-Mei Cao
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ai-Ying Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Wei-Rong Cui
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Lu-Yao Liu
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yu-Xuan Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Hui Lin
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yong Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
30
|
Lin J, Xie Z, Hu Y, Li G, Zhong Q. Flower-like calix[6]arene-based covalent organic framework for membrane extraction of sulfonamides in animal-derived food through host-guest interaction prior to determination with ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1713:464499. [PMID: 37983987 DOI: 10.1016/j.chroma.2023.464499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Supramolecular macrocycle-based covalent organic frameworks (COFs) are promising adsorbents for adsorption of hazards due to their host-guest recognition property. However, most supramolecular macrocycles are conformationally flexible, making them challenging to introduce into COFs. In this work, a calix[6]arene-based COF (CX6-BD COF) was fabricated with a unique flower-like morphology and high crystallinity. Especially, the cavity of CX6 exhibited host-guest inclusion interaction for sulfonamides (SAs), which was verified by quantum chemistry calculation. The integration of the porosity of COFs with the recognition cavity of CX6 made CX6-BD COF display excellent enrichment performance for SAs, with good enrichment factors (EFs) between 77 and 96. The material was employed as an adsorbent for COF membrane filter extraction, coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to simultaneously enrich and determine seven SAs in animal-derived food. The analytical method showed a wide linear range (0.01-100 µg/L and 0.05-100 µg/L) and low detection limits (3-10 ng/L). The established method was successfully applied to sensitively determine SAs in chicken, pork and beef samples, which achieved satisfactory recoveries (73.8-113%). These results demonstrated CX6-BD COF has good application potential in determination of trace and ultra-trace SAs in complex food matrices as an adsorbent.
Collapse
Affiliation(s)
- Jiana Lin
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510075, China
| | - Zenghui Xie
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510075, China
| | - Yuling Hu
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510075, China.
| | - Gongke Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510075, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
31
|
Wang ZQ, Wang X, Yang YW. Pillararene-Based Supramolecular Polymers for Adsorption and Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301721. [PMID: 36938788 DOI: 10.1002/adma.202301721] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Supramolecular polymers have attracted increasing attention in recent years due to their perfect combination of supramolecular chemistry and traditional polymer chemistry. The design and synthesis of macrocycles have driven the rapid development of supramolecular chemistry and polymer science. Pillar[n]arenes, a new generation of macrocyclic compounds possessing unique pillar-shaped structures, nano-sized cavities, multi-functionalized groups, and excellent host-guest complexation abilities, are promising candidates to construct supramolecular polymer materials with enhanced properties and functionalities. This review summarizes recent progress in the design and synthesis of pillararene-based supramolecular polymers (PSPs) and illustrates their diverse applications as adsorption and separation materials. All performances are evaluated and analyzed in terms of efficiency, selectivity, and recyclability. Typically, PSPs can be categorized into three typical types according to their topologies, including linear, cross-linked, and hybrid structures. The advances made in the area of functional supramolecular polymeric adsorbents formed by new pillararene derivatives are also described in detail. Finally, the remaining challenges and future perspectives of PSPs for separation-based materials science are discussed. This review will inspire researchers in different fields and stimulate creative designs of supramolecular polymeric materials based on pillararenes and other macrocycles for effective adsorption and separation of a variety of targets.
Collapse
Affiliation(s)
- Zhuo-Qin Wang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
32
|
Zhu H, Chen L, Sun B, Wang M, Li H, Stoddart JF, Huang F. Applications of macrocycle-based solid-state host-guest chemistry. Nat Rev Chem 2023; 7:768-782. [PMID: 37783822 DOI: 10.1038/s41570-023-00531-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 10/04/2023]
Abstract
Macrocyclic molecules have been used in various fields owing to their guest binding properties. Macrocycle-based host-guest chemistry in solution can allow for precise control of complex formation. Although solution-phase host-guest complexes are easily prepared, their limited stability and processability prevent widespread application. Extending host-guest chemistry from solution to the solid state results in complexes that are generally more robust, enabling easier processing and broadened applications. Macrocyclic compounds in the solid state can encapsulate guests with larger affinities than their soluble counterparts. This is crucial for use in applications such as separation science and devices. In this Review, we summarize recent progress in macrocycle-based solid-state host-guest chemistry and discuss the basic physical chemistry of these complexes. Representative macrocycles and their solid-state complexes are explored, as well as potential applications. Finally, perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Bin Sun
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Hao Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
| |
Collapse
|
33
|
Jia Q, Ma X, Chen H, Li X, Huang MH. Unusual 3,4-Oxidative Coupling Polymerization on 1,2,5-Trisubstituted Pyrroles for Novel Porous Organic Polymers. ACS Macro Lett 2023; 12:1358-1364. [PMID: 37733801 DOI: 10.1021/acsmacrolett.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Porous organic polymers (POPs) have demonstrated promising task-specific applications due to their structure designability and thus functionality. Herein, an unusual 3,4-polymerization on 1,2,5-trisubstituted pyrroles has been developed to give linear polypyrrole-3,4 in high efficiency, with Mn of 20000 and PDI of 1.7. This novel polymerization technique was applied to prepare a series of polypyrrole-based POPs (PY-POP-1-4), which exhibited high BET surface areas (up to 762 m2 g-1) with a meso-micro-supermicro hierarchically porous structure. Furthermore, PY-POPs were doped in the mixed matrix membranes based on the polysulfone matrix to enhance the gas permeability and gas pair selectivity, with H2/N2 selectivity up to 84.6 and CO2/CH4 and CO2/N2 selectivity up to 46.8 and 39.6.
Collapse
Affiliation(s)
- Qiong Jia
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Hanyuan Chen
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| | - Xiaodong Li
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| | - Mu-Hua Huang
- School of Materials Science and Engineering, Experimental Center for Advanced Materials, Beijing Institute of Technology, No.5, Zhongguancun South Street, Beijing 100081, P. R. China
| |
Collapse
|
34
|
Lou XY, Zhang S, Wang Y, Yang YW. Smart organic materials based on macrocycle hosts. Chem Soc Rev 2023; 52:6644-6663. [PMID: 37661759 DOI: 10.1039/d3cs00506b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Innovative design of smart organic materials is of great importance for the advancement of modern technology. Macrocycle hosts, possessing cyclic skeletons, intrinsic cavities, and specific guest binding properties, have demonstrated pronounced potential for the elaborate fabrication of a variety of functional organic materials with smart stimuli-responsive characteristics. In this tutorial review, we outline the current development of smart organic materials based on macrocycle hosts as key building blocks, focusing on the design principles and functional mechanisms of the tailored systems. Three main types of macrocycle-based smart organic materials are exemplified as follows according to the distinct forms of construction patterns: (1) supramolecular polymeric materials and nanoassemblies; (2) adaptive molecular crystals; (3) smart porous organic materials. The responsive performances of macrocycle-containing smart materials in versatile aspects, including mechanically adaptive polymers, soft optoelectronic devices, data encryption, drug delivery systems, artificial transmembrane channels, crystalline-state gas adsorption/separation, and fluorescence sensing, are illustrated by discussing the representative studies as paradigms, where the roles of macrocycles in these systems are highlighted. We also provide in the conclusion part the perspectives and remaining challenges in this burgeoning field.
Collapse
Affiliation(s)
- Xin-Yue Lou
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Siyuan Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
35
|
Mondal R, Shanmughan A, Murugeswari A, Shanmugaraju S. Recent advances in fluorescence-based chemosensing of organoarsenic feed additives using luminescence MOFs, COFs, HOFs, and QDs. Chem Commun (Camb) 2023; 59:11456-11468. [PMID: 37674461 DOI: 10.1039/d3cc03125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organoarsenics are low-toxicity compounds that are used widely as feed additives to promote livestock growth, enhance meat pigmentation, and fight against intestinal parasites. The organoarsenic compounds are commonly found in poultry waste and the degradation of organoarsenic produces the toxic carcinogen inorganic arsenic such as As(V) and As(III), which results in severe arsenic pollution of soil and groundwater. As a consequence, there exists a high necessity to develop suitable sensing methods for the trace detection and quantification of organoarsenic feed additives in wastewater. Among various detection methods, in particular, fluorescence-based sensing has become a popular and efficient method used extensively for sensing water contaminants and environmental contaminants. In the recent past, a wide variety of fluorescence chemosensors have been designed and employed for the efficient sensing and quantification of the concentration of organoarsenic feed additives in different environmental samples. This review article systematically highlights various fluorescence chemosensors reported to date for fluorescence-based sensing of organoarsenic feed additives. The fluorescence sensors discussed in this review are classified and grouped according to their structures and functions, and in each section, we provide a detailed report on the structure, photophysics, and fluorescence sensing properties of different chemosensors. Lastly, the future perspectives on the design and development of practically useful sensor systems for selective and discriminative sensing of organoarsenic compounds have been stated.
Collapse
Affiliation(s)
- Rajdeep Mondal
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
| | - Ananthu Shanmughan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
| | - A Murugeswari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
- Department of Physics, Anna University, Chennai 600025, India.
| | | |
Collapse
|
36
|
Kang JY, Zhao XB, Shi YP. Azophenyl Calix[4]arene Porous Organic Polymer for Extraction and Analysis of Triphenylmethane Dyes from Seafood. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42981-42991. [PMID: 37642085 DOI: 10.1021/acsami.3c08703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Porous organic polymers (POPs) based on calix[4]arene with a hydrophobic π-rich cavity and host-guest recognition properties exhibit a wide application range of molecular extraction and separation. However, it is still a challenge to improve the extraction and separation selectivity by exploring and seeking appropriate building blocks for the functionalization and pore size adjustment of calix[4]arene. Herein, an azophenyl calix[4]arene porous organic polymer (AC-POP) was proposed. By introducing an electron-rich cavity and adjusting the pore sizes of calix[4]arene, the AC-POP showed high selectivity extraction performance in triphenylmethane (TPM) dyes. The extraction mechanism was explored by adsorption thermodynamics study, density functional theory (DFT) calculation, and reduced density gradient (RDG) and electrostatic potential (ESP) analyses, which suggested that the selectivity adsorption of TPM dyes based on AC-POP was mainly the result of entropy driven by the hydrophobic effect. In addition, the noncovalent interactions including π-π stacking, van der Waals force, and electrostatic interaction were also important factors affecting the adsorption capacity of TPM dyes. Under optimal extraction conditions, the AC-POP possessed a maximum extraction amount of 95.3 mg·g-1 for Rhodamine B (RB), high enrichment factor of about 100, and excellent reusability more than 10 times. Then, an analytical method of TPM dyes with AC-POP as a solid-phase extractant combined with high-performance liquid chromatography-ultraviolet (HPLC-UV) was established, which displayed excellent sensitivity with the limits of detection (LODs) and limits of quantitation (LOQs) in the ranges of 0.004-0.35 and 0.016-1.16, respectively. The mean recoveries for TPM dyes ranged from 85.0 to 109.4% with an RSD of 0.48-9.45%. The proposed method was successfully applied to the analysis of the five TPM dyes in seafood matrix samples.
Collapse
Affiliation(s)
- Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
37
|
Ashirov T, Puangsamlee T, Robles A, Fritz PW, Piech K, Miljanić OŠ, Coskun A. Eutectic Molten Salt Synthesis of Highly Microporous Macrocyclic Porous Organic Polymers for CO 2 Capture. Helv Chim Acta 2023; 106. [DOI: https:/doi.org/10.1002/hlca.202300072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2024]
Abstract
AbstractThe development of porous materials is of great interest for the capture of CO2 from various emission sources, which is essential to mitigate its detrimental environmental impact. In this direction, porous organic polymers (POPs) have emerged as prime candidates owing to their structural tunability, physiochemical stability and high surface areas. In an effort to transfer an intrinsic property of a cyclotetrabenzoin‐derived macrocycle – its high CO2 affinity – into porous networks, herein we report the synthesis of three‐dimensional (3D) macrocycle‐based POPs through the polycondensation of an octaketone macrocycle with phenazine‐2,3,7,8‐tetraamine hydrochloride. This polycondensation was performed under ionothermal conditions, using a eutectic salt mixture in the temperature range of 200 to 300 °C. The resulting polymers, named 3D‐mmPOPs, showed reaction temperature‐dependent surface areas and gas uptake properties. 3D‐mmPOP‐250 synthesized at 250 °C exhibited a surface area of 752 m2 g−1 and high microporosity originating from the macrocyclic units, thus resulting in an excellent CO2 binding enthalpy of 40.6 kJ mol−1 and CO2 uptake capacity of 3.51 mmol g−1 at 273 K, 1.1 bar.
Collapse
Affiliation(s)
- Timur Ashirov
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| | - Thamon Puangsamlee
- Department of Chemistry University of Houston 3585 Cullen Boulevard #112 Houston, TX 77204-5003 United States
| | - Alexandra Robles
- Department of Chemistry University of Houston 3585 Cullen Boulevard #112 Houston, TX 77204-5003 United States
| | - Patrick W. Fritz
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| | - Krzysztof Piech
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| | - Ognjen Š. Miljanić
- Department of Chemistry University of Houston 3585 Cullen Boulevard #112 Houston, TX 77204-5003 United States
| | - Ali Coskun
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| |
Collapse
|
38
|
Cheng K, Li H, Wang JR, Li PZ, Zhao Y. From Supramolecular Organic Cages to Porous Covalent Organic Frameworks for Enhancing Iodine Adsorption Capability by Fully Exposed Nitrogen-Rich Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301998. [PMID: 37162443 DOI: 10.1002/smll.202301998] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Indexed: 05/11/2023]
Abstract
In order to overcome the limitations of supramolecular organic cages for their incomplete accessibility of active sites in the solid state and uneasy recyclability in liquid solution, herein a nitrogen-rich organic cage is rationally linked into framework systems and four isoreticular covalent organic frameworks (COFs), that is, Cage-TFB-COF, Cage-NTBA-COF, Cage-TFPB-COF, and Cage-TFPT-COF, are successfully synthesized. Structure determination reveals that they are all high-quality crystalline materials derived from the eclipsed packing of related isoreticular two-dimensional frameworks. Since the nitrogen-rich sites usually have a high affinity toward iodine species, iodine adsorption investigations are carried out and the results show that all of them display an enhancement in iodine adsorption capacities. Especially, Cage-NTBA-COF exhibits an iodine adsorption capacity of 304 wt%, 14-fold higher than the solid sample packed from the cage itself. The strong interactions between the nitrogen-rich sites and the adsorbed iodine species are revealed by spectral analyses. This work demonstrates that, utilizing the reticular chemistry strategy to extend the close-packed supramolecular organic cages into crystalline porous framework solids, their inherent properties can be greatly exploited for targeted applications.
Collapse
Affiliation(s)
- Ke Cheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Hailian Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Jia-Rui Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Pei-Zhou Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
39
|
Yuan Y, Bang KT, Wang R, Kim Y. Macrocycle-Based Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210952. [PMID: 36608278 DOI: 10.1002/adma.202210952] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Macrocycles with well-defined cavities and the ability to undergo supramolecular interactions are classical materials that have played an essential role in materials science. However, one of the most substantial barriers limiting the utilization of macrocycles is their aggregation, which blocks the active regions. Among many attempted strategies to prevent such aggregation, installing macrocycles into covalent organic frameworks (COFs), which are porous and stable reticular networks, has emerged as an ideal solution. The resulting macrocycle-based COFs (M-COFs) preserve the macrocycles' unique activities, enabling applications in various fields such as single-atom catalysis, adsorption/separation, optoelectronics, phototherapy, and structural design of forming single-layered or mechanically interlocked COFs. The resulting properties are unmatchable by any combination of macrocycles with other substrates, opening a new chapter in advanced materials. This review focuses on the latest progress in the concepts, synthesis, properties, and applications of M-COFs, and presents an in-depth outlook on the challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ki-Taek Bang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
40
|
Organic macrocycle-polyoxometalate hybrids. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Shi Y, Yang J, Gao F, Zhang Q. Covalent Organic Frameworks: Recent Progress in Biomedical Applications. ACS NANO 2023; 17:1879-1905. [PMID: 36715276 DOI: 10.1021/acsnano.2c11346] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline organic porous material with specific features and interesting structures, including porosity, large surface area, and biocompatibility. These features enable COFs to be considered as excellent candidates for applications in various fields. Recently, COFs have been widely demonstrated as promising materials for biomedical applications because of their excellent physicochemical properties and ultrathin structures. In this review, we cover the recent progress of COF materials for applications in photodynamic therapy, gene delivery, photothermal therapy, drug delivery, bioimaging, biosensing, and combined therapies. Moreover, the critical challenges and further perspectives with regards to COFs for future biology-facing applications are also discussed.
Collapse
Affiliation(s)
- Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Feng Gao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
42
|
Jiao Q, Liu B, Xu X, Huang T, Cao B, Wang L, Wang Q, Du A, Li J, Zhou B, Wang T. Biodegradable porous polymeric drug as a drug delivery system: alleviation of doxorubicin-induced cardiotoxicity via passive targeted release. RSC Adv 2023; 13:5444-5456. [PMID: 36793291 PMCID: PMC9923820 DOI: 10.1039/d2ra07410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug developed against a broad range of cancers, and its clinical applications are greatly restricted by the side effects of severe cardiotoxicity during tumour treatment. Herein, the DOX-loaded biodegradable porous polymeric drug, namely, Fc-Ma-DOX, which was stable in the circulation, but easy to compose in the acidic medium, was used as the drug delivery system avoiding the indiscriminate release of DOX. Fc-Ma was constructed via the copolymerization of 1,1'-ferrocenecarbaldehyde with d-mannitol (Ma) through the pH-sensitive acetal bonds. Echocardiography, biochemical parameters, pathological examination, and western blot results showed that DOX treatment caused increased myocardial injury and oxidative stress damage. In contrast, treatment with Fc-Ma-DOX significantly reduced myocardial injury and oxidative stress by DOX treatment. Notably, in the Fc-Ma-DOX treatment group, we observed a significant decrease in the uptake of DOX by H9C2 cells and a significant decrease in reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Qiuhong Jiao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Baoting Liu
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Xiufeng Xu
- Department of Geriatrics, Affiliated Hospital of Weifang Medical UniversityWeifang 261031ShandongChina
| | - Tao Huang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Bufan Cao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Lide Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Qingguo Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Ailing Du
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Jingtian Li
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University Weifang 261031 Shandong China
| | - Tao Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| |
Collapse
|
43
|
Synthesis of Pillar[5]arene- and Phosphazene-Linked Porous Organic Polymers for Highly Efficient Adsorption of Uranium. Molecules 2023; 28:molecules28031029. [PMID: 36770695 PMCID: PMC9920965 DOI: 10.3390/molecules28031029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
It is crucial to design efficient adsorbents for uranium from natural seawater with wide adaptability, effectiveness, and environmental safety. Porous organic polymers (POPs) provide superb tunable porosity and stability among developed porous materials. In this work, two new POPs, i.e., HCCP-P5-1 and HCCP-P5-2 were rationally designed and constructed by linked with macrocyclic pillar[5]arene as the monomer and hexachlorophosphate as the core via a macrocycle-to-framework strategy. Both pillar[5]arene-containing POPs exhibited high uranium adsorption capacity compared with previously reported macrocycle-free counterparts. The isothermal adsorption curves and kinetic studies showed that the adsorption of POPs on uranium was consistent with the Langmuir model and the pseudo-second-order kinetic model. Especially, HCCP-P5-1 has reached 537.81 mg/g, which is greater than most POPs that have been reported. Meanwhile, the comparison between both HCCP-P5-1 and HCCP-P5-2 can illustrate that the adsorption capacity and stability could be adjusted by the monomer ratio. This work provides a new idea for the design and construction of uranium adsorbents from macrocycle-derived POPs.
Collapse
|
44
|
Li RH, Lin Q, Li SL, Sun Y, Liu Y. MXenes Functionalized with Macrocyclic Hosts: From Molecular Design to Applications. Chempluschem 2023; 88:e202200423. [PMID: 36680301 DOI: 10.1002/cplu.202200423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Two-dimensional (2D) MXene has aroused wide attention for its excellent physical and chemical properties. The interlayer engineering formed by layer-by-layer stacking of MXene nanosheets can be employed for molecular sieving and water purification by incorporating specific groups onto the exterior surface of MXene. Macrocyclic hosts exhibiting unique structural features and recognition ability can construct smart devices for external stimuli with reversible features between macrocycles and guests. On that basis, macrocyclic hosts can be anchored to MXene to provide numerous insights into their compositions and intercalation states. In this review, the MXene prepared based on macrocyclic hosts from molecular design to applications is highlighted. Various MXenes functionalized with macrocyclic hosts are empowered in functional membrane (including water purification, organic solvent nanofiltration, and electromagnetic shielding), photocatalysis, sensing, and adsorption (interactions with specific guest). Hopefully, this review can bring new inspiration to the design of multifunctional MXene-based materials and improving its practical applications.
Collapse
Affiliation(s)
- Run-Hao Li
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Qian Lin
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Shu-Lan Li
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yi Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.,State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
45
|
Gao R, An B, Zhou C, Zhang X. Synthesis of a Triazaisotruxene-Based Porous Organic Polymer and Its Application in Iodine Capture. Molecules 2022; 27:8722. [PMID: 36557857 PMCID: PMC9784556 DOI: 10.3390/molecules27248722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A new triazaisotruxene-based porous organic polymer (POP) was designed and successfully synthesized by a FeCl3-promoted crosslinking reaction. As a result of its porosity and good thermal stability, the designed POP can be utilized as a promising adsorbent for iodine, not only in the gaseous phase, but also in organic and aqueous solutions. Compared to its triazatruxene (TN) analogue, the ITN-based POP shows equal iodine uptake in the gaseous phase and in hexane solution, and better uptake in aqueous solution.
Collapse
Affiliation(s)
- Rong Gao
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Bohang An
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Cen Zhou
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
46
|
Pan X, Wang Q, Ma Z, Qin Y, Lu X, Jin W, Zhu Y. Assisting Role of Water Molecules in Ionic Recognition by 18-Crown-6 Ether in Aqueous Solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Lu Q, zhang D, Xu F, He G, Qian J, Xia J. Porous fluorescent polyaminocarbazole synthesis and their sensing applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Kiruthika J, Arunachalam M. Pillar[5]arene-based cross-linked polymer for the rapid adsorption of iodine from water and vapor phases. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Li Z, Yang Z, Zhang Y, Yang B, Yang Y. Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazone‐Linked Pillararene Framework by a Macrocycle‐To‐Framework Strategy. Angew Chem Int Ed Engl 2022; 61:e202206144. [DOI: 10.1002/anie.202206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yinan Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
50
|
Chen D, Luo D, He Y, Tian J, Yu Y, Wang H, Sessler JL, Chi X. Calix[4]pyrrole-Based Azo-Bridged Porous Organic Polymer for Bromine Capture. J Am Chem Soc 2022; 144:16755-16760. [PMID: 36085555 DOI: 10.1021/jacs.2c08327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The toxicity, corrosiveness, and volatility of elemental bromine presents challenges for its safe storage and transportation. Purification from other halogens is also difficult. Here, we report an easy-to-prepare calix[4]pyrrole-based azo-bridged porous organic polymer (C4P-POP) that supports efficient bromine capture. C4P-POP was found to capture bromine as a vapor and from a cyclohexane source phase with maximum uptake capacities of 3.6 and 3.4 g·g-1, respectively. Flow-through adsorption experiments revealed that C4P-POP removes 80% of the bromine from a 4.0 mM cyclohexane solution at a flow rate of 45 mL·h-1. C4P-POP also allowed the selective capture of bromine from a 1:1 mixture of bromine and iodine in cyclohexane.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Luo
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanlei He
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinya Tian
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yao Yu
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyu Wang
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai. University, Shanghai 200444, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|