1
|
Liang J, Zhang J, Sun J, Liang Q, Zhan Y, Yang Z, Zhang Y, Jin L, Hu C, Zhao YT. Ketogenic diet attenuates neuroinflammation and restores hippocampal neurogenesis to improve CUMS induced depression-like behavior in mice. Food Funct 2025; 16:3408-3422. [PMID: 40197680 DOI: 10.1039/d5fo00226e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The ketogenic diet (KD) has been proposed as a potential treatment for depression. However, the underlying mechanisms remain poorly understood. This study aimed to evaluate further the effects of KD on chronic unpredictable mild stress (CUMS)-induced depression in mice and investigate the underlying mechanisms. The results demonstrated that KD intervention significantly alleviated CUMS-induced depression-like behaviors, as evidenced by a decrease in immobility time in the forced swimming test and tail suspension test, an increase in distance traveled in the open field test, and a greater preference for sucrose in the sucrose preference test. KD alleviated neuroinflammation by reducing the levels of glial cell activation markers Iba-1 and GFAP, inhibiting the expression of inflammatory factors IL-1β, TNF-α, and COX-2, and suppressing the overactivation of the TLR4/MyD88/NF-κB signaling pathway. Furthermore, KD increased the number of DCX-, BrdU-, and PSD95-positive cells in the hippocampus and enhanced the BDNF/TrkB/CREB and Wnt/β-catenin signaling pathways, thereby promoting hippocampal neurogenesis. These findings suggested that KD alleviated CUMS-induced depression-like behaviors in mice by reducing neuroinflammation, enhancing neurotrophic signaling, and promoting hippocampal neurogenesis, thereby providing a mechanistic basis for its potential as a novel dietary antidepressant therapy.
Collapse
Affiliation(s)
- Jinyuan Liang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Jingxi Zhang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Jingyu Sun
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Qingsheng Liang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Yingtong Zhan
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Zhiyou Yang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Yongping Zhang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang, China.
| | - Yun-Tao Zhao
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
2
|
Zuo Z, Zhang H, Li Z, Qi F, Hu H, Yang J, Yao Z. Activation of Hippocampal Neuronal NADPH Oxidase NOX2 Promotes Depressive-Like Behaviour and Cognition Deficits in Chronic Restraint Stress Mouse Model. PHARMACOPSYCHIATRY 2025; 58:117-126. [PMID: 39547705 DOI: 10.1055/a-2429-4023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND Nicotinamide adenosine dinucleotide phosphate oxidases (NOX) play important roles in mediating stress-induced depression. Three NOX isotypes are expressed mainly in the brain: NOX2, NOX3 and NOX4. In this study, the expression and cellular sources of these NOX isoforms was investigated in the context of stress-induced depression. METHODS Chronic restraint stress (CRS)-induced depressive-like behaviour and cognitive deficits were evaluated by tail suspension tests, forced swimming tests and the Morris water maze test. Hippocampal NOX expression was determined by immunofluorescence staining and western blotting. The hippocampal levels of the brain-derived neurotrophic factor (BDNF) mRNA were determined via quantitative real-time -polymerase chain reaction. Glucocorticoid levels in the hippocampus were measured using ELISA kits. RESULTS In the mouse CRS model, a significant increase in NOX2 expression was observed in the hippocampus, whereas no significant changes in NOX3 and NOX4 expression were detected. Next, NOX2 expression was primarily localised to neurons (NeuN+) but not microglia (Iba-1+) or astrocytes (GFAP+). Treatment with gp91ds-tat, a specific NOX2 inhibitor, effectively mitigated the behavioural deficits induced by CRS. The decreased expression of the BDNF mRNA in the hippocampus of CRS mice was restored upon gp91ds-tat treatment. A positive correlation was identified between neuronal NOX2 expression and serum glucocorticoid levels. CONCLUSIONS Our study indicated that neuronal NOX2 may be a critical mediator of depression-like behaviours and spatial cognitive deficits in mice subjected to CRS. Blockade of NOX2 signalling may be a promising therapeutic strategy for depression.
Collapse
Affiliation(s)
- Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyang Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Haojie Hu
- Department of Psychology, College of Arts and Sciences, New York University, NY, USA
| | - Junhua Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhibin Yao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Zhu Y, Li Y, Yu Z, Chen X, Lan T, Wang M, Yu S. Agomelatine Alleviates Depressive-like Behaviors by Suppressing Hippocampal Oxidative Stress in the Chronic Social Defeat Stress Model. Antioxidants (Basel) 2025; 14:410. [PMID: 40298761 PMCID: PMC12024063 DOI: 10.3390/antiox14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder characterized by significant mood disturbances and cognitive impairments. Chronic stress, particularly social defeat stress, plays a crucial role in the etiology of depression, with oxidative stress being a pivotal factor in its pathophysiology. Consequently, identifying effective strategies to mitigate oxidative stress and prevent the progression of depression is of paramount importance. Agomelatine, an atypical antidepressant with melatonergic and serotonergic properties, has shown promise in treating MDD due to its unique mechanisms of action. In this study, we aimed to investigate whether agomelatine could ameliorate behavioral deficits in a chronic social defeat stress (CSDS) mouse model. CSDS mice were administered agomelatine (50 mg/kg, intraperitoneally) and exhibited significant reductions in both anxiety-like and depressive-like behaviors in behavioral tests. Further analysis revealed that agomelatine treatment effectively reduced oxidative damage in the hippocampus of CSDS mice. Additionally, agomelatine attenuated mitochondrial dysfunction and restored synaptic plasticity, as evidenced by an increased density of excitatory synapses and enhanced neuronal activity. These findings suggest that agomelatine may exert therapeutic effects by reducing oxidative stress, preserving mitochondrial function, and enhancing synaptic plasticity, providing new insights into its potential as a treatment for chronic social defeat stress-induced depression.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
| | - Zhaoying Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
| | - Xiao Chen
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
| | - Meijian Wang
- Department of Endocrinology, Qilu Hospital, Shandong University, Qingdao, 758 Hefei Road, Qingdao 266035, China;
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
- Shandong Key Laboratory of Mental Disorders and Intelligent Control, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
4
|
Xu J, Wei H, Sun Z, Li W, Long J, Liu J, Feng Z, Cao K. Hydroxytyrosol as a Mitochondrial Homeostasis Regulator: Implications in Metabolic Syndrome and Related Diseases. Antioxidants (Basel) 2025; 14:398. [PMID: 40298640 PMCID: PMC12024272 DOI: 10.3390/antiox14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Hydroxytyrosol (HT), a principal bioactive phytochemical abundant in Mediterranean dietary sources, has emerged as a molecule of significant scientific interest owing to its multifaceted health-promoting properties. Accumulating evidence suggests that HT's therapeutic potential in metabolic disorders extends beyond conventional antioxidant capacity to encompass mitochondrial regulatory networks. This review synthesizes contemporary evidence from our systematic investigations and the existing literature to delineate HT's comprehensive modulatory effects on mitochondrial homeostasis. We systematically summarized the impact of HT on mitochondrial dynamics (fusion/fission equilibrium), biogenesis and energy metabolism, mitophagy, inter-organellar communication with the endoplasmic reticulum, and microbiota-mitochondria crosstalk. Through this multidimensional analysis, we established HT as a mitochondrial homeostasis modulator with potential therapeutic applications in metabolic syndrome (MetS) and its related pathologies including type 2 diabetes mellitus, obesity-related metabolic dysfunction, dyslipidemia, non-alcoholic steatohepatitis, and hypertension-related complications. Moreover, we further discussed translational challenges in HT research, emphasizing the imperative for direct target identification, mitochondrial-targeted delivery system development, and combinatorial therapeutic strategies. Collectively, this review provides a mechanistic framework for advancing HT research and accelerating its clinical implementation in MetS and its related diseases.
Collapse
Affiliation(s)
- Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Huanglong Wei
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Zhenyu Sun
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Wankang Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Zhihui Feng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| |
Collapse
|
5
|
Batarfi WA, Yunus MHM, Hamid AA, Lee YT, Maarof M. Hydroxytyrosol: A Promising Therapeutic Agent for Mitigating Inflammation and Apoptosis. Pharmaceutics 2024; 16:1504. [PMID: 39771483 PMCID: PMC11728517 DOI: 10.3390/pharmaceutics16121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammation and apoptosis are interrelated biological processes that have a significant impact on the advancement and growth of certain chronic diseases, such as cardiovascular problems, neurological conditions, and osteoarthritis. Recent research has emphasized that focusing on these mechanisms could result in novel therapeutic approaches that aim to decrease the severity of diseases and enhance patient outcomes. Hydroxytyrosol (HT), which is well-known for its ability to prevent oxidation, has been identified as a possible candidate for regulating both inflammation and apoptosis. In this review, we will highlight the multifaceted benefits of HT as a therapeutic agent in mitigating inflammation, apoptosis, and associated conditions. This review provides a comprehensive overview of the latest in vitro and in vivo research on the anti-inflammatory and antiapoptotic effects of HT and the mechanisms by which it works. Based on these studies, it is strongly advised to use HT as a bioactive ingredient in pharmaceutical products intended for mitigating inflammation, as well as those with apoptosis applications.
Collapse
Affiliation(s)
- Wafa Ali Batarfi
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
- Department of Basic Medical Sciences, Hadhramout University College of Medicine, Al-Mukalla, Yemen
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
| | - Yi Ting Lee
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
6
|
Shen H, Zhang C, Zhang Q, Lv Q, Liu H, Yuan H, Wang C, Meng F, Guo Y, Pei J, Yu C, Tie J, Chen X, Yu H, Zhang G, Wang X. Gut microbiota modulates depressive-like behaviors induced by chronic ethanol exposure through short-chain fatty acids. J Neuroinflammation 2024; 21:290. [PMID: 39508236 PMCID: PMC11539449 DOI: 10.1186/s12974-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Chronic ethanol exposure (CEE) is recognized as an important risk factor for depression, and the gut-brain axis has emerged as a key mechanism underlying chronic ethanol exposure-induced anxiety and depression-like behaviors. Short-chain fatty acids (SCFAs), which are the key metabolites generated by gut microbiota from insoluble dietary fiber, exert protective roles on the central nervous system, including the reduction of neuroinflammation. However, the link between gut microbial disturbances caused by chronic ethanol exposure, production of SCFAs, and anxiety and depression-like behaviors remains unclear. METHODS Initially, a 90-day chronic ethanol exposure model was established, followed by fecal microbiota transplantation model, which was supplemented with SCFAs via gavage. Anxiety and depression-like behaviors were determined by open field test, forced swim test, and elevated plus-maze. Serum and intestinal SCFAs levels were quantified using GC-MS. Changes in related indicators, including the intestinal barrier, intestinal inflammation, neuroinflammation, neurotrophy, and nerve damage, were detected using Western blotting, immunofluorescence, and Nissl staining. RESULTS Chronic ethanol exposure disrupted with gut microbial homeostasis, reduced the production of SCFAs, and led to anxiety and depression-like behaviors. Recipient mice transplanted with fecal microbiota that had been affected by chronic ethanol exposure exhibited impaired intestinal structure and function, low levels of SCFAs, intestinal inflammation, activation of neuroinflammation, a compromised blood-brain barrier, neurotrophic defects, alterations in the GABA system, anxiety and depression-like behaviors. Notably, the negative effects observed in these recipient mice were significantly alleviated through the supplementation of SCFAs. CONCLUSION SCFAs not only mitigate damage to intestinal structure and function but also alleviate various lesions in the central nervous system, such as neuroinflammation, and reduce anxiety and depression-like behaviors, which were triggered by transplantation with fecal microbiota that had been affected by chronic ethanol exposure, adding more support that SCFAs serve as a bridge between the gut and the brain.
Collapse
Affiliation(s)
- Hui Shen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chaoxu Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Qian Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, 110001, P. R. China
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, P. R. China
| | - Qing Lv
- Department of Clinical Nutrition, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, P. R. China
| | - Hao Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Huiya Yuan
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, 110122, P. R. China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, 110122, P. R. China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, 110032, P. R. China
| | - Fanyue Meng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Yufu Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jiaxin Pei
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chenyang Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jinming Tie
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Xiaohuan Chen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Hao Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Xiaolong Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| |
Collapse
|
7
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
8
|
Jia Z, Yu W, Li X, Dong T, Wang X, Li J, Yang J, Liu Y. Du-moxibustion ameliorates depression-like behavior and neuroinflammation in chronic unpredictable mild stress-induced mice. J Affect Disord 2024; 358:211-221. [PMID: 38705530 DOI: 10.1016/j.jad.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/19/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Neuroinflammation is involved in the advancement of depression. Du-moxibustion can treat depression. Here, we explored whether Du-moxibustion could alleviate neuroglia-associated neuro-inflammatory process in chronic unpredictable mild stress (CUMS) mice. METHODS C57BL/6J mice were distributed into five groups. Except for the CON group, other four groups underwent CUMS for four consecutive weeks, and Du-moxibustion was given simultaneously after modeling. Behavioral tests were then carried out. Additionally, Western blot was conducted to measure the relative expression levels of high-mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB). Immunofluorescence was employed to evaluate the positive cells of ionized calcium binding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP). Furthermore, interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) were analyzed using an ELISA assay. RESULTS We found that CUMS induced depression-like behaviors, such as reduced sucrose preference ratio, decreased locomotor and exploratory activity, decreased the time in open arms and prolonged immobility. Furthermore, versus the CON group, the expression of HMGB1, TLR4, MyD88, NF-κB, positive cells of Iba-1, IL-1β and TNF-α were increased but positive cells of GFAP were decreased in CUMS group. However, the detrimental effects were ameliorated by treatment with CUMS+FLU and CUMS+DM. LIMITATIONS A shortage of this study is that only CUMS model of depression were used, while other depression model were not included. CONCLUSIONS Du-moxibustion alleviates depression-like behaviors in CUMS mice mainly by reducing neuroinflammation, which offers novel insights into the potential treatment of depression.
Collapse
Affiliation(s)
- Zhixia Jia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, China
| | - Wenyan Yu
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Xuhao Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Tiantian Dong
- Traditional Chinese Medicine External Treatment Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250013, Shandong, China
| | - Xingxin Wang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Jinling Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| | - Yuanxiang Liu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250013, Shandong, China.
| |
Collapse
|
9
|
Qian J, Yu F, Zheng L, Luo D, Zhao M. Comparison of the Protective Effects of Casein Hydrolysate Containing Tyr-Pro-Val-Glu-Pro-Phe and Casein on the Behaviors and Peripheral and Brain Functions in Mice with Chronic-Stress-Induced Anxiety and Insomnia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11515-11530. [PMID: 38726599 DOI: 10.1021/acs.jafc.4c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Chronic stress is a major inducer of anxiety and insomnia. Milk casein has been studied for its stress-relieving effects. We previously prepared a casein hydrolysate (CP) rich in the sleep-enhancing peptide YPVEPF, and this study aims to systemically investigate the different protective effects of CP and casein on dysfunction and anxiety/insomnia behavior and its underlying mechanisms in chronically stressed mice. Behavioral results showed that CP ameliorated stress-induced insomnia and anxiety more effectively than milk casein, and this difference in amelioration was highly correlated with an increase in GABA, 5-HT, GABAA, 5-HT1A receptors, and BDNF and a decrease in IL-6 and NMDA receptors in stressed mice. Furthermore, CP restored these dysfunctions in the brain and colon by activating the HPA response, modulating the ERK/CREB-BDNF-TrκB signaling pathway, and alleviating inflammation. The abundant YPVEPF (1.20 ± 0.04%) and Tyr-based/Trp-containing peptides of CP may be the key reasons for its different effects compared to casein. Thus, this work revealed the main active structures of CP and provided a novel dietary intervention strategy for the prevention and treatment of chronic-stress-induced dysfunction and anxiety/insomnia behaviors.
Collapse
Affiliation(s)
- Jingjing Qian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Fengjie Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
10
|
Li S, Shao H, Sun T, Guo X, Zhang X, Zeng Q, Fang S, Liu X, Wang F, Liu F, Ling P. Anti-neuroinflammatory effect of hydroxytyrosol: a potential strategy for anti-depressant development. Front Pharmacol 2024; 15:1366683. [PMID: 38495098 PMCID: PMC10940523 DOI: 10.3389/fphar.2024.1366683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: Depression is a complex psychiatric disorder with substantial societal impact. While current antidepressants offer moderate efficacy, their adverse effects and limited understanding of depression's pathophysiology hinder the development of more effective treatments. Amidst this complexity, the role of neuroinflammation, a recognized but poorly understood associate of depression, has gained increasing attention. This study investigates hydroxytyrosol (HT), an olive-derived phenolic antioxidant, for its antidepressant and anti-neuroinflammatory properties based on mitochondrial protection. Methods: In vitro studies on neuronal injury models, the protective effect of HT on mitochondrial ultrastructure from inflammatory damage was investigated in combination with high-resolution imaging of mitochondrial substructures. In animal models, depressive-like behaviors of chronic restraint stress (CRS) mice and chronic unpredictable mild stress (CUMS) rats were examined to investigate the alleviating effects of HT. Targeted metabolomics and RNA-Seq in CUMS rats were used to analyze the potential antidepressant pathways of HT. Results: HT protected mitochondrial ultrastructure from inflammatory damage, thus exerting neuroprotective effects in neuronal injury models. Moreover, HT reduced depressive-like behaviors in mice and rats exposed to CRS and CUMS, respectively. HT's influence in the CRS model included alleviating hippocampal neuronal damage and modulating cytokine production, mitochondrial dysfunction, and brain-derived neurotrophic factor (BDNF) signaling. Targeted metabolomics in CUMS rats revealed HT's effect on neurotransmitter levels and tryptophan-kynurenine metabolism. RNA-Seq data underscored HT's antidepressant mechanism through the BDNF/TrkB signaling pathways, key in nerve fiber functions, myelin formation, microglial differentiation, and neural regeneration. Discussion: The findings underscore HT's potential as an anti-neuroinflammatory treatment for depression, shedding light on its antidepressant effects and its relevance in nutritional psychiatry. Further investigations are warranted to comprehensively delineate its mechanisms and optimize its clinical application in depression treatment.
Collapse
Affiliation(s)
- Shuaiguang Li
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Huarong Shao
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Ting Sun
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Xinyan Guo
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Xiaoyuan Zhang
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Qingkai Zeng
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Shaoying Fang
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Xiaoyu Liu
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Fan Wang
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Fei Liu
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
| | - Peixue Ling
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong, China
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
11
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
12
|
Yuan Q, Lei Y, Yu K, Wu J, Xu Z, Wen C, Liu Y, Wang W, He J. Repetitive transcranial magnetic stimulation and fluoxetine attenuate astroglial activation and benefit behaviours in a chronic unpredictable mild stress mouse model of depression. World J Biol Psychiatry 2024; 25:82-94. [PMID: 37942712 DOI: 10.1080/15622975.2023.2279958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Objectives: Repetitive transcranial magnetic stimulation (rTMS) has been considered as an effective antidepressant treatment; however, the mechanism of its antidepressant effect is still unclear. Fluoxetine, a selective serotonin reuptake inhibitor antidepressant, may be neuroprotective. The objective of the present study was to evaluate the effect and underlying possible neuroprotective mechanism of rTMS and fluoxetine on abnormal behaviours in a depressive mouse model induced by chronic unpredictable mild stress (CUMS).Methods: After 28 days of CUMS exposure, mice were chronically treated with rTMS (10 Hz for 5 s per train, total 20 trains per day) and (or) fluoxetine (5 mg/kg/day, intraperitoneally) for 28 days targeting on the frontal cortex. After the behavioural tests, the protein expressions of glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) were measured by immunohistochemistry and (or) Western Blot.Results: The results showed rTMS and (or) fluoxetine attenuated the locomotion decrease, anxiety and depressive like behaviours in the CUMS-exposed mice.Conclusion: Our results suggest that both rTMS and fluoxetine could benefit the CUMS-induced abnormal behaviours including depressive-like behaviours, and the beneficial effects of rTMS as well as fluoxetine on depression might be partly related to their neuroprotective effect on attenuating astroglial activation and BDNF decrease.
Collapse
Affiliation(s)
- Qianfa Yuan
- Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen Xian Yue Hospital, Xian Yue Hospital Affiliated with Xiamen Medical College, Xiamen, Fujian, China
| | - Yuying Lei
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kai Yu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junnan Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhizhong Xu
- Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen Xian Yue Hospital, Xian Yue Hospital Affiliated with Xiamen Medical College, Xiamen, Fujian, China
| | - Chunyan Wen
- Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen Xian Yue Hospital, Xian Yue Hospital Affiliated with Xiamen Medical College, Xiamen, Fujian, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenqiang Wang
- Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen Xian Yue Hospital, Xian Yue Hospital Affiliated with Xiamen Medical College, Xiamen, Fujian, China
| | - Jue He
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| |
Collapse
|
13
|
Tang Y, Su H, Nie K, Wang H, Gao Y, Chen S, Lu F, Dong H. Berberine exerts antidepressant effects in vivo and in vitro through the PI3K/AKT/CREB/BDNF signaling pathway. Biomed Pharmacother 2024; 170:116012. [PMID: 38113631 DOI: 10.1016/j.biopha.2023.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Depression, a global neuropsychiatric disorder, brings a serious burden to patients and society as its incidence continues to rise. Berberine is one of the main compounds of a variety of Chinese herbal medicines and has been shown to have multiple pharmacological effects. However, whether berberine can exert antidepressant effects in vivo and in vitro and its related mechanisms remain to be explored. METHODS The chronic restraint stress (CRS) method and corticosterone (CORT) were applied to simulate depression-like behavior in vivo and neuronal apoptosis in vitro, respectively. The antidepressant effects of berberine were evaluated by behavioral tests and changes in the content of monoamine neurotransmitters. Inflammatory cytokines were detected and immunofluorescence staining was used to observe the expression levels of apoptosis-related proteins. RT-qPCR and Western blot were used to examine the mRNA and protein expression (or phosphorylation) levels of biomarkers of the PI3K/AKT/CREB/BDNF signaling pathways. RESULTS Behavioral tests and levels of neurotransmitters proved that berberine could effectively ameliorate depression-like symptoms in CRS mice. Meanwhile, the results of ELISA and immunofluorescence staining showed that berberine could alleviate inflammatory status and reduce cell apoptosis in vivo and in vitro. Moreover, the changes of the PI3K/AKT/CREB/BDNF signaling pathway induced by CRS or CORT in mouse hippocampus or HT-22 cells were significantly reversed by berberine. CONCLUSION Our current study suggested that berberine could exert antidepressant effects in vitro and in vivo, which may be associated with the PI3K/AKT/CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
14
|
Delmondes GDA, Pereira Lopes MJ, Borges ADS, Bezerra DS, Silva JPD, Souto BS, Costa JGDS, Campos PEDS, Santana TID, Coutinho HDM, Barbosa-Filho JM, Alencar de Menezes IR, Bezerra Felipe CF, Kerntopf MR. Investigation of mechanisms of action involved in the antidepressant-like effect of Trans,trans-farnesol in mice. Chem Biol Interact 2023; 386:110791. [PMID: 37923004 DOI: 10.1016/j.cbi.2023.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
This study aimed to investigate, through in vivo and biochemical methodologies, the effect of trans,trans-farnesol (12.5, 25, 50 or 100 mg/kg, p.o.) acute administration, adopting different behavioral and neurochemical parameters associated with an acute induced-depression model in mice. The initial results showed that, the oral treatment with trans,trans-farnesol, at the dose of 100 mg/kg induced a possible antidepressant-like effect in animals subjected to forced swim test (FST) and reserpine-induced akinesia. In addition, it was observed that the compound in question has an effect size and properties similar to imipramine (prototype of tricyclic antidepressants), but devoid of proconvulsant adverse effect. In biochemical assays, the pretreatment with trans,trans-farnesol, at a dose of 100 mg/kg (p.o.), decreased the hippocampal concentration of thiobarbituric acid reactive substances (TBARS) and restored striatal levels of noradrenaline and serotonin in mice subjected to FST. Altogether, these results suggest that trans,trans-farnesol showed a significant antidepressant-like effect, which seems to be mediated by the antagonism of muscarinic cholinergic receptors, reduction of oxidative stress and the modulation of noradrenaline and serotonin content in the central nervous system.
Collapse
Affiliation(s)
- Gyllyandeson de Araújo Delmondes
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Nursing Collegiate, Federal University of São Francisco Valley, Petrolina, PE, Brazil.
| | | | - Alex de Sousa Borges
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Daniel Souza Bezerra
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Natural Products Pharmacology Laboratory, Regional University of Cariri, Crato, CE, Brazil
| | - Jairo Pessoa da Silva
- Nursing Collegiate, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - Bruna Silva Souto
- Nursing Collegiate, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | | | | | | | | | | | | | | | - Marta Regina Kerntopf
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Natural Products Pharmacology Laboratory, Regional University of Cariri, Crato, CE, Brazil
| |
Collapse
|
15
|
Gong M, Wang J, Song L, Wu X, Wang Y, Li B, Zhang Y, Qin L, Duan Y, Long B. Role of BDNF-TrkB signaling in the antidepressant-like actions of loganin, the main active compound of Corni Fructus. CNS Neurosci Ther 2023; 29:3842-3853. [PMID: 37408379 PMCID: PMC10651962 DOI: 10.1111/cns.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
AIMS Corni Fructus (CF) and some CF-contained prescriptions are commonly used in clinical treatment of depression. This investigation aims to evaluate the main active compound of CF in antidepressant properties and its key target. METHODS Firstly, this study established a behavioral despair model and used high-performance liquid chromatography method to evaluate the antidepressant-like effects of water extract, 20%, 50%, and 80% ethanol extracts of CF, and its main active compound. Then, this study created chronic unpredictable mild stress (CUMS) model to assess loganin's antidepressant-like properties, and its target was evaluated by quantitative real-time polymerase chain reaction, Western blot, Immunofluorescence, enzyme-linked immunosorbent assay, and tyrosine receptor kinase B (TrkB) inhibitor. RESULTS Results showed that the different extracts of CF significantly shortened the immobility time in forced swimming and tail suspension tests. Moreover, loganin alleviated CUMS-induced depression-like behavior, promoted neurotrophy and neurogenesis, and inhibited neuroinflammation. Furthermore, K252a blocked the improvement of loganin on depression-like behavior, and eliminated the enhancement of neurotrophy and neurogenesis and the inhibition of neuroinflammation. CONCLUSION Overall, these results indicated that loganin could be used as a major active compound of CF for the antidepressant-like properties and exerted antidepressant-like actions by regulating brain derived neurotrophic factor (BDNF)-TrkB signaling, and TrkB could be used as key target for itsantidepressant-like actions.
Collapse
Affiliation(s)
- Mingzhu Gong
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Junming Wang
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- Co‐Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. ChinaHenan University of Chinese MedicineZhengzhouChina
| | - Lingling Song
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Xiaohui Wu
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Yanmei Wang
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Bingyin Li
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Yueyue Zhang
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Lingyu Qin
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Yaqian Duan
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Bingyu Long
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
16
|
Schmidt L, Vargas BK, Monteiro CS, Pappis L, Mello RDO, Machado AK, Emanuelli T, Ayub MAZ, Moreira JCF, Augusti PR. Bioavailable Phenolic Compounds from Olive Pomace Present Anti-Neuroinflammatory Potential on Microglia Cells. Foods 2023; 12:4048. [PMID: 38002106 PMCID: PMC10670107 DOI: 10.3390/foods12224048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The neuroinflammatory process is considered one of the main characteristics of central nervous system diseases, where a pro-inflammatory response results in oxidative stress through the generation of reactive oxygen and nitrogen species (ROS and RNS). Olive (Olea europaea L.) pomace is a by-product of olive oil production that is rich in phenolic compounds (PCs), known for their antioxidant and anti-inflammatory properties. This work looked at the antioxidant and anti-neuroinflammatory effects of the bioavailable PC from olive pomace in cell-free models and microglia cells. The bioavailable PC of olive pomace was obtained through the process of in vitro gastrointestinal digestion of fractionated olive pomace (OPF, particles size < 2 mm) and micronized olive pomace (OPM, particles size < 20 µm). The profile of the PC that is present in the bioavailable fraction as well as its in vitro antioxidant capacity were determined. The anti-neuroinflammatory capacity of the bioavailable PC from olive pomace (0.03-3 mg L-1) was evaluated in BV-2 cells activated by lipopolysaccharide (LPS) for 24 h. The total bioavailable PC concentration and antioxidant activity against peroxyl radical were higher in the OPM than those observed in the OPF sample. The activation of BV-2 cells by LPS resulted in increased levels of ROS and nitric oxide (NO). The bioavailable PCs from both OPF and OPM, at their lowest concentrations, were able to reduce the ROS generation in activated BV-2 cells. In contrast, the highest PC concentration of OPF and OPM was able to reduce the NO levels in activated microglial cells. Our results demonstrate that bioavailable PCs from olive pomace can act as anti-neuroinflammatory agents in vitro, independent of particle size. Moreover, studies approaching ways to increase the bioavailability of PCs from olive pomace, as well as any possible toxic effects, are needed before a final statement on its nutritional use is made.
Collapse
Affiliation(s)
- Luana Schmidt
- Institute of Basic Health Sciences, Postgraduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600-Annex, Porto Alegre CEP 90035-003, RS, Brazil; (L.S.); (J.C.F.M.)
| | - Bruna Krieger Vargas
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre CEP 91501-970, RS, Brazil (M.A.Z.A.)
| | - Camila Sant’Anna Monteiro
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | - Lauren Pappis
- Graduate Program in Nanoscience, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
| | - Renius de Oliveira Mello
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | - Alencar Kolinski Machado
- Graduate Program in Nanoscience, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | - Marco Antônio Zachia Ayub
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre CEP 91501-970, RS, Brazil (M.A.Z.A.)
| | - José Cláudio Fonseca Moreira
- Institute of Basic Health Sciences, Postgraduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600-Annex, Porto Alegre CEP 90035-003, RS, Brazil; (L.S.); (J.C.F.M.)
| | - Paula Rossini Augusti
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre CEP 91501-970, RS, Brazil (M.A.Z.A.)
| |
Collapse
|
17
|
Tabanez M, Santos IR, Ikebara JM, Camargo MLM, Dos Santos BA, Freire BM, Batista BL, Takada SH, Squitti R, Kihara AH, Cerchiaro G. The Impact of Hydroxytyrosol on the Metallomic-Profile in an Animal Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:14950. [PMID: 37834398 PMCID: PMC10573659 DOI: 10.3390/ijms241914950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
It is undeniable that as people get older, they become progressively more susceptible to neurodegenerative illnesses such as Alzheimer's disease (AD). Memory loss is a prominent symptom of this condition and can be exacerbated by uneven levels of certain metals. This study used inductively coupled plasma mass spectrometry (ICP-MS) to examine the levels of metals in the blood plasma, frontal cortex, and hippocampus of Wistar rats with AD induced by streptozotocin (STZ). It also tested the effects of the antioxidant hydroxytyrosol (HT) on metal levels. The Barnes maze behavior test was used, and the STZ group showed less certainty and greater distance when exploring the Barnes maze than the control group. The results also indicated that the control group and the STZ + HT group exhibited enhanced learning curves during the Barnes maze training as compared to the STZ group. The ICP-MS analysis showed that the STZ group had lower levels of cobalt in their blood plasma than the control group, while the calcium levels in the frontal cortex of the STZ + HT group were higher than in the control group. The most important finding was that copper levels in the frontal cortex from STZ-treated animals were higher than in the control group, and that the STZ + HT group returned to equivalent levels to the control group. The antioxidant HT can restore copper levels to their basal physiological state. This finding may help explain HT's potential beneficial effect in AD-patients.
Collapse
Affiliation(s)
- Miguel Tabanez
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Ilma R. Santos
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Juliane M. Ikebara
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Mariana L. M. Camargo
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Bianca A. Dos Santos
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Bruna M. Freire
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
| | - Bruno L. Batista
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
| | - Silvia H. Takada
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Rosanna Squitti
- Department of Laboratory Science, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy;
| | - Alexandre H. Kihara
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| |
Collapse
|
18
|
Li S, Yang C, Wu Z, Chen Y, He X, Liu R, Ma W, Deng S, Li J, Liu Q, Wang Y, Zhang W. Suppressive effects of bilobalide on depression-like behaviors induced by chronic unpredictable mild stress in mice. Food Funct 2023; 14:8409-8419. [PMID: 37615035 DOI: 10.1039/d3fo02681g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Background: Depression is a psychiatric disorder with depressed mood and even suicide attempts as the main clinical symptoms, and its pathogenesis has not yet been fully elucidated. Brain derived neurotrophic factor (BDNF) plays an important role in the pathogenesis of depression. Purpose: The main aim of the present study was to evaluate the effectiveness and reveal the potential mechanisms of bilobalide (BB) intervention in alleviating depression-like behaviors by using chronic unpredictable mild stress (CUMS) mice via mediating the BDNF pathway. Methods: Behavioral assessments were carried out by using the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). CUMS mice were randomly divided into 5 groups: CUMS + solvent, CUMS + BB low, CUMS + BB medium, CUMS + BB high and CUMS + fluoxetine. Total serum levels of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) were measured by ELISA. Expression of TNF-α, IL-6, AKT, GSK3β, β-catenin, Trk-B and BDNF in the mouse hippocampus was assessed by western blotting. Results: BB treatment reduced the levels of pro-inflammatory cytokines (IL-6 and TNF-α) and increased the protein expression of BDNF in the hippocampus region of the CUMS mice. Moreover, BB treatment enhanced the AKT/GSK3β/β-catenin signaling pathway which is downstream of the BDNF receptor Trk-B in the hippocampus of these mice. Conclusions: Overall, the experimental results indicated that BB reverses CUMS-induced depression-like behavior. BB exerts antidepressant-like effects by inhibiting neuroinflammation and enhancing the function of neurotrophic factors.
Collapse
Affiliation(s)
- Shengnan Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230001, China
| | - Xiaoyu He
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230001, China
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Wanru Ma
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Shaohuan Deng
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Jianwen Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Qingsong Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Yunchun Wang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| |
Collapse
|
19
|
Boronat A, Serreli G, Rodríguez-Morató J, Deiana M, de la Torre R. Olive Oil Phenolic Compounds' Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants (Basel) 2023; 12:1472. [PMID: 37508010 PMCID: PMC10376491 DOI: 10.3390/antiox12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Epidemiological studies have shown that consuming olive oil rich in phenolic bioactive compounds is associated with a lower risk of neurodegenerative diseases and better cognitive performance in aged populations. Since oxidative stress is a common hallmark of age-related cognitive decline, incorporating exogenous antioxidants could have beneficial effects on brain aging. In this review, we firstly summarize and critically discuss the current preclinical evidence and the potential neuroprotective mechanisms. Existing studies indicate that olive oil phenolic compounds can modulate and counteract oxidative stress and neuroinflammation, two relevant pathways linked to the onset and progression of neurodegenerative processes. Secondly, we summarize the current clinical evidence. In contrast to preclinical studies, there is no direct evidence in humans of the bioactivity of olive oil phenolic compounds. Instead, we have summarized current findings regarding nutritional interventions supplemented with olive oil on cognition. A growing body of research indicates that high consumption of olive oil phenolic compounds is associated with better preservation of cognitive performance, conferring an additional benefit, independent of the dietary pattern. In conclusion, the consumption of olive oil rich in phenolic bioactive compounds has potential neuroprotective effects. Further research is needed to understand the underlying mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy
| | - Jose Rodríguez-Morató
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), 28029 Madrid, Spain
| |
Collapse
|
20
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
21
|
Fan L, Peng Y, Li X. Brain regional pharmacokinetics of hydroxytyrosol and its molecular mechanism against depression assessed by multi-omics approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154712. [PMID: 36774845 DOI: 10.1016/j.phymed.2023.154712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hydroxytyrosol (HT), as the main compound in olive leaves with its potential ability to cross blood-brain barrier (BBB), has exhibited the advantaged antidepressant effect. However, no information is available regarding the brain regional uptake of HT, as well the underlying antidepressant mechanism remains unclear. PURPOSE To comprehensively reveal the brain uptake of HT and its specific mechanism on the accompanying antidepressant activity. STUDY DESIGN AND METHODS The BBB penetration and brain regional distribution of HT in the normal and chronic unpredictable mild stress (CUMS)-induced depressive mice in consideration with the BBB integrality were analyzed. Then, the hippocampal region-specific responses of biomolecules and concurrent alterations in the therapeutic effect of HT on depression were explored using untargeted metabolomics, spatial-resolved metabolomics and tissue proteomics, which were confirmed by LPS-induced BV-2 microglia and CUMS mice. RESULTS BBB permeability analysis in normal and CUMS mice confirmed that increased BBB permeability of CUMS mice was induced by the deficiency of tight junction-related proteins. Consistently, according to the established LC-MS/MS method, it was found that HT could not be largely detected in the cerebrospinal fluids and brains of normal mice after oral administration, while it could excessively penetrate the BBB (200-fold higher), and mostly distributed in the hippocampus of CUMS mice. Meanwhile, multi-omics analysis combined with targeted analysis discovered that HT could mainly improve fatty acid biosynthesis and metabolism in the hippocampus with region-specific responses and accompanying inhibition of C3-CD11b pathway in CUMS mice. Besides, in vitro experiments further confirmed the anti-complement ability of HT, which could inhibit C3-CD11b pathway for alleviating the LPS-induced BV-2 microglia activation. CONCLUSION HT can excessively penetrate the BBB and be mostly distributed in the hippocampus of depressive mice, which contribute to improve fatty acid biosynthesis and metabolism in the hippocampus with region-specific responses and accompanying inhibition of C3-CD11b pathway for microglia activation. These findings give the clearer understanding of brain regional pharmacokinetics of HT and its accompanying molecular mechanism against depression.
Collapse
Affiliation(s)
- Li Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
22
|
Zhao L, Li D, Chitrakar B, Li C, Zhang N, Zhang S, Wang X, Wang M, Tian H, Luo Y. Study on Lactiplantibacillus plantarum R6-3 from Sayram Ketteki to prevent chronic unpredictable mild stress-induced depression in mice through the microbiota-gut-brain axis. Food Funct 2023; 14:3304-3318. [PMID: 36938927 DOI: 10.1039/d2fo03708d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The prevention, mitigation and treatment of depression has become a global issue that needs to be solved urgently. Sayram Ketteki, a traditional natural fermented yoghurt from the region with the world's fourth highest life expectancy, has been known as the "longevity secret", whose longevity and anti-depression factors are speculated to come from its rich microorganisms. Therefore, for the first time, we systematically studied in depth the microbes of Sayram Ketteki, screened a new edible probiotic strain, Lactiplantibacillus plantarum R6-3, and explored its anti-depression effect in chronic unpredictable mild stress (CUMS)-induced depression in mice. It is encouraging that L. plantarum R6-3 was significantly superior to the classic anti-depressant drug, fluoxetine, in the performance of promoting sucrose preference test (SPT) behavior by 18% (p < 0.001), lowering the serum CORT content by 5.6% (p < 0.05), accelerating the brain-derived neurotrophic factor (BDNF) level by 5.9% (p < 0.01), increasing the serum IL-10 concentration by 2.3% (p < 0.05), up-regulating the expression of BDNF and phosphorylated-ERK by 74% (p < 0.01) and 45% (p < 0.001), respectively, and facilitating the secretion of fecal short-chain fatty acids (SCFAs), including n-butyric, n-valeric, and isovaleric acid by 47% (p < 0.01), 42% (p < 0.05) and 38% (p < 0.05), respectively. Through the microbiota-gut-brain axis, L. plantarum R6-3 promoted the secretion of intestinal SCFAs through regulation of the composition and function of the gut microbiota, and activated the production of the monoamine neurotransmitter, renewed the level of brain neurotrophic factor, and suppressed the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis by adjusting the hippocampal BDNF/TrkB/ERK/CREB signaling pathway, thereby improving the immune and oxidative stress status, protecting hippocampal tissue from damage, maintaining a healthy weight and preventing CUMS-induced depressive behavior in mice. It has great prospects for the development of natural functional foods, the prevention and treatment of depression and in innovative microecological preparations.
Collapse
Affiliation(s)
- Lina Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China. .,Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China. .,Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China. .,Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.,School of Biochemical and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Shaogang Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Xinyu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Miaoshu Wang
- Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.,New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China. .,Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.,National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, Hebei 071000, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
23
|
Han H, Zhong R, Zhang S, Wang M, Wen X, Yi B, Zhao Y, Chen L, Zhang H. Hydroxytyrosol attenuates diquat-induced oxidative stress by activating Nrf2 pathway and modulating colonic microbiota in mice. J Nutr Biochem 2023; 113:109256. [PMID: 36572071 DOI: 10.1016/j.jnutbio.2022.109256] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
This study was conducted to investigate the antioxidant effects of hydroxytyrosol (HT) administration in diquat (DQ)-challenged mice. The results showed that HT treatment markedly alleviated DQ-induced oxidative stress, which was indicated by the enhanced total antioxidant capacity (T-AOC), increased activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase and decreased malondialdehyde (MDA) concentration in serum. Additionally, HT increased the mRNA expression levels of NF-E2-related factor 2 (Nrf2) and its downstream genes, including NADPH quinone oxidoreductase 1 (NQO1) and catalase (CAT) in the small intestine of DQ-challenged mice. 16S rRNA gene sequencing results showed that HT treatment increased the relative abundance of Firmicutes and Lactobacillus and decreased the relative abundance of Bacteroidetes. Interestingly, Pearson correlation analysis showed that there were strong association between colonic Firmicutes, Lactobacillus, and Bacteroidetes and the activities of serum antioxidant enzymes. Meanwhile, HT significantly enhanced the colonic butyrate concentration in DQ-challenged mice. Additionally, HT treatment decreased the serum metabolites involving in glycerophospholipid metabolism, pentose, and glucuronate interconversions, which were associated with alleviated oxidative stress. These results indicate that oral administration of 100 mg/kg body weight HT alleviates oxidative stress in DQ-challenged mice, which may involve Nrf2 signaling pathways via modulation of colonic microbiota.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
24
|
Two polyphenols isolated from Corallodiscus flabellata B. L. Burtt ameliorate amyloid β-protein induced Alzheimer's disease neuronal injury by improving mitochondrial homeostasis. Behav Brain Res 2023; 440:114264. [PMID: 36535434 DOI: 10.1016/j.bbr.2022.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Corallodiscus flabellata B. L. Burtt (CF) is a Chinese folk herb with reported potential for the treatment of Alzheimer's disease (AD). 3,4-Dihydroxyphenylethanol-8-O-[4-O-trans-caffeoyl-β-D-apiofuranosyl-(1→3)-β-D-glucopyranosyl (1→6)][1]-β-D-glucopyranoside (SDC-1-8) and hydroxytyrosol (HT) are two polyphenolic compounds isolated from CF. The aim of this study was to investigate the protective effects of SDC-1-8 and HT on an Aβ25-35-induced AD model and to study the underlying mechanism. The AD mouse model was established using a brain injection of amyloid β-protein 25-35 (Aβ25-35, 200 μM), followed by continuous administration of SDC-1-8 and HT for 4 weeks, and found that they improved cognitive dysfunction; ameliorated neuronal damage and apoptosis; decreased oxidative stress, and mitochondrial fission protein levels; and increased mitochondrial fusion protein levels in AD mice. Moreover, SDC-1-8 and HT inhibited mitochondrial membrane depolarization, reduced intracellular stored Ca2+ levels, enhanced mitochondrial respiration, increased mitochondrial fusion, and decreased mitochondrial division in Aβ25-35-induced PC12 cells even in the presence of mdivi-1. Furthermore, molecular docking simulations showed that SDC-1-8 and HT interacted with dynamin-related protein 1 with higher affinity than mitofusin 1. Thus, it is summarized that SDC-1-8 and HT may have neuroprotective effects by balancing the abnormalities of mitochondrial fission and fusion, and SDC-1-8 and HT are the components providing the therapeutic basis of CF.
Collapse
|
25
|
Xu Z, Zhang J, Wu J, Yang S, Li Y, Wu Y, Li S, Zhang X, Zuo W, Lian X, Lin J, Jiang Y, Xie L, Liu Y, Wang P. Lactobacillus plantarum ST-III culture supernatant ameliorates alcohol-induced cognitive dysfunction by reducing endoplasmic reticulum stress and oxidative stress. Front Neurosci 2022; 16:976358. [PMID: 36188464 PMCID: PMC9515438 DOI: 10.3389/fnins.2022.976358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background Long-term alcohol exposure is associated with oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation, which may impair cognitive function. Probiotics supplements can significantly improve cognitive function in neurodegenerative diseases such as Alzheimer’s disease. Nevertheless, the effect of Lactobacillus plantarum ST-III culture supernatant (LP-cs) on alcohol-induced cognitive dysfunction remains unclear. Methods A mouse model of cognitive dysfunction was established by intraperitoneal injection of alcohol (2 g/kg body weight) for 28 days. Mice were pre-treated with LP-cs, and cognitive function was evaluated using the Morris water maze test. Hippocampal tissues were collected for biochemical and molecular analysis. Results LP-cs significantly ameliorated alcohol-induced decline in learning and memory function and hippocampal morphology changes, neuronal apoptosis, and synaptic dysfunction. A mechanistic study showed that alcohol activated protein kinase R-like endoplasmic reticulum kinase (PERK) signaling and suppressed brain derived neurotrophic factor (BDNF) levels via ER stress in the hippocampus, which LP-cs reversed. Alcohol activated oxidative stress and inflammation responses in the hippocampus, which LP-cs reversed. Conclusion LP-cs significantly ameliorated alcohol-induced cognitive dysfunction and cellular stress. LP-cs might serve as an effective treatment for alcohol-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Zeping Xu
- Department of Pharmacy, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jinjing Zhang
- Department of Pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junnan Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shizhuo Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuying Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuyu Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Siyuan Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wei Zuo
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Xiang Lian
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Jianjun Lin
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Longteng Xie
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
- Longteng Xie,
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yanlong Liu,
| | - Ping Wang
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Ping Wang,
| |
Collapse
|
26
|
Tang L, Li S, Yu J, Zhang Y, Yang L, Tong D, Xu J. Nonylphenol induces anxiety-like behavior in rats by regulating BDNF/TrkB/CREB signal network. Food Chem Toxicol 2022; 166:113197. [PMID: 35662570 DOI: 10.1016/j.fct.2022.113197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 12/28/2022]
Abstract
This study aimed to verify whether chronic exposure to nonylphenol (NP) induces anxiety behavior in rats and explored NP's regulatory effect on the BDNF/TrkB/CREB signal network in vitro. Anxiety-like behavior was assessed by elevated plus-maze and light-dark box tests. The residence time in the closed arm increased with NP dose (4, 40 mg/kg) and exposure time (3 and 6 months) (P < 0.05). The hippocampal neurons in the medium dose (M-NP, 4 mg/kg) and high dose (H-NP, 40 mg/kg) groups showed disorderly arrangement, cell swelling, and nuclear pyknosis/necrosis. The protein/mRNA expressions of BDNF/TrkB/CREB in the H-NP group decreased, and the decrease was more significant at 6 months (P < 0.05). Both, NP exposure and BDNF knockdown, increase the number of apoptotic cells (P <0.001). NP downregulated the proteins/mRNA expressions of BDNF/TrkB/CREB, and the trend was consistent with the BDNF silence group. Chronic exposure to NP could induce anxiety-like behavior in rats and reduce the expression of key proteins/genes in the BDNF/TrkB/CREB signaling network.
Collapse
Affiliation(s)
- Lan Tang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Shengnan Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Yujie Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lilin Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Dayan Tong
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
27
|
Zha Y, Jin Y, Wang X, Chen L, Zhang X, Wang M. Long-term maintenance of synaptic plasticity by Fullerenol Ameliorates lead-induced-impaired learning and memory in vivo. J Nanobiotechnology 2022; 20:348. [PMID: 35909130 PMCID: PMC9341061 DOI: 10.1186/s12951-022-01550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Fullerenol, a functional and water-soluble fullerene derivative, plays an important role in antioxidant, antitumor and antivirus, implying its enormous potential in biomedical applications. However, the in vivo performance of fullerenol remains largely unclear. We aimed to investigate the effect of fullerenol (i.p., 5 mg/kg) on the impaired hippocampus in a rat model of lead exposure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a kind of newly developed soft-ionization mass spectrometry technology. In the present study, an innovative strategy for biological distribution analysis using MALDI-TOF-MS confirmed that fullerenol could across the blood-brain barrier and accumulate in the brain. Results from behavioral tests showed that a low dose of fullerenol could improve the impaired learning and memory induced by lead. Furthermore, electrophysiology examinations indicated that this potential repair effect of fullerenol was mainly due to the long-term changes in hippocampal synaptic plasticity, with enhancement lasting for more than 2-3 h. In addition, morphological observations and biochemistry analyses manifested that the long-term change in synaptic efficacy was accompanied by some structural alteration in synaptic connection. Our study demonstrates the therapeutic feature of fullerenol will be beneficial to the discovery and development as a new drug and lays a solid foundation for further biomedical applications of nanomedicines.
Collapse
Affiliation(s)
- Yingying Zha
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Xinxing Wang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Lin Chen
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xulai Zhang
- Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, 230022, Anhui, China.
| | - Ming Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
28
|
Fan L, Peng Y, Chen X, Ma P, Li X. Integrated analysis of phytochemical composition, pharmacokinetics, and network pharmacology to probe distinctions between the stems of Cistanche deserticola and C. tubulosa based on antidepressant activity. Food Funct 2022; 13:8542-8557. [PMID: 35880684 DOI: 10.1039/d2fo01357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cistanches Herba (CH), as a nutritional and functional supplement used in food and health care products for centuries, consists of the stems of Cistanche deserticola and C. tubulosa. Our previous studies confirmed that the stems of C. tubulosa exerted advantageous antidepressant effect. However, whether the difference in the phytochemical compositions between the stems of C. deserticola and C. tubulosa would lead to diverse bioavailability and accompanying antidepressant effects remain unclear, as well as their specific bioactive compounds and underlying mechanism. In this study, a series of comparative studies showed that the antidepressant activity of C. tubulosa extract (CTE) was stronger than that of the C. deserticola extract (CDE), which was accompanied with the discovery of 10 differential markers from 52 identified compounds between CTE and CDE, and different pharmacokinetic behaviors of 9 prototype and 4 metabolites belonging to the glycosides between the CTE-treated and CDE-treated group in normal and depressive rats were simultaneously found by a validated UPLC-QTRAP-MS/MS method. Subsequently, network pharmacology prediction, in vitro and in vivo experiment verification from these differential markers further revealed that 7 compounds were confirmed to contribute to the antidepressant action of CH by inhibiting neuronal apoptosis mediated by mitochondrial function and activation of the AKT/GSK3β signaling pathway, synchronously indicating most of those, with higher bioavailability in vivo after CTE administration, that were responsible for the stronger antidepressant effect of CTE over CDE. Hence, the integrated analysis of phytochemical composition, pharmacokinetics, and network pharmacology provide new insights into the applications of CH from different botanical origins against depression.
Collapse
Affiliation(s)
- Li Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
29
|
Zhao YT, Yin H, Hu C, Zeng J, Zhang S, Chen S, Zheng W, Li M, Jin L, Liu Y, Wu W, Liu S. Tilapia Skin Peptides Ameliorate Cyclophosphamide-Induced Anxiety- and Depression-Like Behavior via Improving Oxidative Stress, Neuroinflammation, Neuron Apoptosis, and Neurogenesis in Mice. Front Nutr 2022; 9:882175. [PMID: 35719151 PMCID: PMC9201437 DOI: 10.3389/fnut.2022.882175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023] Open
Abstract
Anxiety- and depression-like behavior following chemotherapy treatment occurs in cancer patients with high probability and no specific therapeutics are available for treatment and prevention of this complication. Here, tilapia skin peptides (TSP), a novel enzymatically hydrolyzed bioactive peptide mixture, obtained from tilapia (Oreochromis mossambicus) scraps, were studied on cyclophosphamide (CP)-induced anxiety- and depression-like behavior in mice. Mice were received intraperitoneal injection of CP for 2 weeks, while TSP was administered for 4 weeks. After the end of the animal experiment, behavioral, biochemical, and molecular tests were carried out. The mice decreased preference for sugar water, increased immobility time in the forced swimming and tail suspension test, and decreased travel distance in the open field test in the Model group, compared with the Control group. Abnormal changes in behavioral tests were significantly improved after the TSP treatment. Additionally, abnormalities on superoxide dismutase, malondialdehyde, glutathione peroxidase were rescued by administration of 1000 mg/kg/d TSP in mice than that of the Model group. TSP has normalized the expression of Iba-1 and the levels of TNF-α and IL-1β in the hippocampus of mice, which indicated that TSP could observably ameliorate neuroinflammatory response in the hippocampus of mice. TSP ameliorated the apoptosis of hippocampal neurons of CA1 and CA3 regions in the TSP group vs. the Model group. The number of doublecortin positive cells was drastically increased by administering 1000 mg/kg/d TSP in mice vs. the Model group. Furthermore, TSP reversed the Nrf2/HO-1 signaling pathway, BDNF/TrkB/CREB signaling pathway, and reduced the Bcl-2/Bax/caspase-3 apoptosis pathway. In conclusion, TSP could restore CP-induced anxiety- and depression-like behavior via improving oxidative stress, neuroinflammation, neuron apoptosis, and neurogenesis in mice hippocampus.
Collapse
Affiliation(s)
- Yun-Tao Zhao
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Haowen Yin
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang, China
| | - Jian Zeng
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Shilin Zhang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Shaohong Chen
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Wenjing Zheng
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Mengjiao Li
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - You Liu
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
- You Liu,
| | - Wenjin Wu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Wenjin Wu,
| | - Shucheng Liu
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Shucheng Liu,
| |
Collapse
|
30
|
Ji S, Han S, Yu L, Du L, You Y, Chen J, Wang M, Wu S, Li S, Sun X, Luo R, Zhao X. Jia Wei Xiao Yao San ameliorates chronic stress-induced depression-like behaviors in mice by regulating the gut microbiome and brain metabolome in relation to purine metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153940. [PMID: 35104765 DOI: 10.1016/j.phymed.2022.153940] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The pathogenesis of depression remains largely unknown. Accumulating evidence demonstrates the existence of a complex relationship between gut microbiome composition and brain functions. Jia Wei Xiao Yao San (JWXYS) is considered a potential antidepressant. However, the pharmacological mechanisms of JWXYS have not yet been clarified. PURPOSE This study aimed to explore the effects of JWXYS on chronic stress-induced depression-like behaviors in mice. METHODS A chronic restraint stress mouse model of depression was established. JWXYS was administered, and the responses of these mice to treatment were evaluated through several behavioral tests. The activity of astrocytes and microglia was detected by specific fluorescent labels. Inflammatory cytokines were quantified in intestinal and cerebral tissues. An integrated approach with full-length 16S rRNA sequencing and different types of untargeted metabolomics was conducted to investigate the relationship between the gut microbiome at the species level, metabolic brain functions, and JWXYS. RESULTS We found that behavioral symptoms were associated with the relative abundance of Lactobacillus animalis. After JWXYS treatment, the relative abundance of Ileibacterium valens with enzymes potentially involved in purine metabolism was also described. The activation of astrocytes and microglia was negatively correlated with the relative abundance of L. animalis. Combined with network pharmacological analysis, several targets predicted based on JWXYS treatment focused on purine metabolism, which was also enriched from cerebral metabolites regulated by JWXYS. CONCLUSION Our study suggests that L. animalis is involved in depression-like behaviors in mice. JWXYS increases the abundance of I. valens with potential enzymes in relation to cerebral purine metabolism, which is positively correlated with the activation of astrocytes in the amygdala.
Collapse
Affiliation(s)
- Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shuangshuang Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lin Yu
- Department of Traditional Chinese Medicine, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou 510170, Guangdong, China
| | - Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jieyu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Shengwei Wu
- Department of Traditional Chinese Medicine, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou 510170, Guangdong, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ren Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
31
|
Zhao YT, Yin H, Hu C, Zeng J, Shi X, Chen S, Zhang K, Zheng W, Wu W, Liu S. Tilapia skin peptides restore cyclophosphamide-induced premature ovarian failure via inhibiting oxidative stress and apoptosis in mice. Food Funct 2022; 13:1668-1679. [PMID: 35083997 DOI: 10.1039/d1fo04239d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tilapia (Oreochromis mossambicus) skin high value-added compounds have not been fully utilized in tilapia processing. Here, the protective effects of tilapia skin peptides (TSP) on primary ovarian failure (POF) and their underlying mechanisms in mice were investigated. Cyclophosphamide (CP) was injected intraperitoneally (ip) for 14 days (10 mg kg-1 d-1) to establish a mouse model of POF. At the same time, the mice were given intragastrically (ig) TSP for 30 days (250 mg kg-1 d-1, 500 mg kg-1 d-1, and 1000 mg kg-1 d-1, respectively). The ovarian index, estrous cycle, hormone level, changes in the number of follicles at various levels, and biochemical tests were carried out at the end of the experiment. The body weight and ovarian index of mice in the POF group were markedly lower than that of the control group. Treatment with TSP reversed these changes significantly. TSP administration significantly restored the estrous cycle disorder of the mice versus that of the POF group. The level changes of progesterone (P), estradiol (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) induced by CP were significantly reversed by TSP treatment. TSP inhibited oxidative stress in CP-induced mice by enhancing the total superoxide dismutase (T-SOD) activity and reducing malondialdehyde (MDA) levels in the ovaries. TSP improved the apoptosis of ovarian granulosa cells in CP-induced mice compared with the POF group. Furthermore, TSP regulated the Bcl-2/Bax/caspase-3 apoptosis pathway and enhanced the Nrf2/HO-1 signaling pathway. In conclusion, TSP could improve CP-induced POF via alleviating ovarian oxidative stress and granulosa cell apoptosis.
Collapse
Affiliation(s)
- Yun-Tao Zhao
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Haowen Yin
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang, 524023, P.R. China
| | - Jian Zeng
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Xinyi Shi
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Shaohong Chen
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Kun Zhang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Wenjing Zheng
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| | - Wenjin Wu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China.
| | - Shucheng Liu
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.
| |
Collapse
|
32
|
Bian HT, Xiao L, Liang L, Xie YP, Wang HL, Wang GH. RGFP966 is protective against lipopolysaccharide-induced depressive-like behaviors in mice by inhibiting neuroinflammation and microglial activation. Int Immunopharmacol 2021; 101:108259. [PMID: 34666303 DOI: 10.1016/j.intimp.2021.108259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Depression is a prevalent mental disorder. However, its pathophysiological mechanism has still remained elusive, and a limited number of effective treatments have been presented. Recent studies have shown that neuroinflammation and microglial activation are involved in the pathogenesis of depression. Histone deacetylase 3 (HDAC3) has neurotoxic effects on several neuropathological conditions. The inhibition of HDAC3 has been reported to induce anti-inflammatory and antioxidant effects. RGFP966 is a highly selective inhibitor of HDAC3. This study aimed to investigate the antidepressant effect of RGFP966 on lipopolysaccharide (LPS)-induced depressive-like behaviors in mice and to explore its possible mechanism. Adult male C57BL/6J mice were utilized in this study. The LPS and RGFP966 were injected intraperitoneally daily for 5 days. The behavior tests were performed to elucidate the depression-like behaviors. Western blot, ELISA and immunofluorescence staining were used to study the HDAC3/TLR4/NLRP3 pathway-related proteins. The results of behavioral tests showed that RGFP966 could improve the LPS-induced depressive-like behaviors in mice. The results of Western blotting showed that RGFP966 treatment downregulated the expression levels of toll-like receptor 4 (TLR4), nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3), caspase-1, and interleukin-1β (IL-1β) (P < 0.05). Furthermore, the results of immunofluorescence staining showed that RGFP966 treatment inhibited microglial activation in the hippocampus of mice (P < 0.01). These findings suggested that RGFP966 could effectively ameliorate LPS-induced depressive-like behaviors in mice by inhibiting neuroinflammation and microglial activation. The anti-inflammatory mechanism of RGFP966 might be related to the inhibition of the HDAC3/TLR4/NLRP3 signaling pathway. Therefore, inhibition of HDAC3 using RGFP966 could serve as a potential treatment strategy for depression.
Collapse
Affiliation(s)
- He-Tao Bian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Yin-Ping Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Hui-Ling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gao-Hua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
33
|
Exploring the Role of Nutraceuticals in Major Depressive Disorder (MDD): Rationale, State of the Art and Future Prospects. Pharmaceuticals (Basel) 2021; 14:ph14080821. [PMID: 34451918 PMCID: PMC8399392 DOI: 10.3390/ph14080821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and common disorder, with many factors involved in its onset and development. The clinical management of this condition is frequently based on the use of some pharmacological antidepressant agents, together with psychotherapy and other alternatives in most severe cases. However, an important percentage of depressed patients fail to respond to the use of conventional therapies. This has created the urgency of finding novel approaches to help in the clinical management of those individuals. Nutraceuticals are natural compounds contained in food with proven benefits either in health promotion or disease prevention and therapy. A growing interest and economical sources are being placed in the development and understanding of multiple nutraceutical products. Here, we summarize some of the most relevant nutraceutical agents evaluated in preclinical and clinical models of depression. In addition, we will also explore less frequent but interest nutraceutical products which are starting to be tested, also evaluating future roads to cover in order to maximize the benefits of nutraceuticals in MDD.
Collapse
|
34
|
Shi J, Guo H, Liu S, Xue W, Fan F, Li H, Fan H, An H, Wang Z, Tan S, Yang F, Tan Y. Subcortical Brain Volumes Relate to Neurocognition in First-Episode Schizophrenia, Bipolar Disorder, Major Depression Disorder, and Healthy Controls. Front Psychiatry 2021; 12:747386. [PMID: 35145436 PMCID: PMC8821164 DOI: 10.3389/fpsyt.2021.747386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/30/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE To explore differences and similarities in relationships between subcortical structure volumes and neurocognition among the four subject groups, including first-episode schizophrenia (FES), bipolar disorder (BD), major depression disorder (MDD), and healthy controls (HCs). METHODS We presented findings from subcortical volumes and neurocognitive analyses of 244 subjects (109 patients with FES; 63 patients with BD, 30 patients with MDD, and 42 HCs). Using the FreeSurfer software, volumes of 16 selected subcortical structures were automatically segmented and analyzed for relationships with results from seven neurocognitive tests from the MATRICS (Measurement and Treatment Research to Improve Cognition in Schizophrenia) Cognitive Consensus Battery (MCCB). RESULTS Larger left lateral ventricle volumes in FES and BD, reduced bilateral hippocampus and amygdala volumes in FES, and lower bilateral amygdala volumes in BD and MDD were presented compared with HCs, and both FES and BD had a lower bilateral amygdala volume than MDD; there were seven cognitive dimension, five cognitive dimension, and two cognitive dimension impairments in FES, BD, and MDD, respectively; significant relationships were found between subcortical volumes and neurocognition in FES and BD but not in MDD and HCs; besides age and years of education, some subcortical volumes can predict neurocognitive performances variance. CONCLUSION The different degrees of subcortical volume lessening may contribute to the differences in cognitive impairment among the three psychiatric disorders.
Collapse
Affiliation(s)
- Jing Shi
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Hua Guo
- The Psychiatric Hospital of Zhumadian, Zhumadian, China
| | - Sijia Liu
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Wei Xue
- Department of Clinical Pharmacology, Beijing Hospital of the Ministry of Health, Beijing, China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Hui Li
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Hongzhen Fan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Huimei An
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Fude Yang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| |
Collapse
|