1
|
Cheng S, Li W, Yang H, Hou B, Hung W, He J, Liang C, Li B, Jiang Y, Zhang Y, Man C. Integrated transcriptomics and metabolomics reveal changes during Streptococcus thermophilus JM66 fermentation in milk: Fermentation characteristics, flavor profile, and metabolic mechanism. Food Res Int 2025; 203:115770. [PMID: 40022315 DOI: 10.1016/j.foodres.2025.115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 03/03/2025]
Abstract
Microbial metabolism influences the physicochemical properties and flavor compound formation in fermented milk during fermentation. Streptococcus thermophilus is one of the primary fermentation strains used in fermented milk production. Herein, we investigated the fermentation characteristics, flavor profiles, and associated metabolic mechanisms of Streptococcus thermophilus JM66 in milk matrix through multi-stage dynamic monitoring and multi-omics techniques. A total of 66 volatile metabolites were identified across three fermentation stages of S. thermophilus JM66, with ketones (such as acetoin and nonanone) being the predominant flavor metabolites in the fermented milk. Metabolomic analyses revealed an increase in pyruvic acid, L-lactic acid, 2-hydroxybutyric acid, D-proline, and L-tyrosine, alongside a decrease in D-arginine, L-aspartic acid, and acetoacetyl-CoA, which were enriched in pyruvate metabolism, butanoate metabolism, amino acid metabolism and fatty acid metabolism. Furthermore, integrating transcriptomic results, high expression of LDH, budC and genes related to glycolysis, urea cycle and fatty acid biosynthesis promoted compound metabolism and flavor development. This comprehensive analysis of S. thermophilus JM66 provides a theoretical foundation for its future application as a starter culture or in strain mutagenesis aimed at enhancing fermentation characteristics.
Collapse
Affiliation(s)
- Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Wenyan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Hanying Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Baochao Hou
- National Center of Technology Innovation for Dairy, Huhhot 010110, China
| | - Weilian Hung
- National Center of Technology Innovation for Dairy, Huhhot 010110, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Huhhot 010110, China
| | - Chao Liang
- National Center of Technology Innovation for Dairy, Huhhot 010110, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Huhhot 010110, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Guan Y, Cui Y, Qu X, Li B, Zhang L. Post-acidification of fermented milk and its molecular regulatory mechanism. Int J Food Microbiol 2025; 426:110920. [PMID: 39316924 DOI: 10.1016/j.ijfoodmicro.2024.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
The fermented milk products with lactic acid bacteria (LAB) are widely accepted by consumers. During the chilled-chain transportation and storage, LAB in the product keep producing lactic acid, and this will lead to post-acidification, which can affect the flavor, consumer acceptance and even shelf-life of the product. LAB is the determining factor affecting post-acidification. The acid production pathway in LAB and methods inhibiting post-acidification received widespread attention. This review will focus on the post-acidification from the perspective of fermentation starters, including acid production pathway in LAB, main factors and key enzymes affecting post-acidification. Lactobacillus delbrueckii subsp. bulgaricus is a key bacterial species responsible for post acidification in the fermented milk products. The different species and strains presented various differences in process like acid production, acid resistance and post-acidification. Furthermore, multiple factors, such as milk composition, fermentation temperature, and homogenization, also can influence post-acidification. Lactose transport and utilization pathways, as well as its subsequent products metabolic pathway directly influence the post-acidification. F0F1-ATPase, β-galactosidase, and lactate dehydrogenase are recognized as important enzymes related to post-acidification. The degree of post-acidification is mainly related to the acid production and acid resistance abilities of the fermentation starters, so the key enzymes related to post-acidification are mostly taking part in these two capacities. Recently, some new post-acidification related biomarker genes were found, providing a reference adjusting post-acidification without affecting fermentation rate and bacteria viability. To clarify the post-acidification mechanism at the molecular level will help control post- acidification.
Collapse
Affiliation(s)
- Yuxuan Guan
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Ranjan A, Arora J, Chauhan A, Basniwal RK, Kumari A, Rajput VD, Prazdnova EV, Ghosh A, Mukerjee N, Mandzhieva SS, Sushkova S, Minkina T, Jindal T. Advances in characterization of probiotics and challenges in industrial application. Biotechnol Genet Eng Rev 2024; 40:3226-3269. [PMID: 36200338 DOI: 10.1080/02648725.2022.2122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, India
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, New South Wales, Australia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| |
Collapse
|
4
|
Dang L, Li D, Mu Q, Zhang N, Li C, Wang M, Tian H, Jha R, Li C. Youth-derived Lactobacillus rhamnosus with prebiotic xylo-oligosaccharide exhibits anti-hyperlipidemic effects as a novel synbiotic. Food Res Int 2024; 195:114976. [PMID: 39277213 DOI: 10.1016/j.foodres.2024.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Changes in dietary patterns and living habits have led to an increasing number of individuals with elevated cholesterol levels. Excessive consumption of high-cholesterol foods can disrupt the body's lipid metabolism. Numerous studies have firmly established the cholesterol-lowering effects of probiotics and prebiotics, with evidence showing that the synergistic use of synbiotics is functionally more potent than using probiotics or prebiotics alone. Currently, the screening strategy involves screening prebiotics for synbiotic development with probiotics as the core. However, in comparison to probiotics, there are fewer types of prebiotics available, leading to limited resources. Consequently, the combinations of synbiotics obtained are restricted, and probiotics and prebiotics are only relatively suitable. Therefore, in this study, a novel synbiotic screening strategy with prebiotics as the core was developed. The synbiotic combination of Lactobacillus rhamnosus S_82 and xylo-oligosaccharides was screened from the intestinal tract of young people through five generations of xylo-oligosaccharides. Subsequently, the cholesterol-lowering ability of the medium was simulated, and the two carbon sources of glucose and xylo-oligosaccharides were screened out. The results showed that synbiotics may participate in cholesterol-lowering regulation by down-regulating the expression of NPC1L1 gene, down-regulating ACAT2 and increasing the expression of ABCG8 gene in vitro through cell adsorption and cell absorption in vitro, and regulating the intestinal microbiota. Synbiotics hold promise as potential candidates for the prevention of hypercholesterolemia in humans and animals, and this study providing a theoretical foundation for the development of new synbiotic products.
Collapse
Affiliation(s)
- Luyao Dang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qingqing Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; College of Biochemistry and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Chenwei Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Miaoshu Wang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu 96822, United States.
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| |
Collapse
|
5
|
Karimi S, Nateghi L, Hosseini E, Fakheri MA. Effect of chitosomes loaded zein on physicochemical, mechanical, microbial, and sensory characteristics of probiotic Kashk during cold storage. Food Chem X 2024; 23:101624. [PMID: 39100248 PMCID: PMC11295914 DOI: 10.1016/j.fochx.2024.101624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Functional foods like probiotics offer health benefits against various diseases, and plant bioactive compounds can enhance their growth. Zein, a protein, shows biological activity upon hydrolysis, and encapsulating it in nanoparticles improves bioavailability. This study examined chitosan-coated nanoliposomes as carriers for hydrolyzed and unhydrolyzed maize zein to fortify kashk. Combining chitosan and hydrolyzed zein in a 1:2 ratio achieves the highest encapsulation efficiency, antioxidant activity, smallest particle size, polydispersity index, and zeta potential. FTIR and XRD analyses confirm hydrolyzed zein's entrapment and crystalline nature post-encapsulation. Optimized nanoliposomes release hydrolyzed zein faster in simulated intestinal fluid than in gastric fluid, indicating high bioavailability and stability. When used to fortify kashk, these nanoliposomes slightly lower acidity but maintain standard pH over 60-day cold storage, improve elastic properties, and enhance probiotic viability. At the same time, sensory attributes remain comparable to the control, highlighting their functional food potential.
Collapse
Affiliation(s)
- Sara Karimi
- Department of Food Science and Technology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Elahesadat Hosseini
- Department of Food Science and Technology, National Nutrition Sciences and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Mohammad Ali Fakheri
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
7
|
Wang Y, Li D, Chitrakar B, Zhang X, Zhang N, Liu C, Li Y, Wang M, Tian H, Li C. Copper inhibits postacidification of yogurt and affects its flavor: A study based on the Cop operon. J Dairy Sci 2023; 106:897-911. [PMID: 36526462 DOI: 10.3168/jds.2022-22369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022]
Abstract
Yogurt and its related products are popular worldwide. During transportation and storage, Lactobacillus delbrueckii ssp. bulgaricus in yogurt continues to metabolize to form lactic acid, the postacidification phenomenon of yogurt. Postacidification of yogurt is a widespread phenomenon in the dairy industry. Many scholars have done research on controlling the postacidification process, but few report on the molecular mechanisms involved. In this study, we used a molecular-assisted approach to screen food additives that can inhibit postacidification and analyzed its effects on yogurt quality as well as its regulatory mechanism from multi-omics perspectives in combination. The copper ion was found to upregulate the expression of the LDB_RS05285 gene, and the copper transporter-related genes were regulated by copper. Based on the metabolic-level analysis, copper was found to promote lactose hydrolysis, accumulate a large amount of glucose and galactose, inhibit the conversion of glucose to lactic acid, and reduce the production of lactic acid. The significantly greater abundance of l-isoleucine and l-phenylalanine increased the abundance of 3-methylbutyraldehyde (∼1.2 times) and benzaldehyde (∼7.9 times) to different degrees, which contributed to the formation of the overall flavor of yogurt. Copper not only stabilizes the acidity of yogurt, but also it improves the flavor of yogurt. Through this established method involving quantitative and correlation analyses at the transcriptional and metabolic levels, this study provides guidance for the research and development of food additives that inhibit postacidification of yogurt and provide a reference for studying the changes of metabolites during storage of yogurt.
Collapse
Affiliation(s)
- Yu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xin Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China; School of Biochemical and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Chang Liu
- School of English and International Studies, Beijing Foreign Studies University, Beijing, 10089, China
| | - Yaxuan Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Miaoshu Wang
- Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China; New Hope Tensun (Hebei) Dairy Co. Ltd., Baoding, Hebei, 071000, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China; National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, Hebei, 071000, China.
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| |
Collapse
|
8
|
Sekhavatizadeh SS, Banisaeed K, Hasanzadeh M, Khalatbari-Limaki S, Amininezhad H. Physicochemical properties of kashk supplemented with encapsulated lemongrass extract. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Kashk is a perishable fermented dairy product. Since chemical preservatives are harmful for human health, we aimed to study lemongrass (Cymbopogon citratus L.) as a natural preservative.
First, we assessed the phytochemical properties of lemongrass extract. Then, we added lemongrass extract and microencapsulated lemongrass extract to kashk samples. Finally, we analyzed their physicochemical and sensorial properties during 60 days of storage.
Catechin (419.04 ± 0.07 mg/L), gallic acid (319.67 ± 0.03 mg/L), and chloregenic acid (4.190 ± 0.002 mg/L) were found to be the predominant phenolic constituents in lemongrass. Total phenolics, total flavonoids, and antioxidant activity (IC50) values of the lemongrass extract were 26.73 mg GA/g, 8.06 mg Quercetin/g, and 2751.331 mg/L, respectively. The beads were spherical in shape with a 35.03-nm average particle diameter and 47.81% microencapsulation efficiency. The pH of the supplemented kashks decreased during the storage time. They showed lower acid degree values than the control at the end of storage. The peroxide, p-anisidine, and thiobarbituric acid values of the sample fortified with microencapsulated lemongrass extract were 6.15, 4.76, and 44.12%, respectively, being the lowest among the samples. This kashk sample had the highest hardness (570.62 ± 21.87 g), adhesiveness (18.10 ± 4.36 mJ), and cohesiveness (0.56 ± 0.25) but the lowest chewiness (72.66 ± 3.08 mJ) among the samples. It also had a better sensory profile than the control samples.
Our results indicated that microencapsulated lemongrass extract could be incorporated into kashk to ensure suitable sensorial and textural properties. Furthermore, it may delay fat oxidation and lipolysis during storage.
Collapse
|
9
|
Zhang X, Zheng Y, Kumar Awasthi M, Zhou C, Barba FJ, Cai Z, Liu L, Rene ER, Pan D, Cao J, Sindhu R, Xia Q. Strategic thermosonication-mediated modulation of lactic acid bacteria acidification kinetics for enhanced (post)-fermentation performance. BIORESOURCE TECHNOLOGY 2022; 361:127739. [PMID: 35940323 DOI: 10.1016/j.biortech.2022.127739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
This study explored the feasibility of thermosonication (TS)-prestressed inoculum with different fermentation patterns for regulating microbial (post)-fermentation acidification kinetics. Through a Box-Behnken design, stimulative (20 min, 400 W, 33 kHz, 25 °C) and inhibitive (10 min, 600 W, 33 kHz, 20 °C) effects on the acidification capability of Lactobacillus plantarum A3 were achieved without observing greatly activated/inactivated strains growth, further confirmed by lactose fermentation performed by Streptococcus thermophilus and Lactobacillus bulgaricus. Lactic acid was the major contributing factor responsible for TS-induced acidification modifications corresponding to the potential fluctuations of CoA biosynthesis, fatty acid degradation and chain elongation pathways to TS prestress. Microscopy observations and quantitative extracellular substance assays showed palpable stress disturbance on microbes, but causing insignificant effects on product characteristics. This investigation demonstrated the potential of controlled sonication prestress strategies to achieve dual engineering effects on microbial metabolic behavior, for alleviating post-acidification problem or enhancing process efficiencies.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Zhendong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Lianliang Liu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau.
| |
Collapse
|
10
|
Niacin inhibits post-acidification of yogurt based on the mining of LDB_RS00370 biomarker gene. Food Res Int 2022; 162:111929. [DOI: 10.1016/j.foodres.2022.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022]
|
11
|
Agregán R, Echegaray N, Nawaz A, Hano C, Gohari G, Pateiro M, Lorenzo JM. Foodomic-Based Approach for the Control and Quality Improvement of Dairy Products. Metabolites 2021; 11:818. [PMID: 34940577 PMCID: PMC8709215 DOI: 10.3390/metabo11120818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The food quality assurance before selling is a needed requirement intended for protecting consumer interests. In the same way, it is also indispensable to promote continuous improvement of sensory and nutritional properties. In this regard, food research has recently contributed with studies focused on the use of 'foodomics'. This review focuses on the use of this technology, represented by transcriptomics, proteomics, and metabolomics, for the control and quality improvement of dairy products. The complex matrix of these foods requires sophisticated technology able to extract large amounts of information with which to influence their aptitude for consumption. Thus, throughout the article, different applications of the aforementioned technologies are described and discussed in essential matters related to food quality, such as the detection of fraud and/or adulterations, microbiological safety, and the assessment and improvement of transformation industrial processes (e.g., fermentation and ripening). The magnitude of the reported results may open the door to an in-depth transformation of the most conventional analytical processes, with the introduction of new techniques that allow a greater understanding of the biochemical phenomena occurred in this type of food.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|