1
|
Tang H, Fan Q, Lu Y, Lin X, Lan R, Hu D, Zhang S, Wang R, Zhao R, Liu L, Xu J. Weissella confusa alleviates experimental colitis in mice by regulating inflammatory pathways and gut microbiota. Front Microbiol 2025; 16:1574548. [PMID: 40356657 PMCID: PMC12068860 DOI: 10.3389/fmicb.2025.1574548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic condition with no cure. Probiotics may offer a new strategy for the treatment of IBD. Weissella confusa has been shown to have antibacterial, anti-inflammatory, and antioxidant beneficial effects in animal models. However, the anti-inflammatory effect of W. confusa at host cellular level and their effect on the gut microbiota are unclear. This study aimed to investigate the effects of W. confusa Wc1982 on inflammation and gut microbiota alterations in a dextran sulfate sodium (DSS) induced colitis mouse model. Method Female C57BL/6J mice were randomly divided into control, DSS, and Wc1982 groups (n = 6/group). The Wc1982 group was given continuous gavage of W. confusa Wc1982 for 14 days with the last 7 days also treated with 3% DSS. Disease phenotypes including daily body weight, disease activity index (DAI), colon length and histological changes were evaluated. The composition of colon flora, α-diversity and β-diversity were analyzed by 16S rRNA sequencing. The colonic gene expression profile was analyzed by RNA-seq, and serum and colonic proinflammatory cytokines were assessed by enzyme-linked immunosorbent assay. Analysis of variance (ANOVA) was used to analyze the differences among groups, and Spearman rank test was used to calculate the correlation between species relative abundance and pro-inflammatory markers. Results Compared with DSS group, W. confusa Wc1982 significantly improved the disease phenotypes of colitis mice including decreased DAI and pathological score and reduced colon shortening, decreased colonic IL-17, IL-6, and TNF-α levels and serum lipopolysaccharide (p < 0.05), and downregulated the expression of key genes of IL-17 pathway (Lcn2, Mmp3, Mmp13, Ptgs2; p < 0.05). W. confusa Wc1982 modified the gut microbiota community of colitis mice, with increased α-diversity, increased abundance of W. confusa and Akkermansia muciniphila, and decreased abundance of Enterococcus faecalis and Escherichia coli (all p < 0.05). Conclusion Supplementation with W. confusa Wc1982 offers a promising strategy for alleviating colitis.
Collapse
Affiliation(s)
- Huijing Tang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qianhua Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yao Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoying Lin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shuwei Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruoshi Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiqing Zhao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| | - Jianguo Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Ding YY, Tang XY, Tian Y, Zhang FL, Ding X, Qi MC, Dong W, Liu CG. Enteromorpha prolifera soluble dietary fiber alleviates ulcerative colitis through restoration of mucosal barrier and gut microbiota homeostasis. Front Nutr 2025; 12:1579889. [PMID: 40342374 PMCID: PMC12058658 DOI: 10.3389/fnut.2025.1579889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025] Open
Abstract
Background Ulcerative colitis (UC), a recurrent chronic colon inflammation, presents substantial therapeutic challenges due to the frequent adverse effects associated with conventional pharmacological treatments. These limitations underscore the critical need for developing alternative dietary interventions with improved safety profiles. The present study investigated the therapeutic potential of Enteromorpha prolifera soluble dietary fiber microparticles (EDFM) in UC management, focusing on restoring mucosal barrier integrity and modulating gut microbiota homeostasis. Methods EDFM was fabricated through aqueous extraction of E. prolifera soluble dietary fiber via boiling followed by spray-drying. A mouse UC model was induced by dextran sulfate sodium (DSS). The severity of UC was evaluated through daily disease activity index (DAI) scoring; quantification of pro-inflammatory cytokines (TNF-α, IL-1β) via ELISA; histopathological analysis of colon sections with H&E staining; immunofluorescence detection of tight junction proteins (ZO-1, occludin); and 16S rRNA sequencing for gut microbiota. Results EDFM treatment significantly reduced the expression of pro-inflammatory cytokines (TNF-α and IL-1β), enhanced the expression of tight junction proteins (ZO-1 and occludin), and stimulated mucin (MUC2) production. Additionally, EDFM promoted the proliferation of beneficial probiotics (Alloprevotella, Lachnospiraceae_NK4A136_group, and Ruminococcaceae_UCG-014), while inhibiting pathogenic bacteria (Escherichia-Shigella, Parabacteroides, Rikenellaceae_RC9_gut_group, Odoribacter, and [Ruminococcus]_torques_group). Conclusion EDFM supplementation significantly ameliorates UC through dual modulation of gut microbiota and intestinal barrier integrity, indicating its potential as a functional food ingredient for UC prevention and treatment.
Collapse
Affiliation(s)
- Yuan-Yuan Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- College of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Xin-Yi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Feng-Long Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiang Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meng-Chun Qi
- College of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Wei Dong
- College of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Chen-Guang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Eslami M, Adampour Z, Fadaee Dowlat B, Yaghmayee S, Motallebi Tabaei F, Oksenych V, Naderian R. A Novel Frontier in Gut-Brain Axis Research: The Transplantation of Fecal Microbiota in Neurodegenerative Disorders. Biomedicines 2025; 13:915. [PMID: 40299512 PMCID: PMC12025253 DOI: 10.3390/biomedicines13040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
The gut-brain axis (GBA) represents a sophisticated bidirectional communication system connecting the central nervous system (CNS) and the gastrointestinal (GI) tract. This interplay occurs primarily through neuronal, immune, and metabolic pathways. Dysbiosis in gut microbiota has been associated with multiple neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). In recent years, fecal microbiota transplantation (FMT) has gained attention as an innovative therapeutic approach, aiming to restore microbial balance in the gut while influencing neuroinflammatory and neurodegenerative pathways. This review explores the mechanisms by which FMT impacts the gut-brain axis. Key areas of focus include its ability to reduce neuroinflammation, strengthen gut barrier integrity, regulate neurotransmitter production, and reinstate microbial diversity. Both preclinical and clinical studies indicate that FMT can alleviate motor and cognitive deficits in PD and AD, lower neuroinflammatory markers in MS, and enhance respiratory and neuromuscular functions in ALS. Despite these findings, several challenges remain, including donor selection complexities, uncertainties about long-term safety, and inconsistencies in clinical outcomes. Innovations such as synthetic microbial communities, engineered probiotics, and AI-driven analysis of the microbiome hold the potential to improve the precision and effectiveness of FMT in managing neurodegenerative conditions. Although FMT presents considerable promise as a therapeutic development, its widespread application for neurodegenerative diseases requires thorough validation through well-designed, large-scale clinical trials. It is essential to establish standardized protocols, refine donor selection processes, and deepen our understanding of the molecular mechanisms behind its efficacy.
Collapse
Affiliation(s)
- Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran;
- Department of Bacteriology and Virology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Zarifeh Adampour
- Institute of Science, Biotechnology and Biosafety Department, Eskishehir Osmangazi University, Eskishehir 26040, Türkiye;
| | - Bahram Fadaee Dowlat
- School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Shayan Yaghmayee
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Faezeh Motallebi Tabaei
- Department of Medical Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 49189-36316, Iran
| | | | - Ramtin Naderian
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
4
|
Yang Y, Shi X. Big lessons from the little Akkermansia muciniphila in hepatocellular carcinoma. Front Immunol 2025; 16:1524563. [PMID: 40028328 PMCID: PMC11868108 DOI: 10.3389/fimmu.2025.1524563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently occurring type of liver tumor and is considered one of the most common primary malignant neoplasms. The prognosis for HCC is dismal because of its complicated etiology and high level of medication resistance. Immunotherapy is presently regarded as one of the most effective therapeutic options for HCC; nevertheless, because of the disturbance of intestinal flora, immunotherapy shows low antitumor efficacy. An increasing body of research indicates that intestinal flora, particularly Akkermansia muciniphila (A. muciniphila), is vital for the treatment of tumors. Studies have demonstrated that the diminished effectiveness of immunotherapy in cancer patients is associated with a reduction in A. muciniphila levels, suggesting that increasing A. muciniphila levels significantly enhance the efficacy of immunotherapy. A. muciniphila functions as a gut probiotic and can treat and prevent a wide range of illnesses, including cancer. Consequently, preserving A. muciniphila abundance is enough to prevent and lower the danger of developing cancer disorders. In this review, we critically evaluate the current body of research on A. muciniphila, with a primary focus on its biological properties and functions. The different illnesses that A. muciniphila treats were then discussed, particularly the way it works with liver cancer. This review aims to give a novel treatment plan for patients with HCC as well as a theoretical foundation for improving HCC immunotherapy.
Collapse
Affiliation(s)
- Yanguang Yang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
5
|
Yue N, Zhao H, Hu P, Zhang Y, Tian C, Kong C, Mai Z, Huang L, Luo Q, Wei D, Shi R, Tang S, Nie Y, Liang Y, Yao J, Wang L, Li D. Real-world of Limosilactobacillus reuteri in mitigation of acute experimental colitis. J Nanobiotechnology 2025; 23:65. [PMID: 39891249 PMCID: PMC11783912 DOI: 10.1186/s12951-025-03158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
Probiotics have been proposed as a potential strategy for managing ulcerative colitis (UC). However, the underlying mechanisms mediating microbiota-host crosstalk remain largely elusive. Here, we report that Limosilactobacillus reuteri (L. reuteri), as a probiotic, secretes cytoplasmic membrane vesicles (CMVs) that communicate with host cells, alter host physiology, and alleviate dextran sulfate sodium (DSS)-induced colitis. First, L. reuteri-CMVs selectively promoted the proliferation of the beneficial bacterium Akkermansia muciniphila (AKK) by upregulating the expression of glycosidases (beta-N-acetylhexosaminidase and alpha-N-acetylglucosaminidase) involved in glycan degradation and metabolic pathways and restored the disrupted gut microbiota balance. Second, L. reuteri-CMVs were taken up by intestinal epithelial cells (IECs), elevated the expression of ZO-1, E-cadherin (Cdh1), and Occludin (Ocln), decreased intestinal permeability, and exerted protective effects on epithelial tight junction functionality. RNA sequencing analysis demonstrated that L. reuteri-CMVs repaired intestinal barrier by activating the HIF-1 signaling pathway and upregulating HMOX1 expression. Third, L. reuteri-CMVs increased the population of double positive (DP) CD4+CD8+ T cells in the intestinal epithelial layer, suppressing gut inflammation and maintaining gut mucosal homeostasis. Finally, L. reuteri-CMVs exhibited satisfactory stability and safety in the gastrointestinal tract and specifically targeted the desired sites in colitis mice. Collectively, these findings shed light on how L. reuteri interact with the host in colitis, and provide new insights into potential strategies for alleviating colitis.
Collapse
Affiliation(s)
- Ningning Yue
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Hailan Zhao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Peng Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, 516008, China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Chen Kong
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Zhiliang Mai
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Longbin Huang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Qianjun Luo
- Department of Endocrine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, 518067, China
| | - Daoru Wei
- Department of Rehabilitation, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Ruiyue Shi
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong, 518020, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China.
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China.
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China.
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| |
Collapse
|
6
|
Zhao Y, Yang H, Wu P, Yang S, Xue W, Xu B, Zhang S, Tang B, Xu D. Akkermansia muciniphila: A promising probiotic against inflammation and metabolic disorders. Virulence 2024; 15:2375555. [PMID: 39192579 PMCID: PMC11364076 DOI: 10.1080/21505594.2024.2375555] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic disease is a worldwide epidemic that has become a public health problem. Gut microbiota is considered to be one of the important factors that maintain human health by regulating host metabolism. As an abundant bacterium in the host gut, A. muciniphila regulates metabolic and immune functions, and protects gut health. Multiple studies have indicated that alterations in the abundance of A. muciniphila are associated with various diseases, including intestinal inflammatory diseases, obesity, type 2 diabetes mellitus, and even parasitic diseases. Beneficial effects were observed not only in live A. muciniphila, but also in pasteurized A. muciniphila, A. muciniphila-derived extracellular vesicles, outer membrane, and secreted proteins. Although numerous studies have only proven the simple correlation between multiple diseases and A. muciniphila, an increasing number of studies in animal models and preclinical models have demonstrated that the beneficial impacts shifted from correlations to in-depth mechanisms. In this review, we provide a comprehensive view of the beneficial effects of A. muciniphila on different diseases and summarize the potential mechanisms of action of A. muciniphila in the treatment of diseases. We provide a comprehensive understanding of A. muciniphila for improving host health and discuss the perspectives of A. muciniphila in the future studies.
Collapse
Affiliation(s)
- Yanqing Zhao
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huijun Yang
- The First School of Clinical Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Wu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkun Xue
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Biao Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sirui Zhang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bin Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
7
|
Zhang Y, Xun L, Qiao R, Jin S, Zhang B, Luo M, Wan P, Zuo Z, Song Z, Qi J. Advances in research on the role of high carbohydrate diet in the process of inflammatory bowel disease (IBD). Front Immunol 2024; 15:1478374. [PMID: 39588368 PMCID: PMC11586370 DOI: 10.3389/fimmu.2024.1478374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, systemic gastrointestinal disorder characterized by episodic inflammation that requires life-long management. Although the etiology of IBD is not fully understood, it is hypothesized to involve a multifaceted interplay among genetic susceptibility, the host immune response, and environmental factors. Previous studies have largely concluded that IBD is associated with this complex interplay; however, more recent evidence underscores the significant role of dietary habits as risk factors for the development of IBD. In this review, we review the molecular mechanisms of high-sugar and high-fat diets in the progression of IBD and specifically address the impacts of these diets on the gut microbiome, immune system regulation, and integrity of the intestinal barrier, thereby highlighting their roles in the pathogenesis and exacerbation of IBD.
Collapse
Affiliation(s)
- Ying Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Linting Xun
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ran Qiao
- Colleges of Letters and Science, University of Wisconsin–Madison, Madison, WI, United States
| | - Shumei Jin
- Yunnan Institute of Food and Drug Supervision and Control, Medical Products Administration of Yunnan Province, Kunming, China
| | - Bing Zhang
- Yunnan Provincial Key Laboratory of Modern Information Optics, Kunming University of Science and Technology, Kunming, China
| | - Mei Luo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ping Wan
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Research Center for Geriatric Disorders, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zan Zuo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zhengji Song
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jialong Qi
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Clinical Research Center for Geriatric Disorders, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Provincial Key Laboratory of Birth Defects and Genetic Diseases, First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
8
|
Song Y, Shi M, Wang Y. Deciphering the role of host-gut microbiota crosstalk via diverse sources of extracellular vesicles in colorectal cancer. Mol Med 2024; 30:200. [PMID: 39501131 PMCID: PMC11536884 DOI: 10.1186/s10020-024-00976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024] Open
Abstract
Colorectal cancer is the most common type of cancer in the digestive system and poses a major threat to human health. The gut microbiota has been found to be a key factor influencing the development of colorectal cancer. Extracellular vesicles are important mediators of intercellular communication. Not only do they regulate life activities within the same individual, but they have also been found in recent years to be important mediators of communication between different species, such as the gut microbiota and the host. Their preventive, diagnostic, and therapeutic value in colorectal cancer is being explored. The aim of this review is to provide insights into the complex interactions between host and gut microbiota, particularly those mediated through extracellular vesicles, and how these interactions affect colorectal cancer development. In addition, the potential of extracellular vesicles from various body fluids as biomarkers was evaluated. Finally, we discuss the potential, challenges, and future research directions of extracellular vesicles in their application to colorectal cancer. Overall, extracellular vesicles have great potential for application in medical processes related to colorectal cancer, but their isolation and characterization techniques, intercellular communication mechanisms, and the effectiveness of their clinical application require further research and exploration.
Collapse
Affiliation(s)
- Yun Song
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China.
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
| |
Collapse
|
9
|
Wu H, Shi C, Li Q, Wang L, Wang R, Chen F, Li R, Guo X, Chen Y, She J. Oral Administration of Bioactive Nanoparticulates for Inflammatory Bowel Disease Therapy by Mitigating Oxidative Stress and Restoring Intestinal Microbiota Homeostasis. Mol Pharm 2024. [PMID: 39462848 DOI: 10.1021/acs.molpharmaceut.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The management of inflammatory bowel disease (IBD) continues to pose significant challenges due to the absence of curative therapies and a high rate of recurrence. Therefore, it is imperative to explore novel approaches to enhance the efficacy of IBD therapy. Herein, a bioactive nanoparticulate s is tailored designed to achieve a "Pull-Push" approach for efficient and safe IBD treatment by integrating reactive oxygen species (ROS) scavenging (Pull) with anti-inflammatory agent delivery (Push) in the inflammatory microenvironment. The multifunctional nanomedicine, designated MON-PAMAM@SASP, is developed through the encapsulation of sulfasalazine (SASP), a widely utilized clinical drug for the treatment of IBD, within cationic diselenide-bridged mesoporous organosilica nanoparticles (MONs) that possess significant antioxidant properties. Herein, poly(amidoamine) (PAMAM) endows the original MONs with positive charge characteristics. The MON-PAMAM@SASP not only displays the remarkable capability of neutralizing ROS to ameliorates intestinal damage, but also achieves controllable release of SASP to mitigate intestinal inflammation. Consequently, this nanomedicine effectively mitigates IBD by colitis in mouse models, and our current research has not identified any significant drug toxicity. Beyond regulating inflammatory microenvironment in intestine, treatment with MON-PAMAM@SASP results in increased richness and restores intestinal microbiota homeostasis, thereby mitigating IBD to a certain extent. Together, our work provides a highly versatile "Pull-Push" approach for IBD management and encourages the development of similar nanomedicine to treating multiple inflammatory diseases of gastrointestinal tract.
Collapse
Affiliation(s)
- Hong Wu
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Third Department of General Surgery, Xi'an Daxing Hospital Affiliated to Yan'an University, Xi'an 710016, China
| | - Chengxin Shi
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qixin Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lizhao Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruochen Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ruizhe Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaolong Guo
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Yinnan Chen
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Junjun She
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
10
|
Mei L, Wang J, Hao Y, Zeng X, Yang Y, Wu Z, Ji Y. A comprehensive update on the immunoregulatory mechanisms of Akkermansia muciniphila: insights into active ingredients, metabolites, and nutrient-driven modulation. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39413040 DOI: 10.1080/10408398.2024.2416481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Akkermansia muciniphila (A. muciniphila) has gained recognition as a pioneering probiotic, exhibiting considerable potential to enhance immune conditions across both humans and animals. The health benefits of A. muciniphila are attributed to its various components, including outer membrane proteins (PilQ and Amuc_1100), secreted proteins (P9 and AmTARS), extracellular vesicles, and metabolites such as SCFAs, ornithine lipids, γ-aminobutyric acid, cobalamin, and inosine. The dynamic control of the mucus layer by A. muciniphila plays a crucial role in regulating intestinal mucosal immunity. Furthermore, A. muciniphila modulates immune function by interacting with macrophages, dendritic cells, T lymphocytes, and Paneth cells. Increasing the abundance of A. muciniphila in the gut through nutritional strategies represents a safe and effective means to augment immune function. Various polyphenols, oligosaccharides, and polysaccharides have been shown to elevate the levels of this bacterium, thereby contributing to favorable immunoregulatory outcomes. This paper delves into the latest research advancements related to the probiotic mechanisms of A. muciniphila and provides an overview of the current understanding of how its abundance responds to nutrients. These insights offer a theoretical foundation for the utilization of A. muciniphila in immunoregulation.
Collapse
Affiliation(s)
- Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Liang Y, Li Y, Lee C, Yu Z, Chen C, Liang C. Ulcerative colitis: molecular insights and intervention therapy. MOLECULAR BIOMEDICINE 2024; 5:42. [PMID: 39384730 PMCID: PMC11464740 DOI: 10.1186/s43556-024-00207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by abdominal pain, diarrhea, rectal bleeding, and weight loss. The pathogenesis and treatment of UC remain key areas of research interest. Various factors, including genetic predisposition, immune dysregulation, and alterations in the gut microbiota, are believed to contribute to the pathogenesis of UC. Current treatments for UC include 5-aminosalicylic acids, corticosteroids, immunosuppressants, and biologics. However, study reported that the one-year clinical remission rate is only around 40%. It is necessary to prompt the exploration of new treatment modalities. Biologic therapies, such as anti-TNF-α monoclonal antibody and JAK inhibitor, primarily consist of small molecules targeting specific pathways, effectively inducing and maintaining remission. Given the significant role of the gut microbiota, research into intestinal microecologics, such as probiotics and prebiotics, and fecal microbiota transplantation (FMT) shows promising potential in UC treatment. Additionally, medicinal herbs, such as chili pepper and turmeric, used in complementary therapy have shown promising results in UC management. This article reviews recent findings on the mechanisms of UC, including genetic susceptibility, immune cell dynamics and cytokine regulation, and gut microbiota alterations. It also discusses current applications of biologic therapy, herbal therapy, microecologics, and FMT, along with their prospects and challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yang Li
- Department of Respiratory, Sichuan Integrative Medicine Hospital, Chengdu, 610042, China
| | - Chehao Lee
- Department of Traditional Chinese Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chongli Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chao Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
12
|
Pan W, Wu R, Zhang Q, Ma Y, Xiang J, Wang J, Chen J. Ruhao Dashi granules exert therapeutic effects on H1N1 influenza virus infection by altering intestinal microflora composition. Front Microbiol 2024; 15:1482785. [PMID: 39444688 PMCID: PMC11496272 DOI: 10.3389/fmicb.2024.1482785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Objective Antiviral medications for influenza could be ineffective due to the emergence of resistant influenza virus strains. Ruhao Dashi (RHDS) granules possess anti-inflammatory and antibacterial effects. The present study aimed to determine the efficacy of RHDS granules in treating influenza-infected mice and the mechanism underlying this treatment as well as its effect on the intestinal flora composition of the infected mice. Methods The HPLC-UV method was used to identify the active components of RHDS granules. ICR mice were infected with influenza A virus (IAV) H1N1 subtype through a nasal drip. After the influenza mice model was successfully established, the pathological changes in the lungs were observed for 5 days after gavage treatment with 0.9% sterile saline and low, medium, and high doses (0.07, 0.14, and 0.28 g/mL, respectively) of RHDS granules. The serum levels of the cytokines IL-6 and TNF-α and sIgA were detected by ELISA. Real-time fluorescence quantitative PCR and western blotting assay were performed to determine the expression levels of the tight junction (TJ) proteins claudin-1, occludin, and zonula occludens-1 (ZO-1) in colon tissues. Furthermore, 16S rRNA gene sequencing of feces samples was conducted to assess the effect of RHDS granules on the gut microbiota. Results RHDS granules exerted a protective effect on the lung tissues of IAV-infected mice; moreover, the granules reduced the synthesis of proinflammatory cytokines and increased the relative expression levels of claudin-1, occludin, and ZO-1 in colon tissues. Furthermore, RHDS granule treatment increased the relative abundance of Lactobacillus, Akkermansia, and Faecalibaculum and decreased the relative abundance of Muribaculaceae; thus, RHDS granules could stabilize the intestinal microbiota to some extent. Conclusion RHDS granules exert a therapeutic effect on IAV-infected mice probably by modifying the structural composition of their intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingbo Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Jiang P, Ji S, Su D, Zhao Y, Goncalves VBE, Xu G, Zhang M. The biofunction of Akkermansia muciniphila in intestinal-related diseases. MICROBIOME RESEARCH REPORTS 2024; 3:47. [PMID: 39741950 PMCID: PMC11684987 DOI: 10.20517/mrr.2024.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 01/03/2025]
Abstract
Intestinal homeostasis is essential for maintaining human health, and its dysfunction is related to the onset and progression of various diseases, including immune and metabolic disorders, and even tumorigenesis. Intestinal microbiota plays a critical role in intestinal homeostasis, with Akkermansia muciniphila (A. muciniphila) emerging as a key commensal bacterium utilizing mucin as its sole carbon and nitrogen source. A. muciniphila has been recognized in both experimental and clinical studies for its beneficial role in managing intestinal inflammation, tumors, functional gastrointestinal disorders, and secondary conditions such as liver and metabolic diseases. This review provides a comprehensive overview of the research history and current understanding of A. muciniphila, its association with various intestinal-related diseases, and the potential mechanisms behind its effects. This paper also explores the possibilities of leveraging the probiotic enzyme such as the active ingredients of A. muciniphila for the innovative clinical treatment of intestinal-related diseases.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
- Authors contributed equally
| | - Siqi Ji
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
- Authors contributed equally
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown, MA 02472, USA
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL 60637, USA
| | - Viriania Berta Esperanca Goncalves
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
14
|
Khalili L, Park G, Nagpal R, Salazar G. The Role of Akkermansia muciniphila on Improving Gut and Metabolic Health Modulation: A Meta-Analysis of Preclinical Mouse Model Studies. Microorganisms 2024; 12:1627. [PMID: 39203469 PMCID: PMC11356609 DOI: 10.3390/microorganisms12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Akkermansia muciniphila (A. muciniphila) and its derivatives, including extracellular vesicles (EVs) and outer membrane proteins, are recognized for enhancing intestinal balance and metabolic health. However, the mechanisms of Akkermansia muciniphila's action and its effects on the microbiome are not well understood. In this study, we examined the influence of A. muciniphila and its derivatives on gastrointestinal (GI) and metabolic disorders through a meta-analysis of studies conducted on mouse models. A total of 39 eligible studies were identified through targeted searches on PubMed, Web of Science, Science Direct, and Embase until May 2024. A. muciniphila (alive or heat-killed) and its derivatives positively affected systemic and gut inflammation, liver enzyme level, glycemic response, and lipid profiles. The intervention increased the expression of tight-junction proteins in the gut, improving gut permeability in mouse models of GI and metabolic disorders. Regarding body weight, A. muciniphila and its derivatives prevented weight loss in animals with GI disorders while reducing body weight in mice with metabolic disorders. Sub-group analysis indicated that live bacteria had a more substantial effect on most analyzed biomarkers. Gut microbiome analysis using live A. muciniphila identified a co-occurrence cluster, including Desulfovibrio, Family XIII AD3011 group, and Candidatus Saccharimonas. Thus, enhancing the intestinal abundance of A. muciniphila and its gut microbial clusters may provide more robust health benefits for cardiometabolic, and age-related diseases compared with A. muciniphila alone. The mechanistic insight elucidated here will pave the way for further exploration and potential translational applications in human health.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gwoncheol Park
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Ravinder Nagpal
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gloria Salazar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
15
|
Mo C, Lou X, Xue J, Shi Z, Zhao Y, Wang F, Chen G. The influence of Akkermansia muciniphila on intestinal barrier function. Gut Pathog 2024; 16:41. [PMID: 39097746 PMCID: PMC11297771 DOI: 10.1186/s13099-024-00635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024] Open
Abstract
Intestinal barriers play a crucial role in human physiology, both in homeostatic and pathological conditions. Disruption of the intestinal barrier is a significant factor in the pathogenesis of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. The profound influence of the gut microbiota on intestinal diseases has sparked considerable interest in manipulating it through dietary interventions, probiotics, and fecal microbiota transplantation as potential approaches to enhance the integrity of the intestinal barrier. Numerous studies have underscored the protective effects of specific microbiota and their associated metabolites. In recent years, an increasing body of research has demonstrated that Akkermansia muciniphila (A. muciniphila, Am) plays a beneficial role in various diseases, including diabetes, obesity, aging, cancer, and metabolic syndrome. It is gaining popularity as a regulator that influences the intestinal flora and intestinal barrier and is recognized as a 'new generation of probiotics'. Consequently, it may represent a potential target and promising therapy option for intestinal diseases. This article systematically summarizes the role of Am in the gut. Specifically, we carefully discuss key scientific issues that need resolution in the future regarding beneficial bacteria represented by Am, which may provide insights for the application of drugs targeting Am in clinical treatment.
Collapse
Affiliation(s)
- Chunyan Mo
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Zhuange Shi
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Yifang Zhao
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China.
| |
Collapse
|
16
|
Geerlings SY, van der Ark K, Nijsse B, Boeren S, van Loosdrecht M, Belzer C, de Vos WM. Omics-based analysis of Akkermansia muciniphila cultivation in food-grade media. MICROBIOME RESEARCH REPORTS 2024; 3:36. [PMID: 39421255 PMCID: PMC11480725 DOI: 10.20517/mrr.2024.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 10/19/2024]
Abstract
Background and Aim: Over the past years, the gut microbiota and its correlation to health and disease has been studied extensively. In terms of beneficial microbes, an increased interest in Akkermansia muciniphila (A. muciniphila) has been observed since its discovery. Direct evidence for the role of A. muciniphila in host health has been provided in both mice and human studies. However, for human interventions with A. muciniphila cells, industrial-scale fermentations are needed, and hence, the used cultivation media should be free of animal-derived components, food-grade, non-allergenic and allow for efficient growth to high densities to provide cost-effective production platforms. In this study, we assessed the growth and performance of A. muciniphila in batch bioreactors using newly developed plant-based media. Methods: The bioreactors were supplemented with varying carbon sources, including different ratios of N-acetylglucosamine (GlcNAc) and glucose. We monitored the growth of A. muciniphila in the plant-based medium using optical density (OD600) measurements and microscopy. In addition, we used a combination of biochemical analysis as well as transcriptional and proteomics analysis to gain detailed insight into the physiology. Results: Comparisons between growth on these media and that on mucin revealed differences at both transcriptome and proteome levels, including differences in the expression of glycosyltransferases, signaling proteins, and stress response. Furthermore, elongated cells and higher OD600 values were observed using the plant-based media as compared to cultivation media containing mucin. Conclusion: These differences do not hamper growth, and therefore, our data suggest that the food-grade medium composition described here could be used to produce A. muciniphila with high yields for therapeutic purposes.
Collapse
Affiliation(s)
- Sharon Y. Geerlings
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Kees van der Ark
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
17
|
Moens de Hase E, Neyrinck AM, Rodriguez J, Cnop M, Paquot N, Thissen JP, Xu Y, Beloqui A, Bindels LB, Delzenne NM, Van Hul M, Cani PD. Impact of metformin and Dysosmobacter welbionis on diet-induced obesity and diabetes: from clinical observation to preclinical intervention. Diabetologia 2024; 67:333-345. [PMID: 37897566 PMCID: PMC10789671 DOI: 10.1007/s00125-023-06032-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 10/30/2023]
Abstract
AIMS/HYPOTHESIS We aimed to investigate the association between the abundance of Dysosmobacter welbionis, a commensal gut bacterium, and metabolic health in human participants with obesity and diabetes, and the influence of metformin treatment and prebiotic intervention. METHODS Metabolic variables were assessed and faecal samples were collected from 106 participants in a randomised controlled intervention with a prebiotic stratified by metformin treatment (Food4Gut trial). The abundance of D. welbionis was measured by quantitative PCR and correlated with metabolic markers. The in vitro effect of metformin on D. welbionis growth was evaluated and an in vivo study was performed in mice to investigate the effects of metformin and D. welbionis J115T supplementation, either alone or in combination, on metabolic variables. RESULTS D. welbionis abundance was unaffected by prebiotic treatment but was significantly higher in metformin-treated participants. Responders to prebiotic treatment had higher baseline D. welbionis levels than non-responders. D. welbionis was negatively correlated with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and fasting blood glucose levels in humans with obesity and type 2 diabetes. In vitro, metformin had no direct effect on D. welbionis growth. In mice, D. welbionis J115T treatment reduced body weight gain and liver weight, and improved glucose tolerance to a better level than metformin, but did not have synergistic effects with metformin. CONCLUSIONS/INTERPRETATION D. welbionis abundance is influenced by metformin treatment and associated with prebiotic response, liver health and glucose metabolism in humans with obesity and diabetes. This study suggests that D. welbionis may play a role in metabolic health and warrants further investigation. CLINICAL TRIAL NCT03852069.
Collapse
Affiliation(s)
- Emilie Moens de Hase
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, and Division of Endocrinology, Erasmus Hospital, Brussels, Belgium
| | - Nicolas Paquot
- Laboratory of Diabetology, Nutrition and Metabolic Disease, Université de Liège, Liège, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research (IREC), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Yining Xu
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Ana Beloqui
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium.
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium.
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain (Université catholique de Louvain), Brussels, Belgium.
| |
Collapse
|
18
|
Gubernatorova EO, Gorshkova EA, Bondareva MA, Podosokorskaya OA, Sheynova AD, Yakovleva AS, Bonch-Osmolovskaya EA, Nedospasov SA, Kruglov AA, Drutskaya MS. Akkermansia muciniphila - friend or foe in colorectal cancer? Front Immunol 2023; 14:1303795. [PMID: 38124735 PMCID: PMC10731290 DOI: 10.3389/fimmu.2023.1303795] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Akkermansia muciniphila is a gram-negative anaerobic bacterium, which represents a part of the commensal human microbiota. Decline in the abundance of A. muciniphila among other microbial species in the gut correlates with severe systemic diseases such as diabetes, obesity, intestinal inflammation and colorectal cancer. Due to its mucin-reducing and immunomodulatory properties, the use of probiotics containing Akkermansia sp. appears as a promising approach to the treatment of metabolic and inflammatory diseases. In particular, a number of studies have focused on the role of A. muciniphila in colorectal cancer. Of note, the results of these studies in mice are contradictory: some reported a protective role of A. muciniphila in colorectal cancer, while others demonstrated that administration of A. muciniphila could aggravate the course of the disease resulting in increased tumor burden. More recent studies suggested the immunomodulatory effect of certain unique surface antigens of A. muciniphila on the intestinal immune system. In this Perspective, we attempt to explain how A. muciniphila contributes to protection against colorectal cancer in some models, while being pathogenic in others. We argue that differences in the experimental protocols of administration of A. muciniphila, as well as viability of bacteria, may significantly affect the results. In addition, we hypothesize that antigens presented by pasteurized bacteria or live A. muciniphila may exert distinct effects on the barrier functions of the gut. Finally, A. muciniphila may reduce the mucin barrier and exerts combined effects with other bacterial species in either promoting or inhibiting cancer development.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University, Moscow, Russia
| | - Marina A. Bondareva
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University, Moscow, Russia
- German Rheumatism Research Center (DRFZ), Leibniz Institute, Berlin, Germany
| | - Olga A. Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology Russian Academy of Sciences (RAS), Moscow, Russia
| | - Anna D. Sheynova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia S. Yakovleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elizaveta A. Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology Russian Academy of Sciences (RAS), Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University, Moscow, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Andrey A. Kruglov
- German Rheumatism Research Center (DRFZ), Leibniz Institute, Berlin, Germany
| | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| |
Collapse
|
19
|
Wu R, Xiong R, Li Y, Chen J, Yan R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023; 141:103062. [PMID: 37246133 DOI: 10.1016/j.jaut.2023.103062] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Gut dysbiosis has been associated with inflammatory bowel disease (IBD), one of the most common gastrointestinal diseases. The microbial communities play essential roles in host physiology, with profound effects on immune homeostasis, directly or via their metabolites and/or components. There are increasing clinical trials applying fecal microbiota transplantation (FMT) with Crohn's disease (CD) and ulcerative colitis (UC). The restoration of dysbiotic gut microbiome is considered as one of the mechanisms of FMT therapy. In this work, latest advances in the alterations in gut microbiome and metabolome features in IBD patients and experimental mechanistic understanding on their contribution to the immune dysfunction were reviewed. Then, the therapeutic outcomes of FMT on IBD were summarized based on clinical remission, endoscopic remission and histological remission of 27 clinical trials retrieved from PubMed which have been registered on ClinicalTrials.gov with the results been published in the past 10 years. Although FMT is established as an effective therapy for both subtypes of IBD, the promising outcomes are not always achieved. Among the 27 studies, only 11 studies performed gut microbiome profiling, 5 reported immune response alterations and 3 carried out metabolome analysis. Generally, FMT partially restored typical changes in IBD, resulted in increased α-diversity and species richness in responders and similar but less pronounced shifts of patient microbial and metabolomics profiles toward donor profiles. Measurements of immune responses to FMT mainly focused on T cells and revealed divergent effects on pro-/anti-inflammatory functions. The very limited information and the extremely confounding factors in the designs of the FMT trials significantly hindered a reasonable conclusion on the mechanistic involvement of gut microbiota and metabolites in clinical outcomes and an analysis of the inconsistencies.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Rui Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
20
|
Yazici D, Ogulur I, Pat Y, Babayev H, Barletta E, Ardicli S, Bel Imam M, Huang M, Koch J, Li M, Maurer D, Radzikowska U, Satitsuksanoa P, Schneider SR, Sun N, Traidl S, Wallimann A, Wawrocki S, Zhakparov D, Fehr D, Ziadlou R, Mitamura Y, Brüggen MC, van de Veen W, Sokolowska M, Baerenfaller K, Nadeau K, Akdis M, Akdis CA. The epithelial barrier: The gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions. Semin Immunol 2023; 70:101846. [PMID: 37801907 DOI: 10.1016/j.smim.2023.101846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jana Koch
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Debbie Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | | | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Stephan Traidl
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Alexandra Wallimann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sebastian Wawrocki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Danielle Fehr
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Reihane Ziadlou
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.
| |
Collapse
|
21
|
Liu J, Liu H, Liu H, Teng Y, Qin N, Ren X, Xia X. Live and pasteurized Akkermansia muciniphila decrease susceptibility to Salmonella Typhimurium infection in mice. J Adv Res 2023; 52:89-102. [PMID: 36996967 PMCID: PMC10555781 DOI: 10.1016/j.jare.2023.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
INTRODUCTION The gut microbiome is vital for providing resistance against colonized pathogenicbacteria. Recently, specific commensal species have become recognized as important mediators of host defense against microbial infection by a variety of mechanisms. OBJECTIVES To examine the contribution of live and pasteurized A. muciniphila to defend against the intestinal pathogen Salmonella Typhimurium in a streptomycin-treated mouse model of infection. METHODS C57B6J mice were pretreated with phosphate-buffered saline (PBS), live Akkermansia muciniphila (AKK), and pasteurized A. muciniphila (pAKK) for two weeks, then mice were infected by S. Typhimurium SL 1344. 16S rRNA-based gut microbiota analysis was performed before and after infection. Bacterial counts in feces and tissues, histopathological analysis, gut barrier-related gene expression, and antimicrobial peptides were examined. Co-housing was performed to examine the role of microbiota in the change of susceptibility of mice to infection. RESULTS AKK and pAKK markedly decreased Salmonella fecal and systemic burdens and reduced inflammation during infection. Notably, further characterization of AKK and pAKK protective mechanisms revealed different candidate protective pathways. AKK promoted gutbarrier gene expression and the secretion of antimicrobial peptides, and co-housing studies suggested that AKK-associated microbial community played a role in attenuating infection. Moreover, pAKK had a positive effect on NLRP3 in infected mice. We verified that pretreatment of pAKK could promote the expression of NLRP3, and enhance the antimicrobial activity of macrophage, likely through increasing the production of reactive oxygen (ROS), nitric oxide (NO), and inflammatory cytokines. CONCLUSION Our study demonstrates that live or pasteurized A. muciniphila can be effective preventive measures for alleviating S. Typhimurium-induced disease, highlighting the potential of developing Akkermansia-based probiotics or postbiotics for the prevention of Salmonellosis.
Collapse
Affiliation(s)
- Jiaxiu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hongli Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Huanhuan Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yue Teng
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Ningbo Qin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaomeng Ren
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
22
|
Liu W, Zhang T, Wang J, Zhao G, Hou Y. Protective Effect of Akkermansia muciniphila on the Preeclampsia-Like Mouse Model. Reprod Sci 2023; 30:2623-2633. [PMID: 36920671 DOI: 10.1007/s43032-023-01206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/26/2023] [Indexed: 03/16/2023]
Abstract
Preeclampsia (PE) is known as a metabolism-related complication of pregnancy related to gut dysbiosis including the decreased abundance of Akkermansia muciniphila (A. muciniphila). However, the modulatory role of A. muciniphila as a supplement for PE remains ambiguous. This study investigated the effect of A. muciniphila administration on PE-like mice and its underlying mechanisms. A total of twenty-four C57BL/6 mice were randomly assigned into three groups. PE-like symptoms were induced by continuous injection of L-NAME intraperitoneally from gestational day (GD) 11 to GD18 combined with oral administration of pasteurized A. muciniphila during GD14-18 or not. Mice were sacrificed at GD19 to collect for further evaluation. Decreased A. muciniphila was observed in a successfully established PE-like model than normotensive pregnant control (NP), inversely correlated to increased systolic blood pressure blood and 24-h proteinuria. After supplementing with A. muciniphila, mice showed significantly minimized blood pressure and protein expression in urine, increased number of pups and weight of both embryos and placentas. In addition, colonies of bacteria, inflammatory cytokines (TNF-α and IL-6), and metabolic products of lipids including TC, FC, and TG were alleviated by A. muciniphila in the placentas. Among proteins linked with bowel barrier functions, diminished 2-AG and growing ZO-1 and occludin were attributable to A. muciniphila. Also, enhanced Treg/Th17 ratios were found in the intestines of mice treated with A. muciniphila. A. muciniphila facilitated alleviating PE-like symptoms and was beneficial as a novel probiotic therapeutic agent for PE.
Collapse
Affiliation(s)
- Wei Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China.
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Juanni Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Gang Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Yuemin Hou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| |
Collapse
|
23
|
Khachatryan L, Xiang Y, Ivanov A, Glaab E, Graham G, Granata I, Giordano M, Maddalena L, Piccirillo M, Manipur I, Baruzzo G, Cappellato M, Avot B, Stan A, Battey J, Lo Sasso G, Boue S, Ivanov NV, Peitsch MC, Hoeng J, Falquet L, Di Camillo B, Guarracino MR, Ulyantsev V, Sierro N, Poussin C. Results and lessons learned from the sbv IMPROVER metagenomics diagnostics for inflammatory bowel disease challenge. Sci Rep 2023; 13:6303. [PMID: 37072468 PMCID: PMC10113391 DOI: 10.1038/s41598-023-33050-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
A growing body of evidence links gut microbiota changes with inflammatory bowel disease (IBD), raising the potential benefit of exploiting metagenomics data for non-invasive IBD diagnostics. The sbv IMPROVER metagenomics diagnosis for inflammatory bowel disease challenge investigated computational metagenomics methods for discriminating IBD and nonIBD subjects. Participants in this challenge were given independent training and test metagenomics data from IBD and nonIBD subjects, which could be wither either raw read data (sub-challenge 1, SC1) or processed Taxonomy- and Function-based profiles (sub-challenge 2, SC2). A total of 81 anonymized submissions were received between September 2019 and March 2020. Most participants' predictions performed better than random predictions in classifying IBD versus nonIBD, Ulcerative Colitis (UC) versus nonIBD, and Crohn's Disease (CD) versus nonIBD. However, discrimination between UC and CD remains challenging, with the classification quality similar to the set of random predictions. We analyzed the class prediction accuracy, the metagenomics features by the teams, and computational methods used. These results will be openly shared with the scientific community to help advance IBD research and illustrate the application of a range of computational methodologies for effective metagenomic classification.
Collapse
Affiliation(s)
- Lusine Khachatryan
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Yang Xiang
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Artem Ivanov
- ITMO University, St. Petersburg, Russian Federation
| | - Enrico Glaab
- University of Luxembourg, Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | | | | - Adrian Stan
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - James Battey
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Stephanie Boue
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | | | | | | | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Carine Poussin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
24
|
Pellegrino A, Coppola G, Santopaolo F, Gasbarrini A, Ponziani FR. Role of Akkermansia in Human Diseases: From Causation to Therapeutic Properties. Nutrients 2023; 15:nu15081815. [PMID: 37111034 PMCID: PMC10142179 DOI: 10.3390/nu15081815] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota plays a critical role in the modulation of host metabolism and immune response, and its impairment has been implicated in many gastrointestinal and extraintestinal diseases. Current evidence shows the well-documented role of A. muciniphila in maintaining the integrity of the intestinal barrier, modulating the host immune response, and improving several metabolic pathways, making it a key element in the pathogenesis of several human diseases. In this scenario, A. muciniphila is the most promising next-generation probiotic and one of the first microbial species suitable for specific clinical use when compared with traditional probiotics. Further studies are needed to provide more accurate insight into its mechanisms of action and to better elucidate its properties in several major areas, paving the way for a more integrated and personalized therapeutic approach that finally makes the most of our knowledge of the gut microbiota.
Collapse
Affiliation(s)
- Antonio Pellegrino
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
25
|
Hu Q, Yu L, Zhai Q, Zhao J, Tian F. Anti-Inflammatory, Barrier Maintenance, and Gut Microbiome Modulation Effects of Saccharomyces cerevisiae QHNLD8L1 on DSS-Induced Ulcerative Colitis in Mice. Int J Mol Sci 2023; 24:ijms24076721. [PMID: 37047694 PMCID: PMC10094816 DOI: 10.3390/ijms24076721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The use of probiotics has been considered as a new therapy option for ulcerative colitis (UC), and yeast has recently received widespread recommendation for human health. In this study, the probiotic characteristics of four yeast strains, Saccharomyces boulardii CNCMI-745, Kluyveromyces marxianus QHBYC4L2, Saccharomyces cerevisiae QHNLD8L1, and Debaryomyces hansenii QSCLS6L3, were evaluated in vitro; their ability to ameliorate dextran sulfate sodium (DSS)-induced colitis was investigated. Among these, S. cerevisiae QHNLD8L1 protected against colitis, which was reflected by increased body weight, colon length, histological injury relief, decreased gut inflammation markers, and intestinal barrier restoration. The abundance of the pathogenic bacteria Escherichia–Shigella and Enterococcaceae in mice with colitis decreased after S. cerevisiae QHNLD8L1 treatment. Moreover, S. cerevisiae QHNLD8L1 enriched beneficial bacteria Lactobacillus, Faecalibaculum, and Butyricimonas, enhanced carbon metabolism and fatty acid biosynthesis function, and increased short chain fatty acid (SCFAs) production. Taken together, our results indicate the great potential of S. cerevisiae QHNLD8L1 supplementation for the prevention and alleviation of UC.
Collapse
Affiliation(s)
- Qianjue Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Xue C, Li G, Gu X, Su Y, Zheng Q, Yuan X, Bao Z, Lu J, Li L. Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora. RESEARCH (WASHINGTON, D.C.) 2023; 6:0107. [PMID: 37040299 PMCID: PMC10079265 DOI: 10.34133/research.0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Akkermansia muciniphila (A. muciniphila) has drawn much attention as an important gut microbe strain in recent years. A. muciniphila can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers. A. muciniphila is expected to become a new probiotic in addition to Lactobacillus and Bifidobacterium. An increase in A. muciniphila abundance through direct or indirect A. muciniphila supplementation may inhibit or even reverse disease progression. However, some contrary findings are found in type 2 diabetes mellitus and neurodegenerative diseases, where increased A. muciniphila abundance may aggravate the diseases. To enable a more comprehensive understanding of the role of A. muciniphila in diseases, we summarize the relevant information on A. muciniphila in different systemic diseases and introduce regulators of A. muciniphila abundance to promote the clinical transformation of A. muciniphila research.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Segers A, de Vos WM. Mode of action of Akkermansia muciniphila in the intestinal dialogue: role of extracellular proteins, metabolites and cell envelope components. MICROBIOME RESEARCH REPORTS 2023; 2:6. [PMID: 38045608 PMCID: PMC10688800 DOI: 10.20517/mrr.2023.05] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 12/05/2023]
Abstract
Akkermansia muciniphila is a promising next-generation beneficial microbe due to its natural presence in the mucus layer of the gut, its symbiotic ability to degrade mucus, and its capacity to improve the intestinal barrier function. A. muciniphila is able to counteract weight gain and immuno-metabolic disturbances in several animal models. Many of these disorders, including obesity and auto-immune diseases, have been associated with decreased gut barrier function and consequent increased inflammation. Since A. muciniphila was found to normalize these changes and strengthen the gut barrier function, it is hypothesized that other beneficial effects of A. muciniphila might be caused by this restoration. In search for A. muciniphila's mode of action in enhancing the gut barrier function and promoting health, we reasoned that secreted components or cell envelope components of A. muciniphila are interesting candidates as they can potentially reach and interact with the epithelial barrier. In this review, we focus on the potential mechanisms through which A. muciniphila can exert its beneficial effects on the host by the production of extracellular and secreted proteins, metabolites and cell envelope components. These products have been studied in isolation for their structure, signaling capacity, and in some cases, also for their effects in preclinical models. This includes the protein known as Amuc_1100, which we here rename as pilus-associated signaling (PAS) protein , the P9 protein encoded by Amuc_1631, the short-chain fatty acids acetate and propionate, and cell envelope components, such as phosphatidylethanolamine and peptidoglycan.
Collapse
Affiliation(s)
- Anneleen Segers
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
28
|
Li M, Wang Y, Guo C, Wang S, Zheng L, Bu Y, Ding K. The claim of primacy of human gut Bacteroides ovatus in dietary cellobiose degradation. Gut Microbes 2023; 15:2227434. [PMID: 37349961 PMCID: PMC10291918 DOI: 10.1080/19490976.2023.2227434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
A demonstration of cellulose degrading bacterium from human gut changed our view that human cannot degrade the cellulose. However, investigation of cellulose degradation by human gut microbiota on molecular level has not been completed so far. We showed here, using cellobiose as a model that promoted the growth of human gut key members, such as Bacteroides ovatus (BO), to clarify the molecular mechanism. Our results showed that a new polysaccharide utilization locus (PUL) from BO was involved in the cellobiose capturing and degradation. Further, two new cellulases BACOVA_02626GH5 and BACOVA_02630GH5 on the cell surface performed the degradation of cellobiose into glucose were determined. The predicted structures of BACOVA_02626GH5 and BACOVA_02630GH5 were highly homologous with the cellulase from soil bacteria, and the catalytic residues were highly conservative with two glutamate residues. In murine experiment, we observed cellobiose reshaped the composition of gut microbiota and probably modified the metabolic function of bacteria. Taken together, our findings further highlight the evidence of cellulose can be degraded by human gut microbes and provide new insight in the field of investigation on cellulose.
Collapse
Affiliation(s)
- Meixia Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yeqing Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ciliang Guo
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | | | | | - Yifan Bu
- Zelixir Biotech, Shanghai, P. R. China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, P. R. China
| |
Collapse
|
29
|
Wu J, Man D, Shi D, Wu W, Wang S, Wang K, Li Y, Yang L, Bian X, Wang Q, Li L. Intermittent Fasting Alleviates Risk Markers in a Murine Model of Ulcerative Colitis by Modulating the Gut Microbiome and Metabolome. Nutrients 2022; 14:nu14245311. [PMID: 36558471 PMCID: PMC9788567 DOI: 10.3390/nu14245311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical trials have demonstrated the health benefits of intermittent fasting (IF). However, the potential mechanism of IF in alleviating dextran sulfate sodium (DSS)-induced colitis is not fully understood. The present study was mainly designed to explore the dynamic changes in the gut microbiota and metabolome after short-term (2 weeks) or long-term (20 weeks) IF and therefore clarify the potential mechanisms by which IF ameliorates DSS-induced colitis in a murine model. Thirty-two C57BL/6 male mice were equally divided into four groups and underwent IF intervention for 2 weeks (SIF group, n = 8), 20 weeks (LIF group, n = 8), or were allowed free access to food for 2 weeks (SAL group, n = 8) or 20 weeks (LAL group, n = 8). The thirty-two C57BL/6 male mice were accepted for the diet intervention of 2 weeks of IF or fed ad libitum. Colitis was induced by drinking 2% DSS for 7 days. Our findings showed that short-term IF prominently elevates the abundance of Bacteroides, Muibaculum and Akkermansia (p < 0.001, p < 0.001, p < 0.001, respectively), and decreased the abundance of Ruminiclostridium (p < 0.05). Long-term IF, however, decreased the abundance of Akkermansia and obviously increased the abundance of Lactobacillus (p < 0.05, p < 0.001, respectively). Metabolites mainly associated with nucleoside, carbohydrate, amino acid, bile acid, fatty acid, polyol, steroid and amine metabolism were identified in the faeces using untargeted GC/MS. In particular, inosine was extremely enriched after short-term IF and long-term IF (p < 0.01, p < 0.01, respectively); butyrate, 2-methyl butyric acid and valeric acid were significantly decreased after short-term IF (p < 0.001, p < 0.001, p < 0.01, respectively); and 2-methyl butyric acid was significantly increased after long-term IF (p < 0.001). The abundance of lithocholic acid (LCA), one of the secondary bile acids, increased significantly after short-term and long-term IF based on UPLC−MS/MS (p < 0.001, p < 0.5, respectively). Of note, IF markedly mitigated DSS-induced acute colitis symptoms and down-regulated pro-inflammatory cytokines IL-1α, IL-6, keratinocyte-derived chemokine (KC) and G-CSF levels in the serum (p < 0.01, p < 0.001, p < 0.05, p < 0.001, respectively). Furthermore, a correlation analysis indicated that the disease activity index (DAI) score and serum levels of IL-1α, IL-6, KC, and G-CSF were negatively correlated with the relative abundance of Akkermansia and the faecal metabolites LCA and inosine. This study confirmed that IF altered microbiota and reprogramed metabolism, which was a promising development in the attempt to prevent DSS-induced colitis. Moreover, our findings provide new insights regarding the correlations among the mucosal barrier dysfunction, metabolome, and microbiome.
Collapse
Affiliation(s)
- Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Da Man
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Correspondence: ; Tel./Fax: +86-571-8723-6759
| |
Collapse
|
30
|
Physiological benefits of Akkermansia muciniphila under high-altitude hypoxia. Appl Microbiol Biotechnol 2022; 107:1-8. [DOI: 10.1007/s00253-022-12305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
|
31
|
Zhang T, Zhang W, Feng C, Kwok LY, He Q, Sun Z. Stronger gut microbiome modulatory effects by postbiotics than probiotics in a mouse colitis model. NPJ Sci Food 2022; 6:53. [PMID: 36379940 PMCID: PMC9666507 DOI: 10.1038/s41538-022-00169-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Probiotics are increasingly used as adjunctive therapy to manage gastrointestinal diseases, such as ulcerative colitis. However, probiotic use has posed some safety concerns. Thus, postbiotics are proposed as alternatives to probiotics in clinical applications. However, no study has directly compared the clinical benefits of probiotics and postbiotics. This study compared the beneficial effect of postbiotics and probiotics derived from the strain, Bifidobacterium adolescentis B8598, in a dextran sulfate sodium (DSS)-induced experimental colitis mouse model. Four groups of mice (n = 7 per group) were included in this work: Control (received water plus saline), DSS (received DSS without postbiotic/probiotic), Postbiotic (received DSS plus postbiotic), and Probiotic (received DSS plus probiotic). Our results showed that intragastric administration of both probiotic and postbiotic ameliorated colitis, reflected by decreased histology scores in Postbiotic and Probiotic groups compared with DSS group (P < 0.05). The fecal microbiota alpha diversity was not significantly affected by DSS-, postbiotic, or probiotic treatment. However, the postbiotic treatment showed stronger effects on modulating the fecal microbiota beta diversity, composition, and metagenomic potential than the probiotic treatment. Overall, our findings suggested that probiotics and postbiotics had similar ability to improve disease phenotype but had distinct ability to regulate the gut microbiota and metabolic pathways in the context of ulcerative colitis. In view of the smaller safety concern of postbiotics compared with probiotics and its stronger modulatory effect on the host gut microbiota, we propose that postbiotics are to be considered for use as next-generation biotherapeutics in managing ulcerative colitis or even other diseases.
Collapse
Affiliation(s)
- Tao Zhang
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| | - Weiqin Zhang
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| | - Cuijiao Feng
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| | - Lai-Yu Kwok
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| | - Qiuwen He
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| | - Zhihong Sun
- grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China ,grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, P. R. China
| |
Collapse
|
32
|
Li Z, Ke H, Wang Y, Chen S, Liu X, Lin Q, Wang P, Chen Y. Global trends in Akkermansia muciniphila research: A bibliometric visualization. Front Microbiol 2022; 13:1037708. [PMID: 36439840 PMCID: PMC9685322 DOI: 10.3389/fmicb.2022.1037708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Akkermansia muciniphila is a member of the gut microbiome, using mucin as sources of carbon, nitrogen, and energy. Since the first discovery of this unique bacterium in 2004, A. muciniphila has been extensively studied. It is considered a promising "next-generation beneficial microbe." The purpose of this paper is to sort out the research status and summarize the hotspots through bibliometric analysis of the publications of A. muciniphila. METHODS The publications about A. muciniphila from January 2004 to February 2022 were obtained from the Web of Science Core Collection. Visualization analyses were performed using three bibliometric tools and GraphPad Prism. RESULTS A total of 1,478 published documents were analyzed. Annual publication number grew from 1 in 2004 to 336 in 2021, with China being the leading producer (33.36%). De Vos, Willem M was the most productive author with the highest H-index (documents = 56, H-index = 37), followed by Cani, Patrice D (documents = 35, H-index = 25). And Scientific Reports published the most papers. PNAS was the keystone taxa in this field, with high betweenness centrality (0.11) and high frequency. The keywords with high frequency in recent years include: oxidative stress, diet, metformin, fecal microbiota transplantation, short-chain fatty acids, polyphenols, microbiota metabolites and so on. The keyword "oxidative stress" was observed to be increasing in frequency recently. CONCLUSION Over time, the scope of the research on the clinical uses of A. muciniphila has gradually increased, and was gradually deepened and developed toward a more precise level. A. muciniphila is likely to remain a research hotspot in the foreseeable future and may contribute to human health.
Collapse
Affiliation(s)
- Zitong Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoran Ke
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuze Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuying Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianyun Lin
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pu Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Integrative Microecology Center, Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
33
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
34
|
Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 2022; 19:625-637. [PMID: 35641786 DOI: 10.1038/s41575-022-00631-9] [Citation(s) in RCA: 524] [Impact Index Per Article: 174.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
Ever since Akkermansia muciniphila was discovered and characterized two decades ago, numerous studies have shown that the lack or decreased abundance of this commensal bacterium was linked with multiple diseases (such as obesity, diabetes, liver steatosis, inflammation and response to cancer immunotherapies). Although primarily based on simple associations, there are nowadays an increasing number of studies moving from correlations to causality. The causal evidence derived from a variety of animal models performed in different laboratories and recently was also recapitulated in a human proof-of-concept trial. In this Review, we cover the history of the discovery of A. muciniphila and summarize the numerous findings and main mechanisms of action by which this intestinal symbiont improves health. A comparison of this microorganism with other next-generation beneficial microorganisms that are being developed is also made.
Collapse
|
35
|
Yu S, Sun Y, Shao X, Zhou Y, Yu Y, Kuai X, Zhou C. Leaky Gut in IBD: Intestinal Barrier-Gut Microbiota Interaction. J Microbiol Biotechnol 2022; 32:825-834. [PMID: 35791076 PMCID: PMC9628915 DOI: 10.4014/jmb.2203.03022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a global disease that is in increasing incidence. The gut, which contains the largest amount of lymphoid tissue in the human body, as well as a wide range of nervous system components, is integral in ensuring intestinal homeostasis and function. By interacting with gut microbiota, immune cells, and the enteric nervous system, the intestinal barrier, which is a solid barrier, protects the intestinal tract from the external environment, thereby maintaining homeostasis throughout the body. Destruction of the intestinal barrier is referred to as developing a "leaky gut," which causes a series of changes relating to the occurrence of IBD. Changes in the interactions between the intestinal barrier and gut microbiota are particularly crucial in the development of IBD. Exploring the leaky gut and its interaction with the gut microbiota, immune cells, and the neuroimmune system may help further explain the pathogenesis of IBD and provide potential therapeutic methods for future use.
Collapse
Affiliation(s)
- Shunying Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215001, Jiangsu, P.R. China
| | - Yibin Sun
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215001, Jiangsu, P.R. China
| | - Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215001, Jiangsu, P.R. China
| | - Yuqing Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215001, Jiangsu, P.R. China
| | - Yang Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215001, Jiangsu, P.R. China
| | - Xiaoyi Kuai
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215001, Jiangsu, P.R. China,
X. Kuai Phone: +86-13776084279 E-mail:
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215001, Jiangsu, P.R. China,Corresponding authors C. Zhou Phone: +86-13962124345 E-mail:
| |
Collapse
|
36
|
Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, Carlos D. Akkermansia muciniphila and Gut Immune System: A Good Friendship That Attenuates Inflammatory Bowel Disease, Obesity, and Diabetes. Front Immunol 2022; 13:934695. [PMID: 35874661 PMCID: PMC9300896 DOI: 10.3389/fimmu.2022.934695] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 01/04/2023] Open
Abstract
Akkermansia muciniphila is a Gram-negative anaerobic mucus-layer-degrading bacterium that colonizes the intestinal mucosa of humans and rodents. Metagenomic data have shown an inverse correlation between the abundance of A. muciniphila and diseases such as inflammatory bowel disease (IBD), obesity, and diabetes. Thus, in recent decades, the potential of this bacterium as an immunomodulatory probiotic for autoimmune and chronic inflammatory diseases has been explored in experimental models. Corroborating these human correlation data, it has been reported that A. muciniphila slows down the development and progression of diabetes, obesity, and IBD in mice. Consequently, clinical studies with obese and diabetic patients are being performed, and the preliminary results are very promising. Therefore, this mini review highlights the main findings regarding the beneficial roles of A. muciniphila and its action mechanisms in autoimmune and chronic inflammatory diseases.
Collapse
|