1
|
Li M, Deng F, Dong L, Wang X, Jiang H, Yao S, Chen Y, Duan L, Du H, Qin G, Tang S. Phase-dependent hepatotoxicity of Aluminum oxide nanoparticles mediated through the intestinal microbiota. ENVIRONMENT INTERNATIONAL 2025; 198:109398. [PMID: 40139036 DOI: 10.1016/j.envint.2025.109398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Aluminum oxide (Al2O3) nanoparticles (NPs) are extensively utilized in the food industry for applications such as food packaging, antimicrobial coatings, food processing equipment, and additives. Despite their widespread use, the mechanisms underlying Al2O3 NP-induced hepatotoxicity and the relationship between their physicochemical properties and toxicity remain inadequately understood. In this study, we explored the hepatotoxic effects of α-Al2O3 and γ-Al2O3 NPs in rats subjected to oral exposure for 28 days. Employing an integrated metabolomics and microbiome approach, we aimed to elucidate the potential mechanisms involved. Our findings revealed distinct hepatotoxic profiles for α-Al2O3 and γ-Al2O3 NPs, potentially mediated by differential interactions with the intestinal microbiome. α-Al2O3 NPs exhibited reduced hepatotoxicity, as evidenced by minimal liver oxidative stress, which may be associated with the upregulation of digestion-related intestinal flora such as Peptococcaceae and Romboutsia, potentially influencing Al2O3 accumulation in the liver. Conversely, γ-Al2O3 NPs demonstrated pronounced hepatotoxicity, characterized by liver histopathological changes and elevated levels of alanine aminotransferase, malondialdehyde, and glutathione. This increased toxicity was correlated with alterations in intestinal flora, including Ruminococcaceae and Exiguobacterium, which affected metabolites like L-phenylalanine and arachidonic acid, potentially contributing to hepatotoxicity. The results underscore the importance of the intestinal microbiome in mediating NP-induced toxicity and determining differences in toxicities of different NP phases. This study provides valuable insights into the differential toxicological impacts of Al2O3 NP phases, paving the way for safer nanomaterial design and application in the food industry.
Collapse
Affiliation(s)
- Mingshu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaona Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Siyu Yao
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning 530023, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lian Duan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huamao Du
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Guangqiu Qin
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
2
|
Gao Q, Zhang K, Fan M, Qian H, Li Y, Wang L. Effects of short-term carbohydrate deprivation on glycolipid metabolism and hepatic lipid accumulation in mice. Food Funct 2024; 15:7400-7415. [PMID: 38288875 DOI: 10.1039/d3fo05024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
To investigate the effect of dietary carbohydrate levels on liver glycolipid metabolism, this study used C57BL/6J male mice receiving standard diet (CON), no-carbohydrate high-fat diet (NCD), and high-carbohydrate no-fat diet (HCD). One week after intervention, mice in the NCD group showed lower blood glucose, HbA1c and LDL-C as well as liver weight and liver index compared with the CON group. Further research found that the liver fat synthesis genes of mice in the NCD group were significantly down-regulated at the gene level, and histopathological sections showed that the livers of mice in the NCD group had less lipid accumulation. Furthermore, liver metabolomic analysis showed that primary bile acid levels and acylcarnitine levels in the liver of mice in the NCD group were significantly increased, and conversely, lysophosphatidylcholine and fatty acyl metabolites were significantly decreased. KEGG metabolic pathway analysis showed that metabolic pathways such as biosynthesis of unsaturated fatty acids and starch and sucrose metabolism were significantly inhibited in mice in the NCD group, while metabolic pathways such as primary bile acid biosynthesis, linoleic acid metabolism and glycerophospholipid metabolism were enhanced. Taken together, these results indicate that short-term carbohydrate deprivation improves blood glucose and lipid metabolism levels in mice; the molecular mechanism of action may involve inhibition of de novo lipogenesis and enhancement of bile acid metabolism.
Collapse
Affiliation(s)
- Qiang Gao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kuiliang Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
3
|
Wang C, Gu Y, Chu Q, Wang X, Ding Y, Qin X, Liu T, Wang S, Liu X, Wang B, Cao H. Gut microbiota and metabolites as predictors of biologics response in inflammatory bowel disease: A comprehensive systematic review. Microbiol Res 2024; 282:127660. [PMID: 38442454 DOI: 10.1016/j.micres.2024.127660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Nonresponse to biologic agents in patients with inflammatory bowel disease (IBD) poses a significant public health burden, and the prediction of response to biologics offers valuable insights for IBD management. Given the pivotal role of gut microbiota and their endogenous metabolites in IBD, we conducted a systematic review to investigate the potential of fecal microbiota and mucosal microbiota and endogenous metabolomic markers as predictors for biotherapy response in IBD patients. A total of 38 studies were included in the review. Following anti-TNF-α treatment, the bacterial community characteristics of IBD patients exhibited a tendency to resemble those observed in healthy controls, indicating an improved clinical response. The levels of endogenous metabolites butyrate and deoxycholic acid were significantly associated with clinical remission following anti-TNF-α therapy. IBD patients who responded well to vedolizumab treatment had higher levels of specific bacteria that produce butyrate, along with increased levels of metabolites such as butyrate, branched-chain amino acids and acetamide following vedolizumab treatment. Crohn's disease patients who responded positively to ustekinumab treatment showed higher levels of Faecalibacterium and lower levels of Escherichia/Shigella. In conclusion, fecal microbiota and mucosal microbiota as well as their endogenous metabolites could provide a predictive tool for assessing the response of IBD patients to various biological agents and serve as a valuable reference for precise drug selection in clinical IBD patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiao Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
4
|
Zhang X, Huo Y, Kong Y, Zhou W, Qin F, Hu X. Effects of short-term florfenicol exposure on the gene expression pattern, midgut microbiota, and metabolome in the lepidopteran model silkworm (Bombyx mori). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169099. [PMID: 38056650 DOI: 10.1016/j.scitotenv.2023.169099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Florfenicol (FF), an alternative veterinary antibiotic for chloramphenicol, has been widely utilized in livestock breeding to prevent and treat bacterial diseases. However, the toxicological effects of FF have yet to be fully disclosed. The domesticated silkworm (Bombyx mori), a lepidopteran model, was selected to assess the toxicological effects of FF dietary exposure with multi-omics. The findings showed that high-dose (250 μg/L) FF exposure increased the whole cocoon weight. High-dose FF exposure affected the species richness and community diversity of the microbiota in the silkworm midgut. Biochemical processes and innate immunity were impacted by FF exposure. The KEGG pathways impacted by the midgut microbiota and their metabolites were compared, and several pathways were found to be related to the two ecosystems. In addition, the innate immunity and lipid metabolism pathways were impacted, and some of the differentially expressed genes were enriched in these pathways. These related pathways may involve crosstalk between the midgut microbiota shift, midgut biological functions, and global gene expression. Therefore, our study also advances the application of the silkworm larval model in assessing antibiotic metabolic toxicity and provides novel insights into the potential risks of FF.
Collapse
Affiliation(s)
- Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yiming Huo
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yifei Kong
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feiju Qin
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Marschall MJM, Grundmann SM, Seel W, Simon MC, Schuchardt S, Most E, Gessner DK, Wen G, Ringseis R, Eder K. Fat from Hermetia illucens Alters the Cecal Gut Microbiome and Lowers Hepatic Triglyceride Concentration in Comparison to Palm Oil in Obese Zucker Rats. J Nutr 2024; 154:455-468. [PMID: 37778509 DOI: 10.1016/j.tjnut.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Palm oil (PO) is the most widely utilized plant oil for food production. Owing to the great ecologic problems associated with PO production, sustainably produced fats, such as insect fat, might be a suitable alternative. OBJECTIVES The hypothesis was tested that fat from Hermetia illucens larvae (HF) compared with PO and soybean oil (SO) has no adverse effects on hepatic lipid metabolism, plasma metabolome, and cecal microbiome in obese Zucker rats. METHODS Thirty male obese Zucker rats were randomly assigned to 3 groups (SO, PO, HF; n = 10 rats/group) and fed 3 different semisynthetic diets containing either SO, PO, or HF as the main fat source for 4 wk. The effects were evaluated by measurement of liver and plasma lipid concentrations, liver transcriptomics, targeted plasma metabolomics, and cecal microbiomics. RESULTS Supplementation of HF reduced hepatic triglyceride concentration and messenger ribonucleic acid concentrations of selected genes involved in fatty acid and triglyceride synthesis in comparison to PO (P < 0.05). Pairwise comparison of the Simpson index and Jaccard index showed a higher cecal microbial α- and β-diversity in rats fed the HF diet than in rats fed the PO diet (P = 0.015 and P = 0.027), but no difference between rats fed the diets with SO or PO. Taxonomic analysis of the cecal microbial community revealed a lower abundance of Clostridium_sensu_stricto_1 and a higher abundance of Blautia, Mucispirillum, Anaerotruncus, Harryflintia, and Peptococcus in rats supplemented with HF than in rats supplemented with PO (P < 0.05). CONCLUSIONS HF, compared with PO, has liver lipid-lowering effects in obese Zucker rats, which may be caused by a shift in the gut microbial community. Thus, HF might serve as a sustainably produced fat alternative to PO for food production.
Collapse
Affiliation(s)
- Magdalena J M Marschall
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Sarah M Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Waldemar Seel
- Nutrition and Microbiota, Institute of Nutrition and Food Sciences, Faculty of Agriculture, University of Bonn, Germany
| | - Marie-Christine Simon
- Nutrition and Microbiota, Institute of Nutrition and Food Sciences, Faculty of Agriculture, University of Bonn, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Nikolai-Fuchs-Straße, Hannover, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Senckenbergstraße, Giessen, Germany.
| |
Collapse
|
6
|
Chaouche L, Marcotte F, Maltais-Payette I, Tchernof A. Glutamate and obesity - what is the link? Curr Opin Clin Nutr Metab Care 2024; 27:70-76. [PMID: 37937722 DOI: 10.1097/mco.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
PURPOSE OF REVIEW Many studies using metabolomics have tried to unravel the metabolic signature of obesity and understand the pathophysiology of this complex and heterogeneous disease. Circulating levels of the amino acid glutamate have been consistently associated with obesity and more specifically with measurements of abdominal fat accumulation. The purpose of this narrative review is to highlight recent studies documenting this association. RECENT FINDINGS Circulating glutamate concentrations have been positively correlated with measurements of central fat accumulation such as waist circumference and visceral adipose tissue area. Moreover, elevated glutamate levels have been linked to a higher prevalence of type 2 diabetes, cardiovascular diseases and nonalcoholic fatty liver disease. The association with adiposity is detected in early life, and genetic predisposition does not appear as a major driver. Glutamate levels reflect in vivo synthesis rather than dietary intake. However, interventions generating metabolic improvements such as incretin receptor agonist treatment or dietary improvements may reduce plasma levels of this amino acid. SUMMARY Recent findings confirm the consistent association between circulating glutamate and abdominal obesity and its cardiometabolic complications. The pathophysiological pathways underlying this phenomenon are still unclear. Furthermore, studies are needed to establish the usefulness of this analyte as a biomarker of abdominal obesity.
Collapse
Affiliation(s)
- Lila Chaouche
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval
- École de nutrition, Université Laval, Québec, Québec, Canada
| | - Félix Marcotte
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval
- École de nutrition, Université Laval, Québec, Québec, Canada
| | - Ina Maltais-Payette
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval
- École de nutrition, Université Laval, Québec, Québec, Canada
| | - André Tchernof
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval
- École de nutrition, Université Laval, Québec, Québec, Canada
| |
Collapse
|