1
|
Zhang H, Zhao Z, Wu C. Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415344. [PMID: 40013907 PMCID: PMC11967777 DOI: 10.1002/advs.202415344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Tissue engineering aims to repair damaged tissues with physiological functions recovery. Although several therapeutic strategies are there for tissue regeneration, the functional recovery of regenerated tissues still poses significant challenges due to the lack of concerns of tissue innervation. Design rationale of multifunctional biomaterials with both tissue-induction and neural induction activities shows great potential for functional tissue regeneration. Recently, the research and application of inorganic biomaterials attracts increasing attention in innervated multi-tissue regeneration, such as central nerves, bone, and skin, because of its superior tunable chemical composition, topographical structures, and physiochemical properties. More importantly, inorganic biomaterials are easily combined with other organic materials, biological factors, and external stimuli to enhance their therapeutic effects. This review presents a comprehensive overview of recent advancements of inorganic biomaterials for innervated multi-tissue regeneration. It begins with introducing classification and properties of typical inorganic biomaterials and design rationale of inorganic-based material composites. Then, recent progresses of inorganic biomaterials in regenerating various nerves and nerve-innervated tissues with functional recovery are systematically reviewed. Finally, the existing challenges and future perspectives are proposed. This review may pave the way for the direction of inorganic biomaterials and offers a new strategy for tissue regeneration in combination of innervation.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Ziyi Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
2
|
Leng F, Liu J, Du E, Lei S, Xie C, Jiang X, Li TF. Recent progress in polysaccharide microsphere-based hemostatic material for intravascular and extravascular hemostasis: A review. Int J Biol Macromol 2025; 300:140280. [PMID: 39870271 DOI: 10.1016/j.ijbiomac.2025.140280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Hemorrhage, a common consequence of diseases, surgical procedures, and traffic accidents, poses a significant threat to public health. Effective hemostasis is crucial for patient survival and prognosis, particular in case of internal bleeding. While polysaccharide microsphere-based hemostatic materials have gained clinical acceptance due to their effectiveness, good biocompatibility, and versatility in both intravascular and extravascular hemostasis, they are limited by their single function and insufficient hemostatic properties. Recently, booming developments have been witnessed in microsphere-based biomaterials to achieve a combination therapy for hemostasis. This review first examines the fundamentals of coagulation process, hemostatic mechanisms, and microsphere fabrication techniques. We then discuss the latest investigations in functionalized microsphere-based hemostatic materials for controlling intravascular and extravascular hemorrhage, focusing on design strategies, hemostatic properties, and clinical implementation. Finally, we also propose some limitations and challenges of these hemostatic materials, aiming to provide valuable insights for future research in novel polysaccharide microsphere-based biomaterial.
Collapse
Affiliation(s)
- Fan Leng
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Jie Liu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Enfu Du
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Sai Lei
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Cong Xie
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
3
|
Jin Z, Chen L, Liu X, Xia R, Li W, Wang G, Zhang Q. Zeolite firmly anchored regenerated cellulose aerogel for efficient and biosafe hemostasis. Int J Biol Macromol 2025; 304:140743. [PMID: 39922355 DOI: 10.1016/j.ijbiomac.2025.140743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Zeolite-based hemostats are commercially available but are still troubled by the adverse effects of exothermic heat-caused tissue damage and detached zeolite-induced distal thrombosis. Here, we developed a facile and robust method to fabricate zeolite-embedded regenerated cellulose aerogel (Z-RCA) for safe and efficient hemostasis. Zeolite particles were extensively entangled by regenerated cellulose nanofibers via hydrogen bonds during the cellulose regeneration process, thus reducing the probability of zeolite detaching from aerogel. Additionally, the low loading ratio of zeolite (∼3.0 wt%) decreased the exothermic heat to promote a low-temperature enhancement of 3.4 °C during the hemostatic process. The aerogel quickly absorbed tremendous blood while releasing calcium ions, synergistically assisting zeolite to promote blood coagulation. In animal experiments, Z-RCA stopped bleeding faster than Quikclot and reduced blood loss by 62.1 wt%. Overall, the study produced a safe and efficient zeolite-based hemostat.
Collapse
Affiliation(s)
- Zhiping Jin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Lei Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xiaodi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ruicai Xia
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Li
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Guodong Wang
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
4
|
Chen A, Wu L, Wang K, Qin L, Zhang K, Chen S, Zhang Y, Song W, Zhang Q, Xia W, Luo Y, Liu X, Wan J. Facile synthesis of rapid hemostatic powder based on sodium alginate for promoting hemostasis and wound healing. Int J Biol Macromol 2025; 308:142728. [PMID: 40174841 DOI: 10.1016/j.ijbiomac.2025.142728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/20/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Uncontrollable bleeding and excessive blood loss are the primary causes of death on the battlefield and in accidents. However, commercial hemostatic materials possess individual drawbacks for hemostasis. Here, we present a rapid hemostatic powder (SACC-GO) with high biosafety, which is fabricated by a facile ball milling method using inexpensive raw materials (sodium alginate (SA), calcium chloride, cerium nitrate and graphene oxide (GO)). The SACC-GO could immediately become gel when meeting blood, whose strength was enhanced due to specific surface area of GO and high coordination capacity of Ce3+ ions. In addition, the SACC-GO had a high water absorption rate (~2000 %) allow it to concentrate blood and release Ca2+ ions to improve blood coagulation. The in vitro and in vivo results, such as hemostasis in tail amputation, femoral hemostasis and hepatic hemostasis, exhibited excellent hemostasis effects by reducing hemostasis time and blood loss (with the majority of reductions exceeding 50 %). The SACC-GO also enhanced wound healing due to Ce ions scavenging reactive oxygen species (ROS). Thus, the SACC-GO hemostatic powder had great potential for rapid hemostasis.
Collapse
Affiliation(s)
- Aihong Chen
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, PR China; Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 South Chuanhuan Road, Shanghai 201299, PR China
| | - Lixue Wu
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 South Chuanhuan Road, Shanghai 201299, PR China
| | - Kaiyang Wang
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, PR China.
| | - Long Qin
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 South Chuanhuan Road, Shanghai 201299, PR China
| | - Kexin Zhang
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, PR China; Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 South Chuanhuan Road, Shanghai 201299, PR China
| | - Song Chen
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 South Chuanhuan Road, Shanghai 201299, PR China
| | - Yijiong Zhang
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 South Chuanhuan Road, Shanghai 201299, PR China
| | - Wei Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 South Chuanhuan Road, Shanghai 201299, PR China
| | - Qian Zhang
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 South Chuanhuan Road, Shanghai 201299, PR China
| | - Wei Xia
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, PR China
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, PR China
| | - Xijian Liu
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, PR China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 South Chuanhuan Road, Shanghai 201299, PR China.
| |
Collapse
|
5
|
Humphray J, Hoxha A, Tomás Nery E, Berry C, Felipe-Sotelo M, Wilkinson H, Hardman M, Gutiérrez-Merino J, Carta D. Electrospun Polyphosphate Coacervate Glass Fibers in the System P 2O 5-CaO-MgO-Na 2O-Fe 2O 3 for Wound Healing. ACS OMEGA 2025; 10:10987-10996. [PMID: 40160732 PMCID: PMC11947787 DOI: 10.1021/acsomega.4c09366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
This study investigates a series of phosphate-glass fibers (PGFs) in the system P2O5-CaO-MgO-Na2O-Fe2O3 with various Fe contents (0, 0.1, 0.5, 1, and 2 wt %) prepared via electrospinning of polyphosphate coacervate gels. This method is preferable over the traditional high-temperature melt-spinning technique used for PGF production as it represents a more cost-effective and sustainable route. Structural analysis performed via Fourier transform Infrared spectroscopy shows that PGFs are mainly formed by polyphosphate chains containing Q1 and Q2 units. Thermal analysis demonstrates that the amorphous nature of the PGFs can be preserved up to calcination temperatures in the range 450-520 °C, with crystallization temperatures increasing with the iron content. Dissolution studies were performed by immersing the PGFs in deionized water and analyzing the species released (P, Ca, Mg, Fe, and Na) via microwave plasma atomic emission spectroscopy at regular intervals up to 72 hours (h). Results show that both iron and phosphate anion release increases with iron loading, suggesting that the phosphate network is weakened by an increasing amount of iron. Given that PGFs are particularly advantageous in wound healing due to their fibrous morphology, their cytocompatibility was assessed by seeding human keratinocytes (HaCaTs) in contact with the dissolution products of PGFs after 24 h of immersion at three different ratios of dissolution products to cell medium (1:100, 3:100, and 5:100). No cytotoxicity was observed for any of the ratios studied. Moreover, the dissolution products of some PGFs resulted in an enhanced growth of HaCaTs, with the best result being observed when using dissolution products from PGFs containing 0.1 wt % of Fe and a dissolution product-cell medium ratio of 5:100. Dissolution products from PGFs with an Fe content up to 0.5 wt % have also demonstrated antibacterial activity against the bacterium Escherichia coli (E. coli). A preliminary test on the efficacy of PGFs in wound healing via ex vivo studies on human skin has demonstrated that the PGFs in direct contact with the wound promote 84% wound closure.
Collapse
Affiliation(s)
- Jack Humphray
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Agron Hoxha
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Eveliny Tomás Nery
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
- School
of Biosciences and Medicine, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Charlotte Berry
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Mónica Felipe-Sotelo
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Holly Wilkinson
- Centre
for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, U.K.
- Skin
Research Centre, Hull York Medical School, University of York, York YO10 5DD, U.K.
| | - Matthew Hardman
- Centre
for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, U.K.
- Skin
Research Centre, Hull York Medical School, University of York, York YO10 5DD, U.K.
| | - Jorge Gutiérrez-Merino
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
- School
of Biosciences and Medicine, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Daniela Carta
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
6
|
Huang T, Ma Y, Chen H, Zhang S, Liu L, Chen M, Jia R, Lin L, Ullah MW, Fan Y. A silk nanofiber and hyaluronic acid composite hemostatic sponge for compressible hemostasis. Int J Biol Macromol 2025; 307:142262. [PMID: 40112995 DOI: 10.1016/j.ijbiomac.2025.142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Uncontrolled traumatic blood loss is a leading cause of hemorrhagic shock and death, highlighting the critical need for compressible and rapid hemostatic first-aid materials. In this study, silk nanofibers (MA-SNFs) were prepared through maleic acid (MA) hydrolysis decorated with enriched carboxyl groups. The MA-SNFs were then combined with hyaluronic acid (HA) through EDC/NHS crosslinking to form a porous sponge (i.e., MA-SNF/HA) through freeze-drying. The fabricated MA-SNF/HA sponges demonstrated excellent blood compatibility (hemolysis ratio < 5 %), outstanding hemocompatibility (blood clotting index (BCI) < 35 % within 60 s), and good cytocompatibility (cell viability >85 %). Among the different sponges prepared, M4-H6 (MA-SNFs: HA = 4:6) exhibited the best liquid reabsorption capacity after 80 % compression, outperforming M6-H4 and M5-H5 sponges. Furthermore, M4-H6 sponge absorbed liquid rapidly (~30 s) while matching the liquid absorption capacity of commercial gelatin sponge (GS), which require over 5 min for similar absorption (2232.84 ± 141.69 %). These findings suggest that M4-H6 sponge is highly suitable for compressible hemostasis applications and provide further insights into its potential hemostatic mechanism.
Collapse
Affiliation(s)
- Tian Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huangjingyi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Siqing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meijuan Chen
- Jiangsu Opera Medical Supplies Co. Ltd., Gaoyou 225600, China
| | - Ruoxian Jia
- Jiangsu Opera Medical Supplies Co. Ltd., Gaoyou 225600, China
| | - Lin Lin
- Jiangsu Opera Medical Supplies Co. Ltd., Gaoyou 225600, China
| | - Muhammad Wajid Ullah
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Huang J, Zheng Y, Ma W, Han Y, Xue J, Huan Z, Wu C, Zhu Y. SiO 2-based inorganic nanofiber aerogel with rapid hemostasis and liver wound healing functions. Acta Biomater 2025; 194:483-497. [PMID: 39826855 DOI: 10.1016/j.actbio.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Non-compressible hemostasis and promoting tissue healing are important in soft tissue trauma repair. Inorganic aerogels show superior performance in rapid hemostasis or promoting tissue healing, but simultaneously promoting non-compressive hemostasis and soft tissue healing still remains a challenge. Herein, SiO2-based inorganic nanofiber aerogels (M2+@SiO2, M=Ca, Mg, and Sr) were prepared by freeze-drying the mixture of bioactive silicates-deposited SiO2 nanofibers and SiO2 sol. These M2+@SiO2 aerogels have a three-dimensional highly-interconnected porous structure, remarkable flexibility, high absorption, good hydrophilicity, negative zeta potential, and bioactive ions releasing capacity. M2+@SiO2 aerogels not only exhibited satisfactory hemostasis activities in vitro, but also possessed high hemostatic efficacy in compressible rabbit femoral artery injury bleeding model and non-compressible rat liver puncture bleeding model compared to medical gauze and gelatin sponge. M2+@SiO2 aerogel had low blood clotting index of Ca. 10 % and short partial thromboplastin time of ca. 82 s in vitro, and could greatly short bleeding time by >50 % and decrease blood loss by about 80 % compared to medical gauze and gelatin sponge in non-compressible hemostasis. Sr2+@SiO2 aerogel showed optimal bioactivities on promoting cell proliferation, cell migration, and the expression of liver function and angiogenesis related genes and proteins in vitro. Importantly, Sr2+@SiO2 aerogel possessed a noteworthy function to promote liver soft tissue healing in vivo by releasing bioactive ions and providing a highly-interconnected porous structure to support vascular development and tissue regeneration. Overall, Sr2+@SiO2 aerogel has great potential for integrated rapid hemostasis and soft tissue healing, which is promising in soft tissue trauma therapy. STATEMENT OF SIGNIFICANCE: Non-compressible hemorrhage and soft tissue impairment are the main causes of mortality in emergency trauma. Inorganic aerogels with high porosity and outstanding flexibility can rapidly absorb blood to pro-coagulation and fill in irregular trauma without compression, but the low bioactivity limited the ability to promote soft tissue healing. Herein, SiO2-based inorganic nanofiber aerogels (M2+@SiO2, M=Ca, Mg, and Sr) were prepared by freeze-drying the mixture of bioactive silicates-deposited SiO2 nanofibers and SiO2 sol. M2+@SiO2 aerogels possessed high bioactivity and exhibited superior hemostatic performance in compressible and non-compressible bleeding model. Furthermore, Sr2+@SiO2 aerogel showed optimal bioactivities on cell responses and effectively promoted liver healing by releasing bioactive ions and providing highly-interconnected porous support structure for vascular development and tissue regeneration.
Collapse
Affiliation(s)
- Jimin Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yi Zheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wenping Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yahui Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
8
|
Wan Q, Sun X, Su C, Cai J, Zhan H, Sun Y, Qu F, Zhang Y, Mu Y, Chen X, Feng C. Fish scale gelatin/diatom biosilica composite hemostasis sponge with ultrafast dispersing and in situ gelation for hemorrhage control. Int J Biol Macromol 2025; 297:139715. [PMID: 39798732 DOI: 10.1016/j.ijbiomac.2025.139715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB). This design retains the hierarchical porous structure of DB in SG matrix, and granting the SG/DB the capability to disperse ultrafast, achieving dissolution in both water and blood within 3 s. The DB and SG released by disintegration of SG/DB can activate intrinsic coagulation pathway and strengthen fibrin clot gelation through the anchoring interface effect, even realizing coagulation of anticoagulant whole blood without calcium ion activation. Animal studies showed 10%T-SG/DB has superior hemostatic properties to various commercially available hemostatic materials (rat liver and artery, 100 s; rabbit liver, artery, and heart, 3.2, 4.6, and 2.9 min, respectively), reducing bleeding by 30 % compared to QuikClot Combat Gauze®, and is easily removable without residue.
Collapse
Affiliation(s)
- Qinglan Wan
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jingyu Cai
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Hao Zhan
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yunji Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Furui Qu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yan Zhang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China; Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China.
| |
Collapse
|
9
|
Su J, Liu C, Sun A, Yan J, Sang F, Xin Y, Zhao Y, Wang S, Dang Q. Hemostatic and antimicrobial properties of chitosan-based wound healing dressings: A review. Int J Biol Macromol 2025; 306:141570. [PMID: 40023410 DOI: 10.1016/j.ijbiomac.2025.141570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Uncontrolled bleeding and microbial infections pose significant hurdles in wound healing, and the use of specialized functional dressings is pivotal in overcoming these obstacles. Among the various wound dressings currently under investigation, those based on chitosan and its derivatives have garnered significant attention due to their superior biocompatibility, antimicrobial properties, hemostatic capabilities, and healing promoting ability. In this comprehensive review, we initially delve into the hemostatic capabilities of chitosan, elucidating its interactions with blood cells and plasma proteins. We also dissect the intricate antimicrobial mechanisms of chitosan, which operate through both intracellular and extracellular pathways. The centerpiece of this review is the systematic classification of dressings based on chitosan and its derivatives, across various forms, such as hydrogels, sponges, membranes, fibers, and powders. This is followed by an exhaustive analysis of their hemostatic and antibacterial efficacy in wound healing, providing a robust foundation for further research and the advancement of clinical applications in the field.
Collapse
Affiliation(s)
- Jieyu Su
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Ao Sun
- Faculty of Science, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - Jingquan Yan
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Feng Sang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Ying Xin
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shiyun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
10
|
Li X, Wang X, Chen G, Tian B. Application trends of hydrogen-generating nanomaterials for the treatment of ROS-related diseases. Biomater Sci 2025; 13:896-912. [PMID: 39807026 DOI: 10.1039/d4bm01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Reactive oxygen species (ROS) play essential roles in both physiological and pathological processes. Under physiological conditions, appropriate amounts of ROS play an important role in signaling and regulation in cells. However, too much ROS can lead to many health problems, including inflammation, cancer, delayed wound healing, neurodegenerative diseases (such as Parkinson's disease and Alzheimer's disease), and autoimmune diseases, and oxidative stress from excess ROS is also one of the most critical factors in the pathogenesis of cardiovascular and metabolic diseases such as atherosclerosis. Hydrogen gas effectively removes ROS from the body due to its good antioxidant properties, and hydrogen therapy has become a promising gas therapy strategy due to its inherent safety and stability. The combination of nanomaterials can achieve targeted delivery and effective accumulation of hydrogen, and has some ameliorating effects on diseases. Herein, we summarize the use of hydrogen-producing nanomaterials for the treatment of ROS-related diseases and talk about the prospects for the treatment of other ROS-induced disease models, such as acute kidney injury.
Collapse
Affiliation(s)
- Xiaobing Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xuezhu Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
11
|
Mohamed SSY, Cavalli R, Rombi E, Atzori L, Armandi M, Onida B. New insights in large-pores mesoporous silica microspheres for hemostatic application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:18. [PMID: 39907851 PMCID: PMC11799116 DOI: 10.1007/s10856-025-06864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Hemorrhages are still considered a common cause of death and despite the availability of different hemostatic agents it is still necessary to develop more effective hemostats for bleeding managements in emergency situations. Herein, large-pores mesoporous silica microspheres (MSM) were synthesized, and their surface was modified to enrich the hydroxyls population with the aim of achieving a material with enhanced water adsorption capacity and high hemostatic ability. The success of surface modification was investigated by Fourier Transform Infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA), which confirmed the increase in the amount of surface hydroxyl groups. A hemolysis assay as well as a clotting test were carried out to evaluate the hemocompatibility and hemostatic ability, respectively. It was found that the modified material presented the lowest hemolytic ratio and the lowest clotting time. The novelty of the paper is mainly due to the coupling of the hemostatic ability test with the adsorption microcalorimetry of water. In fact, being the water adsorption on the material surface a crucial factor in the hemostatic activity, microcalorimetry was used for the first time to study the adsorption of water and estimate its heat of adsorption. The data obtained showed that the modified MSM presents a surface able to adsorb a higher amount of water, compared to the pristine MSM, with a low molar heat of adsorption (about 35 kJ/mol), which renders the modified MSM presented in the present study an excellent candidate for producing novel hemostats.
Collapse
Affiliation(s)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Rombi
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Luciano Atzori
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Marco Armandi
- Department of Applied Science and Technology, Polytechnic of Turin, Turin, Italy
| | - Barbara Onida
- Department of Applied Science and Technology, Polytechnic of Turin, Turin, Italy
| |
Collapse
|
12
|
Sun R, Wang M, Zeng T, Chen H, Yoshitomi T, Takeguchi M, Kawazoe N, Yang Y, Chen G. Scaffolds functionalized with matrix metalloproteinase-responsive release of miRNA for synergistic magnetic hyperthermia and sensitizing chemotherapy of drug-tolerant breast cancer. Bioact Mater 2025; 44:205-219. [PMID: 39502841 PMCID: PMC11535879 DOI: 10.1016/j.bioactmat.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Combining hyperthermia and chemotherapy for maximum anticancer efficacy remains a challenge because drug-tolerant cancer cells often evade this synergistic treatment due to drug resistance and asynchronous drug release. In this study, multifunctional scaffolds were designed to efficiently treat drug-tolerant breast cancer by improving the sensitization of breast cancer cells and synchronizing anticancer drug release with magnetic hyperthermia. The scaffolds contained microRNA-encapsulated matrix metalloproteinase-cleavable liposomes, doxorubicin-encapsulated thermoresponsive liposomes and Fe3O4 nanoparticles. The scaffolds could release microRNA specifically to improve the sensitization of breast cancer cells to anticancer drugs. The scaffolds also showed excellent hyperthermia effects under alternating magnetic field irradiation. Moreover, doxorubicin release was synchronized with magnetic hyperthermia. In vitro and in vivo studies demonstrated that the scaffolds effectively reduced drug resistance and eliminated doxorubicin-tolerant MDA-MB-231 cells through the synergistic effect of magnetic hyperthermia and sensitizing chemotherapy. Additionally, the scaffolds could support the proliferation and adipogenic differentiation of stem cells for adipose tissue regeneration after killing cancer cells at a late therapeutic stage. These composite scaffolds offer an innovative strategy for treating breast cancer, with synergistic anticancer effects and regenerative functions.
Collapse
Affiliation(s)
- Rui Sun
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Man Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Tianjiao Zeng
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Masaki Takeguchi
- Research Center for Energy and Environmental Materials, National Institute for Materials Science, Ibaraki, 305-0047, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
13
|
Khumaidi A, Murwanti R, Damayanti E, Hertiani T. Empirical use, phytochemical, and pharmacological effects in wound healing activities of compounds in Diospyros leaves: A review of traditional medicine for potential new plant-derived drugs. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118966. [PMID: 39427738 DOI: 10.1016/j.jep.2024.118966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wound healing extracts' activity is increasingly being studied in the field of traditional medicine. Among medicinal plants, Diospyros is known to have healing effects on wounds, along with activities such as anti-biofilm, anti-inflammatory, antibacterial, antioxidant, and regulation of the immune system. However, the current use of the leaves could be more optimal, and the scientific basis needs to be improved. AIM OF THIS REVIEW This review aimed to critically examine the literature on the traditional use and bioactive metabolites of several Diospyros species, demonstrating the significant potential in wound healing, antibacterial, anti-biofilm, regulatory effect on the immune system, anti-inflammatory, and antioxidant activities. The critical analysis was conducted to provide robust perspectives and recommendations for future studies on the use of Diospyros potential resources of wound healing material, including related activities. MATERIALS AND METHODS Exploratory studies on Diospyros species over the past 20 years were examined, with a focus on general information, practical use, secondary metabolite, and pharmacological activities related to wound healing. Data were meticulously collected from scientific databases including Scopus, ScienceDirect, Web of Science, Taylor & Francis, Google Scholar, PubMed as well as various botanical and biodiversity sources. Furthermore, manual searches were conducted to ensure comprehensive coverage. Reference manager software was used to manage articles and remove duplicates, then the gathered data were summarized and verified, ensuring the thoroughness and validity of the review process. RESULTS The results showed that Diospyros leaves have great potential to be harnessed as herbal medications, evidenced by both scientific findings and community uses. Various substances, including flavonoids, coumarins, tannins, terpenoids, steroids, lignans, quinones, and secoiridoids were identified. Chemical compound investigations in both in vivo and in vitro studies of Diospyros leaves reported wound healing activity, as well as antibacterial, anti-inflammatory, anti-biofilm, antioxidant, and immunomodulatory properties. CONCLUSION The review highlights the traditional uses and bioactive metabolites of Diospyros species in wound healing, identifying various beneficial compounds such as flavonoids and tannins. These compounds demonstrate various therapeutic effects, including antibacterial, anti-biofilm, anti-inflammatory, antioxidant, and immunomodulatory activities. Diospyros leaf extracts have a favorable safety profile, but further studies, including in vivo investigations and clinical trials, are necessary to confirm their efficacy and safety for clinical applications. Diospyros leaf extracts have significant potential for the development of wound healing substances due to the wide range of bioactivities targeting various stages of wound healing.
Collapse
Affiliation(s)
- Akhmad Khumaidi
- Doctoral Program in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Palu, 94118, Indonesia
| | - Retno Murwanti
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Ema Damayanti
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, 55861, Indonesia
| | - Triana Hertiani
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
14
|
Zhang W, Geng X, Qin S, Xie Z, Li W, Li J. Research progress and application of chitosan dressings in hemostasis: A review. Int J Biol Macromol 2024; 282:136421. [PMID: 39389479 DOI: 10.1016/j.ijbiomac.2024.136421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Hemorrhage affects human health, and severe bleeding remains a leading contributor to trauma-related mortality. The speed and effectiveness of the application of hemostatic materials are critical. Conventional hemostatic dressings such as bandages and gauze are gradually being replaced by new types of hemostatic dressings due to their poor hemostatic and antibacterial properties. Chitosan, a biopolymer, is biodegradable and nontoxic and possesses hemostatic and antibacterial properties. Chitosan induces hemostasis through direct contact with red corpuscles and platelets, independent of the coagulation pathways of the host, rendering it an optimal hemostatic dressing. It is widely used in wound care, particularly to stop bleeding, promote wound healing, and provide antimicrobial properties. This article reviews the recent research and development of chitosan-based hemostatic dressings, focusing on trauma hemostasis, burn hemostasis, diabetic skin ulcer hemostasis and other aspects. It also emphasizes the significance of chitosan dressings in wound hemostasis and healing, identifies their research opportunities in hemostasis and wound healing, and explores new research directions.
Collapse
Affiliation(s)
- Wenwen Zhang
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xinrong Geng
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Song Qin
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Wenjun Li
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Jie Li
- Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
15
|
Mehdikhani M, Yilgör P, Poursamar SA, Etemadi N, Gokyer S, Navid S, Farzan M, Farzan M, Babaei M, Rafienia M. A hybrid 3D-printed and electrospun bilayer pharmaceutical membrane based on polycaprolactone/chitosan/polyvinyl alcohol for wound healing applications. Int J Biol Macromol 2024; 282:136692. [PMID: 39437946 DOI: 10.1016/j.ijbiomac.2024.136692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Skin injuries resulting from physical trauma pose significant health risks, necessitating advanced wound care solutions. This investigation introduces an innovative bilayer wound dressing composed of 3D-printed propolis-coated polycaprolactone (PCL/PP) and an electrospun composite of polyvinyl alcohol, chitosan, polycaprolactone, and diltiazem (PVA/CTS/PCL/DTZ). SEM analysis revealed a bilayer structure with 89.23 ± 51.47 % porosity and uniformly distributed nanofibers. The scaffold tensile strength, with pore sizes of 100, 300, and 500 μm, was comparable to native skin. However, smaller pore sizes reduced water vapor transmission from 4211.59 ± 168.53 to 2358.49 ± 203.63 g/m2. The incorporation of DTZ lowered the contact angle to 35.23 ± 3.65°, while the addition of PCL reduced the degradation rate and modulated the release of DTZ by approximately 50 %. Moreover, lower pH increased the degradation rate and decreased swelling. The inclusion of propolis enhanced antibacterial activity, and 10 % DTZ promoted the viability, proliferation, and migration of fibroblasts and adipose-derived stem cells. However, increasing DTZ concentration to 12 % reduced cell viability. In vivo tests on rats demonstrated effective wound healing and anti-inflammatory properties of the bilayer samples. Regarding the aforementioned results, the PCL/PP-PVA/CTS/PCL/DTZ (10 % w/w) bilayer wound dressing is a promising candidate for wound healing applications.
Collapse
Affiliation(s)
- Mehdi Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran; Research and Technology Center for International Scientific Studies and Collaboration (CISSC), Ministry of Science, Tehran, Iran.
| | - Pinar Yilgör
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, Türkiye
| | - Seyed Ali Poursamar
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloofar Etemadi
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seyda Gokyer
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, Türkiye
| | - Sepehr Navid
- Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Melika Babaei
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran.
| |
Collapse
|
16
|
Fanaee S, Austin W, Filiaggi M, Adibnia V. External Bleeding and Advanced Biomacromolecules for Hemostasis. Biomacromolecules 2024; 25:6936-6966. [PMID: 39463174 DOI: 10.1021/acs.biomac.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Hemorrhage is a significant medical problem that has been an active area of research over the past few decades. The human body has a complex response to bleeding that leads to blood clot formation and hemostasis. Many biomaterials based on various biomacromolecules have been developed to either accelerate or improve the body's natural response to bleeding. This review examines the mechanisms of hemostasis, types of bleeding, and the in vitro or in vivo models and techniques used to study bleeding and hemostatic materials. It provides a detailed overview of the diverse hemostatic materials, including those that are highly absorbent, wet adhesives, and those that accelerate the biochemical cascade of blood clotting. These materials are currently marketed, under preclinical testing, or being researched. In exploring the latest advancements in hemostatic technologies, this paper highlights the potential of these materials to significantly improve bleeding control in clinical and emergency situations.
Collapse
Affiliation(s)
- Sajjad Fanaee
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - William Austin
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Mark Filiaggi
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vahid Adibnia
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
17
|
Świerczyńska M, Mrozińska Z, Juszczak M, Woźniak K, Kudzin MH. Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation. Mar Drugs 2024; 22:436. [PMID: 39452844 PMCID: PMC11509239 DOI: 10.3390/md22100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Alginate-based materials have gained significant recognition in the medical industry due to their favorable biochemical properties. As a continuation of our previous studies, we have introduced a new composite consisting of cellulose nonwoven fabric charged with a metallic copper core (CNW-Cu0) covered with a calcium alginate (ALG-Ca2+) layer. The preparation process for these materials involved three main steps: coating the cellulose nonwoven fabric with copper via magnetron sputtering (CNW → CNW-Cu0), subsequent deposition with sodium alginate (CNW-Cu0 → CNW-Cu0/ALG-Na+), followed by cross-linking the alginate chains with calcium ions (CNW-Cu0/ALG-Na+ → CNW-Cu0/ALG-Ca2+). The primary objective of the work was to supply these composites with such biological attributes as antibacterial and hemostatic activity. Namely, equipping the antibacterial materials (copper action on representative Gram-positive and Gram-negative bacteria and fungal strains) with induction of blood plasma clotting processes (activated partial thromboplastin time (aPTT) and prothrombin time (PT)). We determined the effect of CNW-Cu0/ALG-Ca2+ materials on the viability of Peripheral blood mononuclear (PBM) cells. Moreover, we studied the interactions of CNW-Cu0/ALG-Ca2+ materials with DNA using the relaxation plasmid assay. However, results showed CNW-Cu0/ALG-Ca2+'s cytotoxic properties against PBM cells in a time-dependent manner. Furthermore, the CNW-Cu0/ALG-Ca2+ composite exhibited the potential to interact directly with DNA. The results demonstrated that the CNW-Cu0/ALG-Ca2+ composites synthesized show promising potential for wound dressing applications.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network—Łódź Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Zdzisława Mrozińska
- Łukasiewicz Research Network—Łódź Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Michał Juszczak
- Łukasiewicz Research Network—Łódź Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Łódź Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| |
Collapse
|
18
|
Świerczyńska M, Król P, Hernández Vázquez CI, Piekarska K, Woźniak K, Juszczak M, Mrozińska Z, Kudzin MH. Blood Coagulation Activities and Influence on DNA Condition of Alginate-Calcium Composites Prepared by Freeze-Drying Technique. Mar Drugs 2024; 22:415. [PMID: 39330295 PMCID: PMC11433402 DOI: 10.3390/md22090415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
The aim of this research was to synthesize and characterize alginate-calcium composites using a freeze-drying method, with a focus on their potential applications in biomedicine. This study specifically explored the biochemical properties of these composites, emphasizing their role in blood coagulation and their capacity to interact with DNA. Additionally, the research aimed to assess how the cross-linking process influences the structural and chemical characteristics of the composites. Detailed analyses, including microscopic examination, surface area assessment, and atomic absorption spectrometry, yielded significant results. The objective of this study was to examine the impact of calcium chloride concentration on the calcium content in alginate composites. Specifically, the study assessed how varying concentrations of the cross-linking solution (ranging from 0.5% to 2%) influence the calcium ion saturation within the composites. This investigation is essential for understanding the physicochemical properties of the materials, including calcium content, porosity, and specific surface area. The results are intended to identify the optimal cross-linking conditions that maximize calcium enrichment efficiency while preserving the material's structural integrity. The study found that higher calcium chloride concentrations in alginate cross-linking improve the formation of a porous structure, enhanced by two-stage freeze-drying. Increased calcium levels led to a larger surface area and pore volume, and significantly higher calcium content. Furthermore, assays of activated partial thromboplastin time (aPTT) showed a reduction in clotting time for alginate composites containing calcium ions, indicating their potential as hemostatic agents. The aPTT test showed shorter clotting times with higher calcium ion concentrations, without enhanced activation of the extrinsic clotting pathway. The developed alginate material with calcium effectively supports hemostasis and reduces the risk of infection. The study also explored the capacity of these composites to interact with and modify the structure of plasmid DNA, underscoring their potential for future biomedical applications.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network, Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Paulina Król
- Łukasiewicz Research Network, Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - César I Hernández Vázquez
- Łukasiewicz Research Network, Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Klaudia Piekarska
- Łukasiewicz Research Network, Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michał Juszczak
- Łukasiewicz Research Network, Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Zdzisława Mrozińska
- Łukasiewicz Research Network, Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Marcin H Kudzin
- Łukasiewicz Research Network, Lodz Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| |
Collapse
|
19
|
Wu Z, Ding Y, Qin Z, Sun Z, Wang Z, Cao X. Hemostatic Dressing Immobilized with ε-poly-L-lysine and Alginate Coated Mesoporous Bioactive Glass Prevents Blood Permeation by Pseudo-Dewetting Behavior. Adv Healthc Mater 2024; 13:e2400958. [PMID: 38770831 DOI: 10.1002/adhm.202400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Indexed: 05/22/2024]
Abstract
The integration of hemostats with cotton fabrics is recognized as an effective approach to improve the hemostatic performance of dressings. However, concerns regarding the uncontrollable absorption of blood by hydrophilic dressings and the risk of distal thrombosis from shed hemostatic agents are increasingly scrutinized. To address these issues, this work develops an advanced dressing (AQG) with immobilized nano-scale mesoporous bioactive glass (MBG) to safely and durably augment hemostasis. The doubly immobilized MBGs, pre-coated with ε-poly-L-lysine and alginate, demonstrate less than 1% detachment after ultrasonic washing. Notably, this MBG layer significantly promotes the adhesion, aggregation, and activation of red blood cells and platelets, adhered five times more red blood cells and 29 times more platelets than raw dressing, respectively. Specially, with the rapid formation of protein corona and amplification of thrombin, dense fibrin network is built on MBG layer and then blocked blood permeation transversely and longitudinally, showing an autophobic pseudo-dewetting behavior and allowing AQG to concentrate blood in situ and culminate in faster hemostasis with lower blood loss. Furthermore, the potent antibacterial properties of AQG extend its potential for broader application in daily care and clinical setting.
Collapse
Affiliation(s)
- Zilin Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Yilin Ding
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zhihao Qin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zhipeng Sun
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zetao Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
20
|
Tong L, Zhang D, Huang Z, Gao F, Zhang S, Chen F, Liu C. Calcium Ion-Coupled Polyphosphates with Different Degrees of Polymerization for Bleeding Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43244-43256. [PMID: 39136271 DOI: 10.1021/acsami.4c06698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of efficient hemostatic materials is crucial for achieving rapid hemorrhage control and effective wound healing. Inorganic polyphosphate (polyP) is recognized as an effective modulator of the blood coagulation process. However, the specific effect of polyP chain length on coagulation is not yet fully understood. Furthermore, calcium ions (Ca2+) are essential for the coagulation process, promoting multiple enzyme-catalyzed reactions within the coagulation cascade. Hence, calcium ion-coupled polyphosphate powders with three different degrees of polymerization (CaPP-n, n = 20, 50, and 1500) are synthesized by an ion-exchange reaction. CaPP exhibits a crystalline phase at a low polymerization degree and transitions to an amorphous phase as the polymerization degree increases. Notably, the addition of Ca2+ enhances the wettability of polyP, and CaPP promotes hemostasis, with varying degrees of effectiveness related to chain length. CaPP-50 exhibits the most promising hemostatic performance, with the lowest blood clotting index (BCI, 12.1 ± 0.7%) and the shortest clotting time (302.0 ± 10.5 s). By combining Ca2+ with polyP of medium-chain length, CaPP-50 demonstrates an enhanced ability to accelerate the adhesion and activation of blood cells, initiate the intrinsic coagulation cascade, and form a stable blood clot, outperforming both CaPP-20 and CaPP-1500. The hemostatic efficacy of CaPP-50 is further validated using rat liver bleeding and femoral artery puncture models. CaPP-50 is proven to possess hemostatic properties comparable to those of commercial calcium-based zeolite hemostatic powder and superior to kaolin. In addition, CaPP-50 exhibits excellent biocompatibility and long-term storage stability. These results suggest that CaPP-50 has significant clinical and commercial potential as an active inorganic hemostatic agent for rapid control of bleeding.
Collapse
Affiliation(s)
- Laiqiang Tong
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dong Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhenhua Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fan Gao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shaozan Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
21
|
Hassanzadeh-Tabrizi SA. Alginate based hemostatic materials for bleeding management: A review. Int J Biol Macromol 2024; 274:133218. [PMID: 38901512 DOI: 10.1016/j.ijbiomac.2024.133218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Severe bleeding has caused significant financial losses as well as a major risk to the lives and health of military and civilian populations. Under some situations, the natural coagulation mechanism of the body is unable to achieve fast hemostasis without the use of hemostatic drugs. Thus, the development of hemostatic materials and techniques is essential. Improving the quality of life and survival rate of patients and minimizing bodily damage requires fast, efficient hemostasis and prevention of bleeding. Alginate is regarded as an outstanding hemostatic polymer because of its non-immunogenicity, biodegradability, good biocompatibility, simple gelation, non-toxicity, and easy availability. This review summarizes the basics of hemostasis and emphasizes the recent developments regarding alginate-based hemostatic systems. Structural modifications and mixing with other materials have widely been used for the improvement of hemostatic characteristics of alginate and for making multifunctional medical devices that not only prevent uncontrolled bleeding but also have antibacterial characteristics, drug delivery abilities, and curing effects. This review is hoped to prepare critical insights into alginate modifications for better hemostatic properties.
Collapse
Affiliation(s)
- S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
22
|
Ye J, Shi C, Lan J, Chen Q, Si Q, Xu P, Zhang X, Zheng C. Tannic acid coating gauze immobilized with thrombin with ultra-high coagulation activity and antimicrobial property for uncontrollable hemorrhage. Sci Rep 2024; 14:16139. [PMID: 38997417 PMCID: PMC11245493 DOI: 10.1038/s41598-024-67049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Rapid and safe hemostasis is crucial for the survival of bleeding patients in prehospital care. It is urgent to develop high performance hemostatic material to control the massive hemorrhage in the military field and accidental trauma. In this work, an efficient protein hemostat of thrombin was immobilized onto commercial gauze, which was mediated by self-polymerization and anchoring of tannic acid (TA). Through TA treatment, the efficient immobilization of thrombin was achieved, preserving both the biological activity of thrombin and the physical properties of the dressing, including absorbency, breathability, and mechanical performance. Moreover, in the presence of TA coating and thrombin, Gau@TA/Thr could obviously shortened clotting time and enriched blood components such as plasma proteins, platelets, and red blood cells, thereby exhibiting an enhanced in vitro coagulation effect. In SD rat liver volume defect and artery transection hemorrhage models, Gau@TA/Thr still had outstanding hemostatic performance. Besides, the Gau@TA/Thr gauze had inherent antibacterial property and demonstrated excellent biocompatibility. All results suggested that Gau@TA/Thr would be a potential candidate for treating uncontrollable hemorrhage in prehospital care.
Collapse
Affiliation(s)
- Jian Ye
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Zhejiang, 318000, China
| | - Chenyang Shi
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Zhejiang, 318000, China
| | - Jian Lan
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Zhejiang, 318000, China
| | - Qingqing Chen
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang, 318000, China
| | - Qin Si
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Zhejiang, 318000, China
| | - Panpan Xu
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Zhejiang, 318000, China
| | - Xijiang Zhang
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Zhejiang, 318000, China.
| | - Cheng Zheng
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Zhejiang, 318000, China.
| |
Collapse
|
23
|
Nadeem Butt E, Ali S, Summer M, Siddiqua Khan A, Noor S. Exploring the mechanistic role of silk sericin biological and chemical conjugates for effective acute and chronic wound repair and related complications. Drug Dev Ind Pharm 2024; 50:577-592. [PMID: 39087808 DOI: 10.1080/03639045.2024.2387814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.
Collapse
Affiliation(s)
- Esham Nadeem Butt
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Siddiqua Khan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
24
|
Duan W, Zhao J, Gao Y, Xu K, Huang S, Zeng L, Shen JW, Zheng Y, Wu J. Porous silicon-based sensing and delivery platforms for wound management applications. J Control Release 2024; 371:530-554. [PMID: 38857787 DOI: 10.1016/j.jconrel.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Wound management remains a great challenge for clinicians due to the complex physiological process of wound healing. Porous silicon (PSi) with controlled pore morphology, abundant surface chemistry, unique photonic properties, good biocompatibility, easy biodegradation and potential bioactivity represent an exciting class of materials for various biomedical applications. In this review, we focus on the recent progress of PSi in the design of advanced sensing and delivery systems for wound management applications. Firstly, we comprehensively introduce the common type, normal healing process, delaying factors and therapeutic drugs of wound healing. Subsequently, the typical fabrication, functionalization and key characteristics of PSi have been summarized because they provide the basis for further use as biosensing and delivery materials in wound management. Depending on these properties, the rise of PSi materials is evidenced by the examples in literature in recent years, which has emphasized the robust potential of PSi for wound monitoring, treatment and theranostics. Finally, challenges and opportunities for the future development of PSi-based sensors and delivery systems for wound management applications are proposed and summarized. We hope that this review will help readers to better understand current achievements and future prospects on PSi-based sensing and delivery systems for advanced wound management.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Keying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Longhuan Zeng
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yongke Zheng
- Department of Geriatric Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China.
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
25
|
Sun R, Chen H, Wang M, Yoshitomi T, Takeguchi M, Kawazoe N, Yang Y, Chen G. Smart composite scaffold to synchronize magnetic hyperthermia and chemotherapy for efficient breast cancer therapy. Biomaterials 2024; 307:122511. [PMID: 38401482 DOI: 10.1016/j.biomaterials.2024.122511] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Combination of different therapies is an attractive approach for cancer therapy. However, it is a challenge to synchronize different therapies for maximization of therapeutic effects. In this work, a smart composite scaffold that could synchronize magnetic hyperthermia and chemotherapy was prepared by hybridization of magnetic Fe3O4 nanoparticles and doxorubicin (Dox)-loaded thermosensitive liposomes with biodegradable polymers. Irradiation of alternating magnetic field (AMF) could not only increase the scaffold temperature for magnetic hyperthermia but also trigger the release of Dox for chemotherapy. The two functions of magnetic hyperthermia and chemotherapy were synchronized by switching AMF on and off. The synergistic anticancer effects of the composite scaffold were confirmed by in vitro cell culture and in vivo animal experiments. The composite scaffold could efficiently eliminate breast cancer cells under AMF irradiation. Moreover, the scaffold could support proliferation and adipogenic differentiation of mesenchymal stem cells for adipose tissue reconstruction after anticancer treatment. In vivo regeneration experiments showed that the composite scaffolds could effectively maintain their structural integrity and facilitate the infiltration and proliferation of normal cells within the scaffolds. The composite scaffold possesses multi-functions and is attractive as a novel platform for efficient breast cancer therapy.
Collapse
Affiliation(s)
- Rui Sun
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Man Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Masaki Takeguchi
- Center for Basic Research on Materials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
26
|
Banu SA, Pawde AM, Sharun K, Kalaiselvan E, Shivaramu S, Mathesh K, Chandra V, Kumar R, Maiti SK, Verma MR, Singh KP, Amarpal. Evaluation of bone marrow-derived mesenchymal stem cells with eggshell membrane for full-thickness wound healing in a rabbit model. Cell Tissue Bank 2024; 25:493-508. [PMID: 37542003 DOI: 10.1007/s10561-023-10105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Biomaterials capable of managing wounds should have essential features like providing a natural microenvironment for wound healing and as support material for stimulating tissue growth. Eggshell membrane (ESM) is a highly produced global waste due to increased egg consumption. The unique and fascinating properties of ESM allow their potential application in tissue regeneration. The wound healing capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs), ESM, and their combination in rabbits with full-thickness skin defect (2 × 2 cm2) was evaluated. Twenty-five clinically healthy New Zealand White rabbits were divided into five groups of five animals each, with group A receiving no treatment (control group), group B receiving only fibrin glue (FG), group C receiving FG and ESM as a dressing, group D receiving FG and BM-MSCs, and group E receiving a combination of FG, ESM, and BM-MSCs. Wound healing was assessed using clinical, macroscopical, photographic, histological, histochemical, hematological, and biochemical analysis. Macroscopic examination of wounds revealed that healing was exceptional in group E, followed by groups D and C, compared to the control group. Histopathological findings revealed improved quality and a faster rate of healing in group E compared to groups A and B. In addition, healing in group B treated with topical FG alone was nearly identical to that in control group A. However, groups C and D showed improved and faster recovery than control groups A and B. The macroscopic, photographic, histological, and histochemical evaluations revealed that the combined use of BM-MSCs, ESM, and FG had superior and faster healing than the other groups.
Collapse
Affiliation(s)
- S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - E Kalaiselvan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Shivaraju Shivaramu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karikalan Mathesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikas Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Med Ram Verma
- Division of Livestock Economics, Statistics and Information Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
27
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
28
|
Jia J, Lin Z, Zhu J, Liu Y, Hu Y, Fang K. Anti-adhesive and antibacterial chitosan/PEO nanofiber dressings with high breathability for promoting wound healing. Int J Biol Macromol 2024; 261:129668. [PMID: 38278380 DOI: 10.1016/j.ijbiomac.2024.129668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Wound dressings are crucial for wound healing. Ideal wound dressings should possess many functions such as wettability, antibacterial activity and anti-adherent property to promote wound healing. In the present study solution blown spinning (SBS) technology was applied to prepare chitosan/polyethylene oxide (CS/PEO) nanofiber dressings in high efficiency. The obtained nanofiber dressings were treated with anhydrous ethanol to improve the fiber structure and enhance the functionality of the fiber dressings. The results show that the treated nanofibers had higher crystallinities and higher CS contents. The CS/PEO nanofiber dressings fabricated by using no additives and crosslinking had excellent wettability, water stability and antibacterial activity against Escherichia coli and Staphylococcus aureus reached to over 99.99 %. In addition, the CS/PEO nanofiber dressings exhibited high breathability, antioxidant activity and anti-adhesion function. The in vivo animal experiment confirmed that the nanofiber dressings enhanced cell proliferation and significantly accelerated the wound healing within 10 days. The developed CS/PEO nanofiber dressings have great potential in the clinical field of wound healing.
Collapse
Affiliation(s)
- Jiaojiao Jia
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao, 266071, China
| | - Zhihao Lin
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jilin Zhu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao, 266071, China
| | - Yujie Liu
- Shandong Xinyue Health Technology Co., Ltd, Binzhou 256600, China
| | - Yanling Hu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao, 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao 266071, China; State Key Laboratory for Biofibers and Eco-textiles, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
29
|
Shi J, Shi K, Dong Q, Yang J, Zhou Y, Ma P, She S, Yang F, Gong Z. Self-Oxidated Hydrophilic Chitosan Fibrous Mats for Fatal Hemorrhage Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8391-8402. [PMID: 38324389 DOI: 10.1021/acsami.3c16912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Enriching erythrocytes and platelets in seconds and providing a fast seal in bleeding sites is vital to fatal hemorrhage control. Herein, hydrophilic chitosan fibrous mats (CECS-D mats) are fabricated by introducing hydrophilic carboxyethyl groups and subsequent catechol groups onto chitosan fibers. Due to strong hydrophilicity, CECS-D mats exhibit rapid liquid-absorption capacity, especially instantaneous absorptivity to the rabbit blood, which can achieve erythrocyte and platelet aggregations quickly by concentrating blood, thus promoting the formation of blood clots. Furthermore, the mats are self-oxidated to form quinone-amine adducts or quinone multimers by adjusting pH conditions, which not only provides tissue adhesion but also induces erythrocyte aggregation and platelet adhesion, further enhancing the seal and triggering quick closure to achieve fast hemostasis. Therefore, the mats reveal superior hemostatic performance in rabbit liver and spleen models over CECS mats and gauze. Especially in the fatal femoral artery injury model of rabbits, the mats reduce the blood loss by ∼75% and shortened the bleeding time by ∼50% compared with CECS mats, which have been reported to have the same hemostatic effect as commercialized Celox products in a swine femoral artery injury model. Besides, the mats are cytocompatible and degradable as well as antibacterial. This chitosan mat is a promising hemostatic material for fatal hemorrhage control.
Collapse
Affiliation(s)
- Jinzhi Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, People's Republic of China
| | - Kai Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Qi Dong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Junfeng Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Peng Ma
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, People's Republic of China
| | - Sha She
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, People's Republic of China
| | - Fan Yang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, People's Republic of China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, People's Republic of China
| |
Collapse
|
30
|
Feng C, Yang L. State of the art, trends, hotspots, and prospects of injection materials for controlling bleeding. Int Wound J 2024; 21:e14644. [PMID: 38272794 PMCID: PMC10789653 DOI: 10.1111/iwj.14644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Traumatic haemorrhage is a prevalent clinical condition, and effective and timely haemostasis is crucial for the preservation of patients' lives. In recent years, injectable hemostatic materials have gained significant attention due to their excellent hemostatic efficacy, biocompatibility, and biodegradability, making them widely applied in the treatment of incompressible traumatic haemorrhage. Systematic analysis of injectable hemostatic materials is crucial for research in this area. This article provides a comprehensive review of the development and research trends of injectable hemostatic materials over the past 20 years using visualization techniques. Analysis of collaboration and co-citation networks revealed localized research collaboration networks, highlighting the need for enhanced international collaboration in the field of injectable hemostatic materials. Current research focuses primarily on hemostatic materials, hemostatic processes, and hemostatic mechanisms. Injectable hemostatic materials with excellent performance offer promising strategies for wound healing. This review provides a comprehensive and systematic summary of injectable hemostatic materials, offering valuable guidance for the development and clinical application of novel injectable hemostatic materials. Additionally, visualized methodology and mapping analysis are effective data mining methods that provide approaches and strategies for clear knowledge network analysis. These methods facilitate better understanding and interpretation of research dynamics in the field of injectable hemostatic materials, thereby guiding and inspiring future research.
Collapse
Affiliation(s)
- Changsheng Feng
- School of Physics and Electronic InformationYan'an UniversityYan'anChina
| | - Liang Yang
- School of Physics and Electronic InformationYan'an UniversityYan'anChina
| |
Collapse
|
31
|
Su C, Cao Z, Liu J, Sun X, Qiu K, Mu Y, Cong X, Wang X, Chen X, Jia N, Feng C. The hierarchical porous structures of diatom biosilica-based hemostat: From selective adsorption to rapid hemostasis. J Colloid Interface Sci 2023; 651:544-557. [PMID: 37562297 DOI: 10.1016/j.jcis.2023.07.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Here, we developed a Ca2+ modified diatom biosilica-based hemostat (DBp-Ca2+) with a full scale hierarchical porous structure (pore sizes range from micrometers to nanometers). The unique porous size in stepped arrangement of DBp-Ca2+give it selective adsorption capacity during coagulation process, resulted in rapid hemorrhage control. Based on in vitro and in vivo studies, it was confirmed that the primary micropores of DBp-Ca2+gave it high porosity to hold water (water absorption: 78.46 ± 1.12 %) and protein (protein absorption: 83.7 ± 1.33 mg/g). Its secondary mesopores to macropores could reduce of water diffusion length to accelerate blood exchange (complete within 300 ms). The tertiary stacking pores of DBp-Ca2+ could absorb platelets and erythrocytes to reduce more than 50 % of thrombosis time, and provided enough contact between Ca active site and coagulation factors for triggering clotting cascade reaction. This work not only developed a novel DBs based hemostat with efficient hemorrhage control, but also provided new insights to study procoagulant mechanism of inorganic hemostat with hierarchical porous structure from selective adsorption to rapid hemostasis.
Collapse
Affiliation(s)
- Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Zheng Cao
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jiahao Liu
- Minimally invasive interventional therapy center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 5# Donghai Middle Road, Qingdao 266000, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Kaijin Qiu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xin Cong
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaoye Wang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, 572024, Hainan Province, China; Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Nan Jia
- Minimally invasive interventional therapy center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 5# Donghai Middle Road, Qingdao 266000, Shandong Province, China.
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, 572024, Hainan Province, China.
| |
Collapse
|
32
|
Gan C, Hu H, Meng Z, Zhu X, Gu R, Wu Z, Sun W, Han P, Wang H, Dou G, Gan H. Local Clays from China as Alternative Hemostatic Agents. Molecules 2023; 28:7756. [PMID: 38067486 PMCID: PMC10708434 DOI: 10.3390/molecules28237756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, the coagulation properties of inorganic minerals such as kaolin and zeolite have been demonstrated. This study aimed to assess the hemostatic properties of three local clays from China: natural kaolin from Hainan, natural halloysite from Yunnan, and zeolite synthesized by our group. The physical and chemical properties, blood coagulation performance, and cell biocompatibility of the three materials were tested. The studied materials were characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). All three clays showed different morphologies and particle size, and exhibited negative potentials between pH 6 and 8. The TGA and DSC curves for kaolin and halloysite were highly similar. Kaolin showed the highest water absorption capacity (approximately 93.8% ± 0.8%). All three clays were noncytotoxic toward L929 mouse fibroblasts. Kaolin and halloysite showed blood coagulation effects similar to that exhibited by zeolite, indicating that kaolin and halloysite are promising alternative hemostatic materials.
Collapse
Affiliation(s)
- Changjiao Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
- National Medical Products Administration Institute of Executive Development, 16 Xi Zhan Nan Road, Beijing 100073, China
| | - Hongjie Hu
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Zhengzhou 450006, China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Wenzhong Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Peng Han
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Hongliang Wang
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Zhengzhou 450006, China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| |
Collapse
|
33
|
Radzikowska-Büchner E, Łopuszyńska I, Flieger W, Tobiasz M, Maciejewski R, Flieger J. An Overview of Recent Developments in the Management of Burn Injuries. Int J Mol Sci 2023; 24:16357. [PMID: 38003548 PMCID: PMC10671630 DOI: 10.3390/ijms242216357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
According to the World Health Organization (WHO), around 11 million people suffer from burns every year, and 180,000 die from them. A burn is a condition in which heat, chemical substances, an electrical current or other factors cause tissue damage. Burns mainly affect the skin, but can also affect deeper tissues such as bones or muscles. When burned, the skin loses its main functions, such as protection from the external environment, pathogens, evaporation and heat loss. Depending on the stage of the burn, the patient's condition and the cause of the burn, we need to choose the most appropriate treatment. Personalization and multidisciplinary collaboration are key to the successful management of burn patients. In this comprehensive review, we have collected and discussed the available treatment options, focusing on recent advances in topical treatments, wound cleansing, dressings, skin grafting, nutrition, pain and scar tissue management.
Collapse
Affiliation(s)
- Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Inga Łopuszyńska
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4 Street, 20-090 Lublin, Poland;
| | - Michał Tobiasz
- Department of Plastic Surgery, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, Krasnystawska 52 Street, 21-010 Łęczna, Poland;
| | - Ryszard Maciejewski
- Faculty of Medicine, University of Warsaw, Żwirki i Wigury 101 Street, 02-089 Warszawa, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A Street, 20-093 Lublin, Poland
| |
Collapse
|
34
|
Gheorghiță D, Moldovan H, Robu A, Bița AI, Grosu E, Antoniac A, Corneschi I, Antoniac I, Bodog AD, Băcilă CI. Chitosan-Based Biomaterials for Hemostatic Applications: A Review of Recent Advances. Int J Mol Sci 2023; 24:10540. [PMID: 37445718 DOI: 10.3390/ijms241310540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hemorrhage is a detrimental event present in traumatic injury, surgery, and disorders of bleeding that can become life-threatening if not properly managed. Moreover, uncontrolled bleeding can complicate surgical interventions, altering the outcome of surgical procedures. Therefore, to reduce the risk of complications and decrease the risk of morbidity and mortality associated with hemorrhage, it is necessary to use an effective hemostatic agent that ensures the immediate control of bleeding. In recent years, there have been increasingly rapid advances in developing a novel generation of biomaterials with hemostatic properties. Nowadays, a wide array of topical hemostatic agents is available, including chitosan-based biomaterials that have shown outstanding properties such as antibacterial, antifungal, hemostatic, and analgesic activity in addition to their biocompatibility, biodegradability, and wound-healing effects. This review provides an analysis of chitosan-based hemostatic biomaterials and discusses the progress made in their performance, mechanism of action, efficacy, cost, and safety in recent years.
Collapse
Affiliation(s)
- Daniela Gheorghiță
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Horațiu Moldovan
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiovascular Surgery, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ana-Iulia Bița
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iuliana Corneschi
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alin Dănuț Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| | - Ciprian Ionuț Băcilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, 10 Victoriei Boulevard, 550024 Sibiu, Romania
| |
Collapse
|
35
|
Jiang Y, Yang Y, Peng Z, Li Y, Peng J, Zhang Y, Jin H, Tan D, Tao L, Ding Y. Sustainable sepiolite-based composites for fast clotting and wound healing. BIOMATERIALS ADVANCES 2023; 149:213402. [PMID: 37058779 DOI: 10.1016/j.bioadv.2023.213402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023]
Abstract
Uncontrolled bleeding and bacterial coinfection are the major causes of death after an injury. Fast hemostatic capacity, good biocompatibility, and bacterial coinfection inhibition pose great challenges to hemostatic agent development. A prospective sepiolite/Ag nanoparticles (sepiolite@AgNPs) composite has been prepared by using natural clay sepiolite as template. A tail vein hemorrhage mouse model and a rabbit hemorrhage model were used to evaluate the hemostatic properties of the composite. The sepiolite@AgNPs composite can quickly absorb fluid to subsequently stop bleeding due to the natural fibrous crystal structure of sepiolite, and inhibit bacterial growth with the antibacterial ability of AgNPs. Compared with commercially-available zeolite material, the as-prepared composite exhibits competitive hemostatic properties without exothermic reaction in the rabbit model of femoral and carotid artery injury. The rapid hemostatic effect was due to the efficient absorption of erythrocyte and activation of the coagulation cascade factors and platelets. Besides, after heat-treatment, the composites can be recycled without significant reduction of hemostatic performance. Our results also prove that sepiolite@AgNPs nanocomposites can stimulate wound healing. The sustainability, lower-cost, higher bioavailability, and stronger hemostatic efficacy of sepiolite@AgNPs composite render these nanocomposites as more favorable hemostatic agents for hemostasis and wound healing.
Collapse
|
36
|
Biazar E, Heidari Keshel S, Niazi V, Vazifeh Shiran N, Saljooghi R, Jarrahi M, Mehdipour Arbastan A. Morphological, cytotoxicity, and coagulation assessments of perlite as a new hemostatic biomaterial. RSC Adv 2023; 13:6171-6180. [PMID: 36825295 PMCID: PMC9941756 DOI: 10.1039/d2ra07795g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Hemorrhage control is vital for clinical outcomes after surgical treatment and pre-hospital trauma injuries. Numerous biomaterials have been investigated to control surgical and traumatic bleeding. In this study, for the first time, perlite was introduced as an aluminosilicate biomaterial and compared with other ceramics such as kaolin and bentonite in terms of morphology, cytotoxicity, mutagenicity, and hemostatic evaluations. Cellular studies showed that perlite has excellent viability, good cell adhesion, and high anti-mutagenicity. Coagulation results demonstrated that the shortest clotting time (140 seconds with a concentration of 50 mg mL-1) was obtained for perlite samples compared to other samples. Therefore, perlite seems most efficient as a biocompatible ceramic for hemorrhage control and other biomaterial designs.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Biomaterials and Tissue Engineering Group, Department of Biomedical Engineering, Islamic Azad University Tonekabon Branch Tonekabon Iran +981154271105 +981154271105
| | - Saeid Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran +989125870517 +989125870517.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical ScienceGorganIran,Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical ScienceGorganIran
| | - Nader Vazifeh Shiran
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares UniversityTehranIran
| | - Roxana Saljooghi
- Biomaterials and Tissue Engineering Group, Department of Biomedical Engineering, Islamic Azad University Tonekabon Branch Tonekabon Iran +981154271105 +981154271105
| | - Mina Jarrahi
- Biomaterials and Tissue Engineering Group, Department of Biomedical Engineering, Islamic Azad University Tonekabon Branch Tonekabon Iran +981154271105 +981154271105
| | - Ahmad Mehdipour Arbastan
- School of Medicine, Faculty of Medical Sciences, Islamic Azad UniversityTonekabon BranchTonekabonIran
| |
Collapse
|