1
|
Westawker LP, Bouley BS, Vura-Weis J, Mirica LM. Photochemistry of Ni(II) Tolyl Chlorides Supported by Bidentate Ligand Frameworks. J Am Chem Soc 2025; 147:17315-17329. [PMID: 40354153 DOI: 10.1021/jacs.5c03770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Herein, we investigate the photoactivity of four NiII tolyl chloride complexes supported by either the new bidentate [2.2]pyridinophane (HN2) ligand or the traditional 4,4'-di-tert-butyl-2,2'-dipyridyl (tBubpy) ligand. Despite a change in the ligand framework, we observe similar quantum yields for the photodegradation of all four NiII complexes, while noting changes in their affinity for radical side reactivity and ability to stabilize the photogenerated mononuclear NiI species. Furthermore, changing from an ortho-tolyl to a para-tolyl group affects the geometry of the complexes and makes the Ni center more susceptible to side reactivity. By leveraging the newly developed HN2 ligand, a bidentate ligand that hinders axial interactions with the Ni center, we limit the radical side reactivity. Time-dependent density functional theory (TDDFT) and complete active space self-consistent field (CASSCF) calculations predict that all four complexes have accessible MLCTs that excite an electron from a Ni-aryl bonding orbital into a Ni-aryl antibonding orbital, initiating photolysis. By decreasing this energy gap and stabilizing the tetrahedral triplet excited state, we increase quantum yields of photoexcitation. Importantly, we characterize the photogenerated mononuclear NiI chloride species using X-band EPR spectroscopy and show that the HN2-supported NiI complexes do not undergo the deleterious dimerization and tetramerization observed for the (bpy)NiICl species. Overall, this study provides valuable insight into how the steric environment around the Ni center affects its photoactivity and demonstrates that such photoactivity is not unique to bipyridyl-supported Ni compounds.
Collapse
Affiliation(s)
- Luke P Westawker
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Bailey S Bouley
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Vura-Weis J. Femtosecond Extreme Ultraviolet Absorption Spectroscopy of Transition Metal Complexes. Annu Rev Phys Chem 2025; 76:455-470. [PMID: 39952644 DOI: 10.1146/annurev-physchem-082720-031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
In this review, we survey the use of extreme ultraviolet absorption spectroscopy to measure electronic and vibrational dynamics in transition metal complexes. Photons in this 30-100 eV energy range probe 3p → 3d transitions for 3d metals and 4f, 5p → 5d transitions in 5d metals, and the resulting spectra are sensitive to the spin state, oxidation state, and ligand field of the metal. Furthermore, the energy of the core level depends on the metal, providing elemental specificity. Use of tabletop high-harmonic sources allows these spectra to be measured with femtosecond to attosecond time resolution in a standard laser laboratory, revealing short-lived states in chromophores and photocatalysts that were unresolved using other techniques.
Collapse
Affiliation(s)
- Josh Vura-Weis
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
3
|
Mondori Y, Yamauchi Y, Kawakita T, Ogoshi S, Uetake Y, Takeichi Y, Sakurai H, Hoshimoto Y. Monodentate σ-Accepting Boron-Based Ligands Bearing Square-Planar Ni(0) Centers. J Am Chem Soc 2025; 147:8326-8335. [PMID: 40017384 PMCID: PMC11912312 DOI: 10.1021/jacs.4c15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Transition metals are known to work as electron donors toward electron-accepting heavier-group-13 elements (Al, Ga, and In), called Z-type ligands. However, complexes with boron-based Z-type ligands are stable only in the presence of additional coordination units (the so-called "supported-ligand" strategy). Here, we report the synthesis and characterization of square-planar Ni(0) complexes that bear tris(perfluoroaryl)boranes as monodentate Z-type ligands, even though such coordination geometry has been traditionally associated with Ni(II) species based on the well-established ligand-field theory. A combined theoretical and experimental approach revealed a mixed covalent/dative character for the Ni-B bonds. This strategy uses frustrated L/Z-ligand pairs that combine sterically encumbered electron-donating (L-type) and electron-accepting ligands to form noncovalent interactions over L-M-Z units to achieve unprecedented low-valent transition metal species with monodentate Z-type ligands.
Collapse
Affiliation(s)
- Yutaka Mondori
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Yamauchi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Kawakita
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuta Uetake
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Takeichi
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Future Innovation (CFi), Division of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Yerbulekova A, Moshood Y, Griego L, Shafaat HS, Mirica LM. Spectroscopic and Computational Interrogation of a High-Valent Nickel-Dialkyl Complex Indicates Electronic Structure Asymmetry Drives C-C Bond Formation Reactivity. J Am Chem Soc 2025; 147:7317-7324. [PMID: 39991977 DOI: 10.1021/jacs.4c14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The study of high-valent organometallic nickel compounds has gained considerable interest recently, primarily driven by the development of nickel-catalyzed alkyl-alkyl cross-coupling reactions that are proposed to employ such high-valent intermediates. In that regard, we have recently reported a formal Ni(III)-dimethyl intermediate supported by the ligand N,N',N″-triisopropyl-1,4,7-triazacyclononane (iPr3tacn) that can undergo rapid C-C reductive elimination and catalyze alkyl-alkyl Kumada cross-coupling reactions. The bulky nature of this tridentate ligand was suggested to lead to two geometrically and electronically inequivalent alkyl groups bound to the five-coordinate Ni center. Herein, we have employed pulsed electron paramagnetic resonance techniques such as electron nuclear double resonance, hyperfine sublevel correlation, and electron spin echo envelope modulation to provide strong experimental evidence for the geometrically and electronically inequivalent nature of the two methyl groups in which one methyl ligand can be better described as a methyl radical. These experimental results were supported by density functional theory computational methods used to probe the covalent nature of the Ni-C bonds and the formal Ni oxidation state assignment for this catalytically relevant, high-valent Ni intermediate. Moreover, computational investigation of a series of related methyl/alkyl analogs reveals that the radical character of an alkyl group increases for a tertiary vs a secondary vs a primary alkyl group, with direct relevance for alkyl-alkyl cross-coupling catalysis. Overall, this study provides valuable insights into the nature of organometallic Ni-dialkyl species that undergo efficient reductive elimination, likely through an SH2-type mechanism.
Collapse
Affiliation(s)
- Alina Yerbulekova
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yusuff Moshood
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Leonel Griego
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Takai N, Tsutsumi T, Saita K, Taketsugu T, Tsuneda T. Revealing the electron driven mechanism in metal catalyzed Kumada cross coupling reaction. Sci Rep 2025; 15:4421. [PMID: 39910163 PMCID: PMC11799442 DOI: 10.1038/s41598-025-88207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
The electron motion mechanism of the metal-catalyzed Kumada cross-coupling reaction, which synthesizes biphenyl from chlorobenzene and phenylmagnesium chloride (a Grignard reagent) using a palladium (Pd) complex with an auxiliary phosphine ligand, is elucidated. This analysis is grounded in reactive orbital energy theory (ROET), enabling the examination of electron motions in comprehensive chemical reactions. We first calculated the intrinsic reaction coordinates (IRCs) for the four key processes of this reaction: oxidative addition, transmetalation steps 1 and 2, and reductive elimination. Using automatic orbital tracing in the ROET analysis, we identified the reactive orbitals for these IRCs. Consequently, we revealed the sequential electron motions driving these processes through animations, clarifying the electronic roles of the Pd center, the auxiliary ligand, and the Grignard reagent. These electron motions are consistent with experimental observations, indicating that the electron motions driving metal complex reactions can be effectively represented by changes in a single molecular orbital.
Collapse
Affiliation(s)
- Noriyuki Takai
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kenichiro Saita
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Graduate School of Science Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
6
|
Nelson K, Kazmierczak NP, Cagan DA, Follmer AH, Scott TR, Raj SL, Garratt D, Powers-Riggs N, Gaffney KJ, Hadt RG, Cordones AA. Multiconfigurational Electronic Structure of Nickel Cross-Coupling Catalysts Revealed by X-ray Absorption Spectroscopy. J Phys Chem Lett 2025; 16:87-94. [PMID: 39700059 PMCID: PMC11726796 DOI: 10.1021/acs.jpclett.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
NiII 2,2'-bipyridine complexes are commonly invoked intermediates in metallaphotoredox cross-coupling reactions. Despite their ubiquity, design principles targeting improved catalytic performance remain underdetermined. A series of Ni(Rbpy)(R'Ar)Cl (R = MeOOC, t-Bu, R' = CH3, CF3) complexes were proposed to have multiconfigurational electronic structures on the basis of multiconfigurational/multireference calculations, with significant mixing of Ni → bpy metal-to-ligand charge transfer (MLCT) configurations into the ground-state wave function. Here, Ni K-edge and L2,3-edge X-ray absorption spectroscopies provide experimental support for the highly covalent and multiconfigurational electronic structures of these complexes. The pre-edge intensity in the K-edge spectrum reflects highly covalent Ni-aryl bonding. The L3-edge spectral shape is dependent on ligand functionalization, and a feature reflecting the MLCT character is assigned using prior ab initio and new semiempirical calculations. The results suggest the push/pull effects of the aryl/bpy ligands moderate the changes in electron density on Ni during the multiredox cross-coupling reaction cycle.
Collapse
Affiliation(s)
- Kacie
J. Nelson
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Nathanael P. Kazmierczak
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - David A. Cagan
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Alec H. Follmer
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Thais R. Scott
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Sumana L. Raj
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Douglas Garratt
- Linac
Coherent Light Source (LCLS), SLAC National
Accelerator Laboratory, 2575 Sand Hill Road, MS103, Menlo Park, California 94025, United States
| | - Natalia Powers-Riggs
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Kelly J. Gaffney
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Ryan G. Hadt
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Amy A. Cordones
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
7
|
Boronski JT, Crumpton AE, Aldridge S. A Crystalline NiX 6 Complex. J Am Chem Soc 2024; 146:35208-35215. [PMID: 39668527 DOI: 10.1021/jacs.4c12125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
High-valent nickel species are implicated as intermediates in industrially relevant chemical transformations and in the catalytic cycles of metalloenzymes. Although a small number of tetravalent NiX4 complexes have been crystallographically characterized, higher nickel valence states have not been identified. Here we report a stable, crystalline NiX6 complex, Ni(BeCp)6 (1; cyclopentadienyl anion (Cp)), formed by the insertion of zerovalent nickel into three Be-Be bonds. This 16-electron species features an inverted ligand field, is diamagnetic, and exhibits C3v symmetry, on account of the lifting of Ni 4p-orbital degeneracy in this molecular geometry. Single-crystal X-ray diffraction and quantum chemical calculations both reveal a toroidal band of electron density perpendicular to the C3 axis of the complex, which may be attributed to delocalized, multicenter aromatic NiBe6 bonding.
Collapse
Affiliation(s)
- Josef T Boronski
- Chemistry Research Laboratory, Department of Chemistry, Oxford OX1 3TA, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London W12 7TA, U.K
| | | | - Simon Aldridge
- Chemistry Research Laboratory, Department of Chemistry, Oxford OX1 3TA, U.K
| |
Collapse
|
8
|
Kirsch KE, Little ME, Cundari TR, El-Shaer E, Barone G, Lynch VM, Toledo SA. Direct O 2 mediated oxidation of a Ni(II)N 3O structural model complex for the active site of nickel acireductone dioxygenase (Ni-ARD): characterization, biomimetic reactivity, and enzymatic implications. Dalton Trans 2024; 53:17852-17863. [PMID: 39421893 DOI: 10.1039/d4dt02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A new biomimetic model complex of the active site of acireductone dioxygenase (ARD) was synthesized and crystallographically characterized ([Ni(ii)(N-(ethyl-N'Me2)(Py)(2-t-ButPhOH))(OTf)]-1). 1 displays carbon-carbon oxidative cleavage activity in the presence of O2 towards the substrate 2-hydroxyacetophenone. This reactivity was monitored via UV-Visible and NMR spectroscopy. We postulate that the reactivity of 1 with O2 leads to the formation of a putative Ni(III)-superoxo transient species resulting from the direct activation of O2via the nickel center during the oxidative reaction. This proposed intermediate and reaction mechanism were studied in detail using DFT calculations. 1 and its substrate bound derivatives display reactivity toward mild outer sphere oxidants, suggesting ease of access to high valent Ni coordination complexes, consistent with our calculations. If confirmed, the direct activation of O2 at a nickel center could have implications for the mechanism of action of ARD and other nickel-based dioxygenases and their respective non-traditional, enzymatic moonlighting functions, as well as contribute to a general understanding of direct oxidation of nickel(II) coordination complexes by O2.
Collapse
Affiliation(s)
- Kelsey E Kirsch
- Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA.
| | - Mary E Little
- Department of Chemistry, St Edward's University, 3001 South Congress Ave, Austin, Texas 78704, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, 1155 Union Cir, Denton, Texas 76203, USA
| | - Emily El-Shaer
- Department of Chemistry, St Edward's University, 3001 South Congress Ave, Austin, Texas 78704, USA
| | - Georgia Barone
- Department of Chemistry, St Edward's University, 3001 South Congress Ave, Austin, Texas 78704, USA
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 120 Inner Campus Dr Stop G2500, Austin, Texas 78712, USA
| | - Santiago A Toledo
- Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA.
| |
Collapse
|
9
|
Macleod CI, Keramidas OD, Miras HN, Sproules S. Electronic and Molecular Structures of a Series of Nickel Bis-1,1-Dithiolates. Chemistry 2024; 30:e202401710. [PMID: 38845405 DOI: 10.1002/chem.202401710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 07/27/2024]
Abstract
A series of homoleptic Ni bis-1,1-dithiolates, [Ni(S2C2RR')2]2- (R=CN, R'=CN, CO2Et, CONH2, Ph, Ph-4-Cl, Ph-4-OMe, Ph-4-NO2, Ph-3-CF3, Ph-4-CF3, Ph-4-CN; R=NO2, R'=H; R=R'=CO2Et) have been synthesized from the reaction of the alkali metal salt of the ligand and nickel chloride, and isolated as tetraphenylphosphonium or tetrabutylammonium salts. The complexes were characterized by X-ray crystallography, high-resolution mass spectrometry, and infrared (IR), nuclear magnetic resonance (NMR) and electronic absorption spectroscopies. The molecular structures show a rigidly square planar Ni(II) center linking two four-membered chelate rings whose dimensions are constant across the series. The electronic effect of the ligand substituent is revealed in the 13C NMR and electronic spectra, and corroborated by density functional calculations. Electron withdrawing groups deshield the low-field CS2 resonance, and the signature charge transfer band in the visible region is red-shifted. These observables have been accurately reproduced computationally, and revealed the Ni contribution to the ground state diminishes with decreasing electron withdrawing capacity of the ligand substituent. In contrast to 1,2-dithiolates, the redox inactivity afforded by 1,1-dithiolates stems from the smaller chelate ring and substantially reduced sulfur content that is key to stabilizing the radical form.
Collapse
Affiliation(s)
- Cailean I Macleod
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | | | - Haralampos N Miras
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Stephen Sproules
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
10
|
Leach IF, Klein JEMN. Oxidation States: Intrinsically Ambiguous? ACS CENTRAL SCIENCE 2024; 10:1406-1414. [PMID: 39071055 PMCID: PMC11273457 DOI: 10.1021/acscentsci.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
The oxidation state ( OS ) formalism is a much-appreciated good in chemistry, receiving wide application. However, like all formalisms, limitations are inescapable, some of which have been recently explored. Providing a broader context, we discuss the OS and its interpretation from a computational perspective for transition metal (TM) complexes. We define a broadly applicable and easy-to-use procedure to derive OS s based on quantum chemical calculations, via the use of localized orbitals, dubbed the Intrinsic OS . Applying this approach to a cobalt complex in five OS s, isolated by Hunter and co-workers (Inorg. Chem.2021, 60, 17445), we find that the calculated Intrinsic OS matches the formal OS , consistent with the experimental characterization. Through analysis of the delocalized orbitals, the ligand field of the Co(III) complex is found to be "inverted", despite every cobalt-ligand bond being classically dative from the localized perspective-a bonding scenario very similar to that of [Cu(CF3)4]-. This is not atypical but rather a natural consequence of these metals bonding in the high-valent region, and we propose a more restrictive definition of (locally) inverted bonding. Additionally, two bonding descriptors within the Intrinsic Bonding Orbital (IBO) framework (σ-gain and π-loss) are introduced, which enable facile quantification of electron-sharing covalency across a broad range of TM complexes.
Collapse
Affiliation(s)
- Isaac F. Leach
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747
AG Groningen, The
Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
3, 9747 AG Groningen, The Netherlands
| | - Johannes E. M. N. Klein
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747
AG Groningen, The
Netherlands
| |
Collapse
|
11
|
Flach M, Hirsch K, Gitzinger T, Timm M, da Silva Santos M, Ablyasova OS, Kubin M, von Issendorff B, Lau JT, Zamudio-Bayer V. Abrupt Change from Ionic to Covalent Bonding in Nickel Halides Accompanied by Ligand Field Inversion. Inorg Chem 2024; 63:11812-11820. [PMID: 38857413 PMCID: PMC11200264 DOI: 10.1021/acs.inorgchem.4c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
The electronic configuration of transition metal centers and their ligands is crucial for redox reactions in metal catalysis and electrochemistry. We characterize the electronic structure of gas-phase nickel monohalide cations via nickel L2,3-edge X-ray absorption spectroscopy. Comparison with multiplet charge-transfer simulations and experimental spectra of selectively prepared nickel monocations in both ground- and excited-state configurations are used to facilitate our analysis. Only for [NiF]+ with an assigned ground state of 3Π can the bonding be described as predominantly ionic, while the heavier halides with assigned ground states of 3Π or 3Δ exhibit a predominantly covalent contribution. The increase in covalency is accompanied by a transition from a classical ligand field for [NiF]+ to an inverted ligand field for [NiCl]+, [NiBr]+, and [NiI]+, resulting in a leading 3d9 L̲ configuration with a ligand hole (L̲) and a 3d occupation indicative of nickel(I) compounds. Hence, the absence of a ligand hole in [NiF]+ precludes any ligand-based redox reactions. Additionally, we demonstrate that the shift in energy of the L3 resonance is reduced compared to that of isolated atoms upon the formation of covalent compounds.
Collapse
Affiliation(s)
- Max Flach
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - Konstantin Hirsch
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
| | - Tim Gitzinger
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - Martin Timm
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
| | - Mayara da Silva Santos
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - Olesya S. Ablyasova
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - Markus Kubin
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
| | - Bernd von Issendorff
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - J. Tobias Lau
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Freiburg 79104, Germany
| | - Vicente Zamudio-Bayer
- Abteilung
für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien and
Energie, Berlin 12489, Germany
| |
Collapse
|
12
|
Jordan R, Schäfer SA, Sander N, Maisuls I, Hamacher C, Friedel J, Strassert CA, Klein A. Assessing the Character of the C 6F 5 Ligand from the Electrochemical and Photophysical Properties of [Ni(C 6F 5) 2(N ∧N)] Complexes. Inorg Chem 2024; 63:11079-11091. [PMID: 38843524 DOI: 10.1021/acs.inorgchem.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Organonickel complexes containing α-diimine ligands [Ni(C6F5)2(N∧N)] (N∧N = 2,2'-bipyridine (bpy), 2,9-dimethyl-1,10-phenanthroline (dmphen), 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen), dipyrido[3,2-a:2',3'-c]phenazine (dppz), 1,4-bis(isopropyl)-1,4-diazabutadiene (iPr-DAB), and 1,4-bis(2,6-dimethylphenyl)-1,4-diazabutadiene (Xyl-DAB) were prepared and studied structurally, spectroscopically, and electrochemically. Their molecular structures from single-crystal X-ray diffraction show near-perfect square planar Ni(II) coordination except in the case of dmphen. Primary reversible electrochemical reductions in the range from -1 to -2 V vs ferrocene/ferrocenium couple lead to mainly diimine-localized radical anion complexes, while secondary reductions in the range from -2 to -2.5 V lead to dianion complexes, as shown through spectroelectrochemistry. Irreversible metal-centered oxidations at around 0.7 V result in rapid aryl-aryl reductive elimination and formation of decafluorobiphenyl. No photoluminescence was detected for the complexes containing chromophoric α-diimine ligands at room temperature. At 77 K in frozen glassy 2-Me-THF matrices, weak photoluminescence was detected for the dmphen and tmphen derivatives, with broad emission bands peaking around 570 nm. All results are rationalized with the support of (TD-)DFT calculations, highlighting the role of the C6F5 ligand in different systems.
Collapse
Affiliation(s)
- Rose Jordan
- Department of Chemistry and Biochemistry, Institute for Inorganic Chemistry, University of Cologne, Faculty for Mathematics and Natural Sciences, Greinstrasse 6, D-50939 Köln, Germany
| | - Sascha A Schäfer
- Department of Chemistry and Biochemistry, Institute for Inorganic Chemistry, University of Cologne, Faculty for Mathematics and Natural Sciences, Greinstrasse 6, D-50939 Köln, Germany
| | - Noah Sander
- Department of Chemistry and Biochemistry, Institute for Inorganic Chemistry, University of Cologne, Faculty for Mathematics and Natural Sciences, Greinstrasse 6, D-50939 Köln, Germany
| | - Ivan Maisuls
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CeNTech, CiMIC, SoN, Heisenbergstraße 11, 48149 Münster, Germany
| | - Claudia Hamacher
- Department of Chemistry and Biochemistry, Institute for Inorganic Chemistry, University of Cologne, Faculty for Mathematics and Natural Sciences, Greinstrasse 6, D-50939 Köln, Germany
| | - Joshua Friedel
- Department of Chemistry and Biochemistry, Institute for Inorganic Chemistry, University of Cologne, Faculty for Mathematics and Natural Sciences, Greinstrasse 6, D-50939 Köln, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CeNTech, CiMIC, SoN, Heisenbergstraße 11, 48149 Münster, Germany
| | - Axel Klein
- Department of Chemistry and Biochemistry, Institute for Inorganic Chemistry, University of Cologne, Faculty for Mathematics and Natural Sciences, Greinstrasse 6, D-50939 Köln, Germany
| |
Collapse
|
13
|
Yan W, Poore AT, Yin L, Carter S, Ho YS, Wang C, Yachuw SC, Cheng YH, Krause JA, Cheng MJ, Zhang S, Tian S, Liu W. Catalytically Relevant Organocopper(III) Complexes Formed through Aryl-Radical-Enabled Oxidative Addition. J Am Chem Soc 2024; 146:15176-15185. [PMID: 38770641 DOI: 10.1021/jacs.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stepwise oxidative addition of copper(I) complexes to form copper(III) species via single electron transfer (SET) events has been widely proposed in copper catalysis. However, direct observation and detailed investigation of these fundamental steps remain elusive owing largely to the typically slow oxidative addition rate of copper(I) complexes and the instability of the copper(III) species. We report herein a novel aryl-radical-enabled stepwise oxidative addition pathway that allows for the formation of well-defined alkyl-CuIII species from CuI complexes. The process is enabled by the SET from a CuI species to an aryl diazonium salt to form a CuII species and an aryl radical. Subsequent iodine abstraction from an alkyl iodide by the aryl radical affords an alkyl radical, which then reacts with the CuII species to form the alkyl-CuIII complex. The structure of resultant [(bpy)CuIII(CF3)2(alkyl)] complexes has been characterized by NMR spectroscopy and X-ray crystallography. Competition experiments have revealed that the rate at which different alkyl iodides undergo oxidative addition is consistent with the rate of iodine abstraction by carbon-centered radicals. The CuII intermediate formed during the SET process has been identified as a four-coordinate complex, [CuII(CH3CN)2(CF3)2], through electronic paramagnetic resonance (EPR) studies. The catalytic relevance of the high-valent organo-CuIII has been demonstrated by the C-C bond-forming reductive elimination reactivity. Finally, localized orbital bonding analysis of these formal CuIII complexes indicates inverted ligand fields in σ(Cu-CH2) bonds. These results demonstrate the stepwise oxidative addition in copper catalysis and provide a general strategy to investigate the elusive formal CuIII complexes.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Andrew T Poore
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Stephen C Yachuw
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yu-Ho Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shiliang Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
14
|
Rall JM, Nork L, Engesser TA, Mayländer M, Weber S, Richert S, Krossing I. From the Iron Pentacarbonyl Cation to Heteroleptic η 6-arene Carbonyls and bis-η 6-arene Cations. Chemistry 2024; 30:e202400105. [PMID: 38299788 DOI: 10.1002/chem.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Partial ligand substitution at the iron pentacarbonyl radical cation generates novel half-sandwich complexes of the type [Fe(η6-arene)(CO)2]⋅+ (arene=1,3,5-tri-tert-butylbenzene, 1,3,5-trimethylbenzene, benzene and fluorobenzene). Of those, the bulkier 1,3,5-tri-tert-butylbenzene (mes*) derivative [Fe(mes*)(CO)2]⋅+ was fully characterized by XRD analysis, IR, NMR, cw-EPR, Mössbauer spectroscopy and cyclic voltammetry as the [Al(ORF)4]- (RF=C(CF3)3) salt. Chemical electronation, i. e., the single electron reduction, with decamethylferrocene generates neutral [Fe(mes*)(CO)2], whereas further deelectronation under CO-pressure leads to a dicationic three-legged [Fe(mes*)(CO)3]2+ salt with [Al(ORF)4]- counterion. The full substitution of the carbonyl ligands in [Fe(CO)5]⋅+[Al(ORF)4]- mainly resulted in disproportionation reactions, giving solid Fe(0) and the dicationic bis-arene salts [Fe(η6-arene)2]2+([Al(ORF)4]-)2 (arene=1,3,5-trimethylbenzene, benzene and fluorobenzene). Only by employing the very large fluoride bridged anion [F-{Al(ORF)3}2]-, it was possible to isolate an open shell bis-arene cation salt [Fe(C6H6)2]⋅+[F-{Al(ORF)3}2]-. The highly reactive cation was characterized by XRD analysis, cw-EPR, Mössbauer spectroscopy and cyclic voltammetry. The disproportionation of [Fe(C6H6)2]⋅+ salts to give solid Fe(0) and [Fe(C6H6)2]2+ salts was analyzed by a suitable cycle, revealing that the thermodynamic driving force for the disproportionation is a function of the size of the anion used and the polarity of the solvent.
Collapse
Affiliation(s)
- Jan M Rall
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Leonie Nork
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Tobias A Engesser
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Maximilian Mayländer
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Sabine Richert
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| |
Collapse
|
15
|
Knoell T, Polanco J, MacMillan SN, Bertke JA, Foroutan-Nejad C, Lancaster KM, 'Gus' Bakhoda A. Alkaline earth metal-assisted dinitrogen activation at nickel. Dalton Trans 2024; 53:4689-4697. [PMID: 38362644 PMCID: PMC10922974 DOI: 10.1039/d3dt03984f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Rare examples of trinuclear [Ni-N2-M-N2-Ni] core (M = Ca, Mg) with linear bridged dinitrogen ligands are reported in this work. The reduction of [iPr2NN]Ni(μ-Br)2Li(thf)2 (1) (iPr2NN = 2,4-bis-(2,6-diisopropylphenylimido)pentyl) with elemental Mg or Ca in THF under an atmosphere of dinitrogen yields the complex {iPr2NNNi(μ-N2)}2M (thf)4 (M = Mg, complex 2 and M = Ca, complex 3). The bridging end-on (μ-N2)2M(thf)4 moiety connects the two [iPr2NNNi]- nickelate fragments. A combination of X-ray crystallography, solution and solid-state spectroscopy have been applied to characterize complexes 2 and 3, and DFT studies have been used to help explain the bonding and electronic structure in these unique Ni-N2-Mg and Ni-N2-Ca complexes.
Collapse
Affiliation(s)
- Theresa Knoell
- Department of Chemistry Towson University, 8000 York Road, Towson, MD 21252, USA.
| | - Jocelyn Polanco
- Department of Chemistry Towson University, 8000 York Road, Towson, MD 21252, USA.
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jeffery A Bertke
- Georgetown University, Department of Chemistry, Washington, DC 20057, USA
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
16
|
Alayoglu P, Chang T, Yan C, Chen YS, Mankad NP. Uncovering a CF 3 Effect on X-ray Absorption Energies of [Cu(CF 3 ) 4 ] - and Related Copper Compounds by Using Resonant Diffraction Anomalous Fine Structure (DAFS) Measurements. Angew Chem Int Ed Engl 2023; 62:e202313744. [PMID: 37938103 PMCID: PMC10842927 DOI: 10.1002/anie.202313744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Understanding the electronic structures of high-valent metal complexes aids the advancement of metal-catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3 )4 ]- (1), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of 1 by X-ray spectroscopies have led previous authors to contradictory conclusions, motivating the re-examination of its X-ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including 1, here it is shown that there is a systematic trifluoromethyl effect on X-ray absorption that blue shifts the resonant Cu K-edge energy by 2-3 eV per CF3 , completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like 1 and formally Cu(I) complexes like (Ph3 P)3 CuCF3 (3). Thus, in agreement with the inverted ligand field model, the data presented herein imply that 1 is best described as containing a Cu(I) ion with dn count approaching 10.
Collapse
Affiliation(s)
- Pinar Alayoglu
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tieyan Chang
- NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439, USA
| | - Connly Yan
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yu-Sheng Chen
- NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
17
|
Hosseinmardi S, Scheurer A, Heinemann FW, Marigo N, Munz D, Meyer K. Closed Synthetic Cycle for Nickel-Based Dihydrogen Formation. Chemistry 2023; 29:e202302063. [PMID: 37615237 DOI: 10.1002/chem.202302063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Dihydrogen evolution was observed in a two-step protonation reaction starting from a Ni0 precursor with a tripodal N-heterocyclic carbene (NHC) ligand. Upon the first protonation, a NiII monohydride complex was formed, which was isolated and fully characterized. Subsequent protonation yields H2 via a transient intermediate (INT) and an isolable NiII acetonitrile complex. The latter can be reduced to regenerate its Ni0 precursor. The mechanism of H2 formation was investigated by using a deuterated acid and scrutinized by 1 H NMR spectroscopy and gas chromatography. Remarkably, the second protonation forms a rare nickel dihydrogen complex, which was detected and identified in solution and characterized by 1 H NMR spectroscopy. DFT-based computational analyses were employed to propose a reaction profile and a molecular structure of the Ni-H2 complex. Thus, a dihydrogen-evolving, closed-synthetic cycle is reported with a rare Ni-H2 species as a key intermediate.
Collapse
Affiliation(s)
- Soosan Hosseinmardi
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Nicola Marigo
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany
| | - Dominik Munz
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123, Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| |
Collapse
|
18
|
Ienco A, Ruffo F, Manca G. The Role of Inverted Ligand Field in the Electronic Structure and Reactivity of Octahedral Formal Platinum (IV) Complexes. Chemistry 2023; 29:e202301669. [PMID: 37522387 DOI: 10.1002/chem.202301669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Platinum complexes are ubiquitous in chemistry and largely used as catalysts or as precursors in drug chemistry, thus a deep knowledge of their electronic properties may help in planning new synthetic strategies or exploring new potential applications. Herein, the electronic structure of many octahedral platinum complexes is drastically revised especially when they feature electronegative elements such as halogens and chalcogens. The investigation revealed that in most cases the five d platinum orbitals are invariably full, thus the empty antibonding orbitals, usually localized on the metal, are mainly centered on the ligands, suggesting a questionable assignment of formal oxidation state IV. The analysis supports the occurrence of the inverted ligand field theory in all cases with the only exceptions of the Pt-F and Pt-O bonding. The trends for the molecular complexes are mirrored also by the density of states plots of extended structures featuring octahedral platinum moieties in association with chalcogens atoms. Finally, the oxidative addition of a Se-Cl linkage to a square platinum complex to achieve an octahedral moiety has been revised in the framework of the inverted ligand field.
Collapse
Affiliation(s)
- Andrea Ienco
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia 21, Napoli, Italy
| | - Gabriele Manca
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
19
|
Kayser AK, Wolczanski PT, Cundari TR, MacMillan SN, Bollmeyer MM. Benzimidazole-diamide (bida) Pincer Chromium Complexes: Structures and Reactivity. Inorg Chem 2023; 62:15450-15464. [PMID: 37707794 DOI: 10.1021/acs.inorgchem.3c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Serendipitous discovery of bida (i.e., N1-Ar-N2-((1-Ar-1-benzo[d]imidazol-2-yl)methyl)benzene-1,2-diamide; Ar = 2,6-iPr-C6H3), a potentially redox noninnocent, hemilabile pincer ligand with a methylene group that may facilitate proton/H atom reactivity, prompted its investigation. Chromium was chosen for study due to its multiple stable oxidation states. Disodium salt (bida)Na2(THF)n was prepared by thermal rearrangement of (dadi)Na2(THF)4 (i.e., (N,N'-di-2-(2,6-diisopropylphenylamine)phenylglyoxaldiimine)-Na2(THF)4). Salt metathesis of (bida)Na2(THF)n (generated in situ) with CrCl3(THF)3 or Cl3V═NAr (Ar = 2,6-iPr2C6H3) afforded (bida)CrCl(THF) (1-THF) and (bida)ClV═NAr, respectively. Substitutions provided (bida)CrCl(PMe2Ph) (1-PMe2Ph) and (bida)CrR(THF) (2-R, where R = Me, CH2CMe2Ph (Nph)). Oxidation of 1-THF with ArN3 (Ar = 2,6-iPr2C6H3) or AdN3 (Ad = 1-adamantyl) generated (bida)ClCr═NAr (3═NAr) and (bida)ClCr═NAd (3═NAd) and subsequent alkylation converted these to (bida)R'Cr═NR (R' = Me, R = Ad, Ar, 5═NR; R' = CH2CMe2Ph (Nph), R = Ad, Ar, 6═NR). In contrast, the addition of AdN3 to 2-Nph gave the insertion product (bida)Cr(κ2-N,N-ArN3Nph) (7). Addition of N-chlorosuccinimide to 1-THF produced (bia)CrCl2(THF) (8), where bia is the pincer derived via hydrogen atom loss from bida methylene. A similar HAT afforded (bia)ClCr(CNAr')2 (9, Ar' = 2,6-Me2C6H3) when 3═NAd was exposed to Ar'NC. An empirical equation of charge was applied to each bida species, whose metric parameters are unchanging despite formal oxidation state conversions from Cr(III) to Cr(V). Calculations and Mulliken spin density assessments reveal several situations in which antiferromagnetic (AF) coupling and admixtures of integer ground states (GSs) describe a complicated electronic structure.
Collapse
Affiliation(s)
- Ann K Kayser
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | - Peter T Wolczanski
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | - Thomas R Cundari
- Department of Chemistry, CASCam University of North Texas Denton, Denton, Texas 76201, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|