1
|
Justi LHZ, Silva JF, Santana MS, Laureano HA, Pereira ME, Oliveira CS, Guiloski IC. Non-steroidal anti-inflammatory drugs and oxidative stress biomarkers in fish: a meta-analytic review. Toxicol Rep 2025; 14:101910. [PMID: 39901883 PMCID: PMC11788796 DOI: 10.1016/j.toxrep.2025.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 02/05/2025] Open
Abstract
Drug residues have been detected in aquatic environments around the world and non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most used classes. Therefore, it is important to verify the physiological effects of these products on exposed non-target organisms such as fish. Through a meta-analytic review, we evaluated the effects of NSAIDs on oxidative stress biomarkers in fish. Overall, Diclofenac was the most frequently tested drug in the systematically selected studies while acute and hydric exposure types were the most prevalent among these studies. The meta-analysis revealed that (1) chronic and subchronic exposures to NSAIDs decreased catalase (CAT) activity, and acute exposure increased glutathione peroxidase (GPx) activity; (2) hydric exposure increased GPx activity; (3) exposure to low concentrations of NSAIDs increased GPx and superoxide dismutase (SOD) activity; (4) Paracetamol exposure increased GPx and SOD activity and lipid peroxidation levels, but reduced glutathione S-transferase (GST) activity; (5) Diclofenac exposure increased GPx activity. In conclusion, our results demonstrated that fish are sensitive to NSAIDs exposure presenting significant alterations in oxidative stress biomarkers, especially in the GPx enzyme. This enzyme exhibits strong potential as a biomarker of NSAIDs exposure in fish. Paracetamol stood out as the NSAID that altered the largest number of oxidative stress biomarkers, drawing attention to its risk to fish. In contrast, ibuprofen did not change the biomarkers evaluated. These data demonstrate the important impact of emerging contaminants such as NSAIDs on aquatic organisms and the need for strategies to mitigate these effects.
Collapse
Affiliation(s)
- Luiz Henrique Zaniolo Justi
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Juliana Ferreira Silva
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | | | - Meire Ellen Pereira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Cláudia Sirlene Oliveira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Izadi H. Endocrine and enzymatic shifts during insect diapause: a review of regulatory mechanisms. Front Physiol 2025; 16:1544198. [PMID: 40161974 PMCID: PMC11949959 DOI: 10.3389/fphys.2025.1544198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Insect diapause is a vital survival strategy that enables insects to enter a state of suspended development, allowing them to withstand unfavorable environmental conditions. During diapause, insects significantly lower their metabolic rate and build up energy reserves, which they gradually utilize throughout this period. The regulation of diapause involves a complex interaction of hormones and enzymes. Juvenile hormones (JHs) affect adults and larvae differently; in adults, the absence of JH typically triggers diapause, while in larvae, the presence of JH encourages this state. Ecdysteroids, which regulate molting and metamorphosis, are carefully controlled to prevent premature development. Reduced signaling of insulin-like peptides enhances stress resistance and promotes energy storage. Several enzymes play crucial roles in the metabolic adjustments necessary for diapause. These adjustments include the degradation of JH, the ecdysteroidogenic pathway, and the metabolism of fatty acids, glycogen, cryoprotectants, and stress responses. Understanding diapause's molecular and biochemical mechanisms is essential for fundamental entomological research and practical applications. Despite recent advances, many aspects of diapause regulation, especially the interactions among hormonal pathways and the role of enzymes, remain poorly understood. This review analyzes approximately 250 papers to consolidate current knowledge on the enzymatic and hormonal regulation of diapause. It offers a comprehensive overview of key processes based on recent studies and suggests future research directions to fill gaps in our understanding of this significant biological phenomenon. The review also lays the groundwork for enhancing pest control strategies and ecological conservation by deepening our understanding of diapause mechanisms.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
3
|
Ortega R, Martin-González A, Gutiérrez JC. Tetrahymena thermophila glutathione-S-transferase superfamily: an eco-paralogs gene network differentially responding to various environmental abiotic stressors and an update on this gene family in ciliates. Front Genet 2025; 16:1538168. [PMID: 40125531 PMCID: PMC11925944 DOI: 10.3389/fgene.2025.1538168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/06/2025] [Indexed: 03/25/2025] Open
Abstract
Glutathione S-transferases constitute a superfamily of enzymes involved mainly, but not exclusively, in the detoxification of xenobiotic compounds that are considered environmental pollutants. In this work, an updated analysis of putative cytosolic glutathione S-transferases (cGST) from ciliate protozoa is performed although this analysis is mainly focused on Tetrahymena thermophila. Among ciliates, the genus Tetrahymena has the highest number (58 on average) of cGST genes. As in mammals, the Mu class of cGST is present in all analyzed ciliates and is the majority class in Tetrahymena species. After an analysis of the occurrence of GST domains in T. thermophila, out of the 54 GSTs previously considered to be Mu class, six of them have been discarded as they do not have recognizable GST domains. In addition, there is one GST species-specific and another GST-EF1G (elongation factor 1 gamma). A structural analysis of T. thermophila GSTs has shown a wide variety of β-sheets/α-helix patterns, one of the most abundant being the canonical thioredoxin-folding pattern. Within the categories of bZIP and C4 zinc finger transcription factors, potential binding sites for c-Jun and c-Fos are abundant (32% as average), along with GATA-1 (71% average) in the T. thermophila GST gene promoters. The alignment of all MAPEG (Membrane Associated Proteins involved in Eicosanoid and Glutathione metabolism) GST protein sequences from Tetrahymena species shows that this family is divided into two well-defined clans. The phylogenetic analysis of T. thermophila GSTs has shown that a cluster of 19 Mu-class GST genes are phylogenetic predecessors of members from the omega, theta and zeta classes. This means that the current GST phylogenetic model needs to be modified. Sixteen T. thermophila GST genes, together with two clusters including three genes each with very high identity, have been selected for qRT-PCR analysis under stress from eleven different environmental stressors. This analysis has revealed that there are GST genes that respond selectively and/or differentially to each stressor, independently of the GST class to which it belongs. Most of them respond to the two more toxic metal(loid)s used (Cd or As).
Collapse
Affiliation(s)
| | | | - Juan-Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Zhao M, Ye M, Zhao Y. Causal link between dietary antioxidant vitamins intake, oxidative stress injury biomarkers and colorectal cancer: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41531. [PMID: 39960957 PMCID: PMC11835131 DOI: 10.1097/md.0000000000041531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Oxidative stress and reactive oxygen species play a pivotal role in carcinogenesis. Recent studies have indicated a potential reduction in cancer incidence associated with antioxidant intake; however, these results remain controversial. We performed 2-sample Mendelian randomization (MR) analysis to explore the causal relationship between dietary antioxidant vitamins (retinol, carotene, vitamin C, and vitamin E), oxidative stress injury biomarkers (GST, CAT, SOD, and GPX), and the risk of colorectal cancer (CRC). The genetic instrumental variants (IVs) that had previously shown significant association with dietary antioxidant vitamins and oxidative stress injury biomarkers were screened from the UK Biobank and relevant published studies. The genome-wide association study (GWAS) data for total colorectal, colon, and rectal cancer were obtained from the FinnGen cohort. The primary MR analysis employed the inverse-variance-weighted (IVW) method. Furthermore, sensitivity analysis was performed to assess heterogeneity and horizontal pleiotropy. The results revealed no significant causal associations between dietary antioxidant vitamins, oxidative stress injury biomarkers, and the risk of CRC. The odds ratios (ORs) were as follows: 1.22 (95% confidence interval (CI): 0.65-2.28, P = .53) for retinol, 0.77 (95% CI: 0.50-1.18, P = .24) for carotene, 0.82 (95% CI: 0.42-1.63, P = .58) for vitamin C, and 1.20 (95% CI: 0.86-1.68, P = .28) for vitamin E. Regarding oxidative stress injury biomarkers, the ORs were 0.99 (95% CI: 0.93-1.06, P = .88) for GST, 0.99 (95% CI: 0.93-1.05, P = .65) for CAT, 1.02 (95% CI: 0.95-1.09, P = .57) for SOD, and 1.01 (95% CI: 0.95-1.07, P = .76) for GPX. Likewise, stratified analysis by tumor site revealed no beneficial effects in colon and rectal cancers. Our findings indicate that elevated levels of diet-related antioxidant vitamins, as well as biomarkers of oxidative stress injury, do not provide a protective effect against CRC risk.
Collapse
Affiliation(s)
- Minghui Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yucui Zhao
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Çiftçi B, Koçak Mutlu A, Akkemik E. Purification of glutathione S-transferase enzyme from liver tissue of shabout (Barbus grypus Heckel) and investigation of the inhibition effect of some metal ions under in vitro conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:28. [PMID: 39680327 DOI: 10.1007/s10695-024-01424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/12/2024] [Indexed: 12/17/2024]
Abstract
Shabout is a fish with high nutritional value and economic potential. This fish is exposed to environmental factors due to the metal toxicity in its habitat and, consequently, its diet. The main purpose of this study was to determine how the detoxification mechanism of shabout is affected by examining the interaction of glutathione s-transferase enzyme with heavy metals. In our study, elemental analysis was first performed with the ICP-OES on water samples taken from three different points to detect metal toxicity in the habitat of the shabout. Then, the GST enzyme from the liver tissue of the shabout was purified for the first time by our team using the glutathione agarose affinity chromatography technique. Finally, the inhibition effects of nitrate salts of some metal ions on the purified enzyme activity were investigated under in vitro conditions. It was determined that the water courses where the fish were sampled in our study were alarming in terms of heavy metal content. While shabout liver showed Fe3+ activation effect on GST enzyme under in vitro conditions, metal ions Na+, Zn2+, Co2+, Cu2+ and Pb2+ showed inhibition effects. The detected inhibition concentration range showed that the enzyme is quite resistant to the metal salts whose effects were examined. It was concluded that in the consumption of shabout, emphasized to be a nutritious fish, the heavy metal levels of the region where the fish is caught should be taken into account and catching should be made in water resources inspected by relevant experts.
Collapse
Affiliation(s)
- Bekir Çiftçi
- Department of Agricultural Biotechnology, Faculty of Agriculture, Siirt University, 56100, Siirt, Turkey
| | - Arzu Koçak Mutlu
- Department of Agricultural Biotechnology, Faculty of Agriculture, Siirt University, 56100, Siirt, Turkey
| | - Ebru Akkemik
- Department of Food Science, Faculty of Engineering, Siirt University, 56100, Siirt, Türkiye.
| |
Collapse
|
6
|
Gao S, Cao Y, Miao W, Li D, Zhou C, Zhang K. Glutathione S-transferase TcGSTu1 contributes to defense against eucalyptol in Tribolium castaneum. Genetica 2024; 153:2. [PMID: 39579202 DOI: 10.1007/s10709-024-00220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/14/2024] [Indexed: 11/25/2024]
Abstract
Eucalyptol is one of the major insecticidal active ingredients in a variety of plant essential oils, and has good killing and avoidance effects on Tribolium castaneum. The presence of detoxifying enzymes glutathione S-transferase (GST) in T. castaneum makes it resistant to a variety of insecticides. However, whether GST is involved in regulating the sensitivity of eucalyptol by T. castaneum is not well understood. In our previous study, a glutathione S-transferase, TcGSTu1, was significantly up-regulated in RNA sequencing data when T. castaneum was exposed to eucalyptol. Therefore, in this study, the role of TcGSTu1 in the regulating the sensitivity of T. castaneum to eucalyptol was studied. The enzyme activities of GST and the transcription levels of TcGSTu1 were significantly increased following stimulation with eucalyptol. When using RNA interference technology knockdown TcGSTu1 heightens the sensitivity of T. castaneum to eucalyptol, demonstrating a link between TcGSTu1 and eucalyptol detoxification metabolism. Furthermore, TcGSTu1 is expressed in all developmental stages of T. castaneum, with higher expression levels observed particularly in the late egg stage. There was significant expression of TcGSTu1 in various tissues of different organisms, including larval head, fat body, and adult head. This observation indicated a possible connection between high TcGSTu1 expression and eucalyptol detoxification. The present findings suggest that TcGSTu1 may be involved in regulating the sensitivity and response of T. castaneum to treatment with eucalyptol, providing new research insight into pest control.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
- Taihang Mountain, Forest Pests Observation and Research Station of Henan Province, Linzhou, 456550, China
| | - Yizhuo Cao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Wenbo Miao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Dongyu Li
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Can Zhou
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Kunpeng Zhang
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China.
| |
Collapse
|
7
|
Motlhatlhedi K, Pilusa NB, Ndaba T, George M, Masamba P, Kappo AP. Therapeutic and vaccinomic potential of moonlighting proteins for the discovery and design of drugs and vaccines against schistosomiasis. Am J Transl Res 2024; 16:4279-4300. [PMID: 39398578 PMCID: PMC11470331 DOI: 10.62347/bxrt7210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024]
Abstract
Despite significant and coordinated efforts to combat schistosomiasis, such as providing clean water, sanitation, hygiene, and snail control, these strategies still fall short, as regions previously thought to be disease-free have shown active schistosomiasis transmission. Therefore, it is necessary to implement integrated control methods, emphasizing vaccine development for sustainable control of schistosomiasis. Vaccination has significantly contributed to global healthcare and has been the most economically friendly method for avoiding pathogenic infections. Over the years, different vaccine candidates for schistosomiasis have been investigated with varying degrees of success in clinical trials with many not proceeding past the early clinical phase. Recently, proteins have been mentioned as targets for drug discovery and vaccine development, especially those with multiple functions in schistosomes. Moonlighting proteins are a class of proteins that can perform several functions besides their known functions. This multifunctional property is believed to have been expressed through evolution, where the polypeptide chain gained the ability to perform other tasks without undergoing any structural changes. Since proteins have gained more traction as drug targets, multifunctional proteins have thus become attractive for discovering and developing novel drugs since the drug can target more than one function. Moonlighting proteins are promising drug and vaccine candidates for diseases such as schistosomiasis, since they aid in disease promotion in the human host. This manuscript elucidates vital moonlighting proteins used by schistosomes to drive their life cycle and to ensure their survival in the human host, which can be used to develop anti-schistosomal therapeutics and vaccinomics.
Collapse
Affiliation(s)
- Kagiso Motlhatlhedi
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Naledi Beatrice Pilusa
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Tshepang Ndaba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Mary George
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| |
Collapse
|
8
|
Koenitzer JR, Gupta DK, Twan WK, Xu H, Hadas N, Hawkins FJ, Beermann ML, Penny GM, Wamsley NT, Berical A, Major MB, Dutcher SK, Brody SL, Horani A. Transcriptional analysis of primary ciliary dyskinesia airway cells reveals a dedicated cilia glutathione pathway. JCI Insight 2024; 9:e180198. [PMID: 39042459 PMCID: PMC11385084 DOI: 10.1172/jci.insight.180198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic condition that results in dysmotile cilia. The repercussions of cilia dysmotility and gene variants on the multiciliated cell remain poorly understood. We used single-cell RNA-Seq, proteomics, and advanced microscopy to compare primary culture epithelial cells from patients with PCD, their heterozygous mothers, and healthy individuals, and we induced pluripotent stem cells (iPScs) generated from a patient with PCD. Transcriptomic analysis revealed unique signatures in PCD airway cells compared with their mothers' cells and the cells of healthy individuals. Gene expression in heterozygous mothers' cells diverged from both control and PCD cells, marked by increased inflammatory and cellular stress signatures. Primary and iPS-derived PCD multiciliated cells had increased expression of glutathione-S-transferases GSTA2 and GSTA1, as well as NRF2 target genes, accompanied by elevated levels of reactive oxygen species (ROS). Immunogold labeling in human cilia and proteomic analysis of the ciliated organism Chlamydomonas reinhardtii demonstrated that GSTA2 localizes to motile cilia. Loss of human GSTA2 and C. reinhardtii GSTA resulted in slowed cilia motility, pointing to local cilia regulatory roles. Our findings identify cellular responses unique to PCD variants and independent of environmental stress and uncover a dedicated ciliary GSTA2 pathway essential for normal motility that may be a therapeutic target.
Collapse
Affiliation(s)
| | - Deepesh Kumar Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wang Kyaw Twan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas Hadas
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine and
- The Pulmonary Center, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | | | | | - Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew Berical
- Center for Regenerative Medicine and
- The Pulmonary Center, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan K Dutcher
- Department of Genetics and
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Li Y, Minic Z, Hüttmann N, Khraibah A, Storey KB, Berezovski MV. Proteomic analysis of Rana sylvatica reveals differentially expressed proteins in liver in response to anoxia, dehydration or freezing stress. Sci Rep 2024; 14:15388. [PMID: 38965296 PMCID: PMC11224343 DOI: 10.1038/s41598-024-65417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Ectothermic animals that live in seasonally cold regions must adapt to seasonal variation and specific environmental conditions. During the winter, some amphibians hibernate on land and encounter limited environmental water, deficient oxygen, and extremely low temperatures that can cause the whole body freezing. These stresses trigger physiological and biochemical adaptations in amphibians that allow them to survive. Rana sylvatica, commonly known as the wood frog, shows excellent freeze tolerance. They can slow their metabolic activity to a near halt and endure freezing of 65-70% of their total body water as extracellular ice during hibernation, returning to normal when the temperatures rise again. To investigate the molecular adaptations of freeze-tolerant wood frogs, a comprehensive proteomic analysis was performed on frog liver tissue after anoxia, dehydration, or freezing exposures using a label-free LC-MS/MS proteomic approach. Quantitative proteomic analysis revealed that 87, 118, and 86 proteins were significantly upregulated in dehydrated, anoxic, and frozen groups, suggesting potential protective functions. The presence of three upregulated enzymes, glutathione S-transferase (GST), aldolase (ALDOA), and sorbitol dehydrogenase (SORD), was also validated. For all enzymes, the specific enzymatic activity was significantly higher in the livers of frozen and anoxic groups than in the controls. This study reveals that GST, ALDOA, and SORD might participate in the freeze tolerance mechanism by contributing to regulating cellular detoxification and energy metabolism.
Collapse
Affiliation(s)
- Yingxi Li
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Abdullah Khraibah
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
10
|
Li W, Xu M, Zhang Z, Liang J, Fu R, Lin W, Luo W, Zhang X, Ren T. Regulatory Effects of 198-bp Structural Variants in the GSTA2 Promoter Region on Adipogenesis in Chickens. Int J Mol Sci 2024; 25:7155. [PMID: 39000259 PMCID: PMC11241197 DOI: 10.3390/ijms25137155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Molecular breeding accelerates animal breeding and improves efficiency by utilizing genetic mutations. Structural variations (SVs), a significant source of genetic mutations, have a greater impact on phenotypic variation than SNPs. Understanding SV functional mechanisms and obtaining precise information are crucial for molecular breeding. In this study, association analysis revealed significant correlations between 198-bp SVs in the GSTA2 promoter region and abdominal fat weight, intramuscular fat content, and subcutaneous fat thickness in chickens. High expression of GSTA2 in adipose tissue was positively correlated with the abdominal fat percentage, and different genotypes of GSTA2 exhibited varied expression patterns in the liver. The 198-bp SVs regulate GSTA2 expression by binding to different transcription factors. Overexpression of GSTA2 promoted preadipocyte proliferation and differentiation, while interference had the opposite effect. Mechanistically, the 198-bp fragment contains binding sites for transcription factors such as C/EBPα that regulate GSTA2 expression and fat synthesis. These SVs are significantly associated with chicken fat traits, positively influencing preadipocyte development by regulating cell proliferation and differentiation. Our work provides compelling evidence for the use of 198-bp SVs in the GSTA2 promoter region as molecular markers for poultry breeding and offers new insights into the pivotal role of the GSTA2 gene in fat generation.
Collapse
Affiliation(s)
- Wangyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Meng Xu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zihao Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Jiaying Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Rong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Wujian Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Bonato P, Camilios-Neto D, Tadra-Sfeir MZ, Mota FJT, Muller-Santos M, Wassem R, de Souza EM, de Oliveira Pedrosa F, Chubatsu LS. The role of NtrC in the adaptation of Herbaspirillum seropedicae SmR1 to nitrogen limitation and to nitrate. Arch Microbiol 2024; 206:310. [PMID: 38896324 DOI: 10.1007/s00203-024-04044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The RNA-Seq profiling of Herbaspirillum seropedicae SmR1 wild-type and ntrC mutant was performed under aerobic and three nitrogen conditions (ammonium limitation, ammonium shock, and nitrate shock) to identify the major metabolic pathways modulated by these nitrogen sources and those dependent on NtrC. Under ammonium limitation, H. seropedicae scavenges nitrogen compounds by activating transporter systems and metabolic pathways to utilize different nitrogen sources and by increasing proteolysis, along with genes involved in carbon storage, cell protection, and redox balance, while downregulating those involved in energy metabolism and protein synthesis. Growth on nitrate depends on the narKnirBDHsero_2899nasA operon responding to nitrate and NtrC. Ammonium shock resulted in a higher number of genes differently expressed when compared to nitrate. Our results showed that NtrC activates a network of transcriptional regulators to prepare the cell for nitrogen starvation, and also synchronizes nitrogen metabolism with carbon and redox balance pathways.
Collapse
Affiliation(s)
- Paloma Bonato
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Francisco J Teles Mota
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Muller-Santos
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Roseli Wassem
- Department of Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Leda Satie Chubatsu
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
12
|
Kapkaç HA, Arslanyolu M. Molecular Cloning, Expression and Enzymatic Characterization of Tetrahymena thermophila Glutathione-S-Transferase Mu 34. Protein J 2024; 43:613-626. [PMID: 38743189 DOI: 10.1007/s10930-024-10204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Glutathione-S-transferase enzymes (GSTs) are essential components of the phase II detoxification system and protect organisms from oxidative stress induced by xenobiotics and harmful toxins such as 1-chloro-2,4-dinitrobenzene (CDNB). In Tetrahymena thermophila, the TtGSTm34 gene was previously reported to be one of the most responsive GST genes to CDNB treatment (LD50 = 0.079 mM). This study aimed to determine the kinetic features of recombinantly expressed and purified TtGSTm34 with CDNB and glutathione (GSH). TtGSTm34-8xHis was recombinantly produced in T. thermophila as a 25-kDa protein after the cloning of the 660-bp full-length ORF of TtGSTm34 into the pIGF-1 vector. A three-dimensional model of the TtGSTm34 protein constructed by the AlphaFold and PyMOL programs confirmed that it has structurally conserved and folded GST domains. The recombinant production of TtGSTm34-8xHis was confirmed by SDS‒PAGE and Western blot analysis. A dual-affinity chromatography strategy helped to purify TtGSTm34-8xHis approximately 3166-fold. The purified recombinant TtGSTm34-8xHis exhibited significantly high enzyme activity with CDNB (190 µmol/min/mg) as substrate. Enzyme kinetic analysis revealed Km values of 0.68 mM with GSH and 0.40 mM with CDNB as substrates, confirming its expected high affinity for CDNB. The optimum pH and temperature were determined to be 7.0 and 25 °C, respectively. Ethacrynic acid inhibited fully TtGSTm34-8xHis enzyme activity. These results imply that TtGSTm34 of T. thermophila plays a major role in the detoxification of xenobiotics, such as CDNB, as a first line of defense in aquatic protists against oxidative damage.
Collapse
Affiliation(s)
- Handan Açelya Kapkaç
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| |
Collapse
|
13
|
Gama Cavalcante AL, Dari DN, Izaias da Silva Aires F, Carlos de Castro E, Moreira Dos Santos K, Sousa Dos Santos JC. Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications. RSC Adv 2024; 14:17946-17988. [PMID: 38841394 PMCID: PMC11151160 DOI: 10.1039/d4ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.
Collapse
Affiliation(s)
- Antônio Luthierre Gama Cavalcante
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Francisco Izaias da Silva Aires
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Erico Carlos de Castro
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Kaiany Moreira Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará Campus do Pici, Bloco 940 Fortaleza CEP 60455760 CE Brazil
| |
Collapse
|
14
|
Tossounian MA, Zhao Y, Yu BYK, Markey SA, Malanchuk O, Zhu Y, Cain A, Gout I. Low-molecular-weight thiol transferases in redox regulation and antioxidant defence. Redox Biol 2024; 71:103094. [PMID: 38479221 PMCID: PMC10950700 DOI: 10.1016/j.redox.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/24/2024] Open
Abstract
Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Samuel A Markey
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Oksana Malanchuk
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Yuejia Zhu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Amanda Cain
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
15
|
Singh RP, Sinha A, Deb S, Kumari K. First report on in-depth genome and comparative genome analysis of a metal-resistant bacterium Acinetobacter pittii S-30, isolated from environmental sample. Front Microbiol 2024; 15:1351161. [PMID: 38741743 PMCID: PMC11089254 DOI: 10.3389/fmicb.2024.1351161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
A newly isolated bacterium Acinetobacter pittii S-30 was recovered from waste-contaminated soil in Ranchi, India. The isolated bacterium belongs to the ESKAPE organisms which represent the major nosocomial pathogens that exhibit high antibiotic resistance. Furthermore, average nucleotide identity (ANI) analysis also showed its closest match (>95%) to other A. pittii genomes. The isolate showed metal-resistant behavior and was able to survive up to 5 mM of ZnSO4. Whole genome sequencing and annotations revealed the occurrence of various genes involved in stress protection, motility, and metabolism of aromatic compounds. Moreover, genome annotation identified the gene clusters involved in secondary metabolite production (biosynthetic gene clusters) such as arylpolyene, acinetobactin like NRP-metallophore, betalactone, and hserlactone-NRPS cluster. The metabolic potential of A. pittii S-30 based on cluster of orthologous, and Kyoto Encyclopedia of Genes and Genomes indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux systems etc., which is relatively rare in A. pittii strains. Additionally, the presence of various carbohydrate-active enzymes such as glycoside hydrolases (GHs), glycosyltransferases (GTs), and other genes associated with lignocellulose breakdown suggests that strain S-30 has strong biomass degradation potential. Furthermore, an analysis of genetic diversity and recombination in A. pittii strains was performed to understand the population expansion hypothesis of A. pittii strains. To our knowledge, this is the first report demonstrating the detailed genomic characterization of a heavy metal-resistant bacterium belonging to A. pittii. Therefore, the A. pittii S-30 could be a good candidate for the promotion of plant growth and other biotechnological applications.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Ayushi Sinha
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
16
|
Sánchez Pérez LDC, Zubillaga RA, García-Gutiérrez P, Landa A. Sigma-Class Glutathione Transferases (GSTσ): A New Target with Potential for Helminth Control. Trop Med Infect Dis 2024; 9:85. [PMID: 38668546 PMCID: PMC11053550 DOI: 10.3390/tropicalmed9040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Glutathione transferases (GSTs EC 2.5.1.18) are critical components of phase II metabolism, instrumental in xenobiotics' metabolism. Their primary function involves conjugating glutathione to both endogenous and exogenous toxic compounds, which increases their solubility and enables their ejection from cells. They also play a role in the transport of non-substrate compounds and immunomodulation, aiding in parasite establishment within its host. The cytosolic GST subfamily is the most abundant and diverse in helminths, and sigma-class GST (GSTσ) belongs to it. This review focuses on three key functions of GSTσ: serving as a detoxifying agent that provides drug resistance, functioning as an immune system modulator through its involvement in prostaglandins synthesis, and acting as a vaccine antigen.
Collapse
Affiliation(s)
| | - Rafael A. Zubillaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City C.P. 09310, Mexico; (L.d.C.S.P.); (P.G.-G.)
| | - Ponciano García-Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City C.P. 09310, Mexico; (L.d.C.S.P.); (P.G.-G.)
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City C.P. 04510, Mexico
| |
Collapse
|
17
|
Kumar V, Karam Q, Shajan AB, Al-Nuaimi S, Sattari Z, El-Dakour S. Transcriptome analysis of Sparidentex hasta larvae exposed to water-accommodated fraction of Kuwait crude oil. Sci Rep 2024; 14:3591. [PMID: 38351213 PMCID: PMC10864312 DOI: 10.1038/s41598-024-53408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Anthropogenic activities have been shown to significantly affect marine life. Water pollution and oil spills are particularly deleterious to the fish population, especially during their larval stage. In this study, Sobaity-sea bream Sparidentex hasta (Valenciennes, 1830) larvae were exposed to serial dilutions of water-accommodated fraction of Kuwait crude oil (KCO-WAF) for varying durations (3, 6, 24, 48, 72 or 96 h) in acute exposure regime. Gene expression was assessed using RNA sequencing and validated through RT-qPCR. The RNA sequencing data were aligned to the sequenced genome, and differentially expressed genes were identified in response to treatment with or without KCO-WAF at various exposure times. The highest number of differentially expressed genes was observed at the early time point of 6 h of post-exposure to KCO-WAF. The lowest number of differentially expressed genes were noticed at 96 h of treatment indicating early response of the larvae to KCO-WAF contaminant. The acquired information on the differentially expressed genes was then used for functional and pathway analysis. More than 90% of the differentially expressed genes had a significant BLAST match, with the two most common matching species being Acanthopagrus latus and Sparus aurata. Approximately 65% of the differentially expressed genes had Gene Ontology annotations, whereas > 35% of the genes had KEGG pathway annotations. The differentially expressed genes were found to be enriched for various signaling pathways (e.g., MAPK, cAMP, PI3K-Akt) and nervous system-related pathways (e.g., neurodegeneration, axon guidance, glutamatergic synapse, GABAergic synapse). Early exposure modulated the signaling pathways, while KCO-WAF exposure of larvae for a longer duration affected the neurodegenerative/nervous system-related pathways. RT-qPCR analysis confirmed the differential expression of genes at each time point. These findings provide insights into the underlying molecular mechanisms of the deleterious effects of acute exposure to oil pollution-on marine fish populations, particularly at the early larval stage of Sparidentex hasta.
Collapse
Affiliation(s)
- Vinod Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait.
| | - Qusaie Karam
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Anisha B Shajan
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Sabeeka Al-Nuaimi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Zainab Sattari
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Saleem El-Dakour
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| |
Collapse
|
18
|
Grussy K, Łaska M, Moczurad W, Król-Kulikowska M, Ściskalska M. The importance of polymorphisms in the genes encoding glutathione S-transferase isoenzymes in development of selected cancers and cardiovascular diseases. Mol Biol Rep 2023; 50:9649-9661. [PMID: 37819495 PMCID: PMC10635984 DOI: 10.1007/s11033-023-08894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Glutathione S-transferases are a family of enzymes, whose main role is to detoxify cells from many exogenous factors, such as xenobiotics or carcinogens. It has also been proven that changes in the genes encoding these enzymes may affect the incidence of selected cancers and cardiovascular diseases. The aim of this study was to review the most important reports related to the role of glutathione S-transferases in the pathophysiology of two of the most common diseases in modern society - cancers and cardiovascular diseases. It was shown that polymorphisms in the genes encoding glutathione S-transferases are associated with the development of these diseases. However, depending on the ethnic group, the researchers obtained divergent results related to this field. In the case of the GSTP1 A/G gene polymorphism was shown an increased incidence of breast cancer in Asian women, while this relationship in European and African women was not found. Similarly. In the case of cardiovascular diseases, the differences in the influence of GSTM1, GSTT1, GSTP1 and GSTA1 polymorphisms on their development or lack of it depending on the continent were shown. These examples show that the development of the above-mentioned diseases is not only influenced by genetic changes, but their pathophysiology is more complex. The mere presence of a specific genotype within a studied polymorphism may not predispose to cancer, but in combination with environmental factors, which often depend on the place of residence, it may elevate the chance of developing the selected disease.
Collapse
Affiliation(s)
- Katarzyna Grussy
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Magdalena Łaska
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Wiktoria Moczurad
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland.
| | - Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| |
Collapse
|
19
|
Wang J, Ma LX, Dong YW. Coping with harsh heat environments: molecular adaptation of metabolic depression in the intertidal snail Echinolittorina radiata. Cell Stress Chaperones 2023; 28:477-491. [PMID: 36094737 PMCID: PMC10469152 DOI: 10.1007/s12192-022-01295-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
Harsh thermal environments in the rocky intertidal zone pose serious physiological and molecular challenges to the inhabitants. Metabolic depression is regarded as an energy-conserving feature of intertidal species. To understand the molecular mechanism of metabolic depression, we investigated physiological and transcriptomic responses in the intertidal snail Echinolittorina radiata. The metabolic rate and expression of most genes were insensitive to temperatures ranging from 33 to 45 °C and then increased with further heating to 52 °C. Different from other genes, the genes involved in heat shock response (HSR) and oxidative stress response (OSR) (e.g., genes encoding heat shock protein 70 (HSP70) and cytochrome P450 protein (CYP450)) kept upregulating during metabolic depression. These high levels of HSR and OSR genes should be important for surviving the harsh thermal environments on the rocky shore. In the population experiencing more frequent moderate heat events, the depression breadth was larger, and the change in magnitude of upregulation was insensitive for HSR genes (e.g., HSP70s) but heat-sensitive for OSR genes (e.g., CYP450s) at the temperature of 37 to 45 °C. These findings indicate that both the thermal sensitivity of HSR and OSR genes and the insensitivity of metabolic genes are crucial for surviving extreme intertidal environments, and different populations of the same species rely on various physiological mechanisms to differing extents to deal with heat stress. The cellular stress response is not a "one size fits all" response across populations largely depending on local thermal regimes.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, People's Republic of China
| | - Lin-Xuan Ma
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, People's Republic of China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, People's Republic of China.
| |
Collapse
|
20
|
Bahar O, Eraslan G. Investigation of the efficacy of diosmin against organ damage caused by bendiocarb in male Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55826-55845. [PMID: 36905537 DOI: 10.1007/s11356-023-26105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bendiocarb is a carbamate insecticide, which is used more in indoor areas, especially against scorpions, spiders, flies, mosquitoes and cockroaches. Diosmin is an antioxidant flavonoid found mostly in citrus fruits. In this study, the efficacy of diosmin against the adverse effects of bendiocarb was investigated in rats. For this purpose, 60, 2-3 month-old male Wistar albino rats, weighing 150-200 g, were used. The animals were assigned to six groups, one of which was maintained for control purposes and five of which were trial groups. The control rats received only corn oil, which was used as a vehicle for diosmin administration in the trial groups. Groups 2, 3, 4, 5 and 6 were administered with 10 mg/kg.bw bendiocarb, 10 mg/kg.bw diosmin, 20 mg/kg.bw diosmin, 2 mg/kg.bw bendiocarb plus 10 mg/kg.bw diosmin, and 2 mg/kg.bw bendiocarb plus 20 mg/kg.bw diosmin, respectively, using an oral catheter, for 28 days. At the end of the study period, blood and organ (liver, kidneys, brain, testes, heart and lungs) samples were collected. Body weight and organ weights were determined. Compared to the control group, in the group given bendiocarb alone, firstly, body weight and liver, lung and testicular weights decreased. Secondly, tissue/plasma malondialdehyde (MDA) and nitric oxide (NO) levels increased, and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) (except for lung tissue), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PD) activities decreased in all tissues and erythrocytes. Thirdly, catalase (CAT) activity decreased in erythrocytes and the kidney, brain, heart and lung tissues and increased in the liver and testes. Fourthly, while GST activity decreased in the kidneys, testes, lung and erythrocytes, an increase was observed in the liver and heart tissues. Fifthly, while serum triglyceride levels and lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and pseudo-cholinesterase (PchE) activities decreased, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and blood urea nitrogen (BUN), creatinine and uric acid levels increased. Lastly, liver caspase 3, caspase 9 and p53 expression levels significantly increased. When compared to the control group, the groups treated with diosmin alone showed no significant difference for the parameters investigated. On the other hand, it was observed that the values of the groups treated with a combination of bendiocarb and diosmin were closer to the values of the control group. In conclusion, while exposure to bendiocarb at a dose of 2 mg/kg.bw for 28 days caused oxidative stress/organ damage, diosmin administration at doses of 10 and 20 mg/kg.bw reduced this damage. This demonstrated that diosmin has pharmaceutical benefits, when used for supportive treatment as well as radical treatment, against the potential adverse effects of bendiocarb.
Collapse
Affiliation(s)
- Orhan Bahar
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
21
|
Zhu X, Yao Q, Yang P, Zhao D, Yang R, Bai H, Ning K. Multi-omics approaches for in-depth understanding of therapeutic mechanism for Traditional Chinese Medicine. Front Pharmacol 2022; 13:1031051. [PMID: 36506559 PMCID: PMC9732109 DOI: 10.3389/fphar.2022.1031051] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Traditional Chinese Medicine (TCM) is extensively utilized in clinical practice due to its therapeutic and preventative treatments for various diseases. With the development of high-throughput sequencing and systems biology, TCM research was transformed from traditional experiment-based approaches to a combination of experiment-based and omics-based approaches. Numerous academics have explored the therapeutic mechanism of TCM formula by omics approaches, shifting TCM research from the "one-target, one-drug" to "multi-targets, multi-components" paradigm, which has greatly boosted the digitalization and internationalization of TCM. In this review, we concentrated on multi-omics approaches in principles and applications to gain a better understanding of TCM formulas against various diseases from several aspects. We first summarized frequently used TCM quality assessment methods, and suggested that incorporating both chemical and biological ingredients analytical methods could lead to a more comprehensive assessment of TCM. Secondly, we emphasized the significance of multi-omics approaches in deciphering the therapeutic mechanism of TCM formulas. Thirdly, we focused on TCM network analysis, which plays a vital role in TCM-diseases interaction, and serves for new drug discovery. Finally, as an essential source for storing multi-omics data, we evaluated and compared several TCM databases in terms of completeness and reliability. In summary, multi-omics approaches have infiltrated many aspects of TCM research. With the accumulation of omics data and data-mining resources, deeper understandings of the therapeutic mechanism of TCM have been acquired or will be gained in the future.
Collapse
Affiliation(s)
- Xue Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ronghua Yang
- Dovetree Synbio Company Limited, Shenyang, China
| | - Hong Bai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
22
|
Yang AJ, Yin NN, Chen DL, Guo YR, Zhao YJ, Liu NY. Identification and characterization of candidate detoxification genes in Pharsalia antennata Gahan (Coleoptera: Cerambycidae). Front Physiol 2022; 13:1015793. [PMID: 36187767 PMCID: PMC9523569 DOI: 10.3389/fphys.2022.1015793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
The wood-boring beetles, including the majority of Cerambycidae, have developed the ability to metabolize a variety of toxic compounds derived from host plants and the surrounding environment. However, detoxification mechanisms underlying the evolutionary adaptation of a cerambycid beetle Pharsalia antennata to hosts and habitats are largely unexplored. Here, we characterized three key gene families in relation to detoxification (cytochrome P450 monooxygenases: P450s, carboxylesterases: COEs and glutathione-S-transferases: GSTs), by combinations of transcriptomics, gene identification, phylogenetics and expression profiles. Illumina sequencing generated 668,701,566 filtered reads in 12 tissues of P. antennata, summing to 100.28 gigabases data. From the transcriptome, 215 genes encoding 106 P450s, 77 COEs and 32 GSTs were identified, of which 107 relatives were differentially expressed genes. Of the identified 215 genes, a number of relatives showed the orthology to those in Anoplophora glabripennis, revealing 1:1 relationships in 94 phylogenetic clades. In the trees, P. antennata detoxification genes mainly clustered into one or two subfamilies, including 64 P450s in the CYP3 clan, 33 COEs in clade A, and 20 GSTs in Delta and Epsilon subclasses. Combining transcriptomic data and PCR approaches, the numbers of detoxification genes expressed in abdomens, antennae and legs were 188, 148 and 141, respectively. Notably, some genes exhibited significantly sex-biased levels in antennae or legs of both sexes. The findings provide valuable reference resources for further exploring xenobiotics metabolism and odorant detection in P. antennata.
Collapse
Affiliation(s)
- An-Jin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Ning-Na Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Dan-Lu Chen
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Yu-Ruo Guo
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Yu-Jie Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- *Correspondence: Nai-Yong Liu,
| |
Collapse
|
23
|
Koirala B K S, Moural T, Zhu F. Functional and Structural Diversity of Insect Glutathione S-transferases in Xenobiotic Adaptation. Int J Biol Sci 2022; 18:5713-5723. [PMID: 36263171 PMCID: PMC9576527 DOI: 10.7150/ijbs.77141] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023] Open
Abstract
As a superfamily of multifunctional enzymes that is mainly associated with xenobiotic adaptation, glutathione S-transferases (GSTs) facilitate insects' survival under chemical stresses in their environment. GSTs confer xenobiotic adaptation through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against oxidative stress induced by xenobiotic exposure. In this article, a comprehensive overview of current understanding on the versatile functions of insect GSTs in detoxifying chemical compounds is presented. The diverse structures of different classes of insect GSTs, specifically the spatial localization and composition of their amino acid residues constituted in their active sites are also summarized. Recent availability of whole genome sequences of numerous insect species, accompanied by RNA interference, X-ray crystallography, enzyme kinetics and site-directed mutagenesis techniques have significantly enhanced our understanding of functional and structural diversity of insect GSTs.
Collapse
Affiliation(s)
- Sonu Koirala B K
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Timothy Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.,✉ Corresponding author: Dr. Fang Zhu, Department of Entomology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA. Phone: +1-814-863-4432; Fax: +1- 814-865-3048; E-mail:
| |
Collapse
|
24
|
Bulska E, Gawor A, Konopka A, Wryk G, Czarkowska-Pączek B, Gajewski Z, Pączek L. Label-Free Mass Spectrometry-Based Quantitative Proteomics to Evaluate the Effects of the Calcium-Sensing Receptor Agonist Cinacalcet on Protein Expression in Rat Brains and Livers. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e937338. [PMID: 35941808 PMCID: PMC9375513 DOI: 10.12659/msm.937338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background Cinacalcet is a calcium-sensing receptor agonist that is clinically approved for the treatment of secondary hyperparathyroidism in chronic kidney disease and hypercalcemia in patients with parathyroid carcinoma. This study aimed to use quantitative mass spectrometry-based label-free proteomics to evaluate the effects of cinacalcet on protein expression in rat brains and livers. Material/Methods We randomly assigned 18 Wistar rats to 2 groups: an untreated control group (n=6) and a group treated with cinacalcet at a dose corresponding to the maximum dose used in humans (2 mg/kg/body weight, 5 days/week) divided into 7-day (n=6) and 21-day (n=6) treatment subgroups. A mass-spectrometry-based label-free quantitative proteomics approach using peptides peak area calculation was used to evaluate the changes in protein expression in examined tissues. Bioinformatics analysis of quantitative proteomics data was done using MaxQuant and Perseus environment. Results No changes in protein expression were revealed in the 7-day treatment subgroup. We detected 10 upregulated and 3 downregulated proteins in the liver and 1 upregulated protein in the brain in the 21-day treatment subgroup compared to the control group. Based on Gene Ontology classification, all identified differentially expressed proteins were indicated as molecular functions involved in the enzyme regulator activity (36%), binding (31%), and catalytic activity (19%). Conclusions These findings indicate that long-term cinacalcet therapy can impair phase II of enzymatic detoxication and can cause disturbances in blood hemostasis, lipid metabolism, and inflammatory mediators or contribute to the acceleration of cognitive dysfunction; therefore, appropriate patient monitoring should be considered.
Collapse
Affiliation(s)
- Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Andrzej Gawor
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anna Konopka
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Grzegorz Wryk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | - Zdzisław Gajewski
- Department of Large Animal Diseases and Clinic, Veterinary Research Center and Center for Biomedical Research, Institute of Veterinary Medicine, Warsaw University of Life Science, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Disease, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Das AJ, Das MK, Singh SP, Saikia PP, Singh N, Islam J, Ansari A, Chattopadhyay P, Rajamani P, Miyaji T, Deka SC. Synthesis of salicylic acid phenylethyl ester (SAPE) and its implication in immunomodulatory and anticancer roles. Sci Rep 2022; 12:8735. [PMID: 35610283 PMCID: PMC9130252 DOI: 10.1038/s41598-022-12524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Salicylic acid phenylethyl ester (SAPE) was synthesized by Zn(OTf)2-catalyzed selective esterification of salicylic acid and phenylethyl alcohol and studied for its role as an immunomodulatory and anticancer agent. Low toxicity and favorable physical, Lipinski-type, and solubility properties were elucidated by ADME-tox studies. Molecular docking of SAPE against COX-2 revealed favorable MolDockscore, rerank score, interaction energy, internal pose energy, and hydrogen bonding as compared to ibuprofen and indomethacin. An average RMSD of ~ 0.13 nm for the docked complex with stable dynamic equilibrium condition was noted during the 20 ns MD simulation. A low band gap predicting a strong binding affinity at the enzyme’s active site was further predicted by DFT analysis. The ester caused a reduction in the percentage of erythrocyte hemolysis and was shown to be non-cytotoxic against human lymphocytes, CaCo-2, and HepG-2 cells by the MTT assay. Moreover, it’s in vitro efficacy in inhibiting COX-2 enzyme under both LPS stimulated intestinal cells and direct sequestration assays was found to be higher than salicylic acid and indomethacin. The anticancer activity of SAPE was tested on the breast cancer cell line MCF-7, and potential efficacy was exhibited in terms of decreased cell viability. Flow cytometry analysis exhibited the arrest of the cell cycle at G1/G0 and S phases, during which induction of autophagic vesicle formation and decrease in mitochondrial membrane potential was observed owing to increased ROS production. Furthermore, at these phases, the onset of apoptosis along with DNA damage was also observed. Pre-treatment with SAPE in colitis-induced Wistar rats displayed low disease activity index and reduction in the extent of intestinal tissue disruption and lipid peroxidation. A marked increase of anti-oxidative enzymes viz., catalase, GGT, and GST, and a decrease of pro-inflammatory cytokines IL-6 and TNF-α in the intestinal tissue extracts of the treated groups was noted. The results of this study have sufficient credence to support that the synthesised ester (SAPE) be considered as an anti-oxidative and anti-inflammatory compound with therapeutic potential for the effective management of cancer.
Collapse
Affiliation(s)
- Arup Jyoti Das
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India
| | - Monoj Kumar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Salam Pradeep Singh
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | | | - Neelu Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Johirul Islam
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India
| | - Aftab Ansari
- Department of Physics, Tezpur University, Tezpur, Assam, India
| | | | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tatsuro Miyaji
- Department of Materials and Life Science, Shizuoka Institute of Science and Technology, Fukuroi, Japan
| | - Sankar Chandra Deka
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India.
| |
Collapse
|
26
|
Toxic Effects on Oxidative Stress, Neurotoxicity, Stress, and Immune Responses in Juvenile Olive Flounder, Paralichthys olivaceus, Exposed to Waterborne Hexavalent Chromium. BIOLOGY 2022; 11:biology11050766. [PMID: 35625494 PMCID: PMC9138328 DOI: 10.3390/biology11050766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
Abstract
Simple Summary Metals such as chromium can be exposed at high levels in the marine environment, and exposure to these heavy metals can have a direct effect on marine organisms. High levels of chromium exposure can have a direct impact on organisms in a coastal cage and terrestrial aquaculture. Hexavalent chromium exposure of more than 1.0 and 2.0 mg Cr6+/L induced physiological responses such as antioxidant, neurotransmitter, immune, and stress indicators in Paralichthys olivaceus. Therefore, this study will provide a reference indicator for stable aquaculture production through reference indicators for toxicity due to chromium exposure that may exist in the marine environment. Abstract Juvenile Paralichthys olivaceus were exposed to waterborne hexavalent chromium at various concentrations (0, 0.5, 1.0, and 2.0 mg/L) for 10 days. After chromium exposure, the activities of superoxide dismutase and glutathione S-transferase, which are oxidative stress indicators, were significantly increased; however, the glutathione level was significantly reduced. Acetylcholinesterase activity as a neurotoxicity marker was significantly inhibited upon chromium exposure. Other stress indicators, including plasma cortisol and heat shock protein 70, were significantly increased. The immune response markers (lysozyme and immunoglobulin M) were significantly decreased after chromium exposure. These results suggest that exposure to environmental toxicity in the form of waterborne chromium at concentrations higher than 1.0 mg/L causes significant alterations in antioxidant responses, neurotransmitters, stress, and immune responses in juvenile olive flounders. This study will provide a basis for an accurate assessment of the toxic effects of hexavalent chromium on aquatic organisms.
Collapse
|
27
|
Chot E, Reddy MS. Role of Ectomycorrhizal Symbiosis Behind the Host Plants Ameliorated Tolerance Against Heavy Metal Stress. Front Microbiol 2022; 13:855473. [PMID: 35418968 PMCID: PMC8996229 DOI: 10.3389/fmicb.2022.855473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/15/2022] [Indexed: 12/05/2022] Open
Abstract
Soil heavy metal (HM) pollution, which arises from natural and anthropogenic sources, is a prime threat to the environment due to its accumulative property and non-biodegradability. Ectomycorrhizal (ECM) symbiosis is highly efficient in conferring enhanced metal tolerance to their host plants, enabling their regeneration on metal-contaminated lands for bioremediation programs. Numerous reports are available regarding ECM fungal potential to colonize metal-contaminated lands and various defense mechanisms of ECM fungi and plants against HM stress separately. To utilize ECM–plant symbiosis successfully for bioremediation of metal-contaminated lands, understanding the fundamental regulatory mechanisms through which ECM symbiosis develops an enhanced metal tolerance in their host plants has prime importance. As this field is highly understudied, the present review emphasizes how plant’s various defense systems and their nutrient dynamics with soil are affected by ECM fungal symbiosis under metal stress, ultimately leading to their host plants ameliorated tolerance and growth. Overall, we conclude that ECM symbiosis improves the plant growth and tolerance against metal stress by (i) preventing their roots direct exposure to toxic soil HMs, (ii) improving plant antioxidant activity and intracellular metal sequestration potential, and (iii) altering plant nutrient uptake from the soil in such a way to enhance their tolerance against metal stress. In some cases, ECM symbiosis promotes HM accumulation in metal stressed plants simultaneous to improved growth under the HM dilution effect.
Collapse
Affiliation(s)
- Eetika Chot
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Mondem Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
28
|
Guillen AC, Borges ME, Herrerias T, Kandalski PK, de Souza MRDP, Donatti L. Gradual increase of temperature trigger metabolic and oxidative responses in plasma and body tissues in the Antarctic fish Notothenia rossii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:337-354. [PMID: 35149921 DOI: 10.1007/s10695-021-01044-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Antarctica is considered a thermally stable ecosystem; however, climate studies point to increases in water temperatures in this region. These thermal changes may affect the biological processes and promote metabolic changes in the adapted organisms that live in this region, rendering the animals more vulnerable to oxidative damage. This study assessed the effect of acclimation temperature on the levels of stress response markers in plasma, kidney, gill, liver, and brain tissues of Notothenia rossii subjected to gradual temperature changes of 0.5 °C/day until reaching temperatures of 2, 4, 6, and 8 °C. Under the effect of the 0.5 °C/day acclimation rate, gill tissue showed increased glutathione-S-transferase (GST) activity; kidney tissue showed increased H+-ATPase activity. In the liver, there was also an increase in GSH. In plasma, gradual decreases in the concentrations of total proteins and globulins were observed. These responses indicate a higher production of reactive oxygen species ROS, an imbalance in energy demand, and a lack in protein synthesis. Gradual increase in temperature may cause opposite responses to the thermal shock model in N. rossii.
Collapse
Affiliation(s)
| | | | | | | | | | - Lucélia Donatti
- Department of Cell Biology, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
29
|
Otulak-Kozieł K, Kozieł E, Przewodowski W, Ciacka K, Przewodowska A. Glutathione Modulation in PVY NTN Susceptible and Resistant Potato Plant Interactions. Int J Mol Sci 2022; 23:ijms23073797. [PMID: 35409157 PMCID: PMC8998174 DOI: 10.3390/ijms23073797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Glutathione is a metabolite that plays an important role in plant response to biotic stress through its ability to remove reactive oxygen species, thereby limiting the degree of potential oxidative damage. It can couple changes in the intracellular redox state to the development, especially the defense responses, of plants. Several studies have focused on measuring glutathione levels in virus infected plants, but have not provided complete information. Therefore, we analyzed, for the first time, the content of glutathione as well as its ultrastructural distribution related to susceptible and hypersensitive potato–Potato virus Y NTN (PVYNTN) interaction, with an aim of providing new insight into interactive responses to PVYNTN stress. Our findings reported that the inoculation of PVYNTN caused a dynamic increase in the content of glutathione, not only in resistance but also in susceptible reaction, especially at the first steps of plant–virus interaction. Moreover, the increase in hypersensitive response was much more dynamic, and accompanied by a significant reduction in the content of PVYNTN. By contrast, in susceptible potato Irys, the content of glutathione decreased between 7 and 21 days after virus inoculation, which led to a significant increase in PVYNTN concentration. Additionally, our findings clearly indicated the steady induction of two selected potato glutathione S-transferase StGSTF1 and StGSTF2 genes after PVYNTN inoculation, regardless of the interaction type. However, the relative expression level of StGSTF1 did not significantly differ between resistant and susceptible plants, whereas the relative expression levels of StGSTF2 differed between susceptible and resistant reactions. Therefore, we proposed that StGSTF2 can act as a marker of the type of response to PVYNTN. Our observations indicated that glutathione is an important component of signaling as well as the regulatory network in the PVYNTN–potato pathosystem. In resistance responses to PVYNTN, this metabolite activates plant defenses by reducing potential damage to the host plant cell, causing a reduction in virus concentration, while it can also be involved in the development of PVYNTN elicited symptoms, as well as limiting oxidative stress, leading to systemic infection in susceptible potato plants.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Correspondence: (K.O.-K.); (E.K.)
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Correspondence: (K.O.-K.); (E.K.)
| | - Włodzimierz Przewodowski
- Laboratory of Potato Gene Resources and Tissue Culture, Bonin Research Center, Plant Breeding and Acclimatization Institute—National Research Institute, 76-009 Bonin, Poland; (W.P.); (A.P.)
| | - Katarzyna Ciacka
- Department of Plant Physiology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Agnieszka Przewodowska
- Laboratory of Potato Gene Resources and Tissue Culture, Bonin Research Center, Plant Breeding and Acclimatization Institute—National Research Institute, 76-009 Bonin, Poland; (W.P.); (A.P.)
| |
Collapse
|
30
|
Sabir IA, Manzoor MA, Shah IH, Liu X, Jiu S, Wang J, Alam P, Abdullah M, Zhang C. Identification and Comprehensive Genome-Wide Analysis of Glutathione S-Transferase Gene Family in Sweet Cherry ( Prunus avium) and Their Expression Profiling Reveals a Likely Role in Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:938800. [PMID: 35903236 PMCID: PMC9315441 DOI: 10.3389/fpls.2022.938800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/16/2022] [Indexed: 05/08/2023]
Abstract
Glutathione S-transferases (GSTs) in plants are multipurpose enzymes that are involved in growth and development and anthocyanins transportation. However, members of the GST gene family were not identified in sweet cherry (Prunus avium). To identify the GST genes in sweet cherry, a genome-wide analysis was conducted. In this study, we identified 67 GST genes in P. avium genome and nomenclature according to chromosomal distribution. Phylogenetic tree analysis revealed that PavGST genes were classified into seven chief subfamily: TCHQD, Theta, Phi, Zeta, Lambda, DHAR, and Tau. The majority of the PavGST genes had a relatively well-maintained exon-intron and motif arrangement within the same group, according to gene structure and motif analyses. Gene structure (introns-exons) and conserved motif analysis revealed that the majority of the PavGST genes showed a relatively well-maintained motif and exons-introns configuration within the same group. The chromosomal localization, GO enrichment annotation, subcellular localization, syntenic relationship, Ka/Ks analysis, and molecular characteristics were accomplished using various bioinformatics tools. Mode of gene duplication showed that dispersed duplication might play a key role in the expansion of PavGST gene family. Promoter regions of PavGST genes contain numerous cis-regulatory components, which are involved in multiple stress responses, such as abiotic stress and phytohormones responsive factors. Furthermore, the expression profile of sweet cherry PavGSTs showed significant results under LED treatment. Our findings provide the groundwork for future research into induced LED anthocyanin and antioxidants deposition in sweet cherries.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Caixi Zhang,
| |
Collapse
|
31
|
Lee YM, Cho H, Kim RO, In S, Kim SJ, Won EJ. Validation of reference genes for quantitative real-time PCR in chemical exposed and at different age's brackish water flea Diaphanosoma celebensis. Sci Rep 2021; 11:23691. [PMID: 34880360 PMCID: PMC8654955 DOI: 10.1038/s41598-021-03098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), a primary approach for evaluating gene expression, requires an appropriate normalization strategy to confirm relative gene expression levels by comparison, and rule out variations that might occur in analytical procedures. The best option is to use a reference gene whose expression level is stable across various experimental conditions to compare the mRNA levels of a target gene. However, there is limited information on how the reference gene is differentially expressed at different ages (growth) in small invertebrates with notable changes such as molting. In this study, expression profiles of nine candidate reference genes from the brackish water flea, Diaphanosoma celebensis, were evaluated under diverse exposure to toxicants and according to growth. As a result, four different algorithms showed similar stabilities of genes for chemical exposures in the case of limited conditions using the same developmental stage (H2A was stable, whereas Act was fairly unstable in adults), while the results according to age showed a significantly different pattern in suite of candidate reference genes. This affected the results of genes EcRA and GST, which are involved in development and detoxification mechanisms, respectively. Our finding is the first step towards establishing a standardized real-time qRT-PCR analysis of this environmentally important invertebrate that has potential for aquatic ecotoxicology, particularly in estuarine environments.
Collapse
Affiliation(s)
- Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea.
| | - Hayoung Cho
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Ryeo-Ok Kim
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea.,Division of Chemical Research, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Korea
| | - Soyeon In
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Se-Joo Kim
- Genome Editing Research Center, Korea Research Institute Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
32
|
Shegelski VA, Evenden ML, Huber DPW, Sperling FAH. Identification of genes and gene expression associated with dispersal capacity in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). PeerJ 2021; 9:e12382. [PMID: 34754626 PMCID: PMC8555496 DOI: 10.7717/peerj.12382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Dispersal flights by the mountain pine beetle have allowed range expansion and major damage to pine stands in western Canada. We asked what the genetic and transcriptional basis of mountain pine beetle dispersal capacity is. Using flight mills, RNA-seq and a targeted association study, we compared strong-flying, weak-flying, and non-flying female beetles from the recently colonized northern end of their range. Nearly 3,000 genes were differentially expressed between strong and weak flying beetles, while weak fliers and nonfliers did not significantly differ. The differentially expressed genes were mainly associated with lipid metabolism, muscle maintenance, oxidative stress response, detoxification, endocrine function, and flight behavior. Three variant loci, two in the coding region of genes, were significantly associated with flight capacity but these genes had no known functional link to flight. Several differentially expressed gene systems may be important for sustained flight, while other systems are downregulated during dispersal and likely to conserve energy before host colonization. The candidate genes and SNPs identified here will inform further studies and management of mountain pine beetle, as well as contribute to understanding the mechanisms of insect dispersal flights.
Collapse
Affiliation(s)
- Victor A Shegelski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Maya L Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dezene P W Huber
- Faculty of Environment, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
ROS as Regulators of Cellular Processes in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1208690. [PMID: 34725562 PMCID: PMC8557056 DOI: 10.1155/2021/1208690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
In this review, we examine the multiple roles of ROS in the pathogenesis of melanoma, focusing on signal transduction and regulation of gene expression. In recent years, different studies have analyzed the dual role of ROS in regulating the redox system, with both negative and positive consequences on human health, depending on cell concentration of these agents. High ROS levels can result from an altered balance between oxidant generation and intracellular antioxidant activity and can produce harmful effects. In contrast, low amounts of ROS are considered beneficial, since they trigger signaling pathways involved in physiological activities and programmed cell death, with protective effects against melanoma. Here, we examine these beneficial roles, which could have interesting implications in melanoma treatment.
Collapse
|
34
|
Structural and Functional Characterization of One Unclassified Glutathione S-Transferase in Xenobiotic Adaptation of Leptinotarsa decemlineata. Int J Mol Sci 2021; 22:ijms222111921. [PMID: 34769352 PMCID: PMC8584303 DOI: 10.3390/ijms222111921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022] Open
Abstract
Arthropod Glutathione S-transferases (GSTs) constitute a large family of multifunctional enzymes that are mainly associated with xenobiotic or stress adaptation. GST-mediated xenobiotic adaptation takes place through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against oxidative stress induced by xenobiotic exposure. To date, the roles of GSTs in xenobiotic adaptation in the Colorado potato beetle (CPB), a notorious agricultural pest of plants within Solanaceae, have not been well studied. Here, we functionally expressed and characterized an unclassified-class GST, LdGSTu1. The three-dimensional structure of the LdGSTu1 was solved with a resolution up to 1.8 Å by X-ray crystallography. The signature motif VSDGPPSL was identified in the “G-site”, and it contains the catalytically active residue Ser14. Recombinant LdGSTu1 was used to determine enzyme activity and kinetic parameters using 1-chloro-2, 4-dinitrobenzene (CDNB), GSH, p-nitrophenyl acetate (PNA) as substrates. The enzyme kinetic parameters and enzyme-substrate interaction studies demonstrated that LdGSTu1 could catalyze the conjugation of GSH to both CDNB and PNA, with a higher turnover number for CDNB than PNA. The LdGSTu1 enzyme inhibition assays demonstrated that the enzymatic conjugation of GSH to CDNB was inhibited by multiple pesticides, suggesting a potential function of LdGSTu1 in xenobiotic adaptation.
Collapse
|
35
|
Sadgrove NJ, Padilla-González GF, Leuner O, Melnikovova I, Fernandez-Cusimamani E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front Pharmacol 2021; 12:740302. [PMID: 34744723 PMCID: PMC8566702 DOI: 10.3389/fphar.2021.740302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary critically examines the modern paradigm of natural volatiles in 'medical aromatherapy', first by explaining the semantics of natural volatiles in health, then by addressing chemophenetic challenges to authenticity or reproducibility, and finally by elaborating on pharmacokinetic and pharmacodynamic processes in food, therapy, and disease prophylaxis. Research over the last 50 years has generated substantial knowledge of the chemical diversity of volatiles, and their strengths and weaknesses as antimicrobial agents. However, due to modest in vitro outcomes, the emphasis has shifted toward the ability to synergise or potentiate non-volatile natural or pharmaceutical drugs, and to modulate gene expression by binding to the lipophilic domain of mammalian cell receptors. Because essential oils and natural volatiles are small and lipophilic, they demonstrate high skin penetrating abilities when suitably encapsulated, or if derived from a dietary item they bioaccumulate in fatty tissues in the body. In the skin or body, they may synergise or drive de novo therapeutic outcomes that range from anti-inflammatory effects through to insulin sensitisation, dermal rejuvenation, keratinocyte migration, upregulation of hair follicle bulb stem cells or complementation of anti-cancer therapies. Taking all this into consideration, volatile organic compounds should be examined as candidates for prophylaxis of cardiovascular disease. Considering the modern understanding of biology, the science of natural volatiles may need to be revisited in the context of health and nutrition.
Collapse
Affiliation(s)
| | | | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ingrid Melnikovova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
36
|
Human kidney organoids reveal the role of glutathione in Fabry disease. Exp Mol Med 2021; 53:1580-1591. [PMID: 34654880 PMCID: PMC8568890 DOI: 10.1038/s12276-021-00683-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disease caused by a mutation in the galactosidase alpha (GLA) gene. Despite advances in therapeutic technologies, the lack of humanized experimental models of Fabry disease has limited the development of new therapies to cure the disease. Herein, we modeled Fabry disease using human inducible pluripotent stem cell (iPSC)-derived kidney organoids and the CRISPR-Cas9 genome-editing system. GLA-mutant human kidney organoids revealed deformed podocytes and tubular cells with accumulation of globotriaosylceramide (Gb3). Ultrastructural analysis showed abundant electron-dense granular deposits and electron-dense lamellate lipid-like deposits that formed concentric bodies (zebra bodies) in the cytoplasm of podocytes and tubules. The oxidative stress level was increased in GLA-mutant kidney organoids, and the increase was accompanied by apoptosis. Enzyme replacement treatment (ERT) with recombinant human α-Gal A decreased the Gb3 accumulation and oxidative stress, which resulted in amelioration of the deformed cellular structure of the GLA-mutant kidney organoids. Transcription profile analyses showed decreased glutathione (GSH) metabolism in GLA-mutant kidney organoids. GSH replacement treatment decreased oxidative stress and attenuated the structural deformity of the GLA-mutant kidney organoids. GSH treatment also increased the expression of podocyte and tubular markers and decreased apoptosis. In conclusion, GLA-mutant kidney organoids derived from human iPSCs are valuable tools for studying the mechanisms and developing novel therapeutic alternatives for Fabry disease.
Collapse
|
37
|
Lupiáñez JA, Rufino-Palomares EE. Phytochemicals: "A Small Defensive Advantage for Plants and Fungi; a Great Remedy for the Health of Mankind". Molecules 2021; 26:molecules26206159. [PMID: 34684740 PMCID: PMC8538969 DOI: 10.3390/molecules26206159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- José A. Lupiáñez
- Correspondence: (J.A.L.); (E.E.R.-P.); Tel.: +34-958-243089 (J.A.L.); +34-958-243252 (E.E.R.-P.); Fax: +34-958-249945 (J.A.L. & E.E.R.-P.)
| | - Eva E. Rufino-Palomares
- Correspondence: (J.A.L.); (E.E.R.-P.); Tel.: +34-958-243089 (J.A.L.); +34-958-243252 (E.E.R.-P.); Fax: +34-958-249945 (J.A.L. & E.E.R.-P.)
| |
Collapse
|
38
|
Dai L, Gao H, Chen H. Expression Levels of Detoxification Enzyme Genes from Dendroctonus armandi (Coleoptera: Curculionidae) Fed on a Solid Diet Containing Pine Phloem and Terpenoids. INSECTS 2021; 12:insects12100926. [PMID: 34680695 PMCID: PMC8541301 DOI: 10.3390/insects12100926] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The bark beetle is the most well-known pest in coniferous trees worldwide. These insects only leave the host pine bark when they disperse to locate a new host. Determining how Dendroctonus armandi overcome the trees’ terpene-based defense systems has been the key problem in the study of bark beetles. Therefore, the aim of this study was to discover the molecular mechanism of insect detoxification enzymes’ ability to confer resistance to terpenes. For this purpose, the genes of cytochrome P450s, glutathione S-transferases, and carboxylesterases were studied in beetles given diets containing terpenes. The results suggest that beetles express different genes in response to terpenoids, and the responses of multiple detoxifying enzymes indicate these insects’ adaption to their chemical environment. Abstract Bark beetles overcome the toxic terpenoids produced by pine trees by both detoxifying and converting them into a pheromone system. Detoxification enzymes such as cytochrome P450s, glutathione S-transferases, and carboxylesterases are involved in the ability of Dendroctonus armandi to adapt to its chemical environment. Ten genes from these three major classes of detoxification enzymes were selected to study how these enzymes help D. armandi to respond to the host defenses. The expression profile of these detoxification enzyme genes was observed in adult beetles after feeding on different types of diet. Significant differences were observed between two types of seminatural diet containing the phloem of pines, and a purely artificial diet containing five monoterpenes ((−)-α-pinene, (−)-β-pinene, (+)-3-carene, (±)-limonene, and turpentine oil) also caused differential transcript levels in the detoxification enzyme genes. The results suggest that monoterpenes enter the beetles through different routes (i.e., respiratory and digestive systems) and cause the expression of different genes in response, which might be involved in pheromone metabolism. In addition, the xenobiotic metabolism in bark beetles should be considered as a system comprising multiple detoxifying enzymes.
Collapse
Affiliation(s)
- Lulu Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210000, China;
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-020-85280256
| |
Collapse
|
39
|
The Relationship of Glutathione- S-Transferase and Multi-Drug Resistance-Related Protein 1 in Nitric Oxide (NO) Transport and Storage. Molecules 2021; 26:molecules26195784. [PMID: 34641326 PMCID: PMC8510172 DOI: 10.3390/molecules26195784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide is a diatomic gas that has traditionally been viewed, particularly in the context of chemical fields, as a toxic, pungent gas that is the product of ammonia oxidation. However, nitric oxide has been associated with many biological roles including cell signaling, macrophage cytotoxicity, and vasodilation. More recently, a model for nitric oxide trafficking has been proposed where nitric oxide is regulated in the form of dinitrosyl-dithiol-iron-complexes, which are much less toxic and have a significantly greater half-life than free nitric oxide. Our laboratory has previously examined this hypothesis in tumor cells and has demonstrated that dinitrosyl-dithiol-iron-complexes are transported and stored by multi-drug resistance-related protein 1 and glutathione-S-transferase P1. A crystal structure of a dinitrosyl-dithiol-iron complex with glutathione-S-transferase P1 has been solved that demonstrates that a tyrosine residue in glutathione-S-transferase P1 is responsible for binding dinitrosyl-dithiol-iron-complexes. Considering the roles of nitric oxide in vasodilation and many other processes, a physiological model of nitric oxide transport and storage would be valuable in understanding nitric oxide physiology and pathophysiology.
Collapse
|
40
|
Valenzuela-Chavira I, Corona-Martinez DO, Garcia-Orozco KD, Beltran-Torres M, Sanchez-Lopez F, Arvizu-Flores AA, Sugich-Miranda R, Lopez-Zavala AA, Robles-Zepeda RE, Islas-Osuna MA, Ochoa-Leyva A, Toney MD, Serrano-Posada H, Sotelo-Mundo RR. A Novel Glutathione S-Transferase Gtt2 Class (VpGSTT2) Is Found in the Genome of the AHPND/EMS Vibrio parahaemolyticus Shrimp Pathogen. Toxins (Basel) 2021; 13:664. [PMID: 34564668 PMCID: PMC8472993 DOI: 10.3390/toxins13090664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
Glutathione S-transferases are a family of detoxifying enzymes that catalyze the conjugation of reduced glutathione (GSH) with different xenobiotic compounds using either Ser, Tyr, or Cys as a primary catalytic residue. We identified a novel GST in the genome of the shrimp pathogen V. parahaemolyticus FIM- S1708+, a bacterial strain associated with Acute Hepatopancreatic Necrosis Disease (AHPND)/Early Mortality Syndrome (EMS) in cultured shrimp. This new GST class was named Gtt2. It has an atypical catalytic mechanism in which a water molecule instead of Ser, Tyr, or Cys activates the sulfhydryl group of GSH. The biochemical properties of Gtt2 from Vibrio parahaemolyticus (VpGSTT2) were characterized using kinetic and crystallographic methods. Recombinant VpGSTT2 was enzymatically active using GSH and CDNB as substrates, with a specific activity of 5.7 units/mg. Low affinity for substrates was demonstrated using both Michaelis-Menten kinetics and isothermal titration calorimetry. The crystal structure showed a canonical two-domain structure comprising a glutathione binding G-domain and a hydrophobic ligand H domain. A water molecule was hydrogen-bonded to residues Thr9 and Ser 11, as reported for the yeast Gtt2, suggesting a primary role in the reaction. Molecular docking showed that GSH could bind at the G-site in the vicinity of Ser11. G-site mutationsT9A and S11A were analyzed. S11A retained 30% activity, while T9A/S11A showed no detectable activity. VpGSTT2 was the first bacterial Gtt2 characterized, in which residues Ser11 and Thr9 coordinated a water molecule as part of a catalytic mechanism that was characteristic of yeast GTT2. The GTT2 family has been shown to provide protection against metal toxicity; in some cases, excess heavy metals appear in shrimp ponds presenting AHPND/EMS. Further studies may address whether GTT2 in V. parahaemolyticus pathogenic strains may provide a competitive advantage as a novel detoxification mechanism.
Collapse
Affiliation(s)
- Ignacio Valenzuela-Chavira
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo 83304, Sonora, Mexico; (I.V.-C.); (K.D.G.-O.)
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico; (A.A.A.-F.); (R.S.-M.); (A.A.L.-Z.); (R.E.R.-Z.)
| | - David O. Corona-Martinez
- Departamento de Ciencias de la Salud, Universidad de Sonora, Cd. Obregón 85040, Sonora, Mexico;
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Karina D. Garcia-Orozco
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo 83304, Sonora, Mexico; (I.V.-C.); (K.D.G.-O.)
| | - Melissa Beltran-Torres
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Filiberto Sanchez-Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de Mexico (UNAM), Cuernavaca 62210, Morelos, Mexico; (F.S.-L.); (A.O.-L.)
| | - Aldo A. Arvizu-Flores
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico; (A.A.A.-F.); (R.S.-M.); (A.A.L.-Z.); (R.E.R.-Z.)
| | - Rocio Sugich-Miranda
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico; (A.A.A.-F.); (R.S.-M.); (A.A.L.-Z.); (R.E.R.-Z.)
| | - Alonso A. Lopez-Zavala
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico; (A.A.A.-F.); (R.S.-M.); (A.A.L.-Z.); (R.E.R.-Z.)
| | - Ramon E. Robles-Zepeda
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico; (A.A.A.-F.); (R.S.-M.); (A.A.L.-Z.); (R.E.R.-Z.)
| | - Maria A. Islas-Osuna
- Laboratorio de Genética Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo 83304, Sonora, Mexico;
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de Mexico (UNAM), Cuernavaca 62210, Morelos, Mexico; (F.S.-L.); (A.O.-L.)
| | - Michael D. Toney
- Department of Chemistry, The University of California, Davis, CA 95616, USA;
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Colima 28629, Colima, Mexico
| | - Rogerio R. Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo 83304, Sonora, Mexico; (I.V.-C.); (K.D.G.-O.)
| |
Collapse
|
41
|
Liu H, Tang Y, Wang Q, Shi H, Yin J, Li C. Identification and Characterization of an Antennae-Specific Glutathione S-Transferase From the Indian Meal Moth. Front Physiol 2021; 12:727619. [PMID: 34512396 PMCID: PMC8427598 DOI: 10.3389/fphys.2021.727619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Insect glutathione-S-transferases (GSTs) play essential roles in metabolizing endogenous and exogenous compounds. GSTs that are uniquely expressed in antennae are assumed to function as scavengers of pheromones and host volatiles in the odorant detection system. Based on this assumption, antennae-specific GSTs have been identified and functionally characterized in increasing number of insect species. In the present study, 17 putative GSTs were identified from the antennal transcriptomic dataset of the Indian meal moth, Plodia interpunctella, a severe stored-grain pest worldwide. Among the GSTs, only PiGSTd1 is antennae-specific according to both Fragments Per Kilobase Million (FPKM) and quantitative real-time PCR (qRT-PCR) analysis. Sequence analysis revealed that PiGSTd1 has a similar identity as many delta GSTs from other moths. Enzyme kinetic assays using 1-chloro-2,4-dinitrobenzene (CDNB) as substrates showed that the recombinant PiGSTd1 gave a Km of 0.2292 ± 0.01805 mM and a Vmax of 14.02 ± 0.2545 μmol·mg−1·min−1 under the optimal catalytic conditions (35°C and pH = 7.5). Further analysis revealed that the recombinant PiGSTd1 could efficiently degrade the sex pheromone component Z9-12:Ac (75.63 ± 5.52%), as well as aldehyde volatiles, including hexanal (89.10 ± 2.21%), heptanal (63.19 ± 5.36%), (E)-2-octenal (73.58 ± 3.92%), (E)-2-nonenal (75.81 ± 1.90%), and (E)-2-decenal (61.13 ± 5.24%). Taken together, our findings suggest that PiGSTd1 may play essential roles in degrading and inactivating a variety of odorants, especially sex pheromones and host volatiles of P. interpunctella.
Collapse
Affiliation(s)
- Hongmin Liu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Yin Tang
- College of plant protection, Hebei Agricultural University, Baoding, China
| | - Qinying Wang
- College of plant protection, Hebei Agricultural University, Baoding, China
| | - Hongzhong Shi
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Jian Yin
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Chengjun Li
- Tobacco Research Institute, Henan Academy of Agricultural Sciences, Xuchang, China
| |
Collapse
|
42
|
Lienkamp AC, Burnik J, Heine T, Hofmann E, Tischler D. Characterization of the Glutathione S-Transferases Involved in Styrene Degradation in Gordonia rubripertincta CWB2. Microbiol Spectr 2021; 9:e0047421. [PMID: 34319142 PMCID: PMC8552685 DOI: 10.1128/spectrum.00474-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022] Open
Abstract
The glutathione S-transferases carried on the plasmid for the styrene-specific degradation pathway in the Actinobacterium Gordonia rubripertincta CWB2 were heterologously expressed in Escherichia coli. Both enzymes were purified via affinity chromatography and subjected to activity investigations. StyI and StyJ displayed activity toward the commonly used glutathione S-transferase model substrate 1-chloro-2,4-dinitrobenzene (CDNB) with Km values of 0.0682 ± 0.0074 and 2.0281 ± 0.1301 mM and Vmax values of 0.0158 ± 0.0002 and 0.348 ± 0.008 U mg-1 for StyI and StyJ, respectively. The conversion of the natural substrate styrene oxide to the intermediate (1-phenyl-2-hydroxyethyl)glutathione was detected for StyI with 48.3 ± 2.9 U mg-1. This elucidates one more step in the not yet fully resolved styrene-specific degradation pathway of Gordonia rubripertincta CWB2. A characterization of both purified enzymes adds more insight into the scarce research field of actinobacterial glutathione S-transferases. Moreover, a sequence and phylogenetic analysis puts both enzymes into a physiological and evolutionary context. IMPORTANCE Styrene is a toxic compound that is used at a large scale by industry for plastic production. Bacterial degradation of styrene is a possibility for bioremediation and pollution prevention. Intermediates of styrene derivatives degraded in the styrene-specific pathways are precursors for valuable chemical compounds. The pathway in Gordonia rubripertincta CWB2 has proven to accept a broader substrate range than other bacterial styrene degraders. The enzymes characterized in this study, distinguish CWB2s pathway from other known styrene degradation routes and thus might be the main key for its ability to produce ibuprofen from the respective styrene derivative. A biotechnological utilization of this cascade could lead to efficient and sustainable production of drugs, flavors, and fragrances. Moreover, research on glutathione metabolism in Actinobacteria is rare. Here, a characterization of two glutathione S-transferases of actinobacterial origin is presented, and the utilization of glutathione in the metabolism of an Actinobacterium is proven.
Collapse
Affiliation(s)
- Anna C. Lienkamp
- Microbial Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
| | - Jan Burnik
- X-Ray Structure Analysis of Proteins, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Eckhard Hofmann
- X-Ray Structure Analysis of Proteins, Ruhr-Universität Bochum, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
43
|
Are Ancestral Medical Practices the Future Solution to Today's Medical Problems? Molecules 2021; 26:molecules26154701. [PMID: 34361852 PMCID: PMC8348408 DOI: 10.3390/molecules26154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
|
44
|
de Castro BD, Wingen NMDA, Dos Santos SHD, Godoy RS, Maltchik L, Lanés LEK, Oliveira GT. Biomarkers of oxidative stress in the post-embryonic characterization of the neotropical annual killifish. Biogerontology 2021; 22:507-530. [PMID: 34302586 DOI: 10.1007/s10522-021-09931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
Annual killifish are among the most remarkable extremophile species with the shortest vertebrate life span. Few studies have reported on the oxidative balance throughout their life cycle and its association to the natural aging process of these neotropical animals in a natural environment. We standardized and analyzed physiological markers related to the redox balance of the annual killifish (Cynopoecilus fulgens) throughout the post-embryonic life cycle (enzyme activity of Superoxide Dismutase, Catalase, Glutathione Peroxidase, and Glutathione S-transferase, as well as the determination of the levels of Lipoperoxidation, Carbonylated Proteins, and Total Proteins). We tested the influence of environmental variables on these biomarkers. Individuals were collected, including juveniles, adults, and seniles, in three sampling units around the Parque Nacional da Lagoa do Peixe, located in the Coastal Plain of Rio Grande do Sul. We observed that males and females used different physiological strategies of their redox balance during their life cycle, and their oxidative balance was influenced by their reproductive period and environmental variables (water temperature, abundance of predators, abundance of another sympatric annual killifish species, and abundance of C. fulgens). The population of each temporary pond presented different physiological responses to the adaptation of their life cycle, and there was an influence of environmental component as a modulator of this cycle. Our study offers reference values that will be useful for comparison in future research with short-lived organisms.
Collapse
Affiliation(s)
- Bruna Dutra de Castro
- Conservation Physiology Laboratory, School of Health and Life Sciences, PUCRS, Porto Alegre, RS, Brazil
| | | | | | - Robson Souza Godoy
- Laboratory of Ecology and Conservation of Aquatic Ecosystems, Health Sciences Center, UNISINOS, São Leopoldo, RS, Brazil
| | - Leonardo Maltchik
- Laboratory of Ecology and Conservation of Aquatic Ecosystems, Health Sciences Center, UNISINOS, São Leopoldo, RS, Brazil
| | - Luis Esteban Krause Lanés
- Conservation Physiology Laboratory, School of Health and Life Sciences, PUCRS, Porto Alegre, RS, Brazil
| | - Guendalina Turcato Oliveira
- Conservation Physiology Laboratory, School of Health and Life Sciences, PUCRS, Porto Alegre, RS, Brazil.
- Conservation Physiology Laboratory, Department of Morphophysiological Sciences, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul, Ipiranga Avenue, 6681 Pd. 12, Block C, class 270, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
45
|
Prysyazhnyuk V, Sydorchuk L, Sydorchuk R, Prysiazhniuk I, Bobkovych K, Buzdugan I, Dzuryak V, Prysyazhnyuk P. Glutathione-S-transferases genes-promising predictors of hepatic dysfunction. World J Hepatol 2021; 13:620-633. [PMID: 34239698 PMCID: PMC8239493 DOI: 10.4254/wjh.v13.i6.620] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most commonly known genes involved in chronic diffuse liver diseases pathogenesis are genes that encodes the synthesis of glutathione-S-transferase (GST), known as the second phase enzyme detoxification system that protects against endogenous oxidative stress and exogenous toxins, through catalisation of glutathione sulfuric groups conjugation and decontamination of lipid and deoxyribonucleic acid oxidation products. The group of GST enzymes consists of cytosolic, mitochondrial and microsomal fractions. Recently, eight classes of soluble cytoplasmic isoforms of GST enzymes are widely known: α-, ζ-, θ-, κ-, μ-, π-, σ-, and ω-. The GSTs gene family in the Human Gene Nomenclature Committee, online database recorded over 20 functional genes. The level of GSTs expression is considered to be a crucial factor in determining the sensitivity of cells to a broad spectrum of toxins. Nevertheless, human GSTs genes have multiple and frequent polymorphisms that include the complete absence of the GSTM1 or the GSTT1 gene. Current review supports the position that genetic polymorphism of GST genes is involved in the pathogenesis of various liver diseases, particularly non-alcoholic fatty liver disease, hepatitis and liver cirrhosis of different etiology and hepatocellular carcinoma. Certain GST allelic variants were proven to be associated with susceptibility to hepatological pathology, and correlations with the natural course of the diseases were subsequently postulated.
Collapse
Affiliation(s)
- Vasyl Prysyazhnyuk
- Department of Propedeutics of Internal Diseases, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine.
| | - Larysa Sydorchuk
- Department of Family Medicine, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Ruslan Sydorchuk
- Department of Surgery, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Iryna Prysiazhniuk
- Department of Internal Medicine and Invectious Diseases, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Kateryna Bobkovych
- Department of Propedeutics of Internal Diseases, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Inna Buzdugan
- Department of Internal Medicine and Invectious Diseases, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Valentina Dzuryak
- Department of Family Medicine, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| | - Petro Prysyazhnyuk
- Department of Medical and Pharmaceutical Chemistry, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
| |
Collapse
|
46
|
Makri S, Raftopoulou S, Kafantaris I, Kotsampasi B, Christodoulou V, Nepka C, Veskoukis AS, Kouretas D. Biofunctional Feed Supplemented With By-products of Olive Oil Production Improves Tissue Antioxidant Profile of Lambs. In Vivo 2021; 34:1811-1821. [PMID: 32606151 DOI: 10.21873/invivo.11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Olive mill wastewater (OMW) is a byproduct of olive oil production. The aim of the study was to estimate the redox profile of lambs' vital organs after consumption of an OMW-supplemented feed. MATERIALS AND METHODS Twenty-four lambs received breast milk until day 15. Then, they were divided in two groups: control and OMW, n=12 each. The control group received standard ration, while the OMW group received OMW enriched feed along with mother's milk until day 42 and animals (n=6 per group) were sacrificed. The remaining 12 received the feeds until day 70 and sacrificed. Tissue samples were collected at day 42 and 70 and specific redox biomarkers were assessed. RESULTS Overall, the OMW feed improved tissue redox profile by affecting the glutathione S-transferase (GST) activity and γ-glutamate-cysteine ligase (γ-GCL) expression in all tested tissues. Superoxide dismutase (SOD) activity was not affected. CONCLUSION The polyphenol-rich byproduct reinforced lamb redox profile and may putatively improve their wellness and productivity.
Collapse
Affiliation(s)
- Sotiria Makri
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Sofia Raftopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Kafantaris
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Basiliki Kotsampasi
- Research Institute of Animal Science/Hellenic Agricultural Organization Demeter, Giannitsa, Greece
| | - Vladimiros Christodoulou
- Research Institute of Animal Science/Hellenic Agricultural Organization Demeter, Giannitsa, Greece
| | - Charitini Nepka
- Department of Pathology, University Hospital of Larissa, Larissa, Greece
| | - Aristidis S Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
47
|
Resistance in the Genus Spodoptera: Key Insect Detoxification Genes. INSECTS 2021; 12:insects12060544. [PMID: 34208014 PMCID: PMC8230579 DOI: 10.3390/insects12060544] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
The genus Spodoptera (Lepidoptera: Noctuidae) includes species that are among the most important crop pests in the world. These polyphagous species are able to feed on many plants, including corn, rice and cotton. In addition to their ability to adapt to toxic compounds produced by plants, they have developed resistance to the chemical insecticides used for their control. One of the main mechanisms developed by insects to become resistant involves detoxification enzymes. In this review, we illustrate some examples of the role of major families of detoxification enzymes such as cytochromes P450, carboxyl/cholinesterases, glutathione S-transferases (GST) and transporters such as ATP-binding cassette (ABC) transporters in insecticide resistance. We compare available data for four species, Spodoptera exigua, S. frugiperda, S. littoralis and S. litura. Molecular mechanisms underlying the involvement of these genes in resistance will be described, including the duplication of the CYP9A cluster, over-expression of GST epsilon or point mutations in acetylcholinesterase and ABCC2. This review is not intended to be exhaustive but to highlight the key roles of certain genes.
Collapse
|
48
|
He Y, Zhu L, Ma J, Lin G. Metabolism-mediated cytotoxicity and genotoxicity of pyrrolizidine alkaloids. Arch Toxicol 2021; 95:1917-1942. [PMID: 34003343 DOI: 10.1007/s00204-021-03060-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
49
|
Scherlach K, Kuttenlochner W, Scharf DH, Brakhage AA, Hertweck C, Groll M, Huber EM. Structural and Mechanistic Insights into C-S Bond Formation in Gliotoxin. Angew Chem Int Ed Engl 2021; 60:14188-14194. [PMID: 33909314 PMCID: PMC8251611 DOI: 10.1002/anie.202104372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 12/01/2022]
Abstract
Glutathione‐S‐transferases (GSTs) usually detoxify xenobiotics. The human pathogenic fungus Aspergillus fumigatus however uses the exceptional GST GliG to incorporate two sulfur atoms into its virulence factor gliotoxin. Because these sulfurs are essential for biological activity, glutathionylation is a key step of gliotoxin biosynthesis. Yet, the mechanism of carbon−sulfur linkage formation from a bis‐hydroxylated precursor is unresolved. Here, we report structures of GliG with glutathione (GSH) and its reaction product cyclo[‐l‐Phe‐l‐Ser]‐bis‐glutathione, which has been purified from a genetically modified A. fumigatus strain. The structures argue for stepwise processing of first the Phe and second the Ser moiety. Enzyme‐mediated dehydration of the substrate activates GSH and a helix dipole stabilizes the resulting anion via a water molecule for the nucleophilic attack. Activity assays with mutants validate the interactions of GliG with the ligands and enrich our knowledge about enzymatic C−S bond formation in gliotoxin and epipolythiodioxopiperazine (ETP) natural compounds in general.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Wolfgang Kuttenlochner
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| | - Daniel H Scharf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Department of Microbiology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, P.R. China
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael Groll
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| | - Eva M Huber
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| |
Collapse
|
50
|
Li X, Lü Z, Wang C, Li K, Xu F, Xu P, Niu Y. Induction of Apoptosis in Cancer Cells by Glutathione Transferase Inhibitor Mediated Hydrophobic Tagging Molecules. ACS Med Chem Lett 2021; 12:720-725. [PMID: 34055217 DOI: 10.1021/acsmedchemlett.0c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
The abnormally high expression of glutathione transferases is closely associated with cancer incidence and drug resistance. By introducing a hydrophobic moiety to the inhibitor structure, we organized a series of degraders of glutathione transferases and demonstrated them potently inducing apoptosis in cancer cells, presenting their pharmacological potential in cancer therapy.
Collapse
Affiliation(s)
- Xiaona Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Zirui Lü
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Cong Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Kebin Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|