1
|
Chakroborty D, Goswami S, Fan H, Frankel WL, Basu S, Sarkar C. Neuropeptide Y, a paracrine factor secreted by cancer cells, is an independent regulator of angiogenesis in colon cancer. Br J Cancer 2022; 127:1440-1449. [PMID: 35902640 PMCID: PMC9553928 DOI: 10.1038/s41416-022-01916-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Resistance to anti-angiogenic therapies targeting vascular endothelial growth factor-A (VEGF-A) stems from VEGF-A independent angiogenesis mediated by other proangiogenic factors. Therefore identifying these factors in colon adenocarcinoma (CA) will reveal new therapeutic targets. METHODS Neuropeptide Y (NPY) and Y2 receptor (Y2R) expressions in CA were studied by immunohistochemical analysis. Orthotopic HT29 with intact VEGF-A gene and VEGF-A knockdown (by CRISPR/Cas9 gene-editing technique) HT29 colon cancer-bearing mice were treated with specific Y2R antagonists, and the effects on angiogenesis and tumour growth were studied. The direct effect of NPY on angiogenesis and the underlying molecular mechanism was elucidated by the modulation of Y2R receptors expressed on colonic endothelial cells (CEC). RESULTS The results demonstrated that NPY and Y2R are overexpressed in human CA, orthotopic HT29, and most interestingly in VEGF-A-depleted orthotopic HT29 tumours. Treatment with Y2R antagonists inhibited angiogenesis and thereby HT29 tumour growth. Blocking /silencing Y2R abrogated NPY-induced angiogenic potential of CEC. Mechanistically, NPY regulated the activation of the ERK/MAPK signalling pathway in CEC. CONCLUSIONS NPY derived from cancer cells independently regulates angiogenesis in CA by acting through Y2R present on CEC. Targeting NPY/Y2R thus emerges as a novel potential therapeutic strategy in CA.
Collapse
Affiliation(s)
- Debanjan Chakroborty
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Pathology, University of South Alabama, Mobile, AL, 36617, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Sandeep Goswami
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.,Department of Pathology, University of South Alabama, Mobile, AL, 36617, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Hao Fan
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Wendy L Frankel
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Sujit Basu
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Chandrani Sarkar
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Pathology, University of South Alabama, Mobile, AL, 36617, USA. .,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
2
|
Anderson ZT, Dawson AD, Slominski AT, Harris ML. Current Insights Into the Role of Neuropeptide Y in Skin Physiology and Pathology. Front Endocrinol (Lausanne) 2022; 13:838434. [PMID: 35418942 PMCID: PMC8996770 DOI: 10.3389/fendo.2022.838434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y is widely distributed within the body and has long been implicated as a contributor to skin disease based on the correlative clinical data. However, until recently, there have been few empirical investigations to determine whether NPY has a pathophysiological role in the skin. Due to appearance-altering phenotypes of atopic dermatitis, psoriasis, and vitiligo, those suffering from these diseases often face multiple forms of negative social attention. This often results in psychological stress, which has been shown to exacerbate inflammatory skin diseases - creating a vicious cycle that perpetuates disease. This has been shown to drive severe depression, which has resulted in suicidal ideation being a comorbidity of these diseases. Herein, we review what is currently known about the associations of NPY with skin diseases and stress. We also review and provide educated guessing what the effects NPY can have in the skin. Inflammatory skin diseases can affect physical appearance to have significant, negative impacts on quality of life. No cure exists for these conditions, highlighting the need for identification of novel proteins/neuropetides, like NPY, that can be targeted therapeutically. This review sets the stage for future investigations into the role of NPY in skin biology and pathology to stimulate research on therapeutic targeting NPY signaling in order to combat inflammatory skin diseases.
Collapse
Affiliation(s)
- Zoya T. Anderson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alex D. Dawson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, United States
- Veteran Administration Medical Center, Birmingham, AL, United States
| | - Melissa L. Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Huang Y, Lin X, Lin S. Neuropeptide Y and Metabolism Syndrome: An Update on Perspectives of Clinical Therapeutic Intervention Strategies. Front Cell Dev Biol 2021; 9:695623. [PMID: 34307371 PMCID: PMC8299562 DOI: 10.3389/fcell.2021.695623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Through the past decade of research, the pathogenic mechanisms underlying metabolic syndrome have been suggested to involve not only the peripheral tissues, but also central metabolic regulation imbalances. The hypothalamus, and the arcuate nucleus in particular, is the control center for metabolic homeostasis and energy balance. Neuropeptide Y neurons are particularly abundantly expressed in the arcuate of the hypothalamus, where the blood-brain barrier is weak, such as to critically integrate peripheral metabolic signals with the brain center. Herein, focusing on metabolic syndrome, this manuscript aims to provide an overview of the regulatory effects of Neuropeptide Y on metabolic syndrome and discuss clinical intervention strategy perspectives for neurometabolic disease.
Collapse
Affiliation(s)
- Yinqiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiahong Lin
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
4
|
Wu JQ, Jiang N, Yu B. Mechanisms of action of neuropeptide Y on stem cells and its potential applications in orthopaedic disorders. World J Stem Cells 2020; 12:986-1000. [PMID: 33033559 PMCID: PMC7524693 DOI: 10.4252/wjsc.v12.i9.986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life. The neuro-osteogenic network is one of the most promising fields in orthopaedic research. Neuropeptide Y (NPY) system has been reported to be involved in the regulations of bone metabolism and homeostasis, which also provide feedback to the central NPY system via NPY receptors. Currently, potential roles of peripheral NPY in bone metabolism remain unclear. Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells, hematopoietic stem cells, endothelial cells, and chondrocytes via a local autocrine or paracrine manner by different NPY receptors. The regulative activities of NPY may be achieved through the plasticity of NPY receptors, and interactions among the targeted cells as well. In general, NPY can influence proliferation, apoptosis, differentiation, migration, mobilization, and cytokine secretion of different types of cells, and play crucial roles in the development of bone delayed/non-union, osteoporosis, and osteoarthritis. Further basic research should clarify detailed mechanisms of action of NPY on stem cells, and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Jian-Qun Wu
- Department of Orthopedics and Traumatology, Huadu District People’s Hospital, Guangzhou 510800, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
5
|
Ramírez-Orozco RE, García-Ruiz R, Morales P, Villalón CM, Villafán-Bernal JR, Marichal-Cancino BA. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr Neuropharmacol 2020; 17:947-960. [PMID: 31146657 PMCID: PMC7052828 DOI: 10.2174/1570159x17666190118143014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Endocannabinoids are ancient biomolecules involved in several cellular (e.g., metabolism) and physiological (e.g., eating behaviour) functions. Indeed, eating behaviour alterations in marijuana users have led to investigate the orexigen-ic/anorexigenic effects of cannabinoids in animal/human models. This increasing body of research suggests that the endo-cannabinoid system plays an important role in feeding control. Accordingly, within the endocannabinoid system, canna-binoid receptors, enzymes and genes represent potential therapeutic targets for dealing with multiple metabolic and behav-ioural dysfunctions (e.g., obesity, anorexia, etc.). Paradoxically, our understanding on the endocannabinoid system as a cel-lular mediator is yet limited. For example: (i) only two cannabinoid receptors have been classified, but they are not enough to explain the pharmacological profile of several experimental effects induced by cannabinoids; and (ii) several orphan G pro-tein-coupled receptors (GPCRs) interact with cannabinoids and we do not know how to classify them (e.g., GPR18, GPR55 and GPR119; amongst others). On this basis, the present review attempts to summarize the lines of evidence supporting the potential role of GPR18, GPR55 and GPR119 in metabolism and feeding control that may explain some of the divergent effects and puzzling data re-lated to cannabinoid research. Moreover, their therapeutic potential in feeding behaviour alterations will be considered.
Collapse
Affiliation(s)
- Ricardo E Ramírez-Orozco
- Departamento de Nutricion y Cultura Fisica, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| | - Ricardo García-Ruiz
- Departamento de Fisiologia, Facultad de Medicina. Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Paula Morales
- Instituto de Quimica Fisica Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav- Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 Ciudad de Mexico, Mexico
| | - J Rafael Villafán-Bernal
- Departamento de Cirugia, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, CP 20131 Aguascalientes, Ags, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| |
Collapse
|
6
|
Businaro R, Scaccia E, Bordin A, Pagano F, Corsi M, Siciliano C, Capoano R, Procaccini E, Salvati B, Petrozza V, Totta P, Vietri MT, Frati G, De Falco E. Platelet Lysate-Derived Neuropeptide y Influences Migration and Angiogenesis of Human Adipose Tissue-Derived Stromal Cells. Sci Rep 2018; 8:14365. [PMID: 30254326 PMCID: PMC6156505 DOI: 10.1038/s41598-018-32623-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide Y (NPY), a powerful neurotransmitter of the central nervous system, is a key regulator of angiogenesis and biology of adipose depots. Intriguingly, its peripheral vascular and angiogenic powerful activity is strictly associated to platelets, which are source of clinical hemoderivates, such as platelet lysate (PL), routinely employed in several clinical applications as wound healing, and to preserve ex vivo the progenitor properties of the adipose stromal cells pool. So far, the presence of NPY in PL and its biological effects on the adipose stromal cell fraction (ASCs) have never been investigated. Here, we aimed to identify endogenous sources of NPY such as PL-based preparations and to investigate which biological properties PL-derived NPY is able to exert on ASCs. The results show that PL contains a high amount of NPY, which is in part also excreted by ASCs when stimulated with PL. The protein levels of the three main NPY subtype receptors (Y1, Y2, Y5) are unaltered by stimulation of ASCs with PL, but their inhibition through selective pharmacological antagonists, considerably enhances migration, and a parallel reduction of angiogenic features of ASCs including decrease in VEGF mRNA and intracellular calcium levels, both downstream targets of NPY. The expression of VEGF and NPY is enhanced within the sites of neovascularisation of difficult wounds in patients after treatment with leuco-platelet concentrates. Our data highlight the presence of NPY in PL preparations and its peripheral effects on adipose progenitors.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Eleonora Scaccia
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Antonella Bordin
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Francesca Pagano
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Mariangela Corsi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Camilla Siciliano
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Raffaele Capoano
- Department of Surgical Sciences, Sapienza University of Rome, V.le del Policlinico 155, 00161, Rome, Italy
| | - Eugenio Procaccini
- Breast Unit, A.O. U. Università della Campania Luigi Vanvitelli, piazza Luigi Miraglia, 280138, Naples, Italy
| | - Bruno Salvati
- Department of Surgical Sciences, Sapienza University of Rome, V.le del Policlinico 155, 00161, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | | | - Maria Teresa Vietri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Giacomo Frati
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS NeuroMed, 86077, Pozzilli, (IS), Italy
| | - Elena De Falco
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy.
| |
Collapse
|
7
|
Alves CJ, Alencastre IS, Neto E, Ribas J, Ferreira S, Vasconcelos DM, Sousa DM, Summavielle T, Lamghari M. Bone Injury and Repair Trigger Central and Peripheral NPY Neuronal Pathways. PLoS One 2016; 11:e0165465. [PMID: 27802308 PMCID: PMC5089690 DOI: 10.1371/journal.pone.0165465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
Bone repair is a specialized type of wound repair controlled by complex multi-factorial events. The nervous system is recognized as one of the key regulators of bone mass, thereby suggesting a role for neuronal pathways in bone homeostasis. However, in the context of bone injury and repair, little is known on the interplay between the nervous system and bone. Here, we addressed the neuropeptide Y (NPY) neuronal arm during the initial stages of bone repair encompassing the inflammatory response and ossification phases in femoral-defect mouse model. Spatial and temporal analysis of transcriptional and protein levels of NPY and its receptors, Y1R and Y2R, reported to be involved in bone homeostasis, was performed in bone, dorsal root ganglia (DRG) and hypothalamus after femoral injury. The results showed that NPY system activity is increased in a time- and space-dependent manner during bone repair. Y1R expression was trigged in both bone and DRG throughout the inflammatory phase, while a Y2R response was restricted to the hypothalamus and at a later stage, during the ossification step. Our results provide new insights into the involvement of NPY neuronal pathways in bone repair.
Collapse
Affiliation(s)
- Cecília J. Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Inês S. Alencastre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), Porto, Portugal
| | - João Ribas
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Sofia Ferreira
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Daniel M. Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Teresa Summavielle
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
8
|
Geloso MC, Corvino V, Di Maria V, Marchese E, Michetti F. Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Front Cell Neurosci 2015; 9:85. [PMID: 25852477 PMCID: PMC4360818 DOI: 10.3389/fncel.2015.00085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are emerging as key regulators of stem cell niche activities in health and disease, both inside and outside the central nervous system (CNS). Among them, neuropeptide Y (NPY), one of the most abundant neuropeptides both in the nervous system and in non-neural districts, has become the focus of much attention for its involvement in a wide range of physiological and pathological conditions, including the modulation of different stem cell activities. In particular, a pro-neurogenic role of NPY has been evidenced in the neurogenic niche, where a direct effect on neural progenitors has been demonstrated, while different cellular types, including astrocytes, microglia and endothelial cells, also appear to be responsive to the peptide. The marked modulation of the NPY system during several pathological conditions that affect neurogenesis, including stress, seizures and neurodegeneration, further highlights the relevance of this peptide in the regulation of adult neurogenesis. In view of the considerable interest in understanding the mechanisms controlling neural cell fate, this review aims to summarize and discuss current data on NPY signaling in the different cellular components of the neurogenic niche in order to elucidate the complexity of the mechanisms underlying the modulatory properties of this peptide.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
9
|
Skobowiat C, Panasiewicz G, Gizejewski Z, Szafranska B. Co-expression pattern of dopamine beta-hydroxylase (DβH) and neuropeptide Y (NPY) within sympathetic innervation of ovary and umbilical cord of the European bison (Bison bonasus L.). Tissue Cell 2013; 45:402-6. [DOI: 10.1016/j.tice.2013.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
|
10
|
Virolainen SM, Achim K, Peltopuro P, Salminen M, Partanen J. Transcriptional regulatory mechanisms underlying the GABAergic neuron fate in different diencephalic prosomeres. Development 2012; 139:3795-805. [DOI: 10.1242/dev.075192] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diverse mechanisms regulate development of GABAergic neurons in different regions of the central nervous system. We have addressed the roles of a proneural gene, Ascl1, and a postmitotic selector gene, Gata2, in the differentiation of GABAergic neuron subpopulations in three diencephalic prosomeres: prethalamus (P3), thalamus (P2) and pretectum (P1). Although the different proliferative progenitor populations of GABAergic neurons commonly express Ascl1, they have distinct requirements for it in promotion of cell-cycle exit and GABAergic neuron identity. Subsequently, Gata2 is activated as postmitotic GABAergic precursors are born. In P1, Gata2 regulates the neurotransmitter identity by promoting GABAergic and inhibiting glutamatergic neuron differentiation. Interestingly, Gata2 defines instead the subtype of GABAergic neurons in the rostral thalamus (pTh-R), which is a subpopulation of P2. Without Gata2, the GABAergic precursors born in the pTh-R fail to activate subtype-specific markers, but start to express genes typical of GABAergic precursors in the neighbouring P3 domain. Thus, our results demonstrate diverse mechanisms regulating differentiation of GABAergic neuron subpopulations and suggest a role for Gata2 as a selector gene of both GABAergic neuron neurotransmitter and prosomere subtype identities in the developing diencephalon. Our results demonstrate for the first time that neuronal identities between distinct prosomeres can still be transformed in postmitotic neuronal precursors.
Collapse
Affiliation(s)
- Sini-Maaria Virolainen
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 5, FIN00014-University of Helsinki, Helsinki, Finland
| | - Kaia Achim
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 5, FIN00014-University of Helsinki, Helsinki, Finland
| | - Paula Peltopuro
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 5, FIN00014-University of Helsinki, Helsinki, Finland
| | - Marjo Salminen
- Department of Veterinary Biosciences, P.O. Box 66, Agnes Sjobergin katu 2, FIN00014-University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 5, FIN00014-University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
The interplay between the Rab27A effectors Slp4-a and MyRIP controls hormone-evoked Weibel-Palade body exocytosis. Blood 2012; 120:2757-67. [PMID: 22898601 DOI: 10.1182/blood-2012-05-429936] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Weibel-Palade body (WPB) exocytosis underlies hormone-evoked VWF secretion from endothelial cells (ECs). We identify new endogenous components of the WPB: Rab3B, Rab3D, and the Rab27A/Rab3 effector Slp4-a (granuphilin), and determine their role in WPB exocytosis. We show that Rab3B, Rab3D, and Rab27A contribute to Slp4-a localization to WPBs. siRNA knockdown of Slp4-a, MyRIP, Rab3B, Rab3D, Rab27A, or Rab3B/Rab27A, or overexpression of EGFP-Slp4-a or EGFP-MyRIP showed that Slp4-a is a positive and MyRIP a negative regulator of WPB exocytosis and that Rab27A alone mediates these effects. We found that ECs maintain a constant amount of cellular Rab27A irrespective of the WPB pool size and that Rab27A (and Rab3s) cycle between WPBs and a cytosolic pool. The dynamic redistribution of Rab proteins markedly decreased the Rab27A concentration on individual WPBs with increasing WPB number per cell. Despite this, the probability of WPB release was independent of WPB pool size showing that WPB exocytosis is not determined simply by the absolute amount of Rab27A and its effectors on WPBs. Instead, we propose that the probability of release is determined by the fractional occupancy of WPB-Rab27A by Slp4-a and MyRIP, with the balance favoring exocytosis.
Collapse
|
12
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
|
14
|
Lu C, Tilan JU, Everhart L, Czarnecka M, Soldin SJ, Mendu DR, Jeha D, Hanafy J, Lee CK, Sun J, Izycka-Swieszewska E, Toretsky JA, Kitlinska J. Dipeptidyl peptidases as survival factors in Ewing sarcoma family of tumors: implications for tumor biology and therapy. J Biol Chem 2011; 286:27494-505. [PMID: 21680731 DOI: 10.1074/jbc.m111.224089] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ewing sarcoma family of tumors (ESFT) is a group of aggressive pediatric malignancies driven by the EWS-FLI1 fusion protein, an aberrant transcription factor up-regulating specific target genes, such as neuropeptide Y (NPY) and its Y1 and Y5 receptors (Y5Rs). Previously, we have shown that both exogenous NPY and endogenous NPY stimulate ESFT cell death via its Y1 and Y5Rs. Here, we demonstrate that this effect is prevented by dipeptidyl peptidases (DPPs), which cleave NPY to its shorter form, NPY(3-36), not active at Y1Rs. We have shown that NPY-induced cell death can be abolished by overexpression of DPPs and enhanced by their down-regulation. Both NPY treatment and DPP blockade activated the same cell death pathway mediated by poly(ADP-ribose) polymerase (PARP-1) and apoptosis-inducing factor (AIF). Moreover, the decrease in cell survival induced by DPP inhibition was blocked by Y1 and Y5R antagonists, confirming its dependence on endogenous NPY. Interestingly, similar levels of NPY-driven cell death were achieved by blocking membrane DPPIV and cytosolic DPP8 and DPP9. Thus, this is the first evidence of these intracellular DPPs cleaving releasable peptides, such as NPY, in live cells. In contrast, another membrane DPP, fibroblast activation protein (FAP), did not affect NPY actions. In conclusion, DPPs act as survival factors for ESFT cells and protect them from cell death induced by endogenous NPY. This is the first demonstration that intracellular DPPs are involved in regulation of ESFT growth and may become potential therapeutic targets for these tumors.
Collapse
Affiliation(s)
- Congyi Lu
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dyzma M, Boudjeltia KZ, Faraut B, Kerkhofs M. Neuropeptide Y and sleep. Sleep Med Rev 2010; 14:161-5. [DOI: 10.1016/j.smrv.2009.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 11/16/2022]
|
16
|
Gomide VC, Laureano MR, Silveira GA, Chadi G. Neuropeptide Y in Rat Spiral Ganglion Neurons and Inner Hair Cells of Organ of Corti and Effects of a Nontraumatic Acoustic Stimulation. Int J Neurosci 2009; 119:508-30. [DOI: 10.1080/00207450802330462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Kaipio K, Vahlberg T, Suominen M, Pesonen U. The role of non-synonymous NPY gene polymorphism in the nitric oxide production in HUVECs. Biochem Biophys Res Commun 2009; 381:587-91. [PMID: 19245788 DOI: 10.1016/j.bbrc.2009.02.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
A Leu7Pro change in the signal peptide of preproNPY is a functional substitution, which changes the processing of NPY in cells and associates with several cardiovascular and metabolic conditions in humans. The current study investigates the effect of the P7 allele in endothelial cells, where decreased nitric oxide (NO) production is a promoting factor to endothelial dysfunction. The function of NO system was assessed in the human umbilical vein endothelial cells (HUVECs) with [p.L7]+[p.L7] or [p.L7]+[p.P7] genotype. NPY seems to have a significant influence on NO system in HUVECs, and the responses are time and genotype dependent. HUVECs with [p.L7]+[p.P7] genotype seem to have higher basal production of NO, but after a long term treatment with NPY these cells express less eNOS mRNA and overall eNOS protein levels are lower. These significant differences in the NO bioavailability may explain the association of the L7P polymorphism with several cardiovascular complications.
Collapse
Affiliation(s)
- Katja Kaipio
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Finland
| | | | | | | |
Collapse
|
18
|
Kaipio K, Pesonen U. The intracellular mobility of NPY and a putative mitochondrial form of NPY in neuronal cells. Neurosci Lett 2008; 450:181-5. [PMID: 19022345 DOI: 10.1016/j.neulet.2008.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 10/07/2008] [Accepted: 11/04/2008] [Indexed: 11/25/2022]
Abstract
Preproneuropeptide Y is a precursor peptide to mature neuropeptide Y (NPY), which is a universally expressed peptide in the central and peripheral nervous system. NPY is normally routed to endoplasmic reticulum and secretory vesicles in cells, which secrete NPY. In our previous studies, we found a functional Leucine7 to Proline7 (L7P) polymorphism in the signal peptide sequence of preproNPY. This polymorphism affects the secretion of NPY and causes multiple physiological effects in humans. The sequence of NPY mRNA contains two in frame kozak sequences that allow translation initiation to shift, and translation of two proteins. In addition to mature NPY(1-36) also a putative truncated NPY(17-36) with mitochondrial targeting signal is produced. The purpose of this study was to investigate the protein mobility of the putative mitochondrial fragment and the effect of the L7P polymorphism on the cellular level using GFP tagged constructs. The mobility was studied with fluorescence recovery after photobleaching technique in a neuronal cell line. We found that the mobility of the secretory vesicles with NPY(1-36) in cells with L7P genotype was increased in comparison to vesicle mobility in cells with the more abundant L7L genotype. The mobility in the cells with the putative mitochondrial construct was found to be very low. According to the results of the present study, the mitochondrial truncated peptide stays in the mitochondrion. It can be hypothesized that this could be one of the factors affecting energy balance of the membranes of the mitochondrion.
Collapse
Affiliation(s)
- Katja Kaipio
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, PharmaCity, FIN-20520 Turku, Finland
| | | |
Collapse
|
19
|
Alvaro AR, Rosmaninho-Salgado J, Santiago AR, Martins J, Aveleira C, Santos PF, Pereira T, Gouveia D, Carvalho AL, Grouzmann E, Ambrósio AF, Cavadas C. NPY in rat retina is present in neurons, in endothelial cells and also in microglial and Müller cells. Neurochem Int 2007; 50:757-63. [PMID: 17353067 DOI: 10.1016/j.neuint.2007.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/12/2006] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
NPY is present in the retina of different species but its role is not elucidated yet. In this work, using different rat retina in vitro models (whole retina, retinal cells in culture, microglial cell cultures, rat Müller cell line and retina endothelial cell line), we demonstrated that NPY staining is present in the retina in different cell types: neurons, macroglial, microglial and endothelial cells. Retinal cells in culture express NPY Y(1), Y(2), Y(4) and Y(5) receptors. Retina endothelial cells express all NPY receptors except NPY Y(5) receptor. Moreover, NPY is released from retinal cells in culture upon depolarization. In this study we showed for the first time that NPY is present in rat retina microglial cells and also in rat Müller cells. These in vitro models may open new perspectives to study the physiology and the potential pathophysiological role of NPY in the retina.
Collapse
Affiliation(s)
- Ana Rita Alvaro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Carol A Colton
- Division of Neurology, Duke University Medical Center, Box 2900, Bryan Research Bldg, Durham, NC 27710, USA.
| | | |
Collapse
|
21
|
Brun C, Philip-Couderc P, Raggenbass M, Roatti A, Baertschi AJ. Intracellular targeting of truncated secretory peptides in the mammalian heart and brain. FASEB J 2006; 20:732-4. [PMID: 16443679 DOI: 10.1096/fj.05-4338fje] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Secretory polypeptides are vital for nervous system function, sleep, reproduction, growth, and metabolism. Ribosomes scanning the 5'-end of mRNA usually detect the first AUG site for initiating translation. The nascent propeptide chain is then directed via a signal-peptide into the endoplasmic reticulum, processed through the Golgi stacks, and packaged into secretory vesicles. By expressing prepropeptide-EGFP fusion proteins, we observed unusual destinations, mitochondria, nucleus, and cytoplasm, of neuropeptide Y (NPY), atrial natriuretic peptide, and growth hormone in living murine cardiac cells and hypothalamic slices. Subcellular expression was modulated by Zn++ or mutations of N-terminal prohormone sequences but was not due to overexpression in the trans-Golgi network. Mitochondrial targeting of NPY also occurred without the EGFP tag, was enhanced by site-directed mutagenesis of the first AUG initiation site, and abolished by mutation of the second AUG. Immunological methods indicated the presence of N-terminal truncated NPY in mitochondria. Imaging studies showed depolarization of NPY-containing mitochondria. P-SORT software correctly predicted the secondary intracellular destinations and suggested such destinations for many neuropeptides and peptide hormones known. Thus, mammalian cells may retarget secretory peptides from extracellular to intracellular sites by skipping the first translation-initiation codon and thereby alter mitochondrial function, gene expression, and secretion.
Collapse
Affiliation(s)
- Cécile Brun
- Department of Neuroscience, Centre Médical Universitaire, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Kaipio K, Kallio J, Pesonen U. Mitochondrial targeting signal in human neuropeptide Y gene. Biochem Biophys Res Commun 2005; 337:633-40. [PMID: 16199004 DOI: 10.1016/j.bbrc.2005.09.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 09/15/2005] [Indexed: 11/20/2022]
Abstract
Neuropeptide Y (NPY) is universally expressed in many different neuronal and non-neuronal cells. Human NPY gene has two in-frame kozak sequences and thus, has potentially two translation initiation sites producing two NPY peptides with different molecular weights. In the present study, the intracellular location of NPY was studied in endothelial cells endogenously expressing NPY, and in neuronal (SK-N-BE) and non-neuronal (CHO-K1) cells transfected with NPY-GFP-constructs. By mutating kozak sequences we discovered that kozak-1 directs the NPY peptide to secretory vesicles, and kozak-2 is a prerequisite for mitochondrial targeting. If both kozak sequences are present, non-neuronal cells seem to benefit leaky scanning to initiate translation at both initiation sites, in contrast to neuronal cells, which prefer the kozak-1. This finding suggests that both the kozak sequences of NPY mRNA can be used in the translation depending on the cell type. The size and the function of the novel NPY fragment routed to mitochondria remains to be determined.
Collapse
Affiliation(s)
- Katja Kaipio
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Finland
| | | | | |
Collapse
|