1
|
Liu Y, Hong J, Wang G, Mei Z. An emerging role of SNAREs in ischemic stroke: From pre-to post-diseases. Biochem Pharmacol 2025; 236:116907. [PMID: 40158821 DOI: 10.1016/j.bcp.2025.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/04/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Ischemic stroke is a debilitating condition characterized by high morbidity, disability, recurrence, and mortality rates on a global scale, posing a significant threat to public health and economic stability. Extensive research has thoroughly explored the molecular mechanisms underlying ischemic stroke, elucidating a strong association between soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor proteins (SNAREs) and the pathogenesis of this condition. SNAREs, a class of highly conserved proteins involved in membrane fusion, play a crucial role in modulating neuronal information transmission and promoting myelin formation in the central nervous system (CNS). Preventing the SNARE complex formation, malfunctions in SNARE-dependent exocytosis, and altered regulation of SNARE-mediated vesicle fusion are linked to excitotoxicity, endoplasmic reticulum (ER) stress, and programmed cell death (PCD) in ischemic stroke. However, its underlying mechanisms remain unclear. This study conducts a comprehensive review of the existing literature on SNARE proteins, encompassing the structure, classification, and expression of the SNARE protein family, as well as the assembly - disassembly cycle of SNARE complexes and their physiological roles in the CNS. We thoroughly examine the mechanisms by which SNAREs contribute to the pathological progression and associated risk factors of ischemic stroke (hypertension, hyperglycemia, dyslipidemia, and atherosclerosis). Furthermore, our findings highlight the promise of SNAREs as a viable target for pharmacological interventions in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yaxin Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jingyan Hong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
2
|
Han Z, Luo Z, Li X, Xiong D, Tian C. SNARE genes CcSec22 and CcSso1 coordinate fungal growth, sporulation, cell wall stress tolerance, endocytosis and full virulence in Cytospora chrysosperma. Sci Rep 2025; 15:5034. [PMID: 39934168 PMCID: PMC11814409 DOI: 10.1038/s41598-025-88584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotic organisms, significantly influencing fungal growth, development, and pathogenicity. Despite their importance, the specific functions of individual SNARE subunits remain largely unexplored. In Cytospora chrysosperma, a pathogen causing substantial damage to woody plants and leading to considerable ecological and economic impacts, 22 SNAREs have been identified. Yet, their functional roles have not been previously characterized. In this study, we focused on two SNARE-encoding genes, CcSec22 and CcSso1 that are supposed to mediate endoplasmic reticulum (ER)-Golgi and trans-Golgi Network (TGN)-secretory vesicle transport respectively. Notably, both genes demonstrate significantly elevated expression during the infection process. Targeted deletion of either of them resulted in retarded mycelial growth and remarkably decreased tolerance towards different cell-wall stressors. Interestingly, CcSec22 deletion mutants formed more hyphal branches while CcSso1 was required for morphological maintenance of conidiospores. More importantly, lack of either of them significantly reduced hyphal endocytosis and fungal virulence on host poplar. Collectively, our data highlighted that the SNARE genes CcSec22 and CcSso1 play pleiotropic roles in mycelial growth and development, stress responses, conidiation, endocytosis and in particular, they are required for the full virulence of C. chrysosperma. This study provides an insight into the role of SNARE proteins in C. chrysosperma pathogenesis.
Collapse
Affiliation(s)
- Zhu Han
- College of Forestry, Beijing Forestry University, Beijing, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Zheng Luo
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Xueyan Li
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- College of Forestry, Beijing Forestry University, Beijing, China.
| | - Chengming Tian
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Lučin P, Mahmutefendić Lučin H. The Cell Biologist Potential of Cytomegalovirus to Solve Biogenesis and Maintenance of the Membrane Recycling System. Biomedicines 2025; 13:326. [PMID: 40002739 PMCID: PMC11853475 DOI: 10.3390/biomedicines13020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Cytomegalovirus (CMV) is an important pathogen that extensively remodels the nucleus and cytosol of an infected cell to establish a productive infection [...].
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
4
|
Xia L, Mei J, Huang M, Bao D, Wang Z, Chen Y. O-GlcNAcylation in ovarian tumorigenesis and its therapeutic implications. Transl Oncol 2025; 51:102220. [PMID: 39616984 DOI: 10.1016/j.tranon.2024.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Ovarian cancer is a prevalent malignancy among women, often associated with a poor prognosis. Post-translational modifications (PTMs), particularly O-GlcNAcylation, have been implicated in the progression of ovarian cancer. Emerging evidence indicates that dysregulation of O-GlcNAcylation contributes to the initiation and malignant progression of ovarian cancer. This review discusses the potential role of O-GlcNAcylation in ovarian tumorigenesis, with a focus on its regulation of various cellular signaling pathways, including p53, RhoA/ROCK/MLC, Ezrin/Radixin/Moesin (ERM), and β-catenin. This review also emphasizes the O-GlcNAcylation of critical proteins in ovarian cancer, such as SNAP-23, SNAP-29, E-cadherin, and calreticulin. Additionally, the potential of O-GlcNAcylation to enhance immunotherapy for ovarian cancer patients is explored. Several compounds targeting OGT and OGA in ovarian cancer are also highlighted. Targeting the dynamic and versatile nature of O-GlcNAcylation could undoubtedly contribute to more effective treatments and improved outcomes for ovarian cancer patients.
Collapse
Affiliation(s)
- Lu Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Bao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiwei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yizhe Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
5
|
Chen H, Kumar GA, Luo Y, Puthenveedu MA. A Dual-Color Fluorescence-Based Ratiometric Assay to Measure Endocytic Trafficking of Surface Proteins. Methods Mol Biol 2025; 2887:249-262. [PMID: 39806160 DOI: 10.1007/978-1-0716-4314-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many membrane proteins on the cell surface are constantly internalized from, and re-delivered to, the plasma membrane. This endocytic cycling, which relies on accurate SNARE-mediated fusion of vesicles containing cargo proteins, is highly important for the function of many proteins such as signaling receptors. While the SNARE proteins that mediate fusion during specific events, such as neurotransmitter and hormone release, in mammalian cells has been heavily studied, the SNARE proteins that mediate surface delivery of specific cargo such as the receptors for these released factors are still not known. A primary barrier to defining core fusion components has been the lack of a quantitative and accessible assay to measure endocytic cycling of cargo proteins as well as SNAREs themselves. Here, we describe an internally controlled dual-color ratiometric fluorescence-based assay to monitor and measure the internalization and recycling of a pool of pre-existing surface cargo proteins, avoiding the confounding effects of other pathways and accounting for cell-to-cell variation in protein expression. This quantitative method will be useful for mechanistically investigating the SNARE and related fusion proteins that mediate surface delivery of specific cargo.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - G Aditya Kumar
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yuchen Luo
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
6
|
Ochi Y, Yamashita H, Sasaki S, Ogawa T, Yamada Y, Tago T, Satoh T, Satoh AK. Comprehensive study of SNAREs involved in the post-Golgi transport in Drosophila photoreceptors. Front Cell Dev Biol 2024; 12:1442192. [PMID: 39720007 PMCID: PMC11666571 DOI: 10.3389/fcell.2024.1442192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Polarized transport is essential for the construction of multiple plasma membrane domains within cells. Drosophila photoreceptors serve as excellent model systems for studying the mechanisms of polarized transport. We conducted a comprehensive soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) screening of the fly genome using RNAi knockdown and CRISPR/Cas9 somatic knockout combined with the CoinFLP system to identify SNAREs involved in post-Golgi trafficking. The results suggest that in post-Golgi transport, no SNARE is exclusively responsible for transport to a single specific plasma membrane domain. However, each SNARE shows some preference for certain membrane domains: the loss of nSyb, Ykt6, and Snap24/25 results in severe defects in rhabdomere transport, while the loss of Syx1A and Snap29 leads to significant impairments in basolateral transport. Together with the function of Syx1A, Snap25, and nSyb in the fusion of synaptic vesicles with the synaptic plasma membrane, these results suggest that SNAREs are not the sole determinants for vesicles to specify their target subdomains in the plasma membrane. Furthermore, rhodopsin transport to the rhabdomere requires two kinds of R-SNAREs, Ykt6 and nSyb, suggesting that multiple sets of post-Golgi SNAREs contribute in tandem or in cooperation, rather than in parallel.
Collapse
|
7
|
Zhu Z, Zhang Q, Sui Z. Screening of ApDOT1.9 interacting proteins and the potential function of interactor ApSNARE in the rapid growth regulation of Alexandrium pacificum. MARINE POLLUTION BULLETIN 2024; 209:117080. [PMID: 39393244 DOI: 10.1016/j.marpolbul.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Alexandrium pacificum is a toxic dinoflagellate resulting in harmful algal blooms (HABs). ApDOT1.9 is a methyltransferase involved in the rapid growth regulation of A. pacificum, but its protein interaction information is still limited. In this study, 14 candidate interacting proteins of ApDOT1.9, which were involved in metabolism, genetic information processing, environmental information processing and cellular processes, were screened. The interaction between candidate interactor ApSNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors of Alexandrium pacificum) and ApDOT1.9 was further validated by molecular docking and GST (Glutathione S transferase) pull-down. The relevant biological functional information and gene expression of ApSNARE were also analyzed and detected. These results indicate that ApSNARE was an interactor of ApDOT1.9 and it may also participate in A. pacificum rapid growth regulation under high light or high nitrogen conditions, which will provide preliminary information on the interaction proteins of ApDOT1.9 and molecular regulation mechanisms of growth in A. pacificum.
Collapse
Affiliation(s)
- Zhimei Zhu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education of China, Qingdao 266003, China
| | - Qingyue Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education of China, Qingdao 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Xia P, Chen M, Chen L, Yang Y, Ma L, Bi P, Tang S, Luo Q, Chen J, Chen H, Zhang H. Deciphering the anthocyanin metabolism gene network in tea plant (Camellia sinensis) through structural equation modeling. BMC Genomics 2024; 25:1093. [PMID: 39548396 PMCID: PMC11568573 DOI: 10.1186/s12864-024-11012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Tea is an important cash crop that significantly contributes to rural development, poverty reduction and food security in many developing countries. It provides livelihoods for millions of smallholder producers and aids their economic stability. Anthocyanins in tea leaves provides excellent commercial quality and germplasm exploration potential. These compounds give tea leaves vibrant colors and increase health benefits. The current understanding of the synergistic regulation mechanisms responsible for color changes in purple tea, attributed to anthocyanin degradation, remains unclear. RESULTS In this study, we have identified 30 gene families within the genome that are associated to with anthocyanin metabolism from tea. These gene families play distinct roles in the biosynthesis of anthocyanin including the formation of the core, structure, modification of the molecular framework, facilitation of transport process, regulation of gene expression, breakdown pathways, sugar transportation and iron ion respectively. Subsequently, we investigated the synergistic mechanisms of anthocyanin metabolism related gene families within tea leaves using structural equation modeling. The results showed that sugar transport positively affects anthocyanin transportation, and promotes anthocyanin degradation during leaf pigmentation, whereas, it inhibits anthocyanin degradation during the fading of leaf color. Further, Iron ions facilitate the degradation of anthocyanins during their deposition and conversely, impede this degradation process during digestion. These finding suggests that tea plants may regulate the synthesis and degradation of anthocyanins through sugar transport and iron ions ensure healthy levels and vibrant colors. CONCLUSIONS Our study contributes valuable information into the dynamic equilibrium anthocyanin mechanism and sheds light on complex regulatory mechanisms that govern the synthesis, transport and degradation of these pigments. These insights could be further used to develop strategies for enhancing anthocyanins content in unique tea germplasm to aid tea industry in producing new tea products with increased health benefits and aesthetic appeals.
Collapse
Affiliation(s)
- Pan Xia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P.R. China
| | - Mei Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Yijian Yang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Ling Ma
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Pinpin Bi
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Song Tang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Qiongxian Luo
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Jiwei Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Hongwei Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Hongling Zhang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China.
| |
Collapse
|
9
|
Li Z, Song Y, Luo Q, Liu Z, Man Y, Liu J, Lu Y, Zheng L. Carrier cascade target delivery of 5-aminolevulinic acid nanoplatform to enhance antitumor efficiency of photodynamic therapy against lung cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112999. [PMID: 39126752 DOI: 10.1016/j.jphotobiol.2024.112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a prodrug of porphyrin IX (PpIX). Disadvantages of 5-ALA include poor stability, rapid elimination, poor bioavailability, and weak cell penetration, which greatly reduce the clinical effect of 5-ALA based photodynamic therapy (PDT). Presently, a novel targeting nanosystem was constructed using gold nanoparticles (AuNPs) as carriers loaded with a CSNIDARAC (CC9)-targeting peptide and 5-ALA via Au-sulphur and ionic bonds, respectively, and then wrapped in polylactic glycolic acid (PLGA) NPs via self-assembly to improve the antitumor effects and reduce the side effect. The successful preparation of ALA/CC9@ AuNPs-PLGA NPs was verified using ultraviolet-visible, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The analyses revealed good sphericity with a particle size of approximately140 nm, Zeta potential of 10.11 mV, and slow-controlled release characteristic in a weak acid environment. Confocal microscopy revealed targeting of NCL-H460 cells by NPs by actively internalising CC9 and avoiding the phagocytic action of RAW264.7 cells, and live fluorescence imaging revealed targeting of tumours in tumour-bearing mice. Compared to free 5-ALA, the nanosystem displayed amplified anticancer activity by increasing production of PpIX and reactive oxygen species to induce mitochondrial pathway apoptosis. Antitumor efficacy was consistently observed in three-dimensionally cultured cells as the loss of integrity of tumour balls. More potent anti-tumour efficacy was demonstrated in xenograft tumour models by decreased growth rate and increased tumour apoptosis. Histological analysis showed that this system was not toxic, with lowered liver toxicity of 5-ALA. Thus, ALA/CC9@AuNPs-PLGA NPs deliver 5-ALA via a carrier cascade, with excellent effects on tumour accumulation and PDT through passive enhanced permeability and retention action and active targeting. This innovative strategy for cancer therapy requires more clinical trials before being implemented.
Collapse
Affiliation(s)
- Ze Li
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuxuan Song
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Qiang Luo
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuze Lu
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Liqing Zheng
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| |
Collapse
|
10
|
Yadav D, Hacisuleyman A, Dergai M, Khalifeh D, Abriata LA, Peraro MD, Fasshauer D. A look beyond the QR code of SNARE proteins. Protein Sci 2024; 33:e5158. [PMID: 39180485 PMCID: PMC11344281 DOI: 10.1002/pro.5158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024]
Abstract
Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor (SNARE) proteins catalyze the fusion process of vesicles with target membranes in eukaryotic cells. To do this, they assemble in a zipper-like fashion into stable complexes between the membranes. Structural studies have shown that the complexes consist of four different helices, which we subdivide into Qa-, Qb-, Qc-, and R-helix on the basis of their sequence signatures. Using a combination of biochemistry, modeling and molecular dynamics, we investigated how the four different types are arranged in a complex. We found that there is a matching pattern in the core of the complex that dictates the position of the four fundamental SNARE types in the bundle, resulting in a QabcR complex. In the cell, several different cognate QabcR-SNARE complexes catalyze the different transport steps between the compartments of the endomembrane system. Each of these cognate QabcR complexes is compiled from a repertoire of about 20 SNARE subtypes. Our studies show that exchange within the four types is largely tolerated structurally, although some non-cognate exchanges lead to structural imbalances. This suggests that SNARE complexes have evolved for a catalytic mechanism, a mechanism that leaves little scope for selectivity beyond the QabcR rule.
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Aysima Hacisuleyman
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Mykola Dergai
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Dany Khalifeh
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Luciano A. Abriata
- Institute of Bioengineering, School of Life SciencesÉcole Polytechnique FÉdÉrale de Lausanne (EPFL)LausanneSwitzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life SciencesÉcole Polytechnique FÉdÉrale de Lausanne (EPFL)LausanneSwitzerland
| | - Dirk Fasshauer
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
11
|
Ding X, Wang S, Cui X, Zhong H, Zou H, Zhao P, Guo Z, Chen H, Li C, Zhu L, Li J, Fu Y. LKS4-mediated SYP121 phosphorylation participates in light-induced stomatal opening in Arabidopsis. Curr Biol 2024; 34:3102-3115.e6. [PMID: 38944035 DOI: 10.1016/j.cub.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/29/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024]
Abstract
By modulating stomatal opening and closure, plants control gas exchange, water loss, and photosynthesis in response to various environmental signals. During light-induced stomatal opening, the transport of ions and solutes across the plasma membrane (PM) of the surrounding guard cells results in an increase in turgor pressure, leading to cell swelling. Simultaneously, vesicles for exocytosis are delivered via membrane trafficking to compensate for the enlarged cell surface area and maintain an appropriate ion-channel density in the PM. In eukaryotic cells, soluble N-ethylmaleimide-sensitive factor adaptor protein receptors (SNAREs) mediate membrane fusion between vesicles and target compartments by pairing the cognate glutamine (Q)- and arginine (R)-SNAREs to form a core SNARE complex. Syntaxin of plants 121 (SYP121) is a known Q-SNARE involved in stomatal movement, which not only facilitates the recycling of K+ channels to the PM but also binds to the channels to regulate their activity. In this study, we found that the expression of a receptor-like cytoplasmic kinase, low-K+ sensitive 4/schengen 1 (LKS4/SGN1), was induced by light; it directly interacted with SYP121 and phosphorylated T270 within the SNARE motif. Further investigation revealed that LKS4-dependent phosphorylation of SYP121 facilitated the interaction between SYP121 and R-SNARE vesicle-associated membrane protein 722 (VAMP722), promoting the assembly of the SNARE complex. Our findings demonstrate that the phosphorylation of SNARE proteins is an important strategy adopted by plants to regulate the SNARE complex assembly as well as membrane fusion. Additionally, we discovered the function of LKS4/SGN1 in light-induced stomatal opening via the phosphorylation of SYP121.
Collapse
Affiliation(s)
- Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongyu Zou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zonglin Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haoyang Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Changjiang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Liu H, Dang R, Zhang W, Hong J, Li X. SNARE proteins: Core engines of membrane fusion in cancer. Biochim Biophys Acta Rev Cancer 2024:189148. [PMID: 38960006 DOI: 10.1016/j.bbcan.2024.189148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
13
|
Zhang X, Chen L, Ye L, Zhang B, Zhang X, Li X. Label-free based comparative proteomics approach revealed the changes in proteomic profiles driven by different maturities in two Chinese white truffles, Tuber panzhihuanense and Tuber latisporum. Food Chem 2024; 443:138535. [PMID: 38295568 DOI: 10.1016/j.foodchem.2024.138535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/15/2023] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
T. panzhihuanense and T. latisporum are white truffle species native to China, of which T. panzhihuanense has significant commercial potential, with high nutritional value and unique flavor. Maturity is an important factor affecting the nutrition and aroma of truffles, which determines their economic status. Here, a label-free-based comparative proteomics method was used to determine the proteomic profiles of T. panzhihuanense and T. latisporum at two different stages of maturity. The results showed that both maturity and species significantly affected the protein expression patterns. T. panzhihuanense responded stronger to maturity than T. latisporum, accompanied by a more complex interaction network between proteins. Some critical proteins were regulated by maturity and variety, including those involved in aroma formation, e.g., S-adenosyl-methionine synthetase. The enrichment of oxidation-reduction processes, glycolysis, and SNARE interactions in vesicular transport were driven by species and maturity. This study provides the first insights into the proteomic profiles of T. panzhihuanense and T. latisporum, revealing the roles of key proteins and biological processes in their maturation.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Chen
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Lei Ye
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|
14
|
Xiao B, Feng X, Li P, Sui Z. Analysis of Hyperosmotic Tolerance Mechanisms in Gracilariopsis lemaneiformis Based on Weighted Co-Expression Network Analysis. Genes (Basel) 2024; 15:781. [PMID: 38927717 PMCID: PMC11203144 DOI: 10.3390/genes15060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
We conducted transcriptome sequencing on salt-tolerant mutants X5 and X3, and a control (Ctr) strain of Gracilariopsis lemaneiformis after treatment with artificial seawater at varying salinities (30‱, 45‱, and 60‱) for 3 weeks. Differentially expressed genes were identified and a weighted co-expression network analysis was conducted. The blue, red, and tan modules were most closely associated with salinity, while the black, cyan, light cyan, and yellow modules showed a close correlation with strain attributes. KEGG enrichment of genes from the aforementioned modules revealed that the key enrichment pathways for salinity attributes included the proteasome and carbon fixation in photosynthesis, whereas the key pathways for strain attributes consisted of lipid metabolism, oxidative phosphorylation, soluble N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE) interactions in vesicular transport, and porphyrin and chlorophyll metabolism. Gene expression for the proteasome and carbon fixation in photosynthesis was higher in all strains at 60‱. In addition, gene expression in the proteasome pathway was higher in the X5-60 than Ctr-60 and X3-60. Based on the above data and relevant literature, we speculated that mutant X5 likely copes with high salt stress by upregulating genes related to lysosome and carbon fixation in photosynthesis. The proteasome may be reset to adjust the organism's proteome composition to adapt to high-salt environments, while carbon fixation may aid in maintaining material and energy metabolism for normal life activities by enhancing carbon dioxide uptake via photosynthesis. The differences between the X5-30 and Ctr-30 expression of genes involved in the synthesis of secondary metabolites, oxidative phosphorylation, and SNARE interactions in vesicular transport suggested that the X5-30 may differ from Ctr-30 in lipid metabolism, energy metabolism, and vesicular transport. Finally, among the key pathways with good correlation with salinity and strain traits, the key genes with significant correlation with salinity and strain traits were identified by correlation analysis.
Collapse
Affiliation(s)
| | | | | | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; (B.X.); (X.F.); (P.L.)
| |
Collapse
|
15
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Zeng BZ, Zhou XT, Gou HM, Che LL, Lu SX, Yang JB, Cheng YJ, Liang GP, Mao J. Molecular Evolution of SNAREs in Vitis vinifera and Expression Analysis under Phytohormones and Abiotic Stress. Int J Mol Sci 2024; 25:5984. [PMID: 38892171 PMCID: PMC11173047 DOI: 10.3390/ijms25115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) play a key role in mediating a variety of plant biological processes. Currently, the function of the SNARE gene family in phytohormonal and abiotic stress treatments in grapevine is currently unknown, making it worthwhile to characterize and analyze the function and expression of this family in grapevine. In the present study, 52 VvSNARE genes were identified and predominantly distributed on 18 chromosomes. Secondary structures showed that the VvSNARE genes family irregular random coils and α-helices. The promoter regions of the VvSNARE genes were enriched for light-, abiotic-stress-, and hormone-responsive elements. Intraspecific collinearity analysis identified 10 pairs collinear genes within the VvSNARE family and unveiled a greater number of collinear genes between grapevine and apple, as well as Arabidopsis thaliana, but less associations with Oryza sativa. Quantitative real-time PCR (qRT-PCR) analyses showed that the VvSNARE genes have response to treatments with ABA, NaCl, PEG, and 4 °C. Notably, VvSNARE2, VvSNARE14, VvSNARE15, and VvSNARE17 showed up-regulation in response to ABA treatment. VvSNARE2, VvSNARE15, VvSNARE18, VvSNARE19, VvSNARE20, VvSNARE24, VvSNARE25, and VvSNARE29 exhibited significant up-regulation when exposed to NaCl treatment. The PEG treatment led to significant down-regulation of VvSNARE1, VvSNARE8, VvSNARE23, VvSNARE25, VvSNARE26, VvSNARE31, and VvSNARE49 gene expression. The expression levels of VvSNARE37, VvSNARE44, and VvSNARE46 were significantly enhanced after exposure to 4 °C treatment. Furthermore, subcellular localization assays certified that VvSNARE37, VvSNARE44, and VvSNARE46 were specifically localized at the cell membrane. Overall, this study showed the critical role of the VvSNARE genes family in the abiotic stress response of grapevines, thereby providing novel candidate genes such as VvSNARE37, VvSNARE44, and VvSNARE46 for further exploration in grapevine stress tolerance research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (B.-z.Z.); (X.-t.Z.); (H.-m.G.); (L.-l.C.); (S.-x.L.); (J.-b.Y.); (Y.-j.C.); (G.-p.L.)
| |
Collapse
|
17
|
Koike S, Jahn R. Rab GTPases and phosphoinositides fine-tune SNAREs dependent targeting specificity of intracellular vesicle traffic. Nat Commun 2024; 15:2508. [PMID: 38509070 PMCID: PMC10954720 DOI: 10.1038/s41467-024-46678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
In the secretory pathway the destination of trafficking vesicles is determined by specific proteins that, with the notable exception of SNAREs, are recruited from soluble pools. Previously we have shown that microinjected proteoliposomes containing early or late endosomal SNAREs, respectively, are targeted to the corresponding endogenous compartments, with targeting specificity being dependent on the recruitment of tethering factors by some of the SNAREs. Here, we show that targeting of SNARE-containing liposomes is refined upon inclusion of polyphosphoinositides and Rab5. Intriguingly, targeting specificity is dependent on the concentration of PtdIns(3)P, and on the recruitment of PtdIns(3)P binding proteins such as rabenosyn-5 and PIKfyve, with conversion of PtdIns(3)P into PtdIns(3,5)P2 re-routing the liposomes towards late endosomes despite the presence of GTP-Rab5 and early endosomal SNAREs. Our data reveal a complex interplay between permissive and inhibitory targeting signals that sharpen a basic targeting and fusion machinery for conveying selectivity in intracellular membrane traffic.
Collapse
Affiliation(s)
- Seiichi Koike
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- University of Toyama, Laboratory of Molecular and Cellular Biology, Department of Life Sciences and Bioengineering, 3190 Gofuku, Toyama City, 930-8555, Japan
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
18
|
Sun M, Pylypenko O, Zhou Z, Xu M, Li Q, Houdusse A, van IJzendoorn SCD. Uncovering the Relationship Between Genes and Phenotypes Beyond the Gut in Microvillus Inclusion Disease. Cell Mol Gastroenterol Hepatol 2024; 17:983-1005. [PMID: 38307491 PMCID: PMC11041842 DOI: 10.1016/j.jcmgh.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Microvillus inclusion disease (MVID) is a rare condition that is present from birth and affects the digestive system. People with MVID experience severe diarrhea that is difficult to control, cannot absorb dietary nutrients, and struggle to grow and thrive. In addition, diverse clinical manifestations, some of which are life-threatening, have been reported in cases of MVID. MVID can be caused by variants in the MYO5B, STX3, STXBP2, or UNC45A gene. These genes produce proteins that have been functionally linked to each other in intestinal epithelial cells. MVID associated with STXBP2 variants presents in a subset of patients diagnosed with familial hemophagocytic lymphohistiocytosis type 5. MVID associated with UNC45A variants presents in most patients diagnosed with osteo-oto-hepato-enteric syndrome. Furthermore, variants in MYO5B or STX3 can also cause other diseases that are characterized by phenotypes that can co-occur in subsets of patients diagnosed with MVID. Recent studies involving clinical data and experiments with cells and animals revealed connections between specific phenotypes occurring outside of the digestive system and the type of gene variants that cause MVID. Here, we have reviewed these patterns and correlations, which are expected to be valuable for healthcare professionals in managing the disease and providing personalized care for patients and their families.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Olena Pylypenko
- Dynamics of Intra-Cellular Organization, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Zhe Zhou
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mingqian Xu
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Qinghong Li
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne Houdusse
- Structural Motility, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
19
|
Wang P, Tong K, Li Y, Li X, Zhang Y, Gu J, Lei P, Yan S, Hu P. The role and mechanism of HIF-1α-mediated glypican-3 secretion in hypoxia-induced tumor progression in hepatocellular carcinoma. Cell Signal 2024; 114:111007. [PMID: 38081444 DOI: 10.1016/j.cellsig.2023.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 01/01/2024]
Abstract
OBJECTIVE To explore the expression and secretion mechanism of glypican-3 (GPC3) in hepatocellular carcinoma (HCC) cells under hypoxic conditions, and its role in tumor progression. METHODS Huh7 cells with and without the knockdown of hypoxia-inducible factor 1-alpha (HIF-1α) were cultured under 1% O2 for varying durations to induce hypoxia. The expression levels of GPC3, HSP70, CD63, STX11 and SYT7 in the cytoplasm and exosomes of Huh7 cells were evaluated by western blotting and immunofluorescence. GPC3 protein expression was further measured in cells treated with GW4869 under hypoxic conditions. Huh7 cells and human umbilical vein endothelial cells (HUVECs) were cultured with the exosomes extracted from the control and GPC3-knockdown cells, the cell proliferation, migration, epithelial-mesenchymal transition (EMT), invasion, and in vitro angiogenesis were analyzed. Tumor xenografts were established to assess the role of GPC3-deficient exosomes in tumor growth. RESULTS Hypoxic culture conditions downregulated GPC3, STX11 and SYT7 protein levels in the Huh7 cells and upregulated GPC3 mRNA, and also increased GPC3 protein expression in the exosomes. HIF-1α knockdown, as well as treatment with GW4869, upregulated GPC3 protein in the Huh7 cells grown under 1% O2, but downregulated exosomal GPC3. Furthermore, exosomes derived from the GPC3-knockdown cells inhibited the proliferation and migration of Huh7 cells, decreased the expression of N-cadherin, vimentin, β-catenin, c-Myc and cyclin D1, and increased that of E-cadherin. Likewise, the GPC3-deficient exosomes also suppressed the invasion and tube formation ability of the HUVECs compared to that of control cells. Consistent with the in vitro results, the GPC3-deficient exosomes also repressed tumor growth in vivo. CONCLUSION Hypoxia promoted secretion of exosomal GPC3 through the activation of HIF-1α. GPC3-deficient exosomes inhibited the proliferation, migration and EMT of HCC cells via the Wnt/β-catenin signaling pathway, and suppressed the angiogenic potential of HUVECs. This provided a novel understanding of the role of exosomal GPC3 in HCC progression.
Collapse
Affiliation(s)
- Pingfeng Wang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Kun Tong
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Department of Laboratory Medicine, Huanggang Central Hospital, China
| | - Ying Li
- Department of Blood Transfusion, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Xuejie Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of HCC, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000.China
| | - Yuan Zhang
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Jiangxue Gu
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Panwei Lei
- Hospital of Stomatology Wuhan University, Wuhan, Hubei, 430000. China
| | - Shirong Yan
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000. China.
| | - Pei Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China.
| |
Collapse
|
20
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 PMCID: PMC11578640 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
21
|
Dorantes-Torres C, Carrera-Reyna M, Santos W, Sánchez-López R, Merino E. PhyloString: A web server designed to identify, visualize, and evaluate functional relationships between orthologous protein groups across different phylogenetic lineages. PLoS One 2024; 19:e0297010. [PMID: 38277370 PMCID: PMC10817156 DOI: 10.1371/journal.pone.0297010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024] Open
Abstract
Proteins are biological units whose essence is defined by their functional relationships with other proteins or biomolecules such as RNA, DNA, lipids, or carbohydrates. These functions encompass enzymatic, structural, regulatory, or physical interaction roles. The STRING database (Nucleic Acids Research, 8 Jan 2021;49(D1): D605-12) provides an index that defines the functional interaction networks between proteins in model organisms. To facilitate the identification, visualization, and evaluation of potential functional networks across organisms from different phylogenetic lineages, we have developed PhyloString (https://biocomputo.ibt.unam.mx/phylostring/), a web server that utilizes the indices of the STRING database. PhyloString decomposes these functional networks into modules, representing cohesive units of proteins grouped based on their similarity of STRING values and the phylogenetic origins of their respective organisms. This study presents and thoroughly discusses examples of such functional networks and their modules identified using PhyloString.
Collapse
Affiliation(s)
- Claudia Dorantes-Torres
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Maricela Carrera-Reyna
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Walter Santos
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Rosana Sánchez-López
- Department of Plant Molecular Biology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
22
|
Chelaghma S, Ke H, Barylyuk K, Krueger T, Koreny L, Waller RF. Apical annuli are specialised sites of post-invasion secretion of dense granules in Toxoplasma. eLife 2024; 13:e94201. [PMID: 38270431 PMCID: PMC10857790 DOI: 10.7554/elife.94201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Apicomplexans are ubiquitous intracellular parasites of animals. These parasites use a programmed sequence of secretory events to find, invade, and then re-engineer their host cells to enable parasite growth and proliferation. The secretory organelles micronemes and rhoptries mediate the first steps of invasion. Both secrete their contents through the apical complex which provides an apical opening in the parasite's elaborate inner membrane complex (IMC) - an extensive subpellicular system of flattened membrane cisternae and proteinaceous meshwork that otherwise limits access of the cytoplasm to the plasma membrane for material exchange with the cell exterior. After invasion, a second secretion programme drives host cell remodelling and occurs from dense granules. The site(s) of dense granule exocytosis, however, has been unknown. In Toxoplasma gondii, small subapical annular structures that are embedded in the IMC have been observed, but the role or significance of these apical annuli to plasma membrane function has also been unknown. Here, we determined that integral membrane proteins of the plasma membrane occur specifically at these apical annular sites, that these proteins include SNARE proteins, and that the apical annuli are sites of vesicle fusion and exocytosis. Specifically, we show that dense granules require these structures for the secretion of their cargo proteins. When secretion is perturbed at the apical annuli, parasite growth is strongly impaired. The apical annuli, therefore, represent a second type of IMC-embedded structure to the apical complex that is specialised for protein secretion, and reveal that in Toxoplasma there is a physical separation of the processes of pre- and post-invasion secretion that mediate host-parasite interactions.
Collapse
Affiliation(s)
- Sara Chelaghma
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | | | - Thomas Krueger
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ludek Koreny
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ross F Waller
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
23
|
König T, McBride HM. Mitochondrial-derived vesicles in metabolism, disease, and aging. Cell Metab 2024; 36:21-35. [PMID: 38171335 DOI: 10.1016/j.cmet.2023.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Mitochondria are central hubs of cellular metabolism and are tightly connected to signaling pathways. The dynamic plasticity of mitochondria to fuse, divide, and contact other organelles to flux metabolites is central to their function. To ensure bona fide functionality and signaling interconnectivity, diverse molecular mechanisms evolved. An ancient and long-overlooked mechanism is the generation of mitochondrial-derived vesicles (MDVs) that shuttle selected mitochondrial cargoes to target organelles. Just recently, we gained significant insight into the mechanisms and functions of MDV transport, ranging from their role in mitochondrial quality control to immune signaling, thus demonstrating unexpected and diverse physiological aspects of MDV transport. This review highlights the origin of MDVs, their biogenesis, and their cargo selection, with a specific focus on the contribution of MDV transport to signaling across cell and organ barriers. Additionally, the implications of MDVs in peroxisome biogenesis, neurodegeneration, metabolism, aging, and cancer are discussed.
Collapse
Affiliation(s)
- Tim König
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Mentrup T, Leinung N, Patel M, Fluhrer R, Schröder B. The role of SPP/SPPL intramembrane proteases in membrane protein homeostasis. FEBS J 2024; 291:25-44. [PMID: 37625440 DOI: 10.1111/febs.16941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Signal peptide peptidase (SPP) and the four SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 constitute a family of aspartyl intramembrane proteases with homology to presenilins. The different members reside in distinct cellular localisations within the secretory pathway and the endo-lysosomal system. Despite individual cleavage characteristics, they all cleave single-span transmembrane proteins with a type II orientation exhibiting a cytosolic N-terminus. Though the identification of substrates is not complete, SPP/SPPL-mediated proteolysis appears to be rather selective. Therefore, according to our current understanding cleavage by SPP/SPPL proteases rather seems to serve a regulatory function than being a bulk proteolytic pathway. In the present review, we will summarise our state of knowledge on SPP/SPPL proteases and in particular highlight recently identified substrates and the functional and/or (patho)-physiological implications of these cleavage events. Based on this, we aim to provide an overview of the current open questions in the field. These are connected to the regulation of these proteases at the cellular level but also in context of disease and patho-physiological processes. Furthermore, the interplay with other proteostatic systems capable of degrading membrane proteins is beginning to emerge.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Nadja Leinung
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Mehul Patel
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| |
Collapse
|
25
|
Yang S, Zhou P, Zhang L, Xie X, Zhang Y, Bo K, Xue J, Zhang W, Liao F, Xu P, Hu Y, Yan R, Liu D, Chang J, Zhou K. VAMP8 suppresses the metastasis via DDX5/β-catenin signal pathway in osteosarcoma. Cancer Biol Ther 2023; 24:2230641. [PMID: 37405957 DOI: 10.1080/15384047.2023.2230641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Osteosarcoma is a highly metastatic malignant bone tumor, necessitating the development of new treatments to target its metastasis. Recent studies have revealed the significance of VAMP8 in regulating various signaling pathways in various types of cancer. However, the specific functional role of VAMP8 in osteosarcoma progression remains unclear. In this study, we observed a significant downregulation of VAMP8 in osteosarcoma cells and tissues. Low levels of VAMP8 in osteosarcoma tissues were associated with patients' poor prognosis. VAMP8 inhibited the migration and invasion capability of osteosarcoma cells. Mechanically, we identified DDX5 as a novel interacting partner of VAMP8, and the conjunction of VAMP8 and DDX5 promoted the degradation of DDX5 via the ubiquitin-proteasome system. Moreover, reduced levels of DDX5 led to the downregulation of β-catenin, thereby suppressing the epithelial-mesenchymal transition (EMT). Additionally, VAMP8 promoted autophagy flux, which may contribute to the suppression of osteosarcoma metastasis. In conclusion, our study anticipated that VAMP8 inhibits osteosarcoma metastasis by promoting the proteasomal degradation of DDX5, consequently inhibiting WNT/β-catenin signaling and EMT. Dysregulation of autophagy by VAMP8 is also implicated as a potential mechanism. These findings provide new insights into the biological nature driving osteosarcoma metastasis and highlight the modulation of VAMP8 as a potential therapeutic strategy for targeting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Ping Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Lelei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Xiangpeng Xie
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Yuanyi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Kaida Bo
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Jing Xue
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Pengfei Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Yong Hu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruyu Yan
- Cancer Metabolism Laboratory, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Dan Liu
- Cancer Metabolism Laboratory, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Kecheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
- Cancer Metabolism Laboratory, School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Kersten N, Farías GG. A voyage from the ER: spatiotemporal insights into polarized protein secretion in neurons. Front Cell Dev Biol 2023; 11:1333738. [PMID: 38188013 PMCID: PMC10766823 DOI: 10.3389/fcell.2023.1333738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
To function properly, neurons must maintain a proteome that differs in their somatodendritic and axonal domain. This requires the polarized sorting of newly synthesized secretory and transmembrane proteins into different vesicle populations as they traverse the secretory pathway. Although the trans-Golgi-network is generally considered to be the main sorting hub, this sorting process may already begin at the ER and continue through the Golgi cisternae. At each step in the sorting process, specificity is conferred by adaptors, GTPases, tethers, and SNAREs. Besides this, local synthesis and unconventional protein secretion may contribute to the polarized proteome to enable rapid responses to stimuli. For some transmembrane proteins, some of the steps in the sorting process are well-studied. These will be highlighted here. The universal rules that govern polarized protein sorting remain unresolved, therefore we emphasize the need to approach this problem in an unbiased, top-down manner. Unraveling these rules will contribute to our understanding of neuronal development and function in health and disease.
Collapse
Affiliation(s)
- Noortje Kersten
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
27
|
Cao YY, Wu LL, Li XN, Yuan YL, Zhao WW, Qi JX, Zhao XY, Ward N, Wang J. Molecular Mechanisms of AMPA Receptor Trafficking in the Nervous System. Int J Mol Sci 2023; 25:111. [PMID: 38203282 PMCID: PMC10779435 DOI: 10.3390/ijms25010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Synaptic plasticity enhances or reduces connections between neurons, affecting learning and memory. Postsynaptic AMPARs mediate greater than 90% of the rapid excitatory synaptic transmission in glutamatergic neurons. The number and subunit composition of AMPARs are fundamental to synaptic plasticity and the formation of entire neural networks. Accordingly, the insertion and functionalization of AMPARs at the postsynaptic membrane have become a core issue related to neural circuit formation and information processing in the central nervous system. In this review, we summarize current knowledge regarding the related mechanisms of AMPAR expression and trafficking. The proteins related to AMPAR trafficking are discussed in detail, including vesicle-related proteins, cytoskeletal proteins, synaptic proteins, and protein kinases. Furthermore, significant emphasis was placed on the pivotal role of the actin cytoskeleton, which spans throughout the entire transport process in AMPAR transport, indicating that the actin cytoskeleton may serve as a fundamental basis for AMPAR trafficking. Additionally, we summarize the proteases involved in AMPAR post-translational modifications. Moreover, we provide an overview of AMPAR transport and localization to the postsynaptic membrane. Understanding the assembly, trafficking, and dynamic synaptic expression mechanisms of AMPAR may provide valuable insights into the cognitive decline associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yang Cao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Ling-Ling Wu
- School of Medicine, Shanghai University, Shanghai 200444, China;
| | - Xiao-Nan Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Yu-Lian Yuan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Wan-Wei Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Jing-Xuan Qi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Xu-Yu Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Natalie Ward
- Medical Laboratory, Exceptional Community Hospital, 19060 N John Wayne Pkwy, Maricopa, AZ 85139, USA;
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| |
Collapse
|
28
|
Arshed S, Cox MP, Beever RE, Parkes SL, Pearson MN, Bowen JK, Templeton MD. The Bcvic1 and Bcvic2 vegetative incompatibility genes in Botrytis cinerea encode proteins with domain architectures involved in allorecognition in other filamentous fungi. Fungal Genet Biol 2023; 169:103827. [PMID: 37640199 DOI: 10.1016/j.fgb.2023.103827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Vegetative incompatibility is a fungal allorecognition system characterised by the inability of genetically distinct conspecific fungal strains to form a viable heterokaryon and is controlled by multiple polymorphic loci termed vic (vegetative incompatibility) or het (heterokaryon incompatibility). We have genetically identified and characterised the first vic locus in the economically important, plant-pathogenic, necrotrophic fungus Botrytis cinerea. A bulked segregant approach coupled with whole genome Illumina sequencing of near-isogenic lines of B. cinerea was used to map a vic locus to a 60-kb region of the genome. Within that locus, we identified two adjacent, highly polymorphic open reading frames, Bcvic1 and Bcvic2, which encode predicted proteins that contain domain architectures implicated in vegetative incompatibility in other filamentous fungi. Bcvic1 encodes a predicted protein containing a putative serine esterase domain, a NACHT family of NTPases domain, and several Ankyrin repeats. Bcvic2 encodes a putative syntaxin protein containing a SNARE domain; such proteins typically function in vesicular transport. Deletion of Bcvic1 and Bcvic2 individually had no effect on vegetative incompatibility. However, deletion of the region containing both Bcvic1 and Bcvic2 resulted in mutant lines that were severely restricted in growth and showed loss of vegetative incompatibility. Complementation of these mutants by ectopic expression restored the growth and vegetative incompatibility phenotype, indicating that Bcvic1 and Bcvic2 are controlling vegetative incompatibility at this vic locus.
Collapse
Affiliation(s)
- Saadiah Arshed
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand
| | - Murray P Cox
- Bioprotection Aotearoa Centre of Research Excellence, New Zealand; School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Ross E Beever
- Manaaki Whenua Landcare Research, Auckland, New Zealand
| | | | - Michael N Pearson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K Bowen
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand.
| | - Matthew D Templeton
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand.
| |
Collapse
|
29
|
Khoso MA, Zhang H, Khoso MH, Poudel TR, Wagan S, Papiashvili T, Saha S, Ali A, Murtaza G, Manghwar H, Liu F. Synergism of vesicle trafficking and cytoskeleton during regulation of plant growth and development: A mechanistic outlook. Heliyon 2023; 9:e21976. [PMID: 38034654 PMCID: PMC10682163 DOI: 10.1016/j.heliyon.2023.e21976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The cytoskeleton is a fundamental component found in all eukaryotic organisms, serving as a critical factor in various essential cyto-biological mechanisms, particularly in the locomotion and morphological transformations of plant cells. The cytoskeleton is comprised of three main components: microtubules (MT), microfilaments (MF), and intermediate filaments (IF). The cytoskeleton plays a crucial role in the process of cell wall formation and remodeling throughout the growth and development of cells. It is a highly organized and regulated network composed of filamentous components. In the basic processes of intracellular transport, such as mitosis, cytokinesis, and cell polarity, the plant cytoskeleton plays a crucial role according to recent studies. The major flaws in the organization of the cytoskeletal framework are at the root of the aberrant organogenesis currently observed in plant mutants. The regulation of protein compartmentalization and abundance within cells is predominantly governed by the process of vesicle/membrane transport, which plays a crucial role in several signaling cascades.The regulation of membrane transport in eukaryotic cells is governed by a diverse array of proteins. Recent developments in genomics have provided new tools to study the evolutionary relationships between membrane proteins in different plant species. It is known that members of the GTPases, COP, SNAREs, Rabs, tethering factors, and PIN families play essential roles in vesicle transport between plant, animal, and microbial species. This Review presents the latest research on the plant cytoskeleton, focusing on recent developments related to the cytoskeleton and summarizing the role of various proteins in vesicle transport. In addition, the report predicts future research direction of plant cytoskeleton and vesicle trafficking, potential research priorities, and provides researchers with specific pointers to further investigate the significant link between cytoskeleton and vesicle trafficking.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mir Hassan Khoso
- Department of Biochemistry, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Pakistan
| | - Tika Ram Poudel
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sindho Wagan
- Laboratory of Pest Physiology Biochemistry and Molecular Toxicology Department of Forest Protection Northeast Forestry University Harbin 150040, China
| | - Tamar Papiashvili
- School of Economics and Management Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Sudipta Saha
- School of Forestry, Department of Silviculture, Northeast Forestry University, Harbin 150040, China
| | - Abid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ghulam Murtaza
- Department of Biochemistry and Molecular Biology Harbin Medical University China, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
30
|
Stanton AE, Hughson FM. The machinery of vesicle fusion. Curr Opin Cell Biol 2023; 83:102191. [PMID: 37421936 PMCID: PMC10529041 DOI: 10.1016/j.ceb.2023.102191] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
The compartmentalization of eukaryotic cells is reliant on the fidelity of vesicle-mediated intracellular transport. Vesicles deliver their cargo via membrane fusion, a process requiring membrane tethers, Sec1/Munc18 (SM) proteins, and SNAREs. These components function in concert to ensure that membrane fusion is efficient and accurate, but the mechanisms underlying their cooperative action are still in many respects mysterious. In this brief review, we highlight recent progress toward a more integrative understanding of the vesicle fusion machinery. We focus particular attention on cryo-electron microscopy structures of intact multisubunit tethers in complex with SNAREs or SM proteins, as well as a structure of an SM protein bound to multiple SNAREs. The insights gained from this work emphasize the advantages of studying the fusion machinery intact and in context.
Collapse
Affiliation(s)
- Abigail E Stanton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
31
|
Thattai M. Molecular and cellular constraints on vesicle traffic evolution. Curr Opin Cell Biol 2023; 80:102151. [PMID: 36610080 DOI: 10.1016/j.ceb.2022.102151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
In eukaryotic cells, the budding and fusion of intracellular transport vesicles is carefully orchestrated in space and time. Locally, a vesicle's source compartment, its cargo, and its destination compartment are controlled by dynamic multi-protein specificity modules. Globally, vesicle constituents must be recycled to ensure homeostasis of compartment compositions. The emergence of a novel vesicle pathway therefore requires new specificity modules as well as new recycling routes. Here, we review recent research on local (molecular) constraints on gene module duplication and global (cellular) constraints on intracellular recycling. By studying the evolution of vesicle traffic, we may discover general principles of how complex traits arise via multiple intermediate steps.
Collapse
Affiliation(s)
- Mukund Thattai
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, TIFR, Bangalore, India.
| |
Collapse
|
32
|
Xue M, Cao Y, Shen C, Guo W. Computational Advances of Protein/Neurotransmitter-membrane Interactions Involved in Vesicle Fusion and Neurotransmitter Release. J Mol Biol 2023; 435:167818. [PMID: 36089056 DOI: 10.1016/j.jmb.2022.167818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 02/04/2023]
Abstract
Vesicle fusion is of crucial importance to neuronal communication at neuron terminals. The exquisite but complex fusion machinery for neurotransmitter release is tightly controlled and regulated by protein/neurotransmitter-membrane interactions. Computational 'microscopies', in particular molecular dynamics simulations and related techniques, have provided notable insight into the physiological process over the past decades, and have made enormous contributions to fields such as neurology, pharmacology and pathophysiology. Here we review the computational advances of protein/neurotransmitter-membrane interactions related to presynaptic vesicle-membrane fusion and neurotransmitter release, and outline the in silico challenges ahead for understanding this important physiological process.
Collapse
Affiliation(s)
- Minmin Xue
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yuwei Cao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Chun Shen
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
33
|
Abstract
The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane. Dysregulation of intracellular transport is associated with many human diseases, including cancer, neurodegeneration, immune deficiencies and metabolic diseases, such as type 2 diabetes mellitus and its associated complications. This Review focuses on the latest advances on the role of endosomal membrane trafficking in metabolic physiology and pathology in vivo, highlighting the importance of this research field in targeting metabolic diseases.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1065 C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France.
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
34
|
Identification and Transcriptional Profiling of SNARE Family in Monascus ruber M7 Reveal Likely Roles in Secondary Metabolism. FERMENTATION 2022. [DOI: 10.3390/fermentation8120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are the core components that mediate vesicle fusion, and they play an important role in secondary metabolism of filamentous fungi. However, in Monascus spp., one of the traditional medicinal and edible filamentous fungi, the members and function of SNAREs remain unknown. Here, twenty SNAREs in M. ruber M7 were systematically identified based on the gene structure, amino acid structure and phylogenetic analysis and were classified into four subfamilies. We also compared the expression profiles of twenty MrSNAREs in M. ruber M7 and its deletion mutants, ΔmrpigA and ΔpksCT, which could not produce Monascus pigment and citrinin, respectively. The results indicated that these MrSNAREs showed distinct expression patterns in the three strains. Compared to M. ruber M7, the expression levels of Mrtlg2, Mrbet1, Mrgos1 and Mrsec22 remained higher in ΔmrpigA but lower in ΔpksCT, which could be reason to consider them as potential candidate genes involved in secondary metabolism for further functional characterization. Further, the significant upregulation of Mrpep12 and Mrvtil in ΔpksCT is worthy of attention for further research. Our results provide systematic identification and expression profiling of the SNARE family in Monascus and imply that the functions of MrSNAREs are specific to different secondary metabolic processes.
Collapse
|
35
|
Yang J, Jin H, Liu Y, Guo Y, Zhang Y. A dynamic template complex mediates Munc18-chaperoned SNARE assembly. Proc Natl Acad Sci U S A 2022; 119:e2215124119. [PMID: 36454760 PMCID: PMC9894263 DOI: 10.1073/pnas.2215124119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Munc18 chaperones assembly of three membrane-anchored soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) into a four-helix bundle to mediate membrane fusion between vesicles and plasma membranes, leading to neurotransmitter or insulin release, glucose transporter (GLUT4) translocation, or other exocytotic processes. Yet, the molecular mechanism underlying chaperoned SNARE assembly is not well understood. Recent evidence suggests that Munc18-1 and Munc18-3 simultaneously bind their cognate SNAREs to form ternary template complexes - Munc18-1:Syntaxin-1:VAMP2 for synaptic vesicle fusion and Munc18-3:Syntaxin-4:VAMP2 for GLUT4 translocation and insulin release, which facilitate the binding of SNAP-25 or SNAP-23 to conclude SNARE assembly. Here, we further investigate the structure, dynamics, and function of the template complexes using optical tweezers. Our results suggest that the synaptic template complex transitions to an activated state with a rate of 0.054 s-1 for efficient SNAP-25 binding. The transition depends upon the linker region of syntaxin-1 upstream of its helical bundle-forming SNARE motif. In addition, the template complex is stabilized by a poorly characterized disordered loop region in Munc18-1. While the synaptic template complex efficiently binds both SNAP-25 and SNAP-23, the GLUT4 template complex strongly favors SNAP-23 over SNAP-25, despite the similar stabilities of their assembled SNARE bundles. Together, our data demonstrate that a highly dynamic template complex mediates efficient and specific SNARE assembly.
Collapse
Affiliation(s)
- Jie Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT06511
| | - Huaizhou Jin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT06511
| | - Yihao Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT06511
| | - Yaya Guo
- Department of Cell Biology, Yale School of Medicine, New Haven, CT06511
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT06511
- Integrated Graduate Program in Physical and Engineering Biology, New Haven, CT06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
| |
Collapse
|
36
|
Swope RD, Hertzler JI, Stone MC, Kothe GO, Rolls MM. The exocyst complex is required for developmental and regenerative neurite growth in vivo. Dev Biol 2022; 492:1-13. [PMID: 36162553 PMCID: PMC10228574 DOI: 10.1016/j.ydbio.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
The exocyst complex is an important regulator of intracellular trafficking and tethers secretory vesicles to the plasma membrane. Understanding of its role in neuron outgrowth remains incomplete, and previous studies have come to different conclusions about its importance for axon and dendrite growth, particularly in vivo. To investigate exocyst function in vivo we used Drosophila sensory neurons as a model system. To bypass early developmental requirements in other cell types, we used neuron-specific RNAi to target seven exocyst subunits. Initial neuronal development proceeded normally in these backgrounds, however, we considered this could be due to residual exocyst function. To probe neuronal growth capacity at later times after RNAi initiation, we used laser microsurgery to remove axons or dendrites and prompt regrowth. Exocyst subunit RNAi reduced axon regeneration, although new axons could be specified. In control neurons, a vesicle trafficking marker often concentrated in the new axon, but this pattern was disrupted in Sec6 RNAi neurons. Dendrite regeneration was also severely reduced by exocyst RNAi, even though the trafficking marker did not accumulate in a strongly polarized manner during normal dendrite regeneration. The requirement for the exocyst was not limited to injury contexts as exocyst subunit RNAi eliminated dendrite regrowth after developmental pruning. We conclude that the exocyst is required for injury-induced and developmental neurite outgrowth, but that residual protein function can easily mask this requirement.
Collapse
Affiliation(s)
- Rachel D Swope
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - J Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Michelle C Stone
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Gregory O Kothe
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.
| |
Collapse
|
37
|
Gardner AP, Barbieri JT, Pellett S. How Botulinum Neurotoxin Light Chain A1 Maintains Stable Association with the Intracellular Neuronal Plasma Membrane. Toxins (Basel) 2022; 14:toxins14120814. [PMID: 36548711 PMCID: PMC9783275 DOI: 10.3390/toxins14120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is the most potent protein toxin for humans and is utilized as a therapy for numerous neurologic diseases. BoNT/A comprises a catalytic Light Chain (LC/A) and a Heavy Chain (HC/A) and includes eight subtypes (BoNT/A1-/A8). Previously we showed BoNT/A potency positively correlated with stable localization on the intracellular plasma membrane and identified a low homology domain (amino acids 268-357) responsible for LC/A1 stable co-localization with SNAP-25 on the plasma membrane, while LC/A3 was present in the cytosol of Neuro2A cells. In the present study, steady-state- and live-imaging of a cytosolic LC/A3 derivative (LC/A3V) engineered to contain individual structural elements of the A1 LDH showed that a 59 amino acid region (275-334) termed the MLD was sufficient to direct LC/A3V from the cytosol to the plasma membrane co-localized with SNAP-25. Informatics and experimental validation of the MLD-predicted R1 region (an α-helix, residues 275-300) and R2 region (a loop, α-helix, loop, residues 302-334) both contribute independent steps to the stable co-localization of LC/A1 with SNAP-25 on the plasma membrane of Neuro-2A cells. Understanding how these structural elements contribute to the overall association of LC/A1 on the plasma membrane may identify the molecular basis for the LC contribution of BoNT/A1 to high potency.
Collapse
Affiliation(s)
- Alexander P. Gardner
- Microbiology and Immunology, Medical College, Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Joseph T. Barbieri
- Microbiology and Immunology, Medical College, Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Correspondence: (J.T.B.); (S.P.)
| | - Sabine Pellett
- Department of Bacteriology, Microbial Sciences Building, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
- Correspondence: (J.T.B.); (S.P.)
| |
Collapse
|
38
|
Nakada-Tsukui K, Watanabe N, Shibata K, Wahyuni R, Miyamoto E, Nozaki T. Proteomic analysis of Atg8-dependent recruitment of phagosomal proteins in the enteric protozoan parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:961645. [PMID: 36262186 PMCID: PMC9575557 DOI: 10.3389/fcimb.2022.961645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is one of the bulk degradation systems and is conserved throughout eukaryotes. In the enteric protozoan parasite Entamoeba histolytica, the causative agent of human amebiasis, Atg8 is not exclusively involved in autophagy per se but also in other membrane traffic-related pathways such as phagosome biogenesis. We previously reported that repression of atg8 gene expression by antisense small RNA-mediated transcriptional gene silencing (gs) resulted in growth retardation, delayed endocytosis, and reduced acidification of endosomes and phagosomes. In this study, to better understand the role of Atg8 in phagocytosis and trogocytosis, we conducted a comparative proteomic analysis of phagosomes isolated from wild type and atg8-gs strains. We found that 127 and 107 proteins were detected >1.5-fold less or more abundantly, respectively, in phagosomes isolated from the atg8-gs strain, compared to the control strain. Among 127 proteins whose abundance was reduced in phagosomes from atg8-gs, a panel of proteins related to fatty acid metabolism, phagocytosis, and endoplasmic reticulum (ER) homeostasis was identified. Various lysosomal hydrolases and their receptors also tend to be excluded from phagosomes by atg8-gs, reinforcing the notion that Atg8 is involved in phagosomal acidification and digestion. On the contrary, among 107 proteins whose abundance increased in phagosomes from atg8-gs strain, ribosome-related proteins and metabolite interconversion enzymes are enriched. We further investigated the localization of several representative proteins, including adenylyl cyclase-associated protein and plasma membrane calcium pump, both of which were demonstrated to be recruited to phagosomes and trogosomes via an Atg8-dependent mechanism. Taken together, our study has provided the basis of the phagosome proteome to further elucidate molecular events in the Atg8-dependent regulatory network of phagosome/trogosome biogenesis in E. histolytica.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Kumiko Nakada-Tsukui, ; Tomoyoshi Nozaki,
| | - Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Shibata
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ratna Wahyuni
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Miyamoto
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kumiko Nakada-Tsukui, ; Tomoyoshi Nozaki,
| |
Collapse
|
39
|
Mahmutefendić Lučin H, Blagojević Zagorac G, Marcelić M, Lučin P. Host Cell Signatures of the Envelopment Site within Beta-Herpes Virions. Int J Mol Sci 2022; 23:9994. [PMID: 36077391 PMCID: PMC9456339 DOI: 10.3390/ijms23179994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Beta-herpesvirus infection completely reorganizes the membrane system of the cell. This system is maintained by the spatiotemporal arrangement of more than 3000 cellular proteins that continuously adapt the configuration of membrane organelles according to cellular needs. Beta-herpesvirus infection establishes a new configuration known as the assembly compartment (AC). The AC membranes are loaded with virus-encoded proteins during the long replication cycle and used for the final envelopment of the newly formed capsids to form infectious virions. The identity of the envelopment membranes is still largely unknown. Electron microscopy and immunofluorescence studies suggest that the envelopment occurs as a membrane wrapping around the capsids, similar to the growth of phagophores, in the area of the AC with the membrane identities of early/recycling endosomes and the trans-Golgi network. During wrapping, host cell proteins that define the identity and shape of these membranes are captured along with the capsids and incorporated into the virions as host cell signatures. In this report, we reviewed the existing information on host cell signatures in human cytomegalovirus (HCMV) virions. We analyzed the published proteomes of the HCMV virion preparations that identified a large number of host cell proteins. Virion purification methods are not yet advanced enough to separate all of the components of the rich extracellular material, including the large amounts of non-vesicular extracellular particles (NVEPs). Therefore, we used the proteomic data from large and small extracellular vesicles (lEVs and sEVs) and NVEPs to filter out the host cell proteins identified in the viral proteomes. Using these filters, we were able to narrow down the analysis of the host cell signatures within the virions and determine that envelopment likely occurs at the membranes derived from the tubular recycling endosomes. Many of these signatures were also found at the autophagosomes, suggesting that the CMV-infected cell forms membrane organelles with phagophore growth properties using early endosomal host cell machinery that coordinates endosomal recycling.
Collapse
Affiliation(s)
| | | | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
40
|
Music A, Tejeda-González B, Cunha DM, Fischer von Mollard G, Hernández-Pérez S, Mattila PK. The SNARE protein Vti1b is recruited to the sites of BCR activation but is redundant for antigen internalisation, processing and presentation. Front Cell Dev Biol 2022; 10:987148. [PMID: 36111340 PMCID: PMC9468668 DOI: 10.3389/fcell.2022.987148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
In order to fulfil the special requirements of antigen-specific activation and communication with other immune cells, B lymphocytes require finely regulated endosomal vesicle trafficking. How the endosomal machinery is regulated in B cells remains largely unexplored. In our previous proximity proteomic screen, we identified the SNARE protein Vti1b as one of the strongest candidates getting accumulated to the sites of early BCR activation. In this report, we follow up on this finding and investigate the localisation and function of Vti1b in B cells. We found that GFP-fused Vti1b was concentrated at the Golgi complex, around the MTOC, as well as in the Rab7+ lysosomal vesicles in the cell periphery. Upon BCR activation with soluble antigen, Vti1b showed partial localization to the internalized antigen vesicles, especially in the periphery of the cell. Moreover, upon BCR activation using surface-bound antigen, Vti1b polarised to the immunological synapse, colocalising with the Golgi complex, and with lysosomes at actin foci. To test for a functional role of Vti1b in early B cell activation, we used primary B cells isolated from Vit1b-deficient mouse. However, we found no functional defects in BCR signalling, immunological synapse formation, or processing and presentation of the internalized antigen, suggesting that the loss of Vti1b in B cells could be compensated by its close homologue Vti1a or other SNAREs.
Collapse
Affiliation(s)
- Amna Music
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Blanca Tejeda-González
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Diogo M. Cunha
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | | | - Sara Hernández-Pérez
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- *Correspondence: Sara Hernández-Pérez, ; Pieta K. Mattila,
| | - Pieta K. Mattila
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- *Correspondence: Sara Hernández-Pérez, ; Pieta K. Mattila,
| |
Collapse
|
41
|
Zhang Y, Ma L, Bao H. Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. Crit Rev Biochem Mol Biol 2022; 57:443-460. [PMID: 36151854 PMCID: PMC9588726 DOI: 10.1080/10409238.2022.2121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fusion of transmitter-containing vesicles with plasma membranes at the synaptic and neuromuscular junctions mediates neurotransmission and muscle contractions, respectively, thereby underlying all thoughts and actions. The fusion process is driven by the coupled folding and assembly of three synaptic SNARE proteins--syntaxin-1 and SNAP-25 on the target plasma membrane (t-SNAREs) and VAMP2 on the vesicular membrane (v-SNARE) into a four-helix bundle. Their assembly is chaperoned by Munc18-1 and many other proteins to achieve the speed and accuracy required for neurotransmission. However, the physiological pathway of SNARE assembly and its coupling to membrane fusion remains unclear. Here, we review recent progress in understanding SNARE assembly and membrane fusion, with a focus on results obtained by single-molecule manipulation approaches and electric recordings of single fusion pores. We describe two pathways of synaptic SNARE assembly, their associated intermediates, energetics, and kinetics. Assembly of the three SNAREs in vitro begins with the formation of a t-SNARE binary complex, on which VAMP2 folds in a stepwise zipper-like fashion. Munc18-1 significantly alters the SNARE assembly pathway: syntaxin-1 and VAMP2 first bind on the surface of Munc18-1 to form a template complex, with which SNAP-25 associates to conclude SNARE assembly and displace Munc18-1. During membrane fusion, multiple trans-SNARE complexes cooperate to open a dynamic fusion pore in a manner dependent upon their copy number and zippering states. Together, these results demonstrate that stepwise and cooperative SNARE assembly drive stagewise membrane fusion.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA;,Conatct: and
| | - Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Present address: Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Bao
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458,Conatct: and
| |
Collapse
|
42
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
43
|
Farquhar RE, Cheung TT, Logue MJE, McDonald FJ, Devor DC, Hamilton KL. Role of SNARE Proteins in the Insertion of KCa3.1 in the Plasma Membrane of a Polarized Epithelium. Front Physiol 2022; 13:905834. [PMID: 35832483 PMCID: PMC9271999 DOI: 10.3389/fphys.2022.905834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Targeting proteins to a specific membrane is crucial for proper epithelial cell function. KCa3.1, a calcium-activated, intermediate-conductance potassium channel, is targeted to the basolateral membrane (BLM) in epithelial cells. Surprisingly, the mechanism of KCa3.1 membrane targeting is poorly understood. We previously reported that targeting of KCa3.1 to the BLM of epithelial cells is Myosin-Vc-, Rab1-and Rab8-dependent. Here, we examine the role of the SNARE proteins VAMP3, SNAP-23 and syntaxin 4 (STX-4) in the targeting of KCa3.1 to the BLM of Fischer rat thyroid (FRT) epithelial cells. We carried out immunoblot, siRNA and Ussing chamber experiments on FRT cells, stably expressing KCa3.1-BLAP/Bir-A-KDEL, grown as high-resistance monolayers. siRNA-mediated knockdown of VAMP3 reduced BLM expression of KCa3.1 by 57 ± 5% (p ≤ 0.05, n = 5). Measurements of BLM-localized KCa3.1 currents, in Ussing chambers, demonstrated knockdown of VAMP3 reduced KCa3.1 current by 70 ± 4% (p ≤ 0.05, n = 5). Similarly, siRNA knockdown of SNAP-23 reduced the expression of KCa3.1 at the BLM by 56 ± 7% (p ≤ 0.01, n = 6) and reduced KCa3.1 current by 80 ± 11% (p ≤ 0.05, n = 6). Also, knockdown of STX-4 lowered the BLM expression of KCa3.1 by 54 ± 6% (p ≤ 0.05, n = 5) and reduced KCa3.1 current by 78 ± 11% (p ≤ 0.05, n = 5). Finally, co-immunoprecipitation experiments demonstrated associations between KCa3.1, VAMP3, SNAP-23 and STX-4. These data indicate that VAMP3, SNAP-23 and STX-4 are critical for the targeting KCa3.1 to BLM of polarized epithelial cells.
Collapse
Affiliation(s)
- Rachel E. Farquhar
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T. Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Matthew J. E. Logue
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Fiona J. McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel C. Devor
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Kirk L. Hamilton
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- *Correspondence: Kirk L. Hamilton,
| |
Collapse
|
44
|
Tang F, Fan J, Zhang X, Zou Z, Xiao D, Li X. The Role of Vti1a in Biological Functions and Its Possible Role in Nervous System Disorders. Front Mol Neurosci 2022; 15:918664. [PMID: 35711736 PMCID: PMC9197314 DOI: 10.3389/fnmol.2022.918664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Vesicle transport through interaction with t-SNAREs 1A (Vti1a), a member of the N-ethylmaleimide-sensitive factor attachment protein receptor protein family, is involved in cell signaling as a vesicular protein and mediates vesicle trafficking. Vti1a appears to have specific roles in neurons, primarily by regulating upstream neurosecretory events that mediate exocytotic proteins and the availability of secretory organelles, as well as regulating spontaneous synaptic transmission and postsynaptic efficacy to control neurosecretion. Vti1a also has essential roles in neural development, autophagy, and unconventional extracellular transport of neurons. Studies have shown that Vti1a dysfunction plays critical roles in pathological mechanisms of Hepatic encephalopathy by influencing spontaneous neurotransmission. It also may have an unknown role in amyotrophic lateral sclerosis. A VTI1A variant is associated with the risk of glioma, and the fusion product of the VTI1A gene and the adjacent TCF7L2 gene is involved in glioma development. This review summarizes Vti1a functions in neurons and highlights the role of Vti1a in the several nervous system disorders.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaoyan Zhang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhuan Zou
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Dongqiong Xiao,
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Xihong Li,
| |
Collapse
|