1
|
Kilanowska A, Szkudelski T. Effects of inhibition of phosphodiesterase 3B in pancreatic islets on insulin secretion: a potential link with some stimulatory pathways. Arch Physiol Biochem 2021; 127:250-257. [PMID: 31240952 DOI: 10.1080/13813455.2019.1628071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Elevated intracellular cAMP concentrations potentiate insulin secretion from pancreatic β cells. Phosphodiesterase 3B (PDE3B) is highly expressed in these cells and plays a role in the regulation of insulin secretion. MATERIALS AND METHODS In this study, effects of amrinone, an inhibitor of PDE3B on insulin release from isolated pancreatic islets, were determined. RESULTS Exposure of islets to amrinone for 15, 30 and 90 min markedly increased secretion induced by 6.7 mM glucose. Amrinone enhanced also secretion stimulated by 6.7 mM glucose and DB-cAMP, an activator of PKA. It was also demonstrated that amrinone potentiated insulin secretion induced by 6.7 mM glucose in the combination with PMA (activator of PKC) or acetylcholine. However, the insulin-secretory response to glucose and glibenclamide was unchanged by amrinone. CONCLUSIONS These results indicate that amrinone is capable of increasing insulin secretion; however, its action is restricted.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, University of Zielona Gora, Zielona Gora, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
2
|
Ruiter M, Houy S, Engholm-Keller K, Graham ME, Sørensen JB. SNAP-25 phosphorylation at Ser187 is not involved in Ca 2+ or phorbolester-dependent potentiation of synaptic release. Mol Cell Neurosci 2019; 102:103452. [PMID: 31794878 DOI: 10.1016/j.mcn.2019.103452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/13/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022] Open
Abstract
SNAP-25, one of the three SNARE-proteins responsible for synaptic release, can be phosphorylated by Protein Kinase C on Ser-187, close to the fusion pore. In neuroendocrine cells, this phosphorylation event potentiates vesicle recruitment into releasable pools, whereas the consequences of phosphorylation for synaptic release remain unclear. We mutated Ser-187 and expressed two mutants (S187C and S187E) in the context of the SNAP-25B-isoform in SNAP-25 knockout glutamatergic autaptic neurons. Whole-cell patch clamp recordings were performed to assess the effect of Ser-187 phosphorylation on synaptic transmission. Blocking phosphorylation by expressing the S187C mutant did not affect synapse density, basic evoked or spontaneous neurotransmission, the readily-releasable pool size or its Ca2+-independent or Ca2+-dependent replenishment. Furthermore, it did not affect the response to phorbol esters, which activate PKC. Expressing S187C in the context of the SNAP-25A isoform also did not affect synaptic transmission. Strikingly, the - potentially phosphomimetic - mutant S187E reduced spontaneous release and release probability, with the largest effect seen in the SNAP-25B isoform, showing that a negative charge in this position is detrimental for neurotransmission, in agreement with electrostatic fusion triggering. During the course of our experiments, we found that higher SNAP-25B expression levels led to decreased paired pulse potentiation, probably due to higher release probabilities. Under these conditions, the potentiation of evoked EPSCs by phorbol esters was followed by a persistent down-regulation, probably due to a ceiling effect. In conclusion, our results indicate that phosphorylation of Ser-187 in SNAP-25 is not involved in modulation of synaptic release by Ca2+ or phorbol esters.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Kasper Engholm-Keller
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mark E Graham
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark.
| |
Collapse
|
3
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
4
|
Wang X, Liu Y, Jia M, Sun X, Wang N, Li Y, Cui C. Phosphorylated SNAP25 in the CA1 regulates morphine-associated contextual memory retrieval via increasing GluN2B-NMDAR surface localization. Addict Biol 2018; 23:1067-1078. [PMID: 28884870 DOI: 10.1111/adb.12558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/13/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023]
Abstract
Although our previous studies have demonstrated both protein kinase C (PKC) and GluN2B-containing N-methyl-d-aspartate receptor (GluN2B-NMDAR) play crucial roles in morphine-associated learning and memory, the relationship between them remains unexplored. In this study, we validated the enhanced PKC and membrane GluN2B protein expression in the hippocampal CA1 after morphine conditioned place preference (CPP) expression in rats. Interestingly, we also found that phosphorylation of SNAP25 at Ser187 (pSer187-SNAP25), a PKC-activated target, was significantly increased following morphine CPP expression. Blocking the pSer187-SNAP25 by intra-CA1 injection of an interfering peptide impaired morphine CPP expression and accompanied by the reduced ratio of GluN2B membrane/total in the CA1. In addition, intra-CA1 blockade of pSer187-SNAP25 did not affect natural learning and memory process as evidenced by intact sucrose-induced CPP expression and normal locomotor activity in rats. Therefore, our results reveal that enhanced pSer187-SNAP25 by PKC recruits GluN2B-NMDAR to the membrane surface in the hippocampal CA1 and mediates context-induced addiction memory retrieval. Our findings in this study fill in the missing link and provide better understanding of the molecular mechanisms involved in morphine-associated contextual memory retrieval.
Collapse
Affiliation(s)
- Xinjuan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health and Family Planning Commission, Neuroscience Research Institute; Peking University; China
| | - Yan Liu
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health and Family Planning Commission, Neuroscience Research Institute; Peking University; China
| | - Meng Jia
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health and Family Planning Commission, Neuroscience Research Institute; Peking University; China
| | - Xiaowei Sun
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health and Family Planning Commission, Neuroscience Research Institute; Peking University; China
| | - Na Wang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health and Family Planning Commission, Neuroscience Research Institute; Peking University; China
| | - Yijing Li
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health and Family Planning Commission, Neuroscience Research Institute; Peking University; China
| | - Cailian Cui
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health and Family Planning Commission, Neuroscience Research Institute; Peking University; China
| |
Collapse
|
5
|
Trexler AJ, Taraska JW. Regulation of insulin exocytosis by calcium-dependent protein kinase C in beta cells. Cell Calcium 2017; 67:1-10. [PMID: 29029784 DOI: 10.1016/j.ceca.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
Abstract
The control of insulin release from pancreatic beta cells helps ensure proper blood glucose level, which is critical for human health. Protein kinase C has been shown to be one key control mechanism for this process. After glucose stimulation, calcium influx into beta cells triggers exocytosis of insulin-containing dense-core granules and activates protein kinase C via calcium-dependent phospholipase C-mediated generation of diacylglycerol. Activated protein kinase C potentiates insulin release by enhancing the calcium sensitivity of exocytosis, likely by affecting two main pathways that could be linked: (1) the reorganization of the cortical actin network, and (2) the direct phosphorylation of critical exocytotic proteins such as munc18, SNAP25, and synaptotagmin. Here, we review what is currently known about the molecular mechanisms of protein kinase C action on each of these pathways and how these effects relate to the control of insulin release by exocytosis. We identify remaining challenges in the field and suggest how these challenges might be addressed to advance our understanding of the regulation of insulin release in health and disease.
Collapse
Affiliation(s)
- Adam J Trexler
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Justin W Taraska
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
6
|
Santo-Domingo J, Chareyron I, Dayon L, Núñez Galindo A, Cominetti O, Pilar Giner Giménez M, De Marchi U, Canto C, Kussmann M, Wiederkehr A. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic β cells. FASEB J 2016; 31:1028-1045. [PMID: 27927723 DOI: 10.1096/fj.201600837r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria play a central role in pancreatic β-cell nutrient sensing by coupling their metabolism to plasma membrane excitability and insulin granule exocytosis. Whether non-nutrient secretagogues stimulate mitochondria as part of the molecular mechanism to promote insulin secretion is not known. Here, we show that PKC signaling, which is employed by many non-nutrient secretagogues, augments mitochondrial respiration in INS-1E (rat insulinoma cell line clone 1E) and human pancreatic β cells. The phorbol ester, phorbol 12-myristate 13-acetate, accelerates mitochondrial respiration at both resting and stimulatory glucose concentrations. A range of inhibitors of novel PKC isoforms prevent phorbol ester-induced respiration. Respiratory response was blocked by oligomycin that demonstrated PKC-dependent acceleration of mitochondrial ATP synthesis. Enhanced respiration was observed even when glycolysis was bypassed or fatty acid transport was blocked, which suggested that PKC regulates mitochondrial processes rather than upstream catabolic fluxes. A phosphoproteome study of phorbol ester-stimulated INS-1E cells maintained under resting (2.5 mM) glucose revealed a large number of phosphorylation sites that were altered during short-term activation of PKC signaling. The data set was enriched for proteins that are involved in gene expression, cytoskeleton remodeling, secretory vesicle transport, and exocytosis. Interactome analysis identified PKC, C-Raf, and ERK1/2 as the central phosphointeraction cluster. Prevention of ERK1/2 signaling by using a MEK1 inhibitor caused a marked decreased in phorbol 12-myristate 13-acetate-induced mitochondrial respiration. ERK1/2 signaling module therefore links PKC activation to downstream mitochondrial activation. We conclude that non-nutrient secretagogues act, in part, via PKC and downstream ERK1/2 signaling to stimulate mitochondrial energy production to compensate for energy expenditure that is linked to β-cell activation.-Santo-Domingo, J., Chareyron, I., Dayon, L., Galindo, A. N., Cominetti, O., Giménez, M. P. G., De Marchi, U., Canto, C., Kussmann, M., Wiederkehr, A. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic β cells.
Collapse
Affiliation(s)
- Jaime Santo-Domingo
- Mitochondrial Function, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Isabelle Chareyron
- Mitochondrial Function, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Loïc Dayon
- Systems Nutrition, Metabonomics and Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Antonio Núñez Galindo
- Systems Nutrition, Metabonomics and Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Ornella Cominetti
- Systems Nutrition, Metabonomics and Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - María Pilar Giner Giménez
- Systems Nutrition, Metabonomics and Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Umberto De Marchi
- Mitochondrial Function, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Carles Canto
- Diabetes and Metabolic Health, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Martin Kussmann
- Systems Nutrition, Metabonomics and Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Andreas Wiederkehr
- Mitochondrial Function, Nestlé Institute of Health Sciences, Lausanne, Switzerland;
| |
Collapse
|
7
|
Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis. PLoS One 2016; 11:e0152869. [PMID: 27138453 PMCID: PMC4854486 DOI: 10.1371/journal.pone.0152869] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger pathway interactions will improve understanding of critical regulatory sites, how different GPCRs interact and pharmacological targets for modulating insulin secretion in type 2 diabetes.
Collapse
|
8
|
Calcium-dependent PKC isoforms have specialized roles in short-term synaptic plasticity. Neuron 2014; 82:859-71. [PMID: 24794094 DOI: 10.1016/j.neuron.2014.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 01/04/2023]
Abstract
Posttetanic potentiation (PTP) is a widely observed form of short-term plasticity lasting for tens of seconds after high-frequency stimulation. Here we show that although protein kinase C (PKC) mediates PTP at the calyx of Held synapse in the auditory brainstem before and after hearing onset, PTP is produced primarily by an increased probability of release (p) before hearing onset, and by an increased readily releasable pool of vesicles (RRP) thereafter. We find that these mechanistic differences, which have distinct functional consequences, reflect unexpected differential actions of closely related calcium-dependent PKC isoforms. Prior to hearing onset, when PKCγ and PKCβ are both present, PKCγ mediates PTP by increasing p and partially suppressing PKCβ actions. After hearing onset, PKCγ is absent and PKCβ produces PTP by increasing RRP. In hearing animals, virally expressed PKCγ overrides PKCβ to produce PTP by increasing p. Thus, two similar PKC isoforms mediate PTP in distinctly different ways.
Collapse
|
9
|
Mourad NI, Nenquin M, Henquin JC. Amplification of insulin secretion by acetylcholine or phorbol ester is independent of β-cell microfilaments and distinct from metabolic amplification. Mol Cell Endocrinol 2013; 367:11-20. [PMID: 23246352 DOI: 10.1016/j.mce.2012.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/23/2012] [Accepted: 12/04/2012] [Indexed: 11/30/2022]
Abstract
Insulin secretion (IS) triggered by β-cell [Ca(2+)](c) is amplified by metabolic and receptor-generated signals. Diacylglycerol largely mediates acetylcholine (ACh) effects through protein-kinase C and other effectors, which can be directly activated by phorbol-ester (PMA). Using mouse islets, we investigated the possible role of microfilaments in ACh/PMA-mediated amplification of IS. PMA had no steady-state impact on actin microfilaments. Although ACh slightly augmented and PMA diminished glucose- and tolbutamide-induced increases in β-cell [Ca(2+)](c), both amplified IS in control islets and after microfilament disruption (latrunculin) or stabilization (jasplakinolide). Both phases of IS were larger in response to glucose than tolbutamide, although [Ca(2+)](c) was lower. This difference in secretion, which reflects metabolic amplification, persisted in presence of ACh/PMA and was independent of microfilaments. Amplification of IS by ACh/PMA is thus distinct from metabolic amplification, but both pathways promote acquisition of release competence by insulin granules, which can access exocytotic sites without intervention of microfilaments.
Collapse
Affiliation(s)
- Nizar I Mourad
- Unit of Endocrinology and Metabolism, University of Louvain, Faculty of Medicine, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
10
|
Brozzi F, Lajus S, Diraison F, Rajatileka S, Hayward K, Regazzi R, Molnár E, Váradi A. MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway. Mol Biol Cell 2012; 23:4444-55. [PMID: 22993210 PMCID: PMC3496617 DOI: 10.1091/mbc.e12-05-0369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Myosin- and Rab-interacting protein is not a classic receptor for MyoVa on large, dense-core secretory granules (SGs), but it aids in PKA-dependent phosphorylation of MyoVa-associated proteins on SGs in endocrine and neuroendocrine cells. Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)–anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.
Collapse
Affiliation(s)
- Flora Brozzi
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Feinshreiber L, Singer-Lahat D, Ashery U, Lotan I. Voltage-gated potassium channel as a facilitator of exocytosis. Ann N Y Acad Sci 2009; 1152:87-92. [PMID: 19161379 DOI: 10.1111/j.1749-6632.2008.03997.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage-gated ion channels are well characterized for their function in excitability signals. Accumulating studies, however, have established an ion-independent function for the major classes of ion channels in cellular signaling. During the last few years we established a novel role for Kv2.1, a voltage-gated potassium (Kv) channel, classically known for its role of repolarizing the membrane potential, in facilitation of exocytosis. Kv2.1 induces facilitation of depolarization-induced release through its direct interaction with syntaxin, a protein component of the exocytotic machinery, independently of the potassium ion flow through the channel's pore. Here, we review our recent studies, further characterize the phenomena (using chromaffin cells and carbon fiber amperometry), and suggest plausible mechanisms that can underlie this facilitation of release.
Collapse
Affiliation(s)
- Lori Feinshreiber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
12
|
Abstract
Members of the serine/threonine PKC (protein kinase C) family perform diverse functions in multiple cell types. All members of the family are activated in signalling cascades triggered by occupation of cell surface receptors, but the cPKC (conventional PKC) and nPKC (novel PKC) isoforms are also responsive to fatty acid metabolites. PKC isoforms are involved in various aspects of pancreatic beta-cell function, including cell proliferation, differentiation and death, as well as regulation of secretion in response to glucose and muscarinic receptor agonists. Recently, the nPKC isoform, PKCepsilon, has also been implicated in the loss of insulin secretory responsiveness that underpins the development of Type 2 diabetes.
Collapse
|
13
|
Schmitz-Peiffer C, Biden TJ. Protein kinase C function in muscle, liver, and beta-cells and its therapeutic implications for type 2 diabetes. Diabetes 2008; 57:1774-83. [PMID: 18586909 PMCID: PMC2453608 DOI: 10.2337/db07-1769] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
Affiliation(s)
| | - Trevor J. Biden
- From the Garvan Institute of Medical Research, Darlinghurst, Australia
| |
Collapse
|
14
|
Phosphorylation of SNAP-25 at Ser187 mediates enhancement of exocytosis by a phorbol ester in INS-1 cells. J Neurosci 2008; 28:21-30. [PMID: 18171919 DOI: 10.1523/jneurosci.2352-07.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Activation of diacylglycerol (DAG) signaling pathways with phorbol esters dramatically enhances Ca2+-triggered exocytosis from both endocrine cells and neurons, however the relevant targets of DAG are controversial. A possible effector mechanism for this signaling pathway is phosphorylation of SNAP-25 (25 kDa synaptosome-associated protein) at Ser187 by PKC. Here, we investigated the role of Ser187 in the enhancement of exocytosis by the phorbol ester PMA (phorbol 12-myristate 13-acetate). We used patch-clamp measurements of membrane capacitance together with photorelease of caged-Ca2+ and membrane depolarization to study exocytosis. Expression of the nonphosphorylatable S187C SNAP-25 mutant did not attenuate the enhancement of exocytosis by PMA in either bovine chromaffin cells or the INS-1 insulin-secreting cell line. To test the effects of Ser187 mutations under conditions in which the endogenous SNAP-25 is disabled, we expressed botulinum toxin serotype E to cleave SNAP-25 in INS-1 cells. Coexpression of a toxin-resistant mutant (TR), but not wild-type SNAP-25, was able to rescue PMA-modulated exocytosis. Coexpression of the toxin with the TR-S187C SNAP-25 mutant was able to completely block the enhancement of exocytosis by PMA in response to photoelevation of [Ca2+]i to low microM levels or to a depolarizing train. The phospho-mimetic S187E mutation enhanced the small, fast burst of exocytosis evoked by photelevation of Ca2+, but, like PMA, had smaller effects on exocytosis evoked by a depolarizing train. This work supports the hypothesis that phosphorylation of Ser187 of SNAP-25 by PKC is a key step in the enhancement of exocytosis by DAG.
Collapse
|
15
|
Pozzi D, Condliffe S, Bozzi Y, Chikhladze M, Grumelli C, Proux-Gillardeaux V, Takahashi M, Franceschetti S, Verderio C, Matteoli M. Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci U S A 2008; 105:323-8. [PMID: 18162553 PMCID: PMC2224210 DOI: 10.1073/pnas.0706211105] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Indexed: 11/18/2022] Open
Abstract
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a SNARE protein that regulates neurotransmission by the formation of a complex with syntaxin 1 and synaptobrevin/VAMP2. SNAP-25 also reduces neuronal calcium responses to stimuli, but neither the functional relevance nor the molecular mechanisms of this modulation have been clarified. In this study, we demonstrate that hippocampal slices from Snap25(+/-) mice display a significantly larger facilitation and that higher calcium peaks are reached after depolarization by Snap25(-/-) and Snap25(+/-) cultured neurons compared with wild type. We also show that SNAP-25b modulates calcium dynamics by inhibiting voltage-gated calcium channels (VGCCs) and that PKC phosphorylation of SNAP-25 at ser187 is essential for this process, as indicated by the use of phosphomimetic (S187E) or nonphosphorylated (S187A) mutants. Neuronal activity is the trigger that induces the transient phosphorylation of SNAP-25 at ser187. Indeed, enhancement of network activity increases the levels of phosphorylated SNAP-25, whereas network inhibition reduces the extent of protein phosphorylation. A transient peak of SNAP-25 phosphorylation also is detectable in rat hippocampus in vivo after i.p. injection with kainate to induce seizures. These findings demonstrate that differences in the expression levels of SNAP-25 impact on calcium dynamics and neuronal plasticity, and that SNAP-25 phosphorylation, by promoting inhibition of VGCCs, may mediate a negative feedback modulation of neuronal activity during intense activation.
Collapse
Affiliation(s)
- Davide Pozzi
- *Department of Medical Pharmacology and Consiglio Nazionale delle Ricerche–Institute of Neuroscience, University of Milano, Via Vanvitelli 32, 20129 Milan, Italy
- Italian Institute of Technology, Via Morego 30, 16163 Genoa, Italy
| | - Steven Condliffe
- *Department of Medical Pharmacology and Consiglio Nazionale delle Ricerche–Institute of Neuroscience, University of Milano, Via Vanvitelli 32, 20129 Milan, Italy
| | - Yuri Bozzi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Via G. Moruzzi 1, 56100 Pisa, Italy
| | - Maia Chikhladze
- Istituto Neurologico C. Besta, Via Celoria 11, 20133 Milan, Italy
| | - Carlotta Grumelli
- *Department of Medical Pharmacology and Consiglio Nazionale delle Ricerche–Institute of Neuroscience, University of Milano, Via Vanvitelli 32, 20129 Milan, Italy
| | | | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa 228-8555, Japan
| | | | - Claudia Verderio
- *Department of Medical Pharmacology and Consiglio Nazionale delle Ricerche–Institute of Neuroscience, University of Milano, Via Vanvitelli 32, 20129 Milan, Italy
| | - Michela Matteoli
- *Department of Medical Pharmacology and Consiglio Nazionale delle Ricerche–Institute of Neuroscience, University of Milano, Via Vanvitelli 32, 20129 Milan, Italy
- **Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Don C. Gnocchi, 20129 Milan, Italy; and
| |
Collapse
|
16
|
Abstract
G-proteins (guanine nucleotide-binding proteins) are membrane-attached proteins composed of three subunits, alpha, beta, and gamma. They transduce signals from G-protein coupled receptors (GPCRs) to target effector proteins. The agonistactivated receptor induces a conformational change in the G-protein trimer so that the alpha-subunit binds GTP in exchange for GDP and alpha-GTP, and betagamma-subunits separate to interact with the target effector. Effector-interaction is terminated by the alpha-subunit GTPase activity, whereby bound GTP is hydrolyzed to GDP. This is accelerated in situ by RGS proteins, acting as GTPase-activating proteins (GAPs). Galpha-GDP and Gbetagamma then reassociate to form the Galphabetagamma trimer. G-proteins primarily involved in the modulation of neurotransmitter release are G(o), G(q) and G(s). G(o) mediates the widespread presynaptic auto-inhibitory effect of many neurotransmitters (e.g., via M2/M4 muscarinic receptors, alpha(2) adrenoreceptors, micro/delta opioid receptors, GABAB receptors). The G(o) betagamma-subunit acts in two ways: first, and most ubiquitously, by direct binding to CaV2 Ca(2+) channels, resulting in a reduced sensitivity to membrane depolarization and reduced Ca(2+) influx during the terminal action potential; and second, through a direct inhibitory effect on the transmitter release machinery, by binding to proteins of the SNARE complex. G(s) and G(q) are mainly responsible for receptor-mediated facilitatory effects, through activation of target enzymes (adenylate cyclase, AC and phospholipase-C, PLC respectively) by the GTP-bound alpha-subunits.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
17
|
Cunha DA, Roma LP, Boschero AC. Prolactin modulates the association and phosphorylation of SNARE and kinesin/MAP-2 proteins in neonatal pancreatic rat islets. Mol Cell Endocrinol 2007; 273:32-41. [PMID: 17573185 DOI: 10.1016/j.mce.2007.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/02/2007] [Accepted: 05/08/2007] [Indexed: 11/18/2022]
Abstract
Prolactin induces maturation of insulin secretion in cultured neonatal rat islets. In this study, we investigated whether the improved secretory response to glucose caused by prolactin involves alteration in the expression, association and phosphorylation of several proteins that participate in these processes. Messenger RNA was extracted from neonatal rat islets cultured for 5 days in the presence of prolactin and reverse transcribed. Gene expression was analyzed by semi-quantitative RT-PCR and by Western blotting for proteins. The gene transcription and protein expression of kinesin and MAP-2 were increased in prolactin-treated islets compared to the controls. The association and phosphorylation of proteins was analyzed by immunoprecipitation followed by Western blotting, after acute exposure to prolactin. Prolactin increased the association between SNARE proteins and kinesin/MAP-2 while the association of munc-18/syntaxin 1A was decreased. Serine phosphorylation of SNAP-25, syntaxin 1A, munc-18, MAP-2 was significantly higher whereas kinesin phosphorylation was decreased in prolactin-treated islets. There was an increase in SNARE complex formation in islets stimulated with prolactin, 22 mM glucose, 40 mM K(+), 200 microM carbachol and 1 microM PMA. The prolactin-induced increase in the formation of SNARE complex and syntaxin 1A phosphorylation was inhibited by PD098059 and U0126, inhibitors of the MAPK pathway. These findings indicate that prolactin primes pancreatic beta-cells to release insulin by increasing the expression and phosphorylation/association of proteins implicated in the secretory machinery and the MAPK/PKC pathway is important for this effect.
Collapse
Affiliation(s)
- Daniel A Cunha
- Department of Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), CP 6109, Campinas 13083-970, SP, Brazil
| | | | | |
Collapse
|
18
|
Yang Y, Craig TJ, Chen X, Ciufo LF, Takahashi M, Morgan A, Gillis KD. Phosphomimetic mutation of Ser-187 of SNAP-25 increases both syntaxin binding and highly Ca2+-sensitive exocytosis. ACTA ACUST UNITED AC 2007; 129:233-44. [PMID: 17325194 PMCID: PMC2151612 DOI: 10.1085/jgp.200609685] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phosphorylation targets that mediate the enhancement of exocytosis by PKC are unknown. PKC phosporylates the SNARE protein SNAP-25 at Ser-187. We expressed mutants of SNAP-25 using the Semliki Forest Virus system in bovine adrenal chromaffin cells and then directly measured the Ca2+ dependence of exocytosis using photorelease of caged Ca2+ together with patch-clamp capacitance measurements. A flash of UV light used to elevate [Ca2+]i to several μM and release the highly Ca2+-sensitive pool (HCSP) of vesicles was followed by a train of depolarizing pulses to elicit exocytosis from the less Ca2+-sensitive readily releasable pool (RRP) of vesicles. Carbon fiber amperometry confirmed that the amount and kinetics of catecholamine release from individual granules were similar for the two phases of exocytosis. Mimicking PKC phosphorylation with expression of the S187E SNAP-25 mutant resulted in an approximately threefold increase in the HCSP, whereas the response to depolarization increased only 1.5-fold. The phosphomimetic S187D mutation resulted in an ∼1.5-fold increase in the HCSP but a 30% smaller response to depolarization. In vitro binding assays with recombinant SNARE proteins were performed to examine shifts in protein–protein binding that may promote the highly Ca2+-sensitive state. The S187E mutant exhibited increased binding to syntaxin but decreased Ca2+-independent binding to synaptotagmin I. Mimicking phosphorylation of the putative PKA phosphorylation site of SNAP-25 with the T138E mutation decreased binding to both syntaxin and synaptotagmin I in vitro. Expressing the T138E/ S187E double mutant in chromaffin cells demonstrated that enhancing the size of the HCSP correlates with an increase in SNAP-25 binding to syntaxin in vitro, but not with Ca2+-independent binding of SNAP-25 to synaptotagmin I. Our results support the hypothesis that exocytosis triggered by lower Ca2+ concentrations (from the HCSP) occurs by different molecular mechanisms than exocytosis triggered by higher Ca2+ levels.
Collapse
Affiliation(s)
- Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Fritzius T, Frey AD, Schweneker M, Mayer D, Moelling K. WD-repeat-propeller-FYVE protein, ProF, binds VAMP2 and protein kinase Czeta. FEBS J 2007; 274:1552-66. [PMID: 17313651 DOI: 10.1111/j.1742-4658.2007.05702.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have recently identified a protein, consisting of seven WD repeats, presumably forming a beta-propeller, and a domain identified in Fab1p, YOTB, VAC1p, and EEA1 (FYVE) domain, ProF. The FYVE domain targets the protein to vesicular membranes, while the WD repeats allow binding of the activated kinases Akt and protein kinase (PK)Czeta. Here, we describe the vesicle-associated membrane protein 2 (VAMP2) as interaction partner of ProF. The interaction is demonstrated with overexpressed and endogenous proteins in mammalian cells. ProF and VAMP2 partially colocalize on vesicular structures with PKCzeta and the proteins form a ternary complex. VAMP2 can be phosphorylated by activated PKCzeta in vitro and the presence of ProF increases the PKCzeta-dependent phosphorylation of VAMP2 in vitro. ProF is an adaptor protein that brings together a kinase with its substrate. VAMP2 is known to regulate docking and fusion of vesicles and to play a role in targeting vesicles to the plasma membrane. The complex may be involved in vesicle cycling in various secretory pathways.
Collapse
Affiliation(s)
- Thorsten Fritzius
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, Zurich CH-8006, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113:546-93. [PMID: 17306374 PMCID: PMC1934514 DOI: 10.1016/j.pharmthera.2006.11.007] [Citation(s) in RCA: 505] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate, and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past 20 years culminating in a naturally occurring GLP-1 receptor (GLP-1R) agonist, exendin 4 (Ex-4), now being used to treat type 2 diabetes mellitus (T2DM). GLP-1 engages a specific guanine nucleotide-binding protein (G-protein) coupled receptor (GPCR) that is present in tissues other than the pancreas (brain, kidney, lung, heart, and major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1R activation, adenylyl cyclase (AC) is activated and cAMP is generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the protein kinase A (PKA) and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation, and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in T2DM patients treated with Ex-4. This review will focus on the effects resulting from GLP-1R activation in the pancreas.
Collapse
Affiliation(s)
- Máire E Doyle
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
21
|
Uchida T, Iwashita N, Ohara-Imaizumi M, Ogihara T, Nagai S, Choi JB, Tamura Y, Tada N, Kawamori R, Nakayama KI, Nagamatsu S, Watada H. Protein Kinase Cδ Plays a Non-redundant Role in Insulin Secretion in Pancreatic β Cells. J Biol Chem 2007; 282:2707-16. [PMID: 17135234 DOI: 10.1074/jbc.m610482200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC) is considered to modulate glucose-stimulated insulin secretion. Pancreatic beta cells express multiple isoforms of PKCs; however, the role of each isoform in glucose-stimulated insulin secretion remains controversial. In this study we investigated the role of PKCdelta, a major isoform expressed in pancreatic beta cells on beta cell function. Here, we showed that PKCdelta null mice manifested glucose intolerance with impaired insulin secretion. Insulin tolerance test showed no decrease in insulin sensitivity in PKCdelta null mice. Studies using islets isolated from these mice demonstrated decreased glucose- and KCl-stimulated insulin secretion. Perifusion studies indicated that mainly the second phase of insulin secretion was decreased. On the other hand, glucose-induced influx of Ca2+ into beta cells was not altered. Immunohistochemistry using total internal reflection fluorescence microscopy and electron microscopic analysis showed an increased number of insulin granules close to the plasma membrane in beta cells of PKCdelta null mice. Although PKC is thought to phosphorylate Munc18-1 and facilitate soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors complex formation, the phosphorylation of Munc18-1 by glucose stimulation was decreased in islets of PKCdelta null mice. We conclude that PKCdelta plays a non-redundant role in glucose-stimulated insulin secretion. The impaired insulin secretion in PKCdelta null mice is associated with reduced phosphorylation of Munc18-1.
Collapse
Affiliation(s)
- Toyoyoshi Uchida
- Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, 2-1-1, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sieburth D, Madison JM, Kaplan JM. PKC-1 regulates secretion of neuropeptides. Nat Neurosci 2006; 10:49-57. [PMID: 17128266 DOI: 10.1038/nn1810] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/02/2006] [Indexed: 11/09/2022]
Abstract
The secretion of neurotransmitters and neuropeptides is mediated by distinct organelles-synaptic vesicles (SVs) and dense-core vesicles (DCVs), respectively. Relatively little is known about the factors that differentially regulate SV and DCV secretion. Here we show that protein kinase C-1 (PKC-1), which is most similar to the vertebrate PKC eta and epsilon isoforms, regulates exocytosis of DCVs in Caenorhabditis elegans motor neurons. Mutants lacking PCK-1 activity had delayed paralysis induced by the acetylcholinesterase inhibitor aldicarb, whereas mutants with increased PKC-1 activity had more rapid aldicarb-induced paralysis. Imaging and electrophysiological assays indicated that SV release occurred normally in pkc-1 mutants. By contrast, genetic analysis of aldicarb responses and imaging of fluorescently tagged neuropeptides indicated that mutants lacking PKC-1 had reduced neuropeptide secretion. Similar neuropeptide secretion defects were found in mutants lacking unc-31 (encoding the protein CAPS) or unc-13 (encoding Munc13). These results suggest that PKC-1 selectively regulates DCV release from neurons.
Collapse
Affiliation(s)
- Derek Sieburth
- Department of Molecular Biology, Simches 7, Massachusetts General Hospital, 185 Cambridge St., Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
23
|
Ishikawa Y, Cho G, Yuan Z, Skowronski MT, Pan Y, Ishida H. Water channels and zymogen granules in salivary glands. J Pharmacol Sci 2006; 100:495-512. [PMID: 16799262 DOI: 10.1254/jphs.crj06007x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Salivary secretion occurs in response to stimulation by neurotransmitters released from autonomic nerve endings. The molecular mechanisms underlying the secretion of water, a main component of saliva, from salivary glands are not known; the plasma membrane is a major barrier to water transport. A 28-kDa integral membrane protein, distributed in highly water-permeable tissues, was identified as a water channel protein, aquaporin (AQP). Thirteen AQPs (AQP0 - AQP12) have been identified in mammals. AQP5 is localized in lipid rafts under unstimulated conditions and translocates to the apical plasma membrane in rat parotid glands upon stimulation by muscarinic agonists. The importance of increases in intracellular calcium concentration [Ca(2+)](i) and the nitric oxide synthase and protein kinase G signaling pathway in the translocation of AQP5 is reviewed in section I. Signals generated by the activation of Ca(2+) mobilizing receptors simultaneously trigger and regulate exocytosis. Zymogen granule exocytosis occurs under the control of essential process, stimulus-secretion coupling, in salivary glands. Ca(2+) signaling is a principal signal in both protein and water secretion from salivary glands induced by cholinergic stimulation. On the other hand, the cyclic adenosine monophosphate (cAMP)/cAMP-dependent protein kinase system has a major role in zymogen granule exocytosis without significant increases in [Ca(2+)](i). In section II, the mechanisms underlying the control of salivary protein secretion and its dysfunction are reviewed.
Collapse
Affiliation(s)
- Yasuko Ishikawa
- Department of Pharmacology, The University of Tokushima School of Dentistry, Tokushima, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
MacDonald PE, Joseph JW, Rorsman P. Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci 2006; 360:2211-25. [PMID: 16321791 PMCID: PMC1569593 DOI: 10.1098/rstb.2005.1762] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The appropriate secretion of insulin from pancreatic beta-cells is critically important to the maintenance of energy homeostasis. The beta-cells must sense and respond suitably to postprandial increases of blood glucose, and perturbation of glucose-sensing in these cells can lead to hypoglycaemia or hyperglycaemias and ultimately diabetes. Here, we review beta-cell glucose-sensing with a particular focus on the regulation of cellular excitability and exocytosis. We examine in turn: (i) the generation of metabolic signalling molecules; (ii) the regulation of beta-cell membrane potential; and (iii) insulin granule dynamics and exocytosis. We further discuss the role of well known and putative candidate metabolic signals as regulators of insulin secretion.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Duke University Medical Center Sarah W. Stedman Nutrition and Metabolism Center Durham, NC 27704, USA.
| | | | | |
Collapse
|
25
|
Yang X, Xu P, Xiao Y, Xiong X, Xu T. Domain Requirement for the Membrane Trafficking and Targeting of Syntaxin 1A. J Biol Chem 2006; 281:15457-63. [PMID: 16595658 DOI: 10.1074/jbc.m513246200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syntaxin plays a key role in intracellular membrane fusion in eukaryotic cells. The function of syntaxin relies on its proper trafficking to and targeting at the target membrane. The mechanisms underlying the trafficking and targeting of syntaxin to its physiological sites remain poorly understood. Here we have analyzed the trafficking of syntaxin 1A in INS-1 and CHO cells. We have identified the transmembrane domain together with several flanking positive-charged amino acids as the minimal domain required for the membrane delivery. Interestingly, we found that SNARE motif-exposed syntaxin 1A mutants were retained in endoplasmic reticulum (ER) and failed to transport to the cell surface in the absence of SNAP-25, suggesting that the exposure of the SNARE motif causes ER retention and complexation with SNAP-25 helps the ER escape. Finally, our data propose two key roles for the H(abc) domain: to protect nonspecific interaction by masking the SNARE motif and to participate in the clustering of syntaxin 1A to the fusion sites in the plasma membrane.
Collapse
Affiliation(s)
- Xiaofei Yang
- Joint Laboratory of Institute of Biophysics & Huazhong University of Science and Technology, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
26
|
Abstract
PKC (protein kinase C) has been known for many years to modulate regulated exocytosis in a wide variety of cell types. In neurons and neuroendocrine cells, PKC regulates several different stages of the exocytotic process, suggesting that these multiple actions of PKC are mediated by phosphorylation of distinct protein targets. In recent years, a variety of exocytotic proteins have been identified as PKC substrates, the best characterized of which are SNAP-25 (25 kDa synaptosome-associated protein) and Munc18. In the present study, we review recent evidence suggesting that site-specific phosphorylation of SNAP-25 and Munc18 by PKC regulates distinct stages of exocytosis.
Collapse
|
27
|
Barclay JW, Morgan A, Burgoyne RD. Calcium-dependent regulation of exocytosis. Cell Calcium 2005; 38:343-53. [PMID: 16099500 DOI: 10.1016/j.ceca.2005.06.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/30/2022]
Abstract
A rapid increase in intracellular calcium directly triggers regulated exocytosis. In addition, changes in intracellular calcium concentration can adjust the extent of exocytosis (quantal content) or the magnitude of individual release events (quantal size) in both the short- and long-term. It is generally agreed that calcium achieves this regulation via an interaction with a number of different molecular targets located at or near to the site of membrane fusion. We review here the synaptic proteins with defined calcium-binding domains and protein kinases activated by calcium, summarize what is known about their function in membrane fusion and the experimental evidence in support of their involvement in synaptic plasticity.
Collapse
Affiliation(s)
- Jeff W Barclay
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
28
|
Hepp R, Puri N, Hohenstein AC, Crawford GL, Whiteheart SW, Roche PA. Phosphorylation of SNAP-23 Regulates Exocytosis from Mast Cells. J Biol Chem 2005; 280:6610-20. [PMID: 15611044 DOI: 10.1074/jbc.m412126200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated exocytosis is a process in which a physiological trigger initiates the translocation, docking, and fusion of secretory granules with the plasma membrane. A class of proteins termed SNAREs (including SNAP-23, syntaxins, and VAMPs) are known regulators of secretory granule/plasma membrane fusion events. We have investigated the molecular mechanisms of regulated exocytosis in mast cells and find that SNAP-23 is phosphorylated when rat basophilic leukemia mast cells are triggered to degranulate. The kinetics of SNAP-23 phosphorylation mirror the kinetics of exocytosis. We have identified amino acid residues Ser(95) and Ser(120) as the major phosphorylation sites in SNAP-23 in rodent mast cells. Quantitative analysis revealed that approximately 10% of SNAP-23 was phosphorylated when mast cell degranulation was induced. These same residues were phosphorylated when mouse platelet degranulation was induced with thrombin, demonstrating that phosphorylation of SNAP-23 Ser(95) and Ser(120) is not restricted to mast cells. Although triggering exocytosis did not alter the absolute amount of SNAP-23 bound to SNAREs, after stimulation essentially all of the SNAP-23 bound to the plasma membrane SNARE syntaxin 4 and the vesicle SNARE VAMP-2 was phosphorylated. Regulated exocytosis studies revealed that overexpression of SNAP-23 phosphorylation mutants inhibited exocytosis from rat basophilic leukemia mast cells, demonstrating that phosphorylation of SNAP-23 on Ser(120) and Ser(95) modulates regulated exocytosis by mast cells.
Collapse
Affiliation(s)
- Régine Hepp
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Carpenter L, Mitchell CJ, Xu ZZ, Poronnik P, Both GW, Biden TJ. PKC alpha is activated but not required during glucose-induced insulin secretion from rat pancreatic islets. Diabetes 2004; 53:53-60. [PMID: 14693697 DOI: 10.2337/diabetes.53.1.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of protein kinase C (PKC) in glucose-stimulated insulin secretion (GSIS) is controversial. Using recombinant adenoviruses for overexpression of PKC alpha and PKC delta, in both wild-type (WT) and kinase-dead (KD) forms, we here demonstrate that activation of these two PKCs is neither necessary nor sufficient for GSIS from batch-incubated, rat pancreatic islets. In contrast, responses to the pharmacologic activator 12-O-tetradecanoylphorbol-13-acetate (TPA) were reciprocally modulated by overexpression of the PKC alpha WT or PKC alpha KD but not the corresponding PKC delta adenoviruses. The kinetics of the secretory response to glucose (monitored by perifusion) were not altered in either cultured islets overexpressing PKC alpha KD or freshly isolated islets stimulated in the presence of the conventional PKC (cPKC) inhibitor Go6976. However, the latter did inhibit the secretory response to TPA. Using phosphorylation state-specific antisera for consensus PKC phosphorylation sites, we also showed that (compared with TPA) glucose causes only a modest and transient functional activation of PKC (maximal at 2-5 min). However, glucose did promote a prolonged (15 min) phosphorylation of PKC substrates in the presence of the phosphatase inhibitor okadaic acid. Overall, the results demonstrate that glucose does stimulate PKC alpha in pancreatic islets but that this makes little overall contribution to GSIS.
Collapse
Affiliation(s)
- Lee Carpenter
- Garvan Institute of Medical Research, St. Vincents Hospital, and Department of Medicine, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Takahashi M, Itakura M, Kataoka M. New Aspects of Neurotransmitter Releasee and Exocytosis: Regulation of Neurotransmitter Release by Phosphorylation. J Pharmacol Sci 2003; 93:41-5. [PMID: 14501150 DOI: 10.1254/jphs.93.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Synaptic transmission is conducted by neurotransmitters released from nerve terminals. Neurotransmitter release is regulated both positively and negatively by multiple mechanisms, and its regulation is believed to be one of the important mechanisms of synaptic plasticity underlying learning and memory. Various protein kinases play important roles in the regulation, and candidates for protein substrates essential for the regulation have been identified.
Collapse
Affiliation(s)
- Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan.
| | | | | |
Collapse
|