1
|
Schrecker C, Behrens S, Schönherr R, Ackermann A, Pauli D, Plotz G, Zeuzem S, Brieger A. SPTAN1 Expression Predicts Treatment and Survival Outcomes in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13143638. [PMID: 34298848 PMCID: PMC8305611 DOI: 10.3390/cancers13143638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a common and deadly form of cancer. Non-erythroid spectrin αII (SPTAN1), a protein of the cytoskeleton, is thought to be involved in CRC development and progression. In this study, we explore whether measuring SPTAN1 levels in resected CRC specimens might help to predict patient survival outcomes and response to chemotherapy. Indeed, we find that higher SPTAN1 protein and mRNA levels in CRC specimens associate with longer patient survival times. Using cell culture experiments, we then show that cells with lower SPTAN1 levels are less susceptible to FOLFOX chemotherapy, a standard treatment regimen for patients with CRC. Overall, our study underscores the importance of cytoskeletal proteins in shaping tumour biology and treatment responses and nominates SPTAN1 as a biomarker to improve patient stratification and refine therapeutic decisions in CRC. Abstract Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality. In a cohort of 189 patients with CRC, we recently showed that expression of the cytoskeletal scaffolding protein non-erythroid spectrin αII (SPTAN1) was lower in advanced metastatic tumours. The aim of the present study was to clarify the association of intratumoural SPTAN1 expression levels with treatment and survival outcomes in patients with CRC. The analysis was based on histologic assessment of SPTAN1 protein levels in our own CRC cohort, and transcriptome data of 573 CRC cases from The Cancer Genome Atlas (TCGA). We first establish that high intratumoural levels of SPTAN1 protein and mRNA associate with favourable survival outcomes in patients with CRC. Next, a response prediction signature applied to the TCGA data reveals a possible link between high SPTAN1 transcript levels and improved patient responses to FOLFOX chemotherapy. Complementary in vitro experiments confirm that SPTAN1 knockdown strains of the colon cancer cell lines HT-29, HCT116 mlh1-2 and Caco-2 are less responsive to FOLFOX chemotherapy compared with SPTAN1-proficient control strains. Taken together, we identify SPTAN1 as a novel prognostic biomarker in CRC and show that SPTAN1 expression levels may predict patient responses to chemotherapy. These investigations illustrate how an affordable, histology-based diagnostic test could directly impact therapeutic decision-making at the bedside.
Collapse
Affiliation(s)
- Christopher Schrecker
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Correspondence: (C.S.); (A.B.); Tel.: +49-69-6301-6218 (A.B.)
| | - Sophia Behrens
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Rebecca Schönherr
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Faculty of Medicine, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Anne Ackermann
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Daniel Pauli
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Guido Plotz
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Stefan Zeuzem
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Angela Brieger
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Correspondence: (C.S.); (A.B.); Tel.: +49-69-6301-6218 (A.B.)
| |
Collapse
|
2
|
Vigneswara V, Ahmed Z. The Role of Caspase-2 in Regulating Cell Fate. Cells 2020; 9:cells9051259. [PMID: 32438737 PMCID: PMC7290664 DOI: 10.3390/cells9051259] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life.
Collapse
|
3
|
Nigra AD, Casale CH, Santander VS. Human erythrocytes: cytoskeleton and its origin. Cell Mol Life Sci 2020; 77:1681-1694. [PMID: 31654099 PMCID: PMC11105037 DOI: 10.1007/s00018-019-03346-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
In the last few years, erythrocytes have emerged as the main determinant of blood rheology. In mammals, these cells are devoid of nuclei and are, therefore, unable to divide. Consequently, all circulating erythrocytes come from erythropoiesis, a process in the bone marrow in which several modifications are induced in the expression of membrane and cytoskeletal proteins, and different vertical and horizontal interactions are established between them. Cytoskeleton components play an important role in this process, which explains why they and the interaction between them have been the focus of much recent research. Moreover, in mature erythrocytes, the cytoskeleton integrity is also essential, because the cytoskeleton confers remarkable deformability and stability on the erythrocytes, thus enabling them to undergo deformation in microcirculation. Defects in the cytoskeleton produce changes in erythrocyte deformability and stability, affecting cell viability and rheological properties. Such abnormalities are seen in different pathologies of special interest, such as different types of anemia, hypertension, and diabetes, among others. This review highlights the main findings in mammalian erythrocytes and their progenitors regarding the presence, conformation and function of the three main components of the cytoskeleton: actin, intermediate filaments, and tubulin.
Collapse
Affiliation(s)
- Ayelén D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Cesar H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
4
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Goodman SR, Johnson D, Youngentob SL, Kakhniashvili D. The Spectrinome: The Interactome of a Scaffold Protein Creating Nuclear and Cytoplasmic Connectivity and Function. Exp Biol Med (Maywood) 2019; 244:1273-1302. [PMID: 31483159 DOI: 10.1177/1535370219867269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We provide a review of Spectrin isoform function in the cytoplasm, the nucleus, the cell surface, and in intracellular signaling. We then discuss the importance of Spectrin’s E2/E3 chimeric ubiquitin conjugating and ligating activity in maintaining cellular homeostasis. Finally we present spectrin isoform subunit specific human diseases. We have created the Spectrinome, from the Human Proteome, Human Reactome and Human Atlas data and demonstrated how it can be a useful tool in visualizing and understanding spectrins myriad of cellular functions.Impact statementSpectrin was for the first 12 years after its discovery thought to be found only in erythrocytes. In 1981, Goodman and colleagues1found that spectrin-like molecules were ubiquitously found in non-erythroid cells leading to a great multitude of publications over the next thirty eight years. The discovery of multiple spectrin isoforms found associated with every cellular compartment, and representing 2-3% of cellular protein, has brought us to today’s understanding that spectrin is a scaffolding protein, with its own E2/E3 chimeric ubiquitin conjugating ligating activity that is involved in virtually every cellular function. We cover the history, localized functions of spectrin isoforms, human diseases caused by mutations, and provide the spectrinome: a useful tool for understanding the myriad of functions for one of the most important proteins in all eukaryotic cells.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - Daniel Johnson
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - Steven L Youngentob
- Department of Anatomy and Neurobiology, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - David Kakhniashvili
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
6
|
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF. The role of spectrin in cell adhesion and cell-cell contact. Exp Biol Med (Maywood) 2019; 244:1303-1312. [PMID: 31226892 DOI: 10.1177/1535370219859003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.
Collapse
Affiliation(s)
- Beata Machnicka
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Renata Grochowalska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Dżamila M Bogusławska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Aleksander F Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| |
Collapse
|
7
|
The Role of Nonerythroid Spectrin αII in Cancer. JOURNAL OF ONCOLOGY 2019; 2019:7079604. [PMID: 31186638 PMCID: PMC6521328 DOI: 10.1155/2019/7079604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Nonerythroid spectrin αII (SPTAN1) is an important cytoskeletal protein that ensures vital cellular properties including polarity and cell stabilization. In addition, it is involved in cell adhesion, cell-cell contact, and apoptosis. The detection of altered expression of SPTAN1 in tumors indicates that SPTAN1 might be involved in the development and progression of cancer. SPTAN1 has been described in cancer and therapy response and proposed as a potential marker protein for neoplasia, tumor aggressiveness, and therapeutic efficiency. On one hand, the existing data suggest that overexpression of SPTAN1 in tumor cells reflects neoplastic and tumor promoting activity. On the other hand, nuclear SPTAN1 can have tumor suppressing effects by enabling DNA repair through interaction with DNA repair proteins. Moreover, SPTAN1 cleavage products occur during apoptosis and could serve as markers for the efficacy of cancer therapy. Due to SPTAN1's multifaceted functions and its role in adhesion and migration, SPTAN1 can influence tumor growth and progression in both positive and negative directions depending on its specific regulation. This review summarizes the current knowledge on SPTAN1 in cancer and depicts several mechanisms by which SPTAN1 could impact tumor development and aggressiveness.
Collapse
|
8
|
Arabi-Derkawi R, O'Dowd Y, Cheng N, Rolas L, Boussetta T, Raad H, Marzaioli V, Pintard C, Fasseu M, Kroviarski Y, Belambri SA, Dang PMC, Ye RD, Gougerot-Pocidalo MA, El-Benna J. The Kinesin Light Chain-Related Protein PAT1 Promotes Superoxide Anion Production in Human Phagocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1549-1558. [PMID: 30665935 DOI: 10.4049/jimmunol.1800610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/22/2018] [Indexed: 11/19/2022]
Abstract
Superoxide anion production by the phagocyte NADPH oxidase plays a crucial role in host defenses and inflammatory reaction. The phagocyte NADPH oxidase is composed of cytosolic components (p40phox, p47phox, p67phox, and Rac1/2) and the membrane flavocytochrome b558, which is composed of two proteins: p22phox and gp91phox/NOX2. p22phox plays a crucial role in the stabilization of gp91phox in phagocytes and is also a docking site for p47phox during activation. In the current study, we have used a yeast two-hybrid approach to identify unknown partners of p22phox. Using the cytosolic C-terminal region of p22phox as bait to screen a human spleen cDNA library, we identified the protein interacting with amyloid precursor protein tail 1 (PAT1) as a potential partner of p22phox. The interaction between p22phox and PAT1 was further confirmed by in vitro GST pulldown and overlay assays and in intact neutrophils and COSphox cells by coimmunoprecipitation. We demonstrated that PAT1 is expressed in human neutrophils and monocytes and colocalizes with p22phox, as shown by confocal microscopy. Overexpression of PAT1 in human monocytes and in COSphox cells increased superoxide anion production and depletion of PAT1 by specific small interfering RNA inhibited this process. These data clearly identify PAT1 as a novel regulator of NADPH oxidase activation and superoxide anion production, a key phagocyte function.
Collapse
Affiliation(s)
- Riad Arabi-Derkawi
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Unité Fonctionnelle Dysfonctionnements Immunitaires, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Xavier Bichat, Paris, F-75018, France
| | - Yvonne O'Dowd
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Garda Headquarters, Forensic Science Ireland, Dublin 8, Ireland
| | - Ni Cheng
- University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Tarek Boussetta
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Houssam Raad
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Viviana Marzaioli
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Coralie Pintard
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Magali Fasseu
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Yolande Kroviarski
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Sahra A Belambri
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, 19000 Sétif, Algeria
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Richard D Ye
- University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Marie-Anne Gougerot-Pocidalo
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Unité Fonctionnelle Dysfonctionnements Immunitaires, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Xavier Bichat, Paris, F-75018, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France; .,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| |
Collapse
|
9
|
Lambert MW. Spectrin and its interacting partners in nuclear structure and function. Exp Biol Med (Maywood) 2019; 243:507-524. [PMID: 29557213 DOI: 10.1177/1535370218763563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonerythroid αII-spectrin is a structural protein whose roles in the nucleus have just begun to be explored. αII-spectrin is an important component of the nucleoskelelton and has both structural and non-structural functions. Its best known role is in repair of DNA ICLs both in genomic and telomeric DNA. αII-spectrin aids in the recruitment of repair proteins to sites of damage and a proposed mechanism of action is presented. It interacts with a number of different groups of proteins in the nucleus, indicating it has roles in additional cellular functions. αII-spectrin, in its structural role, associates/co-purifies with proteins important in maintaining the architecture and mechanical properties of the nucleus such as lamin, emerin, actin, protein 4.1, nuclear myosin, and SUN proteins. It is important for the resilience and elasticity of the nucleus. Thus, αII-spectrin's role in cellular functions is complex due to its structural as well as non-structural roles and understanding the consequences of a loss or deficiency of αII-spectrin in the nucleus is a significant challenge. In the bone marrow failure disorder, Fanconi anemia, there is a deficiency in αII-spectrin and, among other characteristics, there is defective DNA repair, chromosome instability, and congenital abnormalities. One may speculate that a deficiency in αII-spectrin plays an important role not only in the DNA repair defect but also in the congenital anomalies observed in Fanconi anemia , particularly since αII-spectrin has been shown to be important in embryonic development in a mouse model. The dual roles of αII-spectrin in the nucleus in both structural and non-structural functions make this an extremely important protein which needs to be investigated further. Such investigations should help unravel the complexities of αII-spectrin's interactions with other nuclear proteins and enhance our understanding of the pathogenesis of disorders, such as Fanconi anemia , in which there is a deficiency in αII-spectrin. Impact statement The nucleoskeleton is critical for maintaining the architecture and functional integrity of the nucleus. Nonerythroid α-spectrin (αIISp) is an essential nucleoskeletal protein; however, its interactions with other structural and non-structural nuclear proteins and its functional importance in the nucleus have only begun to be explored. This review addresses these issues. It describes αIISp's association with DNA repair proteins and at least one proposed mechanism of action for its role in DNA repair. Specific interactions of αIISp with other nucleoskeletal proteins as well as its important role in the biomechanical properties of the nucleus are reviewed. The consequences of loss of αIISp, in disorders such as Fanconi anemia, are examined, providing insights into the profound impact of this loss on critical processes known to be abnormal in FA, such as development, carcinogenesis, cancer progression and cellular functions dependent upon αIISp's interactions with other nucleoskeletal proteins.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
10
|
Vasilyeva NA, Murzina GB, Kireev II, Pivovarov AS. Influence of Membrane Receptor Lateral Diffusion on the Short-Term Depression of Acetylcholine-Induced Current in Helix Neurons. Cell Mol Neurobiol 2017; 37:1443-1455. [PMID: 28236056 PMCID: PMC11482138 DOI: 10.1007/s10571-017-0475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
Abstract
We have studied how various drugs increasing the rate of nicotinic acetylcholine receptors (nAChRs) lateral diffusion affect the depression of ACh-induced current in land snail Helix lucorum neurons responsible for defensive behavior. The acetylcholine (ACh) iontophoretic application protocol imitated the behavioral habituation protocol for the intact animal. We found that the drugs decreasing cholesterol level in cell membranes as methyl-β-cyclodextrin 1 mM and Ro 48-8071 2 µM, and polyclonal antibodies to actin-binding proteins as spectrin 5 µg/ml and merlin 2.5 µg/ml have changed the dynamic of ACh-current depression. The nAChRs lateral diffusion coefficient was obtained by fluorescence recovery after photobleaching. A curve fitting model specially created for analysis of short-term choline sensitivity depression in snail neurons helped us evaluate separately the contribution of nAChRs lateral diffusion, their endocytosis and exocytosis to observed effects during electrophysiological experiments. Taken together, we hypothesize that nAChRs lateral diffusion plays an important role in the cellular correlate of habituation in land snail Helix lucorum neurons.
Collapse
Affiliation(s)
- Natalia A Vasilyeva
- Department of Higher Nervous Activity, Lomonosov Moscow State University, Leninskie Gory, 1, building 12, Moscow, Russia, 119234
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova, 5a, Moscow, Russia, 117485
| | - Galina B Murzina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova, 5a, Moscow, Russia, 117485
| | - Igor I Kireev
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, building 40, Moscow, Russia, 119234
| | - Arkady S Pivovarov
- Department of Higher Nervous Activity, Lomonosov Moscow State University, Leninskie Gory, 1, building 12, Moscow, Russia, 119234.
| |
Collapse
|
11
|
Spectrin and phospholipids - the current picture of their fascinating interplay. Cell Mol Biol Lett 2014; 19:158-79. [PMID: 24569979 PMCID: PMC6276000 DOI: 10.2478/s11658-014-0185-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/19/2014] [Indexed: 12/02/2022] Open
Abstract
The spectrin-based membrane skeleton is crucial for the mechanical stability and resilience of erythrocytes. It mainly contributes to membrane integrity, protein organization and trafficking. Two transmembrane protein macro-complexes that are linked together by spectrin tetramers play a crucial role in attaching the membrane skeleton to the cell membrane, but they are not exclusive. Considerable experimental data have shown that direct interactions between spectrin and membrane lipids are important for cell membrane cohesion. Spectrin is a multidomain, multifunctional protein with several distinctive structural regions, including lipid-binding sites within CH tandem domains, a PH domain, and triple helical segments, which are excellent examples of ligand specificity hidden in a regular repetitive structure, as recently shown for the ankyrin-sensitive lipid-binding domain of beta spectrin. In this review, we summarize the state of knowledge about interactions between spectrin and membrane lipids.
Collapse
|
12
|
Vakifahmetoglu-Norberg H, Norberg E, Perdomo AB, Olsson M, Ciccosanti F, Orrenius S, Fimia GM, Piacentini M, Zhivotovsky B. Caspase-2 promotes cytoskeleton protein degradation during apoptotic cell death. Cell Death Dis 2013; 4:e940. [PMID: 24309927 PMCID: PMC3877538 DOI: 10.1038/cddis.2013.463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/28/2023]
Abstract
The caspase family of proteases cleaves large number of proteins resulting in major morphological and biochemical changes during apoptosis. Yet, only a few of these proteins have been reported to selectively cleaved by caspase-2. Numerous observations link caspase-2 to the disruption of the cytoskeleton, although it remains elusive whether any of the cytoskeleton proteins serve as bona fide substrates for caspase-2. Here, we undertook an unbiased proteomic approach to address this question. By differential proteome analysis using two-dimensional gel electrophoresis, we identified four cytoskeleton proteins that were degraded upon treatment with active recombinant caspase-2 in vitro. These proteins were degraded in a caspase-2-dependent manner during apoptosis induced by DNA damage, cytoskeleton disruption or endoplasmic reticulum stress. Hence, degradation of these cytoskeleton proteins was blunted by siRNA targeting of caspase-2 and when caspase-2 activity was pharmacologically inhibited. However, none of these proteins was cleaved directly by caspase-2. Instead, we provide evidence that in cells exposed to apoptotic stimuli, caspase-2 probed these proteins for proteasomal degradation. Taken together, our results depict a new role for caspase-2 in the regulation of the level of cytoskeleton proteins during apoptosis.
Collapse
Affiliation(s)
- H Vakifahmetoglu-Norberg
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Witek MA, Fung LWM. Quantitative studies of caspase-3 catalyzed αII-spectrin breakdown. Brain Res 2013; 1533:1-15. [PMID: 23948103 PMCID: PMC3786445 DOI: 10.1016/j.brainres.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 11/29/2022]
Abstract
Under various physiological and patho-physiological conditions, spectrin breakdown reactions generate several spectrin breakdown products (SBDPs)-in particular SBDPs of 150 kDa (SBDP150) and 120 kDa (SBDP120). Recently, numerous studies have shown that reactions leading to SBDPs are physiologically relevant, well regulated, and complex. Yet molecular studies on the mechanism of the SBDP formation are comparatively scarce. We have designed basic systems to allow us to follow the breakdown of αII-spectrin model proteins by caspase-3 in detail with gel electrophoresis, fluorescence and mass spectrometry methods. Amongst the predicted and reported sites, our results show that caspase-3 cleaves after residues D1185 and D1478, but not after residues D888, D1340 and D1475. We also found that the cleavage at these two sites is independent of each other. It may be possible to inhibit one site without affecting the other site. Cleavage after residue D1185 in intact αII-spectrin leads to SBDP150, and cleavage after D1478 site leads to SBDP120. Our results also show that the cleavage after the D1185 residue is unusually efficient, with a kcat/KM value of 40,000 M(-1) s(-1), and the cleavage after the D1478 site is more similar to most of the other reported caspase-3 substrates, with a kcat/KM value of 3000 M(-1) s(-1). We believe that this study lays out a methodology and foundation to study caspase-3 catalyzed spectrin breakdown to provide quantitative information. Molecular understanding may lead to better understanding of brain injuries and more precise and specific biomarker development.
Collapse
Affiliation(s)
- Marta A. Witek
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| | - L. W.-M. Fung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| |
Collapse
|
14
|
Han C, Zhao R, Kroger J, Qu M, Wani AA, Wang QE. Caspase-2 short isoform interacts with membrane-associated cytoskeleton proteins to inhibit apoptosis. PLoS One 2013; 8:e67033. [PMID: 23840868 PMCID: PMC3698186 DOI: 10.1371/journal.pone.0067033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022] Open
Abstract
Caspase-2 (casp-2) is the most conserved caspase across species, and is one of the initiator caspases activated by various stimuli. The casp-2 gene produces several alternative splicing isoforms. It is believed that the long isoform, casp-2L, promotes apoptosis, whereas the short isoform, casp-2S, inhibits apoptosis. The actual effect of casp-2S on apoptosis is still controversial, however, and the underlying mechanism for casp-2S-mediated apoptosis inhibition is unclear. Here, we analyzed the effects of casp-2S on DNA damage induced apoptosis through "gain-of-function" and "loss-of-function" strategies in ovarian cancer cell lines. We clearly demonstrated that the over-expression of casp-2S inhibited, and the knockdown of casp-2S promoted, the cisplatin-induced apoptosis of ovarian cancer cells. To explore the mechanism by which casp-2S mediates apoptosis inhibition, we analyzed the proteins which interact with casp-2S in cells by using immunoprecipitation (IP) and mass spectrometry. We have identified two cytoskeleton proteins, Fodrin and α-Actinin 4, which interact with FLAG-tagged casp-2S in HeLa cells and confirmed this interaction through reciprocal IP. We further demonstrated that casp-2S (i) is responsible for inhibiting DNA damage-induced cytoplasmic Fodrin cleavage independent of cellular p53 status, and (ii) prevents cisplatin-induced membrane blebbing. Taken together, our data suggests that casp-2S affects cellular apoptosis through its interaction with membrane-associated cytoskeletal Fodrin protein.
Collapse
Affiliation(s)
- Chunhua Han
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Ran Zhao
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - John Kroger
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Meihua Qu
- Department of Pharmacology, Weifang Medical University, Weifang, China
| | - Altaf A. Wani
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Qi-En Wang
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:620-34. [PMID: 23673272 DOI: 10.1016/j.bbamem.2013.05.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Beata Machnicka
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | | | | | | | | - Elżbieta Heger
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | |
Collapse
|
16
|
|
17
|
Jeon YJ, Jo MG, Yoo HM, Hong SH, Park JM, Ka SH, Oh KH, Seol JH, Jung YK, Chung CH. Chemosensitivity is controlled by p63 modification with ubiquitin-like protein ISG15. J Clin Invest 2012; 122:2622-36. [PMID: 22706304 DOI: 10.1172/jci61762] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/09/2012] [Indexed: 12/19/2022] Open
Abstract
Identification of the cellular mechanisms that mediate cancer cell chemosensitivity is important for developing new cancer treatment strategies. Several chemotherapeutic drugs increase levels of the posttranslational modifier ISG15, which suggests that ISGylation could suppress oncogenesis. However, how ISGylation of specific target proteins controls tumorigenesis is unknown. Here, we identified proteins that are ISGylated in response to chemotherapy. Treatment of a human mammary epithelial cell line with doxorubicin resulted in ISGylation of the p53 family protein p63. An alternative splice variant of p63, ΔNp63α, suppressed the transactivity of other p53 family members, and its expression was abnormally elevated in various human epithelial tumors, suggestive of an oncogenic role for this variant. We showed that ISGylation played an essential role in the downregulation of ΔNp63α. Anticancer drugs, including doxorubicin, induced ΔNp63α ISGylation and caspase-2 activation, leading to cleavage of ISGylated ΔNp63α in the nucleus and subsequent release of its inhibitory domain to the cytoplasm. ISGylation ablated the ability of ΔNp63α to promote anchorage-independent cell growth and tumor formation in vivo as well to suppress the transactivities of proapoptotic p53 family members. These findings establish ISG15 as a tumor suppressor via its conjugation to ΔNp63α and provide a molecular rationale for therapeutic use of doxorubicin against ΔNp63α-mediated cancers.
Collapse
Affiliation(s)
- Young Joo Jeon
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, Tullett KM, Robin AY, Brammananth R, van Delft MF, Lu J, O'Reilly LA, Josefsson EC, Kile BT, Chin WJ, Mintern JD, Olshina MA, Wong W, Baum J, Wright MD, Huang DCS, Mohandas N, Coppel RL, Colman PM, Nicola NA, Shortman K, Lahoud MH. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 2012; 36:646-57. [PMID: 22483802 DOI: 10.1016/j.immuni.2012.03.009] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 02/08/2012] [Accepted: 03/18/2012] [Indexed: 12/14/2022]
Abstract
The immune system must distinguish viable cells from cells damaged by physical and infective processes. The damaged cell-recognition molecule Clec9A is expressed on the surface of the mouse and human dendritic cell subsets specialized for the uptake and processing of material from dead cells. Clec9A recognizes a conserved component within nucleated and nonnucleated cells, exposed when cell membranes are damaged. We have identified this Clec9A ligand as a filamentous form of actin in association with particular actin-binding domains of cytoskeletal proteins. We have determined the crystal structure of the human CLEC9A C-type lectin domain and propose a functional dimeric structure with conserved tryptophans in the ligand recognition site. Mutation of these residues ablated CLEC9A binding to damaged cells and to the isolated ligand complexes. We propose that Clec9A provides targeted recruitment of the adaptive immune system during infection and can also be utilized to enhance immune responses generated by vaccines.
Collapse
Affiliation(s)
- Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF, Lecomte MC. Spectrin-based skeleton as an actor in cell signaling. Cell Mol Life Sci 2011; 69:191-201. [PMID: 21877118 PMCID: PMC3249148 DOI: 10.1007/s00018-011-0804-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 01/12/2023]
Abstract
This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types.
Collapse
Affiliation(s)
- B Machnicka
- University of Zielona Góra, Zielona Góra, Poland
| | | | | | | | | |
Collapse
|
20
|
Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease. Mol Neurodegener 2011; 6:59. [PMID: 21854568 PMCID: PMC3180273 DOI: 10.1186/1750-1326-6-59] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/19/2011] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Huntington Disease (HD) is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2) activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/-) to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. RESULTS YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI) techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. CONCLUSIONS The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD.
Collapse
|
21
|
Shi YH, Chen J, Li CH, Yang HY, Lu XJ. The establishment of a library screening method based on yeast two-hybrid system and its use to determine the potential interactions of liver proteins in ayu, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1184-1187. [PMID: 21352921 DOI: 10.1016/j.fsi.2011.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/08/2010] [Accepted: 02/15/2011] [Indexed: 05/30/2023]
Abstract
Knowledge of specific protein-protein interaction (PPI) is an important component in understanding biological processes and regulatory mechanisms. A library to library screening method (LLS) was established based on yeast two-hybrid (YTH) system in this research, and applied to study the PPIs in ayu liver. In total, 23 out of 55 interaction pairs were found positive through phenotypic identification, with a positive rate of 41.8%. Of the 11 unique PPIs, 9 interactions including FGB/FGG, CaM/Spna2, C9/Apo-AI-1, α₂M/Ft, RPL10/RPL5, C8α/C9, FGG/Apo-AI-1, LECT2/Tf, and Apo-AI-2/C9 were previously reported. The other two PPIs including FGG/CLR and Wap65/C3 are novel, and in vitro co-immunoprecipitation (co-IP) experiments further confirmed these interactions. FGG/CLR interaction might play a role in regulating the inflammatory response. The interaction between Wap65 and C3 hints that Wap65 might function through the complement activation pathways when microbial infection occurs.
Collapse
Affiliation(s)
- Y H Shi
- Faculty of Life Science and Biotechnology, Ningbo University, Ningbo 315211, PR China
| | | | | | | | | |
Collapse
|
22
|
Brnjic S, Olofsson MH, Havelka AM, Linder S. Chemical biology suggests a role for calcium signaling in mediating sustained JNK activation during apoptosis. MOLECULAR BIOSYSTEMS 2010; 6:767-74. [PMID: 20567760 DOI: 10.1039/b920805d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium (Ca(2+)) is used as a signaling molecule to regulate many cellular processes. Calcium signaling generally involves transient elevations of the concentration of free Ca(2+) in the cytosol. More pronounced and sustained elevations of intracellular Ca(2+) concentrations are observed during apoptosis (programmed cell death). These Ca(2+) elevations have been shown to lead to the activation of proteases (calpains) and to changes in protein phosphorylation. Recent evidence, using chemical biology, has raised the possibility that calcium signaling is involved in sustained JNK activation during late phases of apoptosis. For at least some stimuli, calcium release leads to activation of calmodulin kinase II (CaMKII), apoptosis signaling kinase 1 (ASK1) and JNK. Calcium signaling may help to orchestrate the apoptotic response during the execution phase.
Collapse
Affiliation(s)
- Slavica Brnjic
- Department of Oncology-Pathology, Cancer Center Karolinska, R8:00, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Han F, Lu YM, Hasegawa H, Kanai H, Hachimura E, Shirasaki Y, Fukunaga K. Inhibition of dystrophin breakdown and endothelial nitric-oxide synthase uncoupling accounts for cytoprotection by 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e) in left ventricular hypertrophied Mice. J Pharmacol Exp Ther 2010; 332:421-8. [PMID: 19889795 DOI: 10.1124/jpet.109.161646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Using a heart ischemia/reperfusion model in rats, we recently demonstrated that 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), a calmodulin inhibitor, is a cardioprotective drug. Here, we examined cardioprotective mechanisms of DY-9760e in hypertrophy and heart failure using a mouse transverse aortic constriction (TAC) model. Mice were subjected to TAC and 2 weeks later they were administered DY-9760e for another 6 weeks (at 10 or 20 mg/kg/day p.o.). Chronic administration inhibited TAC-induced increased heart-to-body weight ratio dose-dependently. Consistent with inhibition of hypertrophy, fraction shortening, an indicator of heart contractile function, assessed by echocardiography was completely restored by DY-9760e (20 mg/kg/day) administration. Inhibition of TAC-induced atrial natriuretic peptide (ANP) up-regulation further confirmed an antihypertrophic effect of DY-9760e. It is noteworthy that we found that breakdown of dystrophin and spectrin by calpain was associated with heart failure in TAC mice. Caveolin-3 breakdown was closely associated with endothelial nitric-oxide synthase (eNOS) dissociation from the plasma membrane and its subsequent uncoupling. Uncoupled monomeric eNOS formation was associated with increased protein tyrosine nitration, suggesting peroxynitrite production and NO and superoxide formation. It is important to note that 6 weeks of DY-9760e treatment significantly blocked hypertrophic responses, such as increased heart weight and ANP induction. Overall, we show that inhibition of both dystrophin/spectrin breakdown and uncoupling of eNOS probably underlies the cardioprotective mechanisms of DY-9760e. The observed protection of sarcolemmal proteins and eNOS by DY-9760e during pressure overload suggests a novel therapeutic strategy to rescue the heart from hypertrophy-induced failure.
Collapse
Affiliation(s)
- Feng Han
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Aggregation of spectrin and PKCtheta is an early hallmark of fludarabine/mitoxantrone/dexamethasone-induced apoptosis in Jurkat T and HL60 cells. Mol Cell Biochem 2010; 339:63-77. [PMID: 20058056 DOI: 10.1007/s11010-009-0370-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/16/2009] [Indexed: 12/20/2022]
Abstract
It has been shown that changes in spectrin distribution in early apoptosis preceded changes in membrane asymmetry and phosphatidylserine (PS) exposure. PKCtheta was associated with spectrin during these changes, suggesting a possible role of spectrin/PKCtheta aggregation in regulation of early apoptotic events. Here we dissect this hypothesis using Jurkat T and HL60 cell lines as model systems. Immunofluorescent analysis of alphaIIbetaII spectrin arrangement in Jurkat T and HL60 cell lines revealed the redistribution of spectrin and PKCtheta into a polar aggregate in early apoptosis induced by fludarabine/mitoxantrone/dexamethasone (FND). The appearance of an alphaIIbetaII spectrin fraction that was insoluble in a non-ionic detergent (1% Triton X-100) was observed concomitantly with spectrin aggregation. The changes were observed within 2 h after cell exposure to FND, and preceded PS exposure. The changes seem to be restricted to spectrin and not to other cytoskeletal proteins such as actin or vimentin. In studies of the mechanism of these changes, we found that (i) neither changes in apoptosis regulatory genes (e.g., Bcl-2 family proteins) nor changes in cytoskeleton-associated proteins were detected in gene expression profiling of HL60 cells after the first hour of FND treatment, (ii) caspase-3, -7, -8, and -10 had minor involvement in the early apoptotic rearrangement of spectrin/PKCtheta, and (iii) spectrin aggregation was shown to be partially dependent on PKCtheta activity. Our results indicate that spectrin/PKCtheta aggregate formation is related to an early stage in drug-induced apoptosis and possibly may be regulated by PKCtheta activity. These findings indicate that spectrin/PKCtheta aggregation could be considered as a hallmark of early apoptosis and presents the potential to become a useful diagnostic tool for monitoring efficiency of chemotherapy as early as 24 h after treatment.
Collapse
|
25
|
Gauster M, Siwetz M, Orendi K, Moser G, Desoye G, Huppertz B. Caspases rather than calpains mediate remodelling of the fodrin skeleton during human placental trophoblast fusion. Cell Death Differ 2009; 17:336-45. [PMID: 19798107 DOI: 10.1038/cdd.2009.133] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fusion of cytotrophoblasts with the overlying syncytiotrophoblast is an integral step in differentiation of the human placental villous trophoblast. Multiple factors, such as growth factors, hormones, cytokines, protein kinases, transcription factors and structural membrane proteins, were described to modulate trophoblast fusion. However, the knowledge on remodelling of the membrane-associated cytoskeleton during trophoblast fusion is very limited. This study describes the link between remodelling of spectrin-like alpha-fodrin and intercellular trophoblast fusion. Experiments with primary trophoblasts isolated from term placentas and the choriocarcinoma cell line BeWo revealed a biphasic strategy of the cells to achieve reorganization of alpha-fodrin. Syncytialization of trophoblasts was accompanied by down-regulation of alpha-fodrin mRNA, whereas the full-length alpha-fodrin protein was cleaved into 120 and 150 kDa fragments. Application of calpeptin and calpain inhibitor III did not affect alpha-fodrin fragmentation in primary term trophoblasts and forskolin-treated BeWo cells, but decreased secretion of beta human chorionic gonadotropin. In contrast, inhibitors of caspases 3, 8 and 9 attenuated generation of the 120 kDa fragment and a general caspase inhibitor completely blocked fragmentation, suggesting an exclusive function of caspases in alpha-fodrin remodelling. Immunofluorescence double staining of human placenta revealed co-localization of active caspase 8 with alpha-fodrin positive vesicles in fusing villous cytotrophoblasts. These results suggest that caspase-dependent fragmentation of alpha-fodrin may be important for reorganization of the sub-membranous cytoskeleton during trophoblast fusion.
Collapse
Affiliation(s)
- M Gauster
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Harrachgasse 21/VII, Graz 8010, Austria.
| | | | | | | | | | | |
Collapse
|
26
|
Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 2009; 14:1289-98. [DOI: 10.1007/s10495-009-0405-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Kitevska T, Spencer DMS, Hawkins CJ. Caspase-2: controversial killer or checkpoint controller? Apoptosis 2009; 14:829-48. [PMID: 19479377 DOI: 10.1007/s10495-009-0365-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The caspases are an evolutionarily conserved family of cysteine proteases, with essential roles in apoptosis or inflammation. Caspase-2 was the second caspase to be cloned and it resembles the prototypical nematode caspase CED-3 more closely than any other mammalian protein. An absence of caspase-2-specific reagents and the subtle phenotype of caspase-2-deficient mice have hampered definition of the physiological role of caspase-2 and identification of factors regulating its activity. Although some data implicate caspase-2 in apoptotic pathways, a link with apoptosis has been less firmly established for caspase-2 than for some other caspases. Emerging evidence suggests that caspase-2 regulates the cell cycle and may act as a tumour suppressor. This article critically reviews the current state of knowledge regarding the biochemistry and biology of this controversial caspase.
Collapse
Affiliation(s)
- Tanja Kitevska
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| | | | | |
Collapse
|
28
|
Shi M, Vivian CJ, Lee KJ, Ge C, Morotomi-Yano K, Manzl C, Bock F, Sato S, Tomomori-Sato C, Zhu R, Haug JS, Swanson SK, Washburn MP, Chen DJ, Chen BPC, Villunger A, Florens L, Du C. DNA-PKcs-PIDDosome: a nuclear caspase-2-activating complex with role in G2/M checkpoint maintenance. Cell 2009; 136:508-20. [PMID: 19203584 PMCID: PMC5647584 DOI: 10.1016/j.cell.2008.12.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 10/04/2008] [Accepted: 12/03/2008] [Indexed: 01/15/2023]
Abstract
Caspase-2 is unique among all the mammalian caspases in that it is the only caspase that is present constitutively in the cell nucleus, in addition to other cellular compartments. However, the functional significance of this nuclear localization is unknown. Here we show that DNA damage induced by gamma-radiation triggers the phosphorylation of nuclear caspase-2 at the S122 site within its prodomain, leading to its cleavage and activation. This phosphorylation is carried out by the nuclear serine/threonine protein kinase DNA-PKcs and promoted by the p53-inducible death-domain-containing protein PIDD within a large nuclear protein complex consisting of DNA-PKcs, PIDD, and caspase-2, which we have named the DNA-PKcs-PIDDosome. This phosphorylation and the catalytic activity of caspase-2 are involved in the maintenance of a G2/M DNA damage checkpoint and DNA repair mediated by the nonhomologous end-joining (NHEJ) pathway. The DNA-PKcs-PIDDosome thus represents a protein complex that impacts mammalian G2/M DNA damage checkpoint and NHEJ.
Collapse
Affiliation(s)
- Mingan Shi
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Carolyn J. Vivian
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Kyung-Jong Lee
- Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Chunmin Ge
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Keiko Morotomi-Yano
- Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Claudia Manzl
- Division of Departmental Immunology, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Florian Bock
- Division of Departmental Immunology, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Shigeo Sato
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - Ruihong Zhu
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jeffery S. Haug
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Selene K. Swanson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - David J. Chen
- Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Benjamin P. C. Chen
- Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Andreas Villunger
- Division of Departmental Immunology, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Chunying Du
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| |
Collapse
|
29
|
Krumschnabel G, Sohm B, Bock F, Manzl C, Villunger A. The enigma of caspase-2: the laymen's view. Cell Death Differ 2008; 16:195-207. [PMID: 19023332 DOI: 10.1038/cdd.2008.170] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Proteolysis of cellular substrates by caspases (cysteine-dependent aspartate-specific proteases) is one of the hallmarks of apoptotic cell death. Although the activation of apoptotic caspases is considered a 'late-stage' event in apoptosis signaling, past the commitment stage, one caspase family member, caspase-2, splits the cell death community into half - those searching for evidence of an apical initiator function of this molecule and those considering it as an amplifier of the apoptotic caspase cascade, at best, if relevant for apoptosis at all. This review screens past and present biochemical as well as genetic evidence for caspase-2 function in cell death signaling and beyond.
Collapse
Affiliation(s)
- G Krumschnabel
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
30
|
Undrovinas A, Maltsev VA. Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart. Cardiovasc Hematol Agents Med Chem 2008; 6:348-59. [PMID: 18855648 PMCID: PMC2575131 DOI: 10.2174/187152508785909447] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most cardiac Na+ channels open transiently within milliseconds upon membrane depolarization and are responsible for the excitation propagation. However, some channels remain active during hundreds of milliseconds, carrying the so-called persistent or late Na+ current (I(NaL)) throughout the action potential plateau. I(NaL) is produced by special gating modes of the cardiac-specific Na+ channel isoform. Experimental data accumulated over the past decade show the emerging importance of this late current component for the function of both normal and especially failing myocardium, where I(NaL) is reportedly increased. Na+ channels represent a multi-protein complex and its activity is determined not only by the pore-forming alpha subunit but also by its auxiliary beta subunits, cytoskeleton, and by Ca2+ signaling and trafficking proteins. Remodeling of this protein complex and intracellular signaling pathways may lead to alterations of I(NaL) in pathological conditions. Increased I(NaL) and the corresponding Na+ influx in failing myocardium contribute to abnormal repolarization and an increased cell Ca2+ load. Interventions designed to correct I(NaL) rescue normal repolarization and improve Ca2+ handling and contractility of the failing cardiomyocytes. New therapeutic strategies to target both arrhythmias and deficient contractility in HF may not be limited to the selective inhibition of I(NaL) but also include multiple indirect, modulatory (e.g. Ca(2+)- or cytoskeleton- dependent) mechanisms of I(NaL) function.
Collapse
Affiliation(s)
- Albertas Undrovinas
- Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202-2689, USA.
| | | |
Collapse
|
31
|
Maltsev VA, Reznikov V, Undrovinas NA, Sabbah HN, Undrovinas A. Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences. Am J Physiol Heart Circ Physiol 2008; 294:H1597-608. [PMID: 18203851 PMCID: PMC2376056 DOI: 10.1152/ajpheart.00484.2007] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Augmented and slowed late Na(+) current (I(NaL)) is implicated in action potential duration variability, early afterdepolarizations, and abnormal Ca(2+) handling in human and canine failing myocardium. Our objective was to study I(NaL) modulation by cytosolic Ca(2+) concentration ([Ca(2+)](i)) in normal and failing ventricular myocytes. Chronic heart failure was produced in 10 dogs by multiple sequential coronary artery microembolizations; 6 normal dogs served as a control. I(NaL) fine structure was measured by whole cell patch clamp in ventricular myocytes and approximated by a sum of fast and slow exponentials produced by burst and late scattered modes of Na(+) channel gating, respectively. I(NaL) greatly enhanced as [Ca(2+)](i) increased from "Ca(2+) free" to 1 microM: its maximum density increased, decay of both exponentials slowed, and the steady-state inactivation (SSI) curve shifted toward more positive potentials. Testing the inhibition of CaMKII and CaM revealed similarities and differences of I(NaL) modulation in failing vs. normal myocytes. Similarities include the following: 1) CaMKII slows I(NaL) decay and decreases the amplitude of fast exponentials, and 2) Ca(2+) shifts SSI rightward. Differences include the following: 1) slowing of I(NaL) by CaMKII is greater, 2) CaM shifts SSI leftward, and 3) Ca(2+) increases the amplitude of slow exponentials. We conclude that Ca(2+)/CaM/CaMKII signaling increases I(NaL) and Na(+) influx in both normal and failing myocytes by slowing inactivation kinetics and shifting SSI. This Na(+) influx provides a novel Ca(2+) positive feedback mechanism (via Na(+)/Ca(2+) exchanger), enhancing contractions at higher beating rates but worsening cardiomyocyte contractile and electrical performance in conditions of poor Ca(2+) handling in heart failure.
Collapse
Affiliation(s)
- Victor A Maltsev
- Henry Ford Hosp., Cardiovascular Research, Education & Research, Detroit, MI 48202-2689, USA
| | | | | | | | | |
Collapse
|
32
|
Sanz E, Quintana A, Battaglia V, Toninello A, Hidalgo J, Ambrosio S, Valoti M, Marco JL, Tipton KF, Unzeta M. Anti-apoptotic effect of Mao-B inhibitor PF9601N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine] is mediated by p53 pathway inhibition in MPP+-treated SH-SY5Y human dopaminergic cells. J Neurochem 2008; 105:2404-17. [DOI: 10.1111/j.1471-4159.2008.05326.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Benz PM, Feller SM, Sickmann A, Walter U, Renné T. Prostaglandin-induced VASP phosphorylation controls alpha II-spectrin breakdown in apoptotic cells. Int Immunopharmacol 2007; 8:319-24. [PMID: 18182247 DOI: 10.1016/j.intimp.2007.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/29/2007] [Accepted: 10/01/2007] [Indexed: 12/15/2022]
Abstract
In pathological conditions, the inflammatory mediator prostaglandin E2 (PGE2) has been shown to induce apoptosis through a cAMP-dependent pathway. However, underlying mechanisms have remained illusive. Irrespective whether apoptosis is induced by the intrinsic or extrinsic pathway, the cysteine protease caspase-3 becomes activated and cleaves many key proteins including spectrins. Cleavage of the plasma membrane-associated spectrins leads to cell shrinkage, membrane blebbing, the formation of apoptotic bodies, and irreversible cell death. Recently, we identified a novel interaction between alpha II-spectrin and vasodilator-stimulated phosphoprotein (VASP), which is abrogated by the cAMP-dependent protein kinase (PKA)-mediated phosphorylation of VASP. In the present study we investigated whether VASP binding to alpha II-spectrin affects spectrin breakdown in PGE2-induced apoptosis. PGE2 dose- and time-dependently triggered VASP phosphorylation. Following induction of apoptosis, caspase-3-mediated alpha II-spectrin breakdown and membrane blebbing were markedly delayed in wild-type as compared to VASP-deficient endothelial cells. This suggests that VASP binding to alpha II-spectrin attenuates alpha II-spectrin cleavage in apoptotic cells and that PGE2-induced VASP phosphorylation regulates this process. Our findings may therefore provide the molecular basis for PGE2-induced apoptosis in pathological events.
Collapse
Affiliation(s)
- Peter M Benz
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Caspase-2 cleaves DNA fragmentation factor (DFF45)/inhibitor of caspase-activated DNase (ICAD). Arch Biochem Biophys 2007; 468:134-9. [PMID: 17945178 DOI: 10.1016/j.abb.2007.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 12/25/2022]
Abstract
To investigate the signal transduction pathway of caspase-2, cell permeable Tat-reverse-caspase-2 was constructed, characterized and utilized for biochemical and cellular studies. It could induce the cell death as early as 2h, and caspase-2-specific VDVADase activity but not other caspase activities including DEVDase and IETDase. Interestingly, nuclear DNA fragmentation occurred and consistently DNA fragmentation factor (DFF45)/Inhibitor of caspase-activated DNase (ICAD) was cleaved inside the cell as well as in vitro, suggesting a role of caspase-2 in nuclear DNA fragmentation.
Collapse
|
35
|
Catalano A, O'Day DH. Calmodulin-binding proteins in the model organism Dictyostelium: a complete & critical review. Cell Signal 2007; 20:277-91. [PMID: 17897809 DOI: 10.1016/j.cellsig.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
36
|
Meary F, Metral S, Ferreira C, Eladari D, Colin Y, Lecomte MC, Nicolas G. A mutant alphaII-spectrin designed to resist calpain and caspase cleavage questions the functional importance of this process in vivo. J Biol Chem 2007; 282:14226-37. [PMID: 17374614 DOI: 10.1074/jbc.m700028200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
alpha- and beta-spectrins are components of molecular scaffolds located under the lipid bilayer and named membrane skeletons. Disruption of these scaffolds through mutations in spectrins demonstrated that they are involved in the membrane localization or the maintenance of proteins associated with them. The ubiquitous alphaII-spectrin chain bears in its central region a unique domain that is sensitive to several proteases such as calpains or caspases. The conservation of this region in vertebrates suggests that the proteolysis of alphaII-spectrin by these enzymes could be involved in important functions. To assess the role of alphaII-spectrin cleavage in vivo, we generated a murine model in which the exons encoding the region defining this cleavage sensitivity were disrupted by gene targeting. Surprisingly, homozygous mice expressing this mutant alphaII-spectrin appeared healthy, bred normally, and had no histological anomaly. Remarkably, the mutant alphaII-spectrin assembles correctly into the membrane skeleton, thus challenging the notion that this region is required for the stable biogenesis of the membrane skeleton in nonerythroid cells. Our finding also argues against a critical role of this particular alphaII-spectrin cleavage in either major cellular functions or in normal development.
Collapse
|
37
|
Glantz SB, Cianci CD, Iyer R, Pradhan D, Wang KK, Morrow JS. Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Biochemistry 2007; 46:502-13. [PMID: 17209560 PMCID: PMC2825692 DOI: 10.1021/bi061504y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Calpain-catalyzed proteolysis of II-spectrin is a regulated event associated with neuronal long-term potentiation, platelet and leukocyte activation, and other processes. Calpain proteolysis is also linked to apoptotic and nonapoptotic cell death following excessive glutamate exposure, hypoxia, HIV-gp120/160 exposure, or toxic injury. The molecular basis for these divergent consequences of calpain action, and their relationship to spectrin proteolysis, is unclear. Calpain preferentially cleaves II spectrin in vitro in repeat 11 between residues Y1176 and G1177. Unless stimulated by Ca++ and calmodulin (CaM), betaII spectrin proteolysis in vitro is much slower. We identify additional unrecognized sites in spectrin targeted by calpain in vitro and in vivo. Bound CaM induces a second II spectrin cleavage at G1230*S1231. BetaII spectrin is cleaved at four sites. One cleavage only occurs in the absence of CaM at high enzyme-to-substrate ratios near the betaII spectrin COOH-terminus. CaM promotes II spectrin cleavages at Q1440*S1441, S1447*Q1448, and L1482*A1483. These sites are also cleaved in the absence of CaM in recombinant II spectrin fusion peptides, indicating that they are probably shielded in the spectrin heterotetramer and become exposed only after CaM binds alphaII spectrin. Using epitope-specific antibodies prepared to the calpain cleavage sites in both alphaII and betaII spectrin, we find in cultured rat cortical neurons that brief glutamate exposure (a physiologic ligand) rapidly stimulates alphaII spectrin cleavage only at Y1176*G1177, while II spectrin remains intact. In cultured SH-SY5Y cells that lack an NMDA receptor, glutamate is without effect. Conversely, when stimulated by calcium influx (via maitotoxin), there is rapid and sequential cleavage of alphaII and then betaII spectrin, coinciding with the onset of nonapoptotic cell death. These results identify (i) novel calpain target sites in both alphaII and betaII spectrin; (ii) trans-regulation of proteolytic susceptibility between the spectrin subunits in vivo; and (iii) the preferential cleavage of alphaII spectrin vs betaII spectrin when responsive cells are stimulated by engagement of the NMDA receptor. We postulate that calpain proteolysis of spectrin can activate two physiologically distinct responses: one that enhances skeletal plasticity without destroying the spectrin-actin skeleton, characterized by preservation of betaII spectrin; or an alternative response closely correlated with nonapoptotic cell death and characterized by proteolysis of betaII spectrin and complete dissolution of the spectrin skeleton.
Collapse
Affiliation(s)
| | | | - Rathna Iyer
- CNS Biology, Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105
| | | | - Kevin K.W. Wang
- Departments of Psychiatry and Neuroscience, McKnight Brain Institute of the University of Florida, (P.O.Box100256), Gainesville, FL 32610, USA
| | - Jon S. Morrow
- * To whom correspondence should be addressed. tel: 203-785-3624 Fax 203-785-7037 E-mail:
| |
Collapse
|
38
|
Uttenweiler A, Schwarz H, Neumann H, Mayer A. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 2006; 18:166-75. [PMID: 17079729 PMCID: PMC1751332 DOI: 10.1091/mbc.e06-08-0664] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microautophagy involves direct invagination and fission of the vacuolar/lysosomal membrane under nutrient limitation. This occurs by an autophagic tube, a specialized vacuolar membrane invagination that pinches off vesicles into the vacuolar lumen. In this study we have identified the VTC (vacuolar transporter chaperone) complex as required for microautophagy. The VTC complex is present on the ER and vacuoles and at the cell periphery. On induction of autophagy by nutrient limitation the VTC complex is recruited to and concentrated on vacuoles. The VTC complex is inhomogeneously distributed within the vacuolar membranes, showing an enrichment on autophagic tubes. Deletion of the VTC complex blocks microautophagic uptake into vacuoles. The mutants still form autophagic tubes but the production of microautophagic vesicles from their tips is impaired. In line with this, affinity-purified antibodies to the Vtc proteins inhibit microautophagic uptake in a reconstituted system in vitro. Our data suggest that the VTC complex is an important constituent of autophagic tubes and that it is required for scission of microautophagic vesicles from these tubes.
Collapse
Affiliation(s)
- Andreas Uttenweiler
- *Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland; and
| | - Heinz Schwarz
- Max-Planck-Institut für Entwicklungsbiologie, 72076 Tübingen, Germany
| | - Heinz Neumann
- *Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland; and
| | - Andreas Mayer
- *Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland; and
| |
Collapse
|
39
|
Bouvry D, Planès C, Malbert-Colas L, Escabasse V, Clerici C. Hypoxia-Induced Cytoskeleton Disruption in Alveolar Epithelial Cells. Am J Respir Cell Mol Biol 2006; 35:519-27. [PMID: 16741163 DOI: 10.1165/rcmb.2005-0478oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alveolar hypoxia, a common feature of many respiratory disorders, has been previously reported to induce functional changes, particularly a decrease of transepithelial Na and fluid transport. In polarized epithelia, cytoskeleton plays a regulatory role in transcellular and paracellular transport of ions and fluid. We hypothesized that exposure to hypoxia could damage cytoskeleton organization, which in turn, may adversely affect ion and fluid transport. Primary rat alveolar epithelial cells (AEC) were exposed to either mild (3% O(2)) or severe (0.5% O(2)) hypoxia for 18 h or to normoxia (21% O(2)). First, mild and severe hypoxia induced a disorganization of actin, a major protein of the cytoskeleton, reflected by disruption of F-actin filaments. Second, alpha-spectrin, an apical cytoskeleton protein, which binds to actin cytoskeleton and Na transport proteins, was cleaved by hypoxia. Pretreatment of AEC by a caspase inhibitor (z-VAD-fmk; 90 microM) blunted hypoxia-induced spectrin cleavage as well as hypoxia-induced decrease in surface membrane alpha-ENaC and concomitantly induced a partial recovery of hypoxia-induced decrease of amiloride-sensitive Na transport at 3% O(2). Finally, tight junctions (TJs) proteins, which are linked to actin and are a determinant of paracellular permeability, were altered by mild and severe hypoxia: hypoxia induced a mislocalization of occludin from the TJ to cytoplasm and a decrease in zonula occludens-1 protein level. These modifications were associated with modest changes in paracellular permeability at 0.5% O(2,) as assessed by small 4-kD dextran flux and transepithelial resistance measurements. Together, these findings indicate that hypoxia disrupted cytoskeleton and TJ organization in AEC and may participate, at least in part, to hypoxia-induced decrease in Na transport.
Collapse
Affiliation(s)
- Diane Bouvry
- INSERM U773 Centre de Recherche Biomédicale Bichat-Beaujon (CRB3), Université Paris 7 Denis Diderot, UFR de Médecine, Site Bichat, France
| | | | | | | | | |
Collapse
|
40
|
Simonovic M, Zhang Z, Cianci CD, Steitz TA, Morrow JS. Structure of the calmodulin alphaII-spectrin complex provides insight into the regulation of cell plasticity. J Biol Chem 2006; 281:34333-40. [PMID: 16945920 DOI: 10.1074/jbc.m604613200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AlphaII-spectrin is a major cortical cytoskeletal protein contributing to membrane organization and integrity. The Ca2+-activated binding of calmodulin to an unstructured insert in the 11th repeat unit of alphaII-spectrin enhances the susceptibility of spectrin to calpain cleavage but abolishes its sensitivity to several caspases and to at least one bacterially derived pathologic protease. Other regulatory inputs including phosphorylation by c-Src also modulate the proteolytic susceptibility of alphaII-spectrin. These pathways, acting through spectrin, appear to control membrane plasticity and integrity in several cell types. To provide a structural basis for understanding these crucial biological events, we have solved the crystal structure of a complex between bovine calmodulin and the calmodulin-binding domain of human alphaII-spectrin (Protein Data Bank ID code 2FOT). The structure revealed that the entire calmodulin-spectrin-binding interface is hydrophobic in nature. The spectrin domain is also unique in folding into an amphiphilic helix once positioned within the calmodulin-binding groove. The structure of this complex provides insight into the mechanisms by which calmodulin, calpain, caspase, and tyrosine phosphorylation act on spectrin to regulate essential cellular processes.
Collapse
Affiliation(s)
- Miljan Simonovic
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
41
|
Bournier O, Kroviarski Y, Rotter B, Nicolas G, Lecomte MC, Dhermy D. Spectrin interacts with EVL (Enabled/vasodilator-stimulated phosphoprotein-like protein), a protein involved in actin polymerization. Biol Cell 2006; 98:279-93. [PMID: 16336193 DOI: 10.1042/bc20050024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION The alpha- and beta-spectrin chains constitute the filaments of the spectrin-based skeleton, which was first identified in erythrocytes. The discovery of analogous structures at plasma membranes of eukaryotic cells has led to investigations of the role of this spectrin skeleton in many cellular processes. The alphaII-spectrin chain expressed in nucleated cells harbours in its central region several functional motifs, including an SH3 (Src homology 3) domain. RESULTS Using yeast two-hybrid screening, we have identified EVL [Enabled/VASP (vasodilator-stimulated phosphoprotein)-like protein] as a new potential partner of the alphaII-spectrin SH3 domain. In the present study, we investigated the interaction of the alphaII-spectrin SH3 domain with EVL and compared this with other proteins related to EVL [Mena (mammalian Enabled) and VASP]. We confirmed the in vitro interaction between EVL and the alphaII-spectrin SH3 domain by GST (glutathione S-transferase) pull-down assays, and showed that the co-expression of EVL with the alphaII-spectrin SH3 domain in COS-7 cells resulted in the partial delocalization of the SH3 domain from cytoplasm to filopodia and lamellipodia, where it was co-localized with EVL. In kidney epithelial and COS-7 cells, we demonstrated the co-immunoprecipitation of the alphaII-spectrin chain with over-expressed EVL. Immunofluorescence studies showed that the over-expression of EVL in COS-7 cells promoted the formation of filopodia and lamellipodia, and the expressed EVL was detected in filopodial tips and the leading edge of lamellipodia. In these cells over-expressing EVL, the alphaII-spectrin membrane labelling lagged behind EVL staining in lamellipodia and filopodia, with co-localization of these two stains in the contact area. In kidney epithelial cell lines, focused co-localization of spectrin with expressed EVL was observed in the membrane of the lateral domain, where the cell-cell contacts are reinforced. CONCLUSIONS The possible link between the spectrin-based skeleton and actin via the EVL protein suggests a new way of integrating the spectrin-based skeleton in areas of dynamic actin reorganization.
Collapse
|
42
|
Axelsson V, Holback S, Sjögren M, Gustafsson H, Forsby A. Gliotoxin induces caspase-dependent neurite degeneration and calpain-mediated general cytotoxicity in differentiated human neuroblastoma SH-SY5Y cells. Biochem Biophys Res Commun 2006; 345:1068-74. [PMID: 16712786 DOI: 10.1016/j.bbrc.2006.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 02/05/2023]
Abstract
In this study, a significant increase by 50% in intracellular free calcium concentration ([Ca(2+)](i)) was observed in differentiated human neuroblastoma (SH-SY5Y) cells after exposure to 0.25microM of the fungal metabolite gliotoxin for 72h. Further, the involvement of caspases and calpains was demonstrated to underlie the gliotoxin-induced cytotoxic and neurite degenerative effects. The caspase inhibitor Z-VAD-fmk almost completely reduced the neurite degeneration from 40% degeneration of neurites to 5% as compared to control. Inhibition of calpains with calpeptin significantly attenuated gliotoxin-induced cytotoxicity, determined as reduction in total cellular protein content, from 43% to 14% as compared to control cells. Western blot analyses of alphaII-spectrin breakdown fragments confirmed activity of the proteases, and that alphaII-spectrin was cleaved by caspases in gliotoxin-exposed cells. These results show that calpains and caspases have a role in the toxicity of gliotoxin in differentiated SH-SY5Y cells and that the process may be Ca(2+)-mediated.
Collapse
Affiliation(s)
- V Axelsson
- Department of Neurochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden.
| | | | | | | | | |
Collapse
|
43
|
Vakifahmetoglu H, Olsson M, Orrenius S, Zhivotovsky B. Functional connection between p53 and caspase-2 is essential for apoptosis induced by DNA damage. Oncogene 2006; 25:5683-92. [PMID: 16652156 DOI: 10.1038/sj.onc.1209569] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent findings have established caspase-2 as an important apical regulator in apoptotic pathways leading from DNA damage to release of mitochondrial cytochrome c and subsequent activation of effector caspases. Yet, the molecular map connecting the embarking stimuli of genotoxic stress with caspase-2 activation remains to be elucidated. Here, we address the question of potential caspase-2 regulators by examining 5-fluorouracil (5-FU)-induced apoptosis in wild-type and p53-deficient human colon carcinoma cells. Apoptosis was observed only in p53(+/+) cells and was preceded by caspase-2 activation. Hence, although no direct interaction between p53 and caspase-2 was observed in the cell system used, our data clearly demonstrate that a functional connection between these two proteins is essential for initiation of the 5-FU-induced apoptotic process. Proposed mediators of caspase-2 activation include PIDDosome complex proteins PIDD and RAIDD. Surprisingly, the presence of a complex encompassing at least RAIDD, PIDD and caspase-2 was verified in both p53(+/+) and p53(-/-) cells, also in the absence of 5-FU treatment. Thus, our results confirm the participation of PIDD and RAIDD in PIDDosome complex formation but question their role as sole mediators of caspase-2 activation. This assumption was further supported by siRNA transfections targeting PIDD or RAIDD. In conclusion, our findings support the hypothesis of p53 as an upstream regulator of caspase activity and provide data concerning caspase-2 processing mechanisms. As suppression of caspase-2 expression in 5-FU-treated cells also affects the level of the p53 protein, possibilities of a reciprocal interaction between these proteins are discussed.
Collapse
Affiliation(s)
- H Vakifahmetoglu
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
44
|
Bernstein H, Holubec H, Bernstein C, Ignatenko N, Gerner E, Dvorak K, Besselsen D, Ramsey L, Dall'Agnol M, Blohm-Mangone KA, Padilla-Torres J, Cui H, Garewal H, Payne CM. Unique dietary-related mouse model of colitis. Inflamm Bowel Dis 2006; 12:278-93. [PMID: 16633050 DOI: 10.1097/01.mib.0000209789.14114.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND A high-fat diet is a risk factor for the development of inflammatory bowel disease (IBD) in humans. Deoxycholate (DOC) is increased in the colonic contents in response to a high-fat diet. Thus, an elevated level of DOC in the colonic lumen may play a role in the natural course of development of IBD. METHODS Wild-type B6.129 mice were fed an AIN-93G diet, either supplemented with 0.2% DOC or unsupplemented and sacrificed at 1 week, 1 month, 3 months, 4 months, and 8 months. Colon samples were assessed by histopathological, immunohistochemical, and cDNA microarray analyses. RESULTS Mice fed the DOC-supplemented diet developed focal areas of colonic inflammation associated with increases in angiogenesis, nitrosative stress, DNA/RNA damage, and proliferation. Genes that play a central role in inflammation and angiogenesis and other related processes such as epithelial barrier function, oxidative stress, apoptosis, cell proliferation/cell cycle/DNA repair, membrane transport, and the ubiquitin-proteasome pathway showed altered expression in the DOC-fed mice compared with the control mice. Changes in expression of individual genes (increases or reductions) correlated over time. These changes were greatest 1 month after the start of DOC feeding. CONCLUSIONS The results suggest that exposure of the colonic mucosa to DOC may be a key etiologic factor in IBD. The DOC-fed mouse model may reflect the natural course of development of colitis/IBD in humans, and thus may be useful for determining new preventive strategies and lifestyle changes in affected individuals.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shirasaki Y, Kanazawa Y, Morishima Y, Makino M. Involvement of calmodulin in neuronal cell death. Brain Res 2006; 1083:189-95. [PMID: 16545345 DOI: 10.1016/j.brainres.2006.01.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/26/2006] [Accepted: 01/28/2006] [Indexed: 12/15/2022]
Abstract
A large body of evidence indicates that disturbances of Ca(2+) homeostasis may be a causative factor in the neurotoxicity following cerebral ischemia. However, the mechanisms by which Ca(2+) overload leads to neuronal cell death have not been fully elucidated. Calmodulin, a major intracellular Ca(2+)-binding protein found mainly in the central nervous system, mediates many physiological functions in response to changes in the intracellular Ca(2+) concentration, whereas Ca(2+) overload in neurons after excitotoxic insult may induce excessive activation of calmodulin signaling pathways, leading to neuronal cell death. To determine the role of calmodulin in the induction of neuronal cell death, we generated primary rat cortical neurons that express a mutant calmodulin with a defect in Ca(2+)-binding affinity. Neurons expressing the mutant had low responses of calmodulin-dependent signaling to membrane depolarization by high KCl and became resistant to glutamate-triggered excitotoxic neuronal cell death compared with the vector or wild-type calmodulin-transfected cells, indicating that blocking calmodulin function is protective against excitotoxic insult. These results suggest that calmodulin plays a crucial role in the processes of Ca(2+)-induced neuronal cell death and the possibility that the blockage of calmodulin attenuates brain injury after cerebral ischemia.
Collapse
Affiliation(s)
- Yasufumi Shirasaki
- New Product Research Laboratories II, Daiichi Pharmaceutical Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | | | |
Collapse
|
46
|
Kalamvoki M, Georgopoulou U, Mavromara P. The NS5A protein of the hepatitis C virus genotype 1a is cleaved by caspases to produce C-terminal-truncated forms of the protein that reside mainly in the cytosol. J Biol Chem 2006; 281:13449-13462. [PMID: 16517592 DOI: 10.1074/jbc.m601124200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nonstructural 5A (NS5A) protein of the hepatitis C virus (HCV) is a multifunctional protein that is implicated in viral replication and pathogenesis. We report here that NS5A of HCV-1a is cleaved at multiple sites by caspase proteases in transfected cells. Two cleavage sites at positions Asp154 and 248DXXD251 were mapped. Cleavage at Asp154 has been previously recognized as one of the caspase cleavage sites for the NS5A protein of HCV genotype 1b (1, 2) and results in the production of a 17-kDa fragment. The sequence 248DXXD251 is a novel caspase recognition motif for NS5A and is responsible for the production of a 31-kDa fragment. Furthermore, we show that Arg217 is implicated in the production of the previously described 24-kDa product, whose accumulation is affected by both calpain and caspase inhibitors. We also showed that caspase-mediated cleavage occurs in the absence of exogenous proapoptotic stimuli and is not related to the accumulation of the protein in the endoplasmic reticulum. Interestingly, our data indicate that NS5A is targeted by at least two different caspases and suggest that caspase 6 is implicated in the production of the 17-kDa fragment. Most importantly, we report that, all the detectable NS5A fragments following caspase-mediated cleavage are C-terminal-truncated forms of NS5A and are mainly localized in the cytosol. Thus, in sharp contrast to the current view we found no evidence supporting a role for caspase-mediated cleavage in the transport of the NS5A protein to the nucleus, which could lead to transcriptional activation.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 115 21 Athens, Greece.
| |
Collapse
|
47
|
Abstract
Caspases are a conserved family of cysteine proteases. They play diverse roles in inflammatory responses and apoptotic pathways. Among the caspases is a subgroup whose primary function is to initiate apoptosis. Within their long prodomains, caspases-2, -9 and -12 contain a caspase activation and recruitment domain while caspases-8 and -10 bear death effector domains. Activation follows the recruitment of the procaspase molecule via the prodomain to a high molecular mass complex. Despite sharing some common features, other aspects of the biochemistry, substrate specificity, regulation and signaling mechanisms differ between initiator apoptotic caspases. Defects in expression or activity of these caspases are related to certain pathological conditions including neurodegenerative disorders, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Po-ki Ho
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | |
Collapse
|
48
|
Rotter B, Bournier O, Nicolas G, Dhermy D, Lecomte MC. AlphaII-spectrin interacts with Tes and EVL, two actin-binding proteins located at cell contacts. Biochem J 2005; 388:631-8. [PMID: 15656790 PMCID: PMC1138971 DOI: 10.1042/bj20041502] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The spectrin-based membrane skeleton, a multi-protein scaffold attached to diverse cellular membranes, is presumed to be involved in the stabilization of membranes, the establishment of membrane domains as well as in vesicle trafficking and nuclear functions. Spectrin tetramers made of alpha- and beta-subunits are linked to actin microfilaments, forming a network that binds a multitude of proteins. The most prevalent alpha-spectrin subunit in non-erythroid cells, alphaII-spectrin, contains two particular spectrin repeats in its central region, alpha9 and alpha10, which host an Src homology 3 domain, a tissue-specific spliced sequence of 20 residues, a calmodulin-binding site and major cleavage sites for caspases and calpains. Using yeast two-hybrid screening of kidney libraries, we identified two partners of the alpha9-alpha10 repeats: the potential tumour suppressor Tes, an actin-binding protein mainly located at focal adhesions; and EVL (Ena/vasodilator-stimulated phosphoprotein-like protein), another actin-binding protein, equally recruited at focal adhesions. Interactions between spectrin and overexpressed Tes and EVL were confirmed by co-immunoprecipitation. In vitro studies showed that the interaction between Tes and spectrin is mediated by a LIM (Lin-11, Isl-1 and Mec3) domain of Tes and by the alpha10 repeat of alphaII-spectrin whereas EVL interacts with the Src homology 3 domain located within the alpha9 repeat. Moreover, we describe an in vitro interaction between Tes and EVL, and a co-localization of these two proteins at focal adhesions. These interactions between alphaII-spectrin, Tes and EVL indicate new functions for spectrin in actin dynamics and focal adhesions.
Collapse
Affiliation(s)
- Björn Rotter
- INSERM U409, Faculté de Médecine Bichat, Association Claude Bernard, Xavier Bichat, 16 rue Henri Huchard, BP416, 75870 Paris cedex 18, France
| | - Odile Bournier
- INSERM U409, Faculté de Médecine Bichat, Association Claude Bernard, Xavier Bichat, 16 rue Henri Huchard, BP416, 75870 Paris cedex 18, France
| | - Gael Nicolas
- INSERM U409, Faculté de Médecine Bichat, Association Claude Bernard, Xavier Bichat, 16 rue Henri Huchard, BP416, 75870 Paris cedex 18, France
| | - Didier Dhermy
- INSERM U409, Faculté de Médecine Bichat, Association Claude Bernard, Xavier Bichat, 16 rue Henri Huchard, BP416, 75870 Paris cedex 18, France
| | - Marie-Christine Lecomte
- INSERM U409, Faculté de Médecine Bichat, Association Claude Bernard, Xavier Bichat, 16 rue Henri Huchard, BP416, 75870 Paris cedex 18, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
49
|
Zhivotovsky B, Orrenius S. Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 2005; 331:859-67. [PMID: 15865942 DOI: 10.1016/j.bbrc.2005.03.191] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Indexed: 12/12/2022]
Abstract
Caspase-2 is one of the best conserved caspases across species. This enzyme is unique among caspases in that it has features of both initiator and effector caspases. Caspase-2 appears to be necessary for the onset of apoptosis triggered by several insults, including DNA damage, administration of TNF, and different pathogens and viruses. In several experimental systems, a link has been shown between the p53 family proteins and caspase-2 activation leading to cell death. In this review, current knowledge concerning the structure of this protease and its function in cell physiology and cell death, particularly cell death triggered by DNA damage, is summarized and discussed.
Collapse
Affiliation(s)
- Boris Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
50
|
Panaretakis T, Laane E, Pokrovskaja K, Björklund AC, Moustakas A, Zhivotovsky B, Heyman M, Shoshan MC, Grandér D. Doxorubicin requires the sequential activation of caspase-2, protein kinase Cdelta, and c-Jun NH2-terminal kinase to induce apoptosis. Mol Biol Cell 2005; 16:3821-31. [PMID: 15917298 PMCID: PMC1182319 DOI: 10.1091/mbc.e04-10-0862] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Here, we identified caspase-2, protein kinase C (PKC)delta, and c-Jun NH2-terminal kinase (JNK) as key components of the doxorubicin-induced apoptotic cascade. Using cells stably transfected with an antisense construct for caspase-2 (AS2) as well as a chemical caspase-2 inhibitor, we demonstrate that caspase-2 is required in doxorubicin-induced apoptosis. We also identified PKCdelta as a novel caspase-2 substrate. PKCdelta was cleaved/activated in a caspase-2-dependent manner after doxorubicin treatment both in cells and in vitro. PKCdelta is furthermore required for efficient doxorubicin-induced apoptosis because its chemical inhibition as well as adenoviral expression of a kinase dead (KD) mutant of PKCdelta severely attenuated doxorubicin-induced apoptosis. Furthermore, PKCdelta and JNK inhibition show that PKCdelta lies upstream of JNK in doxorubicin-induced death. Jnk-deficient mouse embryo fibroblasts (MEFs) were highly resistant to doxorubicin compared with wild type (WT), as were WT Jurkat cells treated with SP600125, further supporting the importance of JNK in doxorubicin-induced apoptosis. Chemical inhibitors for PKCdelta and JNK do not synergize and do not function in doxorubicin-treated AS2 cells. Caspase-2, PKCdelta, and JNK were furthermore implicated in doxorubicin-induced apoptosis of primary acute lymphoblastic leukemia blasts. The data thus support a sequential model involving caspase-2, PKCdelta, and JNK signaling in response to doxorubicin, leading to the activation of Bak and execution of apoptosis.
Collapse
Affiliation(s)
- Theocharis Panaretakis
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Hospital and Institute, S-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|