1
|
Xin T, Zheng C, Li GZ, Xu X, Zhang J, Jia C, Jing P, Lu Q. Comprehensive analysis of exosome gene LYPD3 and prognosis/immune cell infiltration in lung cancer. Transl Cancer Res 2024; 13:1394-1405. [PMID: 38617517 PMCID: PMC11009804 DOI: 10.21037/tcr-23-1557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024]
Abstract
Background Lung cancer (LC) is a leading cause of cancer-associated mortality worldwide, with high incidence and mortality rates. Ly6/PLAUR domain containing 3 (LYPD3) is a tumorigenic and highly glycosylated cell surface protein that has been rarely reported in LC. This study aimed to explore the prognostic role and immune cell infiltration of LYPD3 in LC. Methods We used ExoCarta, a database of exosomal proteins and RNA, to select exosomes in LC. The Tumor Immune Estimation Resource (TIMER) and Human Protein Atlas (HPA) databases were utilized to compare the expression of LYPD3 in LC. We applied Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Kaplan-Meier (KM) plotter to evaluate the prognostic prediction performance of LYPD3. Biological processes (BPs), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and gene set enrichment analysis (GSEA) analyses were performed to illustrate the possible role of LYPD3 in LC. The correlations between LYPD3 and immune cell infiltration were explored using Tumor and Immune System Interaction Database (TISIDB), GEPIA2, and TIMER. R software was used for statistical analysis and mapping. Results A total of 904 exosome molecules were screened in LC. Further analysis showed that the up-regulation of LYPD3 in these 904 exosome molecules was associated with poor prognosis in LC. Pan-cancer analyses revealed that the expression of LYPD3 varied in many cancers, particularly in LC. Clinical correlation analysis indicated that LYPD3 was associated with stage and T classification in LC. We observed that LYPD3 co-expression genes were associated with cell cycle, DNA replication, proteasome, and regulation of the actin cytoskeleton by GSEA. Moreover, LYPD3 was associated with immune modulators. Immunophenoscores (IPS) and IPS-CTLA4 were significantly different between the high LYPD3 group and low LYPD3 group. Additionally, the median half maximal inhibitory concentration (IC50) of bexarotene, cyclopamine, etoposide, and paclitaxel in LYPD3 high group was significantly lower than that in LYPD3 low group. Conclusions LYPD3 is involved in many BPs of LC, such as regulating immune cell infiltration and affecting prognosis. Therefore, LYPD3 may have potential value as a biomarker for prognosis and immunotherapy in LC.
Collapse
Affiliation(s)
- Tao Xin
- Department of Respiratory, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chunlong Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Gui-Zhen Li
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xinyao Xu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jipeng Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chenghui Jia
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Medical College, Xi’an, China
| | - Pengyu Jing
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
2
|
Rathbun LA, Magliocco AM, Bamezai AK. Human LY6 gene family: potential tumor-associated antigens and biomarkers of prognosis in uterine corpus endometrial carcinoma. Oncotarget 2023; 14:426-437. [PMID: 37141412 PMCID: PMC10159366 DOI: 10.18632/oncotarget.28409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The human Lymphocyte antigen-6 (LY6) gene family has recently gained interest for its possible role in tumor progression. We have carried out in silico analyses of all known LY6 gene expression and amplification in different cancers using TNMplot and cBioportal. We also have analyzed patient survival by Kaplan-Meier plotter after mining the TCGA database. We report that upregulated expression of many LY6 genes is associated with poor survival in uterine corpus endometrial carcinoma (UCEC) cancer patients. Importantly, the expression of several LY6 genes is elevated in UCEC when compared to the expression in normal uterine tissue. For example, LY6K expression is 8.25× higher in UCEC compared to normal uterine tissue, and this high expression is associated with poor survival with a hazard ratio of 2.42 (p-value = 0.0032). Therefore, some LY6 gene products may serve as tumor-associated antigens in UCEC, biomarkers for UCEC detection, and possibly targets for directing UCEC patient therapy. Further analysis of tumor-specific expression of LY6 gene family members and LY6-triggered signaling pathways is needed to uncover the function of LY6 proteins and their ability to endow tumor survival and poor prognosis in UCEC patients.
Collapse
Affiliation(s)
- Luke A Rathbun
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | | - Anil K Bamezai
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
3
|
Chandler KB, Pavan CH, Cotto Aparicio HG, Sackstein R. Enrichment and nLC-MS/MS Analysis of Head and Neck Cancer Mucinome Glycoproteins. J Proteome Res 2023; 22:1231-1244. [PMID: 36971183 DOI: 10.1021/acs.jproteome.2c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Mucin-domain glycoproteins expressed on cancer cell surfaces play central roles in cell adhesion, cancer progression, stem cell renewal, and immune evasion. Despite abundant evidence that mucin-domain glycoproteins are critical to the pathobiology of head and neck squamous cell carcinoma (HNSCC), our knowledge of the composition of that mucinome is grossly incomplete. Here, we utilized a catalytically inactive point mutant of the enzyme StcE (StcEE447D) to capture mucin-domain glycoproteins in head and neck cancer cell line lysates followed by their characterization using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), in-gel digestion, nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), and enrichment analyses. We demonstrate the feasibility of this workflow for the study of mucin-domain glycoproteins in HNSCC, identify a set of mucin-domain glycoproteins common to multiple HNSCC cell lines, and report a subset of mucin-domain glycoproteins that are uniquely expressed in HSC-3 cells, a cell line derived from a highly aggressive metastatic tongue squamous cell carcinoma. This effort represents the first attempt to identify mucin-domain glycoproteins in HNSCC in an untargeted, unbiased analysis, paving the way for a more comprehensive characterization of the mucinome components that mediate aggressive tumor cell phenotypes. Data associated with this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029420.
Collapse
|
4
|
Hu T, Zhang Y, Yang T, He Q, Zhao M. LYPD3, a New Biomarker and Therapeutic Target for Acute Myelogenous Leukemia. Front Genet 2022; 13:795820. [PMID: 35360840 PMCID: PMC8963240 DOI: 10.3389/fgene.2022.795820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Acute myelogenous leukemia (AML) is nosocomial with the highest pediatric mortality rates and a relatively poor prognosis. C4.4A(LYPD3) is a tumorigenic and high-glycosylated cell surface protein that has been proven to be linked with the carcinogenic effects in solid tumors, but no hematologic tumors have been reported. We focus on exploring the molecular mechanism of LYPD3 in the regulation of the occurrence and development of AML to provide a research basis for the screening of markers related to the treatment and prognosis. Methods: Datasets on RNA Sequencing (RNA-seq) and mRNA expression profiles of 510 samples were obtained from The Cancer Genome Atlas Program/The Genotype-Tissue Expression (Tcga-gtex) on 10 March 2021, which included the information on 173 AML tumorous tissue samples and 337 normal blood samples. The differential expression, identification of prognostic genes based on the COX regression model, and LASSO regression were analyzed. In order to better verify, experiments including gene knockdown mediated by small interfering RNA (siRNA), cell proliferation assays, and Western blot were prefomed. We studied the possible associated pathways through which LYPD3 may have an impact on the pathogenesis and prognosis of AML by gene set enrichment analysis (GSEA). Results: A total of 11,490 differential expression genes (DEGs) were identified. Among them, 4,164 genes were upregulated, and 7,756 genes were downregulated. The univariate Cox regression analysis and LASSO regression analysis found that 28 genes including LYPD3, DNAJC8, and other genes were associated with overall survival (OS). After multivariate Cox analysis, a total of 10 genes were considered significantly correlated with OS in AML including LYPD3, which had a poor impact on AML (p <0.05). The experiment results also supported the above conclusion. We identified 25 pathways, including the E2F signaling pathway, p53 signaling pathway, and PI3K_AKT signaling pathway, that were significantly upregulated in AML samples with high LYPD3 expression (p < 0.05) by GSEA. Further, the results of the experiment suggested that LYPD3 participates in the development of AML through the p53 signaling pathway or/and PI3K/AKT signaling pathway. Conclusion: This study first proved that the expression of LYPD3 was elevated in AML, which was correlated with poor clinical characteristics and prognosis. In addition, LYPD3 participates in the development of AML through p53 or/and the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yingjie Zhang
- College of Biology, Hunan University, Changsha, China
| | - Tianqing Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qingnan He, ; Mingyi Zhao,
| | - Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qingnan He, ; Mingyi Zhao,
| |
Collapse
|
5
|
Lin W, Wang X, Xu Z, Wang Z, Liu T, Cao Z, Feng X, Gao Y, He J. Identification and validation of cellular senescence patterns to predict clinical outcomes and immunotherapeutic responses in lung adenocarcinoma. Cancer Cell Int 2021; 21:652. [PMID: 34872577 PMCID: PMC8647370 DOI: 10.1186/s12935-021-02358-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Background Aging and senescence can alter immune cell fitness and influence the efficacy of lung cancer treatments, especially immunotherapy. However, the correlations between cellular senescence and tumor microenvironment are still not clearly clarified and the value of cellular senescence-related genes in evaluating the immune infiltration and clinical outcomes of lung adenocarcinoma (LUAD) need further investigated. Methods We identified three cellular senescence clusters by NMF algorithm and correlated the cellular senescence clusters with the immune landscape in LUAD patients. A prognostic scoring system was established using random survival forest algorithm and validated in 4 external cohorts. Multivariate Cox regression analysis was performed to evaluate the prognostic value of the scoring system. Expression of LYPD3 was evaluated by immunohistochemistry in LUAD samples. Results Based on the mRNA expression profiles of 278 cellular senescence-related genes, three cellular senescence clusters with distinct prognosis were identified. We characterized three cellular senescence clusters by differences in biological processes, EMT score, expression of immunomodulatory genes, extent of intratumor heterogeneity and response to immunotherapy. Meanwhile, a cellular senescence-related scoring system (CSS) was established and validated as an independent prognostic factor and immunotherapy predictor of LUAD. Patients with low CSS was characterized by prolonged survival time. In response to anti-cancer drugs, patients with low CSS exhibited higher sensitivities to molecular drugs, such as Roscovitine (CDKs inhibitor), Lenaidornide (TNF-α inhibitor), MK2206 (Akt 1/2/3 inhibitor), and especially increased response to anti-PD-1/L1 immunotherapy. Conclusions This study demonstrated the correlations between cellular senescence patterns and tumor immune landscape in LUAD, which enhanced our understanding of the tumor immune microenvironment and provided new insights for improving the outcome of immunotherapy for LUAD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02358-0.
Collapse
Affiliation(s)
- Weihao Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyi Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiejun Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Leth JM, Ploug M. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Front Cell Dev Biol 2021; 9:732015. [PMID: 34490277 PMCID: PMC8417595 DOI: 10.3389/fcell.2021.732015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
De Loma J, Gliga AR, Levi M, Ascui F, Gardon J, Tirado N, Broberg K. Arsenic Exposure and Cancer-Related Proteins in Urine of Indigenous Bolivian Women. Front Public Health 2020; 8:605123. [PMID: 33381488 PMCID: PMC7767847 DOI: 10.3389/fpubh.2020.605123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Indigenous people living in the Bolivian Andes are exposed through their drinking water to inorganic arsenic, a potent carcinogen. However, the health consequences of arsenic exposure in this region are unknown. The aim of this study was to evaluate associations between arsenic exposure and changes in cancer-related proteins in indigenous women (n = 176) from communities around the Andean Lake Poopó, Bolivia. Arsenic exposure was assessed in whole blood (B-As) and urine (as the sum of arsenic metabolites, U-As) by inductively coupled plasma-mass spectrometry (ICP-MS). Cancer-related proteins (N = 92) were measured in urine using the proximity extension assay. The median B-As concentration was 2.1 (range 0.60-9.1) ng/g, and U-As concentration was 67 (12-399) μg/L. Using linear regression models adjusted for age, urinary osmolality, and urinary leukocytes, we identified associations between B-As and four putative cancer-related proteins: FASLG, SEZ6L, LYPD3, and TFPI2. Increasing B-As concentrations were associated with lower protein expression of SEZ6L, LYPD3, and TFPI2, and with higher expression of FASLG in urine (no association was statistically significant after correcting for multiple comparisons). The associations were similar across groups with different arsenic metabolism efficiency, a susceptibility factor for arsenic toxicity. In conclusion, arsenic exposure in this region was associated with changes in the expression of some cancer-related proteins in urine. Future research is warranted to understand if these proteins could serve as valid biomarkers for arsenic-related toxicity.
Collapse
Affiliation(s)
- Jessica De Loma
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Levi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franz Ascui
- Programa de Salud Familiar Comunitaria e Intercultural, Ministerio de Salud Bolivia, La Paz, Bolivia
| | - Jacques Gardon
- Hydrosciences Montpellier, Université de Montpellier, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Montpellier, France
| | - Noemi Tirado
- Genetics Institute, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
β2-Adrenergic Signalling Promotes Cell Migration by Upregulating Expression of the Metastasis-Associated Molecule LYPD3. BIOLOGY 2020; 9:biology9020039. [PMID: 32098331 PMCID: PMC7168268 DOI: 10.3390/biology9020039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
Metastasis is associated with poor prognosis in breast cancer. Although some studies suggest beta-blockers increase survival by delaying metastasis, others have been discordant. This study provides both insights into the anomalous findings and identifies potential biomarkers that may be treatment targets. Cell line models of basal-type and oestrogen receptor-positive breast cancer were profiled for basal levels of adrenoceptor gene/protein expression, and β2-adrenoceptor mediated cell behaviour including migration, invasion, adhesion, and survival in response to adrenoceptor agonist/antagonist treatment. Protein profiling and histology identified biomarkers and drug targets. Baseline levels of adrenoceptor gene expression are higher in basal-type rather than oestrogen receptor-positive cancer cells. Norepinephrine (NE) treatment increased invasive capacity in all cell lines but did not increase proliferation/survival. Protein profiling revealed the upregulation of the pro-metastatic gene Ly6/PLAUR Domain-Containing Protein 3 (LYPD3) in norepinephrine-treated MDA-MB-468 cells. Histology confirmed selective LYPD3 expression in primary and metastatic breast tumour samples. These findings demonstrate that basal-type cancer cells show a more aggressive adrenoceptor-β2-activated phenotype in the resting and stimulated state, which is attenuated by adrenoceptor-β2 inhibition. This study also highlights the first association between ADRβ2 signalling and LYPD3; its knockdown significantly reduced the basal and norepinephrine-induced activity of MCF-7 cells in vitro. The regulation of ADRβ2 signalling by LYPD3 and its metastasis promoting activities, reveal LYPD3 as a promising therapeutic target in the treatment of breast and other cancers.
Collapse
|
9
|
Hu P, Huang Y, Gao Y, Yan H, Li X, Zhang J, Wang Y, Zhao Y. Elevated Expression of LYPD3 Is Associated with Lung Adenocarcinoma Carcinogenesis and Poor Prognosis. DNA Cell Biol 2020; 39:522-532. [PMID: 32040344 DOI: 10.1089/dna.2019.5116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression of LYPD3 plays an oncogenic role in several types of cancer. However, the functions of LYPD3 in lung adenocarcinoma (LUAD) remain unclear. Here, we investigated the regulatory function, clinical value, and prognostic significance of LYPD3 in LUAD patients. The gene expression and DNA methylation data of LUAD tumor and paracancerous tissues were obtained from The Cancer Genome Atlas (TCGA) database. The association between LYPD3 expression and clinicopathological variables was analyzed. The results showed that LYPD3 was highly expressed in LUAD tumor compared with paracancerous tissues, which was positively correlated with the race (p = 0.0448), tumor stage (p = 0.0191), and survival status (p < 0.001). Furthermore, the expression of LYPD3 was able to be regulated by the methylation in LYPD3 promoter region, which was positively associated with the overall survival. Furthermore, we explored the related pathways through which LYPD3 affects the pathogenesis and prognosis of LUAD by gene set enrichment analysis, and found that LYPD3 might affect the clinical manifestations of LUAD by regulating the P53 signaling pathway. In the future, we would focus on exploring the molecular mechanism of LYPD3 in the regulation of the occurrence and development of LUAD to provide a research basis for the screening of methylation markers related to the treatment and prognosis.
Collapse
Affiliation(s)
- Ping Hu
- Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Ying Huang
- The Third Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Yuanyuan Gao
- The Third Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Hui Yan
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Xiaoge Li
- Department of Paediatrics, Tianjin Jinnan Xiaozhan Hospital, Tianjin, P.R. China
| | - Jiao Zhang
- Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Yan Wang
- Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Yanjiao Zhao
- The Third Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| |
Collapse
|
10
|
Jiang Y, Lin L, Chen S, Jiang L, Kriegbaum MC, Gårdsvoll H, Hansen LV, Li J, Ploug M, Yuan C, Huang M. Crystal Structures of Human C4.4A Reveal the Unique Association of Ly6/uPAR/α-neurotoxin Domain. Int J Biol Sci 2020; 16:981-993. [PMID: 32140067 PMCID: PMC7053344 DOI: 10.7150/ijbs.39919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/26/2019] [Indexed: 01/26/2023] Open
Abstract
Ly6/uPAR/α-neurotoxin domain (LU-domain) is characterized by the presence of 4-5 disulfide bonds and three flexible loops that extend from a core stacked by several conversed disulfide bonds (thus also named three-fingered protein domain). This highly structurally stable protein domain is typically a protein-binder at extracellular space. Most LU proteins contain only single LU-domain as represented by Ly6 proteins in immunology and α-neurotoxins in snake venom. For Ly6 proteins, many are expressed in specific cell lineages and in differentiation stages, and are used as markers. In this study, we report the crystal structures of the two LU-domains of human C4.4A alone and its complex with a Fab fragment of a monoclonal anti-C4.4A antibody. Interestingly, both structures showed that C4.4A forms a very compact globule with two LU-domain packed face to face. This is in contrast to the flexible nature of most LU-domain-containing proteins in mammals. The Fab combining site of C4.4A involves both LU-domains, and appears to be the binding site for AGR2, a reported ligand of C4.4A. This work reports the first structure that contain two LU-domains and provides insights on how LU-domains fold into a compact protein and interacts with ligands.
Collapse
Affiliation(s)
- Yunbin Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lin
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Shanli Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Mette C Kriegbaum
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Line V Hansen
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Leth JM, Leth-Espensen KZ, Kristensen KK, Kumari A, Lund Winther AM, Young SG, Ploug M. Evolution and Medical Significance of LU Domain-Containing Proteins. Int J Mol Sci 2019; 20:ijms20112760. [PMID: 31195646 PMCID: PMC6600238 DOI: 10.3390/ijms20112760] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proteins containing Ly6/uPAR (LU) domains exhibit very diverse biological functions and have broad taxonomic distributions in eukaryotes. In general, they adopt a characteristic three-fingered folding topology with three long loops projecting from a disulfide-rich globular core. The majority of the members of this protein domain family contain only a single LU domain, which can be secreted, glycolipid anchored, or constitute the extracellular ligand binding domain of type-I membrane proteins. Nonetheless, a few proteins contain multiple LU domains, for example, the urokinase receptor uPAR, C4.4A, and Haldisin. In the current review, we will discuss evolutionary aspects of this protein domain family with special emphasis on variations in their consensus disulfide bond patterns. Furthermore, we will present selected cases where missense mutations in LU domain-containing proteins leads to dysfunctional proteins that are causally linked to genesis of human disease.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anni Kumari
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anne-Marie Lund Winther
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael Ploug
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
12
|
Liu M, Lin L, Høyer-Hansen G, Ploug M, Li H, Jiang L, Yuan C, Li J, Huang M. Crystal structure of the unoccupied murine urokinase-type plasminogen activator receptor (uPAR) reveals a tightly packed DII-DIII unit. FEBS Lett 2019; 593:1236-1247. [PMID: 31044429 DOI: 10.1002/1873-3468.13397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/07/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a cell surface receptor that is capable of binding to a range of extracellular proteins and triggering a series of proteolytic and signaling events. Previous structural studies of uPAR with its ligands uPA and vitronectin revealed that its three domains (DI, DII, and DIII) form a large hydrophobic cavity to accommodate uPA. In the present study, the structure of unoccupied murine uPAR (muPAR) is determined. The structure of DII and DIII of muPAR is well defined and forms a compact globular unit, while DI could not be traced. Molecular dynamic simulations further confirm the rigid binding interface between DII and DIII. This study shows overall structural flexibility of uPAR in the absence of uPA.
Collapse
Affiliation(s)
- Min Liu
- College of Biological Science and Engineering, Fuzhou University, China.,College of Life Science, Fujian Normal University, Fuzhou, China
| | - Lin Lin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gunilla Høyer-Hansen
- Biotechnology Research Innovation Centre (BRIC), University of Copenhagen, Denmark.,Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Michael Ploug
- Biotechnology Research Innovation Centre (BRIC), University of Copenhagen, Denmark.,Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Hanlin Li
- College of Chemistry, Fuzhou University, China
| | | | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, China
| | | |
Collapse
|
13
|
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M. Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem 2019; 294:7403-7418. [PMID: 30894413 DOI: 10.1074/jbc.ra119.007847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Indexed: 11/06/2022] Open
Abstract
The urokinase receptor (uPAR) is a founding member of a small protein family with multiple Ly6/uPAR (LU) domains. The motif defining these LU domains contains five plesiotypic disulfide bonds stabilizing its prototypical three-fingered fold having three protruding loops. Notwithstanding the detailed knowledge on structure-function relationships in uPAR, one puzzling enigma remains unexplored. Why does the first LU domain in uPAR (DI) lack one of its consensus disulfide bonds, when the absence of this particular disulfide bond impairs the correct folding of other single LU domain-containing proteins? Here, using a variety of contemporary biophysical methods, we found that reintroducing the two missing half-cystines in uPAR DI caused the spontaneous formation of the corresponding consensus 7-8 LU domain disulfide bond. Importantly, constraints due to this cross-link impaired (i) the binding of uPAR to its primary ligand urokinase and (ii) the flexible interdomain assembly of the three LU domains in uPAR. We conclude that the evolutionary deletion of this particular disulfide bond in uPAR DI may have enabled the assembly of a high-affinity urokinase-binding cavity involving all three LU domains in uPAR. Of note, an analogous neofunctionalization occurred in snake venom α-neurotoxins upon loss of another pair of the plesiotypic LU domain half-cystines. In summary, elimination of the 7-8 consensus disulfide bond in the first LU domain of uPAR did have significant functional and structural consequences.
Collapse
Affiliation(s)
- Julie M Leth
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Haydyn D T Mertens
- the European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany, and
| | - Katrine Zinck Leth-Espensen
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,the Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5320 Odense M, Denmark
| | - Thomas J D Jørgensen
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5320 Odense M, Denmark
| | - Michael Ploug
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark, .,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
14
|
Chana-Muñoz A, Jendroszek A, Sønnichsen M, Wang T, Ploug M, Jensen JK, Andreasen PA, Bendixen C, Panitz F. Origin and diversification of the plasminogen activation system among chordates. BMC Evol Biol 2019; 19:27. [PMID: 30654737 PMCID: PMC6337849 DOI: 10.1186/s12862-019-1353-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Background The plasminogen (PLG) activation system is composed by a series of serine proteases, inhibitors and several binding proteins, which together control the temporal and spatial generation of the active serine protease plasmin. As this proteolytic system plays a central role in human physiology and pathophysiology it has been extensively studied in mammals. The serine proteases of this system are believed to originate from an ancestral gene by gene duplications followed by domain gains and deletions. However, the identification of ancestral forms in primitive chordates supporting these theories remains elusive. In addition, evolutionary studies of the non-proteolytic members of this system are scarce. Results Our phylogenetic analyses place lamprey PLG at the root of the vertebrate PLG-group, while lamprey PLG-related growth factors represent the ancestral forms of the jawed-vertebrate orthologues. Furthermore, we find that the earliest putative orthologue of the PLG activator group is the hyaluronan binding protein 2 (HABP2) gene found in lampreys. The prime plasminogen activators (tissue- and urokinase-type plasminogen activator, tPA and uPA) first occur in cartilaginous fish and phylogenetic analyses confirm that all orthologues identified compose monophyletic groups to their mammalian counterparts. Cartilaginous fishes exhibit the most ancient vitronectin of all vertebrates, while plasminogen activator inhibitor 1 (PAI-1) appears for the first time in cartilaginous fishes and is conserved in the rest of jawed vertebrate clades. PAI-2 appears for the first time in the common ancestor of reptiles and mammals, and represents the latest appearing plasminogen activator inhibitor. Finally, we noted that the urokinase-type plasminogen activator receptor (uPAR)—and three-LU domain containing genes in general—occurred later in evolution and was first detectable after coelacanths. Conclusions This study identifies several primitive orthologues of the mammalian plasminogen activation system. These ancestral forms provide clues to the origin and diversification of this enzyme system. Further, the discovery of several members—hitherto unknown in mammals—provide new perspectives on the evolution of this important enzyme system. Electronic supplementary material The online version of this article (10.1186/s12862-019-1353-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrés Chana-Muñoz
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Agnieszka Jendroszek
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.,Present address: Interdisciplinary Nanoscience Center - INANO-MBG, Aarhus University, 8000, Aarhus, Denmark
| | - Malene Sønnichsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.,Present address: Interdisciplinary Nanoscience Center - INANO-MBG, Aarhus University, 8000, Aarhus, Denmark
| | - Tobias Wang
- Institute for Bioscience Zoophysiology, Aarhus University, 8000, Aarhus, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Frank Panitz
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.
| |
Collapse
|
15
|
Cohen AS, Khalil FK, Welsh EA, Schabath MB, Enkemann SA, Davis A, Zhou JM, Boulware DC, Kim J, Haura EB, Morse DL. Cell-surface marker discovery for lung cancer. Oncotarget 2017; 8:113373-113402. [PMID: 29371917 PMCID: PMC5768334 DOI: 10.18632/oncotarget.23009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients.
Collapse
Affiliation(s)
- Allison S Cohen
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Farah K Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric A Welsh
- Biomedical Informatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Enkemann
- Molecular Genomics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Davis
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jun-Min Zhou
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David C Boulware
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jongphil Kim
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
16
|
Görtz M, Galli U, Longerich T, Zöller M, Erb U, Schemmer P. De novo synthesis of C4.4A in hepatocellular carcinoma promotes migration and invasion of tumor cells. Oncol Rep 2017; 38:2697-2704. [PMID: 29048672 PMCID: PMC5780022 DOI: 10.3892/or.2017.5980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/31/2017] [Indexed: 01/12/2023] Open
Abstract
C4.4A is a glycoprotein that is upregulated in several human malignancies, including colorectal, breast and renal cell carcinomas. Due to its highly restricted expression in healthy tissue, C4.4A was proposed as a potential diagnostic marker. Thus, the present study was designed to evaluate C4.4A expression and function in hepatocellular carcinoma (HCC) for the first time. Immunohistochemistry was performed to detect expression of C4.4A in human sections of healthy liver, primary HCC in the liver and metastatic HCC in the lung. To assess the contribution of C4.4A to HCC progression proliferation, apoptosis, migration and invasion assays were performed with C4.4A knockdown Huh7 and HepG2 cells. C4.4A is absent in healthy liver tissue. However, intense expression was seen in 59% of primary HCCs and strong expression in 80% of HCC lung metastases. C4.4A expression was also observed in human HCC cell lines, which strongly increased under hypoxic conditions. A C4.4A knock-down revealed that C4.4A is involved in both migration and invasion of HCC cells. Taken together, C4.4A expression in both primary and metastatic HCC suggests its potential value as a diagnostic marker for HCC. Due to its absence in healthy liver tissue, C4.4A might even serve as a possible therapeutic target, particularly for metastatic HCC.
Collapse
Affiliation(s)
- Magdalena Görtz
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Galli
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Margot Zöller
- Tumor Cell Biology, Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Erb
- Tumor Cell Biology, Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schemmer
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Surgery, Division of Transplant Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Expression of C4.4A in an In Vitro Human Tissue-Engineered Skin Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2403072. [PMID: 29075641 PMCID: PMC5610857 DOI: 10.1155/2017/2403072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022]
Abstract
A multi-LU-domain-containing protein denoted C4.4A exhibits a tightly regulated membrane-associated expression in the suprabasal layers of stratified squamous epithelia such as skin and the esophagus, and the expression of C4.4A is dysregulated in various pathological conditions. However, the biological function of C4.4A remains unknown. To enable further studies, we evaluated the expression of C4.4A in monolayer cultures of normal human keratinocytes and in tissue-engineered skin substitutes (TESs) produced by the self-assembly approach, which allow the formation of a fully differentiated epidermis tissue. Results showed that, in monolayer, C4.4A was highly expressed in the centre of keratinocyte colonies at cell-cell contacts areas, while some cells located at the periphery presented little C4.4A expression. In TES, emergence of C4.4A expression coincided with the formation of the stratum spinosum. After the creation of a wound within the TES, C4.4A expression was observed in the suprabasal keratinocytes of the migrating epithelium, with the exception of the foremost leading keratinocytes, which were negative for C4.4A. Our results are consistent with previous data in mouse embryogenesis and wound healing. Based on these findings, we conclude that this human TES model provides an excellent surrogate for studies of C4.4A and Haldisin expressions in human stratified epithelia.
Collapse
|
18
|
Chen S, Lin L, Yuan C, Gårdsvoll H, Kriegbaum MC, Ploug M, Huang M. Expression and crystallographic studies of the D1D2 domains of C4.4A, a homologous protein to the urokinase receptor. Acta Crystallogr F Struct Biol Commun 2017; 73:486-490. [PMID: 28777093 PMCID: PMC5544007 DOI: 10.1107/s2053230x17009748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022] Open
Abstract
C4.4A is a glycosylphosphatidylinositol-anchored membrane protein comprised of two LU domains (Ly6/uPAR-like domains) and an extensively O-glycosylated C-terminal Ser/Thr/Pro-rich region. C4.4A is a novel biomarker for squamous epithelial differentiation. Its expression is dysregulated under various pathological conditions and it is a robust biomarker for poor prognosis in various malignant conditions such as pulmonary adenocarcinoma. To facilitate crystallization, the two LU domains were excised from intact C4.4A by limited proteolysis, purified and crystallized by the sitting-drop vapour-diffusion method. The crystals diffracted to 2.7 Å resolution and belonged to space group C2221, with unit-cell parameters a = 55.49, b = 119.63, c = 168.54 Å. The statistics indicated good quality of the data, which form a solid basis for the determination of the C4.4A structure.
Collapse
Affiliation(s)
- Shanli Chen
- College of Chemistry, Fuzhou Univerisity, Fuzhou, Fujian 350108, People’s Republic of China
| | - Lin Lin
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Cai Yuan
- College of Bioscience and Biotechnology, Fuzhou Univerisity, Fuzhou, Fujian 350108, People’s Republic of China
| | - Henrik Gårdsvoll
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, Copenhagen University, DK-2200 Copenhagen, Denmark
| | - Mette C. Kriegbaum
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, Copenhagen University, DK-2200 Copenhagen, Denmark
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, Copenhagen University, DK-2200 Copenhagen, Denmark
| | - Mingdong Huang
- College of Chemistry, Fuzhou Univerisity, Fuzhou, Fujian 350108, People’s Republic of China
| |
Collapse
|
19
|
GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia. J Clin Lipidol 2017; 11:964-971. [PMID: 28666713 DOI: 10.1016/j.jacl.2017.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND GPIHBP1, a glycolipid-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) in the interstitial spaces and transports it to the capillary lumen. GPIHBP1 deficiency prevents LPL from reaching the capillary lumen, resulting in low intravascular LPL levels, impaired intravascular triglyceride processing, and severe hypertriglyceridemia (chylomicronemia). A recent study showed that some cases of hypertriglyceridemia are caused by autoantibodies against GPIHBP1 ("GPIHBP1 autoantibody syndrome"). OBJECTIVE Our objective was to gain additional insights into the frequency of the GPIHBP1 autoantibody syndrome in patients with unexplained chylomicronemia. METHODS We used enzyme-linked immunosorbent assays to screen for GPIHBP1 autoantibodies in 33 patients with unexplained chylomicronemia and then used Western blots and immunocytochemistry studies to characterize the GPIHBP1 autoantibodies. RESULTS The plasma of 1 patient, a 36-year-old man with severe hypertriglyceridemia, contained GPIHBP1 autoantibodies. The autoantibodies, which were easily detectable by Western blot, blocked the ability of GPIHBP1 to bind LPL. The plasma levels of LPL mass and activity were low. The patient had no history of autoimmune disease, but his plasma was positive for antinuclear antibodies. CONCLUSIONS One of 33 patients with unexplained chylomicronemia had the GPIHBP1 autoantibody syndrome. Additional studies in large lipid clinics will be helpful for better defining the frequency of this syndrome and for exploring the best strategies for treatment.
Collapse
|
20
|
Willuda J, Linden L, Lerchen HG, Kopitz C, Stelte-Ludwig B, Pena C, Lange C, Golfier S, Kneip C, Carrigan PE, Mclean K, Schuhmacher J, von Ahsen O, Müller J, Dittmer F, Beier R, El Sheikh S, Tebbe J, Leder G, Apeler H, Jautelat R, Ziegelbauer K, Kreft B. Preclinical Antitumor Efficacy of BAY 1129980-a Novel Auristatin-Based Anti-C4.4A (LYPD3) Antibody-Drug Conjugate for the Treatment of Non-Small Cell Lung Cancer. Mol Cancer Ther 2017; 16:893-904. [PMID: 28292941 DOI: 10.1158/1535-7163.mct-16-0474] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/11/2016] [Accepted: 02/15/2017] [Indexed: 11/16/2022]
Abstract
C4.4A (LYPD3) has been identified as a cancer- and metastasis-associated internalizing cell surface protein that is expressed in non-small cell lung cancer (NSCLC), with particularly high prevalence in the squamous cell carcinoma (SCC) subtype. With the exception of skin keratinocytes and esophageal endothelial cells, C4.4A expression is scarce in normal tissues, presenting an opportunity to selectively treat cancers with a C4.4A-directed antibody-drug conjugate (ADC). We have generated BAY 1129980 (C4.4A-ADC), an ADC consisting of a fully human C4.4A-targeting mAb conjugated to a novel, highly potent derivative of the microtubule-disrupting cytotoxic drug auristatin via a noncleavable alkyl hydrazide linker. In vitro, C4.4A-ADC demonstrated potent antiproliferative efficacy in cell lines endogenously expressing C4.4A and inhibited proliferation of C4.4A-transfected A549 lung cancer cells showing selectivity compared with a nontargeted control ADC. In vivo, C4.4A-ADC was efficacious in human NSCLC cell line (NCI-H292 and NCI-H322) and patient-derived xenograft (PDX) models (Lu7064, Lu7126, Lu7433, and Lu7466). C4.4A expression level correlated with in vivo efficacy, the most responsive being the models with C4.4A expression in over 50% of the cells. In the NCI-H292 NSCLC model, C4.4A-ADC demonstrated equal or superior efficacy compared to cisplatin, paclitaxel, and vinorelbine. Furthermore, an additive antitumor efficacy in combination with cisplatin was observed. Finally, a repeated dosing with C4.4A-ADC was well tolerated without changing the sensitivity to the treatment. Taken together, C4.4A-ADC is a promising therapeutic candidate for the treatment of NSCLC and other cancers expressing C4.4A. A phase I study (NCT02134197) with the C4.4A-ADC BAY 1129980 is currently ongoing. Mol Cancer Ther; 16(5); 893-904. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kirk Mclean
- Bayer LLC, Mission Bay, San Francisco, California
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kriegbaum MC, Jacobsen B, Füchtbauer A, Hansen GH, Christensen IJ, Rundsten CF, Persson M, Engelholm LH, Madsen AN, Di Meo I, Lund IK, Holst B, Kjaer A, Lærum OD, Füchtbauer EM, Ploug M. C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes. Sci Rep 2016; 6:25833. [PMID: 27169360 PMCID: PMC4864438 DOI: 10.1038/srep25833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
C4.4A is a modular glycolipid-anchored Ly6/uPAR/α-neurotoxin multidomain protein that exhibits a prominent membrane-associated expression in stratified squamous epithelia. C4.4A is also expressed in various solid cancer lesions, where high expression levels often are correlated to poor prognosis. Circumstantial evidence suggests a role for C4.4A in cell adhesion, migration, and invasion, but a well-defined biological function is currently unknown. In the present study, we have generated and characterized the first C4.4A-deficient mouse line to gain insight into the functional significance of C4.4A in normal physiology and cancer progression. The unchallenged C4.4A-deficient mice were viable, fertile, born in a normal Mendelian distribution and, surprisingly, displayed normal development of squamous epithelia. The C4.4A-deficient mice were, nonetheless, significantly lighter than littermate controls predominantly due to differences in fat mass. Congenital C4.4A deficiency delayed migration of keratinocytes enclosing incisional skin wounds in male mice. In chemically induced bladder carcinomas, C4.4A deficiency attenuated the incidence of invasive lesions despite having no effect on total tumour burden. This new C4.4A-deficient mouse line provides a useful platform for future studies on functional aspects of C4.4A in tumour cell invasion in vivo.
Collapse
Affiliation(s)
- Mette Camilla Kriegbaum
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Benedikte Jacobsen
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Annette Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Gert Helge Hansen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ib Jarle Christensen
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Carsten Friis Rundsten
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Morten Persson
- Department of Clinical Physiology, Nuclear Medicine &PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Lars Henning Engelholm
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Ivano Di Meo
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute "Carlo Besta", Milano, Italy
| | - Ida Katrine Lund
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Deparment of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine &PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ole Didrik Lærum
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, The Gade Laboratory of Pathology, University of Bergen, Norway
| | | | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Cheng DQ, Gu XD, Li ZY, Xiang JB, Chen ZY. Expression of C4.4A is a potential independent prognostic factor for patients with gastric cancer. Asian Pac J Cancer Prev 2016; 15:3895-9. [PMID: 24935570 DOI: 10.7314/apjcp.2014.15.9.3895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
C4.4A, a metastasis-associated gene, encodes a glycolipid-anchored membrane protein which is overexpressed in several human malignancies. However, there are few data available on C4.4A expression and its relationship with progression in gastric cancer. Our study was designed to explore the expression of C4.4A in gastric cancer and to correlate it with clinical outcome. C4.4A expression was studied by quantitative real-time RT-PCR and immunohistochemistry for assessment of correlations with clinicopathological factors. C4.4A mRNA expression was significantly up-regulated in gastric cancer as compared with noncancerous tissue (p<0.05)., being observed in 107 (88.4%) of the 121 gastric cancer cases by immunohistochemistry. We found that the expression of C4.4A mRNA was correlated with size of the tumor, depth of invasion, lymph node metastasis, distant metastasis and TNM stage. Moreover, patients with overexpression of C4.4A has a significantly worse survival (p<0.05). Further multivariable analysis indicated that the expression of C4.4A was an independent prognostic indicator for gastric cancer (p<0.05). In conclusion, overexpression of C4.4A correlates with metastatic potential of gastric cancer and C4.4A could be a novel independent prognostic marker for predicting outcome.
Collapse
Affiliation(s)
- Da-Qing Cheng
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China E-mail :
| | | | | | | | | |
Collapse
|
23
|
Mysling S, Kristensen KK, Larsson M, Beigneux AP, Gårdsvoll H, Fong LG, Bensadouen A, Jørgensen TJ, Young SG, Ploug M. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. eLife 2016; 5:e12095. [PMID: 26725083 PMCID: PMC4755760 DOI: 10.7554/elife.12095] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/02/2016] [Indexed: 12/19/2022] Open
Abstract
GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia. DOI:http://dx.doi.org/10.7554/eLife.12095.001 Fat is an important part of our diet. The intestines absorb fats and package them into particles called lipoproteins. After reaching the bloodstream, the fat molecules (lipids) in the lipoproteins are broken down by an enzyme called lipoprotein lipase (LPL), which is located along the surface of small blood vessels. This releases nutrients that can be used by vital tissues – mainly the heart, skeletal muscle, and adipose tissues. LPL is produced by muscle and adipose tissue, but it is quickly swept up by a protein called GPIHBP1 and shuttled to its site of action inside the blood vessels. Mutations that alter the structure of LPL or GPIHBP1 can prevent the breakdown of lipids, resulting in high levels of lipids in the blood. This can lead to inflammation in the pancreas and also increases the risk of heart attacks and strokes. Many earlier studies have examined the properties of LPL, but our understanding of GPIHBP1 has been limited, mainly because it has been difficult to purify GPIHBP1 for analysis. Using genetically altered insect cells, Mysling et al. were able to purify two different forms of GPIHBP1 – a full-length version and a shorter version that lacked a small section at the end of the molecule known as the acidic domain. This revealed that the opposite end of the molecule – called the carboxyl-terminal domain – is primarily responsible for binding LPL and anchoring it inside blood vessels. Once LPL is bound to GPIHBP1, the acidic domain of GPIHBP1 helps to stabilize LPL. If GPIHBP1’s acidic domain is missing then LPL is more susceptible to losing its structure, rendering it incapable of breaking down the lipids in the blood. Mysling et al. describe a new model for how LPL and GPIHBP1 interact that explains how specific mutations in the genes that encode these proteins interfere with the delivery of LPL to small blood vessels. In the future, this could help researchers to develop new strategies to treat people with high levels of lipids in their blood. DOI:http://dx.doi.org/10.7554/eLife.12095.002
Collapse
Affiliation(s)
- Simon Mysling
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Anne P Beigneux
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - André Bensadouen
- Division of Nutritional Science, Cornell University, Ithaca, United States
| | - Thomas Jd Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Liu JF, Mao L, Bu LL, Ma SR, Huang CF, Zhang WF, Sun ZJ. C4.4A as a biomarker of head and neck squamous cell carcinoma and correlated with epithelial mesenchymal transition. Am J Cancer Res 2015; 5:3505-3515. [PMID: 26885441 PMCID: PMC4731626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023] Open
Abstract
C4.4A, a member of the Ly6/uPAR family of membrane proteins, has been identified as a metastasis-associated molecule, but little is known about its actual expression and possible function in head and neck squamous cell carcinoma (HNSCC). To explore diagnostic and prognostic roles of C4.4A in HNSCC, we investigated the expression of C4.4A in human HNSCC tissue array which contains 43 HNSCC, 6 epithelial dysplasia and 16 normal oral mucosa. Expression of C4.4A was significantly increased in epithelial dysplasia and HNSCC when compared with normal oral mucosa. Moreover, high C4.4A expression indicated a rather poor prognosis of HNSCC patients. To better understand the function of C4.4A in HNSCC progression, we investigated epithelial to mesenchymal transition (EMT) associated proteins including transforming growth factor (TGF-β1), Slug and CD147 in HNSCC. The expression of TGF-β1, Slug, and CD147 was significantly increased in HNSCC when compared with normal oral mucosa. Meanwhile, the expression of C4.4A was significantly correlated with TGF-β1, Slug, and CD147 in HNSCC tissue array. Furthermore, knockdown of C4.4A decreased the cell invasion and migration in CAL27 cell line and suppressed the EMT with increased E-cadherin and decreased N-cadherin and Slug. Our study demonstrated that C4.4A was a potential marker for prognosis of HNSCC, and C4.4A participated in EMT program in HNSCC progression.
Collapse
Affiliation(s)
- Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Wen-Feng Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| |
Collapse
|
25
|
Zhao B, Gandhi S, Yuan C, Luo Z, Li R, Gårdsvoll H, de Lorenzi V, Sidenius N, Huang M, Ploug M. Mapping the topographic epitope landscape on the urokinase plasminogen activator receptor (uPAR) by surface plasmon resonance and X-ray crystallography. Data Brief 2015; 5:107-13. [PMID: 26504891 PMCID: PMC4576398 DOI: 10.1016/j.dib.2015.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/14/2015] [Accepted: 08/25/2015] [Indexed: 01/06/2023] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane protein often expressed in the microenvironment of invasive solid cancers and high levels are generally associated with poor patient prognosis (Kriegbaum et al., 2011 [1]). uPAR is organized as a dynamic modular protein structure composed of three homologous Ly6/uPAR domains (LU).This internally flexible protein structure of uPAR enables an allosteric regulation of the interactions with its two principal ligands: the serine protease urokinase-type plasminogen activator (uPA) and the provisional matrix protein vitronectin (Vn) (Mertens et al., 2012; Gårdsvoll et al., 2011; Madsen et al., 2007 [2–4]). The data presented here relates to the non-covalent trapping of one of these biologically relevant uPAR-conformations by a novel class of monoclonal antibodies (Zhao et al., 2015 [5]) and to the general mapping of the topographic epitope landscape on uPAR. The methods required to achieve these data include: (1) recombinant expression and purification of a uPAR-hybrid protein trapped in the desired conformation [patent; WO 2013/020898 A12013]; (2) developing monoclonal antibodies with unique specificities using this protein as antigen; (3) mapping the functional epitope on uPAR for these mAbs by surface plasmon resonance with a complete library of purified single-site uPAR mutants (Zhao et al., 2015; Gårdsvoll et al., 2006 [5,6]); and finally (4) solving the three-dimensional structures for one of these mAbs by X-ray crystallography alone and in complex with uPAR [deposited in the PDB database as 4QTH and 4QTI, respectively].
Collapse
Affiliation(s)
- Baoyu Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Danish-Chinese Centre for Proteases and Cancer
| | - Sonu Gandhi
- FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Cai Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Danish-Chinese Centre for Proteases and Cancer
| | - Zhipu Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Danish-Chinese Centre for Proteases and Cancer
| | - Rui Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark ; Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark ; Danish-Chinese Centre for Proteases and Cancer
| | | | - Nicolai Sidenius
- FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Danish-Chinese Centre for Proteases and Cancer
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark ; Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark ; Danish-Chinese Centre for Proteases and Cancer
| |
Collapse
|
26
|
Kriegbaum MC, Clausen OPF, Lærum OD, Ploug M. Expression of the Ly6/uPAR-domain proteins C4.4A and Haldisin in non-invasive and invasive skin lesions. J Histochem Cytochem 2014; 63:142-54. [PMID: 25414274 DOI: 10.1369/0022155414563107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
C4.4A and Haldisin belong to the Ly6/uPAR/α-neurotoxin protein domain family. They exhibit highly regulated expression profiles in normal epidermis, where they are confined to early (C4.4A) and late (Haldisin) squamous differentiation. We have now explored if dysregulated expressions occur in non-invasive and invasive skin lesions. In non-invasive lesions, their expression signatures were largely maintained as defined by that of normal epidermis. The scenario was, however, markedly different in the progression towards invasive squamous cell carcinomas. In its non-invasive stage (carcinoma in situ), a pronounced attenuation of C4.4A expression was observed, but upon transition to malignant invasive squamous cell carcinomas, the invasive fronts regained high expression of C4.4A. A similar progression was observed for the early stages of benign infiltrating keratoacanthomas. Interestingly, this transition was accompanied by a shift in the predominant association of C4.4A expression with CK1/10 in the normal epidermis to CK5/14 in the invasive lesions. In contrast, Haldisin expression maintained its confinement to the most-differentiated cells and was hardly expressed in the invasive lesions. Because this altered expression of C4.4A was seen in the invasive front of benign (keratoacanthomas) and malignant (squamous cell carcinomas) neoplasms, we propose that this transition of expression is primarily related to the invasive process.
Collapse
Affiliation(s)
- Mette C Kriegbaum
- The Finsen Laboratory, Rigshospitalet & Biotech Research and Innovation Centre, Copenhagen Biocenter, Copenhagen, Denmark (MCK, MP)
| | - Ole P F Clausen
- TDepartment of Pathology, Oslo University Hospital, University of Oslo, Oslo, Norway (OPFC)
| | - Ole D Lærum
- Department of Pathology, Haukeland University Hospital, Bergen, Norway (ODL)
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet & Biotech Research and Innovation Centre, Copenhagen Biocenter, Copenhagen, Denmark (MCK, MP),Danish-Chinese Centre for Proteases and Cancer (MP)
| |
Collapse
|
27
|
Jacobsen B, Kriegbaum MC, Santoni-Rugiu E, Ploug M. C4.4A as a biomarker in pulmonary adenocarcinoma and squamous cell carcinoma. World J Clin Oncol 2014; 5:621-632. [PMID: 25302166 PMCID: PMC4129527 DOI: 10.5306/wjco.v5.i4.621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/10/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
The high prevalence and mortality of lung cancer, together with a poor 5-year survival of only approximately 15%, emphasize the need for prognostic and predictive factors to improve patient treatment. C4.4A, a member of the Ly6/uPAR family of membrane proteins, qualifies as such a potential informative biomarker in non-small cell lung cancer. Under normal physiological conditions, it is primarily expressed in suprabasal layers of stratified squamous epithelia. Consequently, it is absent from healthy bronchial and alveolar tissue, but nevertheless appears at early stages in the progression to invasive carcinomas of the lung, i.e., in bronchial hyperplasia/metaplasia and atypical adenomatous hyperplasia. In the stages leading to pulmonary squamous cell carcinoma, expression is sustained in dysplasia, carcinoma in situ and invasive carcinomas, and this pertains to the normal presence of C4.4A in squamous epithelium. In pulmonary adenocarcinomas, a fraction of cases is positive for C4.4A, which is surprising, given the origin of these carcinomas from mucin-producing and not squamous epithelium. Interestingly, this correlates with a highly compromised patient survival and a predominant solid tumor growth pattern. Circumstantial evidence suggests an inverse relationship between C4.4A and the tumor suppressor LKB1. This might provide a link to the prognostic impact of C4.4A in patients with adenocarcinomas of the lung and could potentially be exploited for predicting the efficacy of treatment targeting components of the LKB1 pathway.
Collapse
|
28
|
Thuma F, Ngora H, Zöller M. The metastasis-associated molecule C4.4A promotes tissue invasion and anchorage independence by associating with the alpha6beta4 integrin. Mol Oncol 2013; 7:917-28. [PMID: 23727360 PMCID: PMC5528461 DOI: 10.1016/j.molonc.2013.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 01/13/2023] Open
Abstract
C4.4A is a metastasis-associated molecule that functions appear to rely on associated alph6beta4 integrin. To corroborate the impact of the C4.4A-alpha6beta4 integrin association on metastasis formation, C4.4A was knocked-down in a highly metastatic rat pancreatic adenocarcinoma (ASML, ASML-C4.4Akd). Metastasis formation by ASML-C4.4Akd cells after intrafootpad application was strongly retarded in draining nodes and lung colonization was rare. Furthermore, cisplatin treatment significantly prolonged the survival time only of ASML-C4.4Akd-bearing rats. ASML-C4.4Akd cells display reduced migratory activity and impaired matrix protein degradation due to inefficient MMP14 activation; loss of drug-resistance is due to mitigated PI3K/Akt pathway activation. These losses of function rely on the laminin receptor C4.4A recruiting activated alpha6beta4 integrin into rafts, where C4.4A cooperates with alpha6beta4 and via alpha6beta4 with MMP14. Within this raft-located complex, MMP14 provokes focalized matrix degradation and mostly alpha6beta4 integrin promotes BAD phosphorylation and upregulated Bcl2 and BclXl expression. Thus, metastasis-promoting activities of C4.4A are not genuine characteristics of C4.4A. Instead, the raft-located laminin receptor C4.4A recruits alpha6beta4 integrin and supports via the alpha6beta4 integrin MMP14 activation. Thereby C4.4A acts as a linker to facilitate several steps in the metastatic cascade. Taking the restricted C4.4A expression in non-transformed tissue, this knowledge should pave the way toward the use of C4.4A as a therapeutic target.
Collapse
Affiliation(s)
- Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg D-69120, Germany
| | - Honoré Ngora
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg D-69120, Germany
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg D-69120, Germany
- German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
29
|
Gårdsvoll H, Kriegbaum MC, Hertz EP, Alpízar-Alpízar W, Ploug M. The urokinase receptor homolog Haldisin is a novel differentiation marker of stratum granulosum in squamous epithelia. J Histochem Cytochem 2013; 61:802-13. [PMID: 23896969 DOI: 10.1369/0022155413501879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Several members of the Ly-6/uPAR (LU)-protein domain family are differentially expressed in human squamous epithelia. In some cases, they even play important roles in maintaining skin homeostasis, as exemplified by the secreted single domain member, SLURP-1, the deficiency of which is associated with the development of palmoplantar hyperkeratosis in the congenital skin disorder Mal de Meleda. In the present study, we have characterized a new member of the LU-protein domain family, which we find to be predominantly expressed in the stratum granulosum of human skin, thus resembling the expression of SLURP-1. In accordance with its expression pattern, we denote this protein product, which is encoded by the LYPD5 gene, as Haldisin (human antigen with LU-domains expressed in skin). Two of the five human glycolipid-anchored membrane proteins with multiple LU-domains characterized so far are predominantly confined to squamous epithelia (i.e., C4.4A), to stratum spinosum, and Haldisin to stratum granulosum under normal homeostatic conditions. Whether Haldisin is a prognostic biomarker for certain epithelial malignancies, like C4.4A and SLURP-1, remains to be explored.
Collapse
Affiliation(s)
- Henrik Gårdsvoll
- The Finsen Laboratory, Rigshospitalet & Biotech Research and Innovation Centre, Copenhagen Biocenter, Copenhagen, Denmark (HG,MCK,EPH,WAA,MP)
| | | | | | | | | |
Collapse
|
30
|
Ly6/uPAR-related protein C4.4A as a marker of solid growth pattern and poor prognosis in lung adenocarcinoma. J Thorac Oncol 2013; 8:152-60. [PMID: 23287851 DOI: 10.1097/jto.0b013e318279d503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We have recently shown that the protein C4.4A is induced in early precursor lesions of pulmonary adenocarcinomas and squamous cell carcinomas. In the present study, we aimed at analyzing the impact of C4.4A on the survival of non-small cell lung cancer patients and determining whether its unexpected expression in adenocarcinomas could be attributed to a specific growth type (lepidic, acinar, papillary, micropapillary, solid). METHODS Sections from the center and periphery of the primary tumor, as well as N2-positive lymph node metastases, were stained by immunohistochemistry for C4.4A and scored semi-quantitatively for intensity and frequency of positive tumor cells. RESULTS C4.4A score (intensity × frequency) in the tumor center was a highly significant prognostic factor in adenocarcinomas (n = 88), both in univariate (p = 0.004; hazard ratio [95% confidence interval] = 1.44 [1.12-1.85]) and multivariate statistical analysis (p = 0.0005; hazard ratio = 1.65 [1.24-2.19]), demonstrating decreasing survival with increasing score. In contrast, C4.4A did not provide prognostic information in squamous cell carcinomas (n = 104). Pathological stage was significant in both groups. In the adenocarcinomas, C4.4A expression was clearly associated with, but a stronger prognostic factor than, solid growth. CONCLUSIONS The present results substantiate the potential value of C4.4A as a prognostic marker in pulmonary adenocarcinomas seen earlier in a smaller, independent patient cohort. Importantly, we also show that C4.4A is a surrogate marker for adenocarcinoma solid growth. Recent data suggest that C4.4A is negatively regulated by the tumor suppressor liver kinase B1, which is inactivated in some adenocarcinomas, providing a possible link to the impact of C4.4A on the survival of these patients.
Collapse
|
31
|
Concurrent expression of C4.4A and Tenascin-C in tumor cells relates to poor prognosis of esophageal squamous cell carcinoma. Int J Oncol 2013; 43:439-46. [PMID: 23708783 DOI: 10.3892/ijo.2013.1956] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 04/16/2013] [Indexed: 11/05/2022] Open
Abstract
C4.4A is a glycolipid-anchored membrane protein expressed in several human malignancies. We recently found that C4.4A expression was associated with poor prognosis of esophageal squamous carcinoma cells (ESCCs), but the underlying mechanism is unknown. To uncover this, we performed PCR array analysis using the HCT116 cell line, a positive control for C4.4A expression and we found that Tenascin-C (TNC) among the many adhesion molecules and extracellular matrix proteins was the best candidate for C4.4A molecule induction. Based on in vitro studies using the TE8 esophageal cancer cells, we examined by immunohistochemistry TNC expression in 111 ESCCs. We found that the TNC-positive group (24.3%) had significantly poorer prognosis than the TNC-negative group in 5-year overall survival. We also found there was a significant correlation between TNC and C4.4A in ESCC tissues (P=0.007). Finally, we found that only the double-positive group for C4.4A and TNC had a significantly worse prognosis (P=0.005). Our data suggest that TNC expression in ESCC may in part explain why C4.4A is associated with a poor prognosis of ESCC since TNC can promote invasion and metastasis.
Collapse
|
32
|
Ohtsuka M, Yamamoto H, Masuzawa T, Takahashi H, Uemura M, Haraguchi N, Nishimura J, Hata T, Yamasaki M, Miyata H, Takemasa I, Mizushima T, Takiguchi S, Doki Y, Mori M. C4.4A expression is associated with a poor prognosis of esophageal squamous cell carcinoma. Ann Surg Oncol 2013; 20:2699-705. [PMID: 23435632 DOI: 10.1245/s10434-013-2900-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND C4.4A is a glycolipid-anchored membrane protein expressed in several human malignancies. We examined clinical relevance of C4.4A expression in 111 esophageal squamous cell carcinoma (ESCC) tissue samples. METHODS Anti-human C4.4A antibody that recognizes the glycosylphosphatidyl inositol (GPI) anchor signaling sequence (C4.4A-GPI Ab) and anti-human C4.4A-119 polyclonal antibody (C4.4A-119 Ab) were used for immunohistochemistry and Western blot testing. RESULTS Both antibodies detected the C4.4A protein expression at the parabasal layer of normal epithelium of the esophagus. In tumor tissues, the C4.4A protein was detected in 66 (59.5 %) and 95 (85.6 %) of 111 ESCCs by the C4.4A-GPI Ab and the C4.4A-119 Ab, respectively. The C4.4A-GPI Ab mainly detected membranous C4.4A expression (83.3 %, 55 of 66 positive cases), while the C4.4A-119 Ab exclusively detected cytoplasmic C4.4A expression (100 %, 73 cytoplasm alone and 22 cytoplasm plus membrane in 95 positive cases). Western blot analysis indicated that normal epithelium expressed the band of C4.4A at 70 kDa, whereas the tumor tissues displayed the band at the lower molecular weight. Survival analysis indicated that the C4.4A-positive ESCCs had significantly worse 5-year overall survival than the C4.4A-negative ESCC samples (P = 0.021) when using the C4.4A-GPI Ab, but not when using the C4.4A-119 Ab. This difference was most evident with membranous expression of C4.4A (P = 0.005). CONCLUSIONS C4.4A expression was associated with a poor prognosis of ESCC when the GPI-related antibody was used. On the other hand, the C4.4A-119 Ab may be a useful diagnostic tool for ESCC because of its high detection rate.
Collapse
Affiliation(s)
- Masahisa Ohtsuka
- Department of Gastroenterological Surgery, Graduated School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
YAMAMOTO HIROFUMI, OSHIRO RYOTA, OHTSUKA MASAHISA, UEMURA MAMORU, HARAGUCHI NAOTSUGU, NISHIMURA JUNICHI, TAKEMASA ICHIRO, MIZUSHIMA TSUNEKAZU, DOKI YUICHIRO, MORI MASAKI. Distinct expression of C4.4A in colorectal cancer detected by different antibodies. Int J Oncol 2012; 42:197-201. [DOI: 10.3892/ijo.2012.1714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/03/2012] [Indexed: 11/05/2022] Open
|
34
|
Oshiro R, Yamamoto H, Takahashi H, Ohtsuka M, Wu X, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Sekimoto M, Matsuura N, Doki Y, Mori M. C4.4A is associated with tumor budding and epithelial-mesenchymal transition of colorectal cancer. Cancer Sci 2012; 103:1155-64. [PMID: 22404718 DOI: 10.1111/j.1349-7006.2012.02263.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/22/2012] [Accepted: 02/26/2012] [Indexed: 12/14/2022] Open
Abstract
C4.4A is a glycolipid-anchored membrane protein expressed in several human malignancies. The aim of this study was to explore the association between C4.4A expression at the invasion front of colorectal cancer (CRC) and tumor budding, a putative hallmark of cell invasion of CRC. Advanced CRCs (T2-4, n = 126) had a budding count of 3.66 ± 5.66, which was significantly higher than that of T1 early CRCs (1.75 ± 2.78, n = 87). C4.4A-positive CRC specimens showed a larger budding cell number than C4.4A-negative CRC specimens in T1 CRCs, and especially advanced CRCs (9.45 ± 5.83 vs 1.60 ± 3.93). Furthermore, we found a correlation between the percentage of C4.4A-positive cases and budding count in advanced CRC. Multivariate analysis for patients' survival showed that C4.4A was superior to tumor budding as a prognostic factor. With siRNA treatment, C4.4A levels were associated with cell invasion, but not with proliferation, in HCT116 and DLD1 cell lines. An immunohistochemical study in a subset of CRCs showed no relationship between C4.4A and Ki-67 proliferation marker. In vitro assays using HCT116 indicated that C4.4A levels correlated well with epithelial-mesenchymal transition (EMT) with regard to cell morphology and alterations of EMT markers including E-cadherin, vimentin, and partially N-cadherin. We also found that C4.4A expression was significantly associated with loss of E-cadherin and gain of β-catenin in clinical CRC tissue samples. These findings suggest that a tight association between C4.4A and tumor budding may, in part, be due to C4.4A promoting EMT at the invasive front of CRC.
Collapse
Affiliation(s)
- Ryota Oshiro
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ngora H, Galli UM, Miyazaki K, Zöller M. Membrane-bound and exosomal metastasis-associated C4.4A promotes migration by associating with the α(6)β(4) integrin and MT1-MMP. Neoplasia 2012; 14:95-107. [PMID: 22431918 PMCID: PMC3306255 DOI: 10.1593/neo.111450] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 12/19/2022]
Abstract
Metastasis-associated C4.4A, which becomes upregulated during wound healing and, in some tumors, during tumor progression, is known to be frequently associated with hypoxia. With the function of C4.4A still unknown, we explored the impact of hypoxia on C4.4A expression and functional activity. Metastatic rat and human tumor lines upregulate C4.4A expression when cultured in the presence of CoCl(2). Although hypoxia-inducible factor 1α (HIF-1α) becomes upregulated concomitantly, HIF-1α did not induce C4.4A transcription. Instead, hypoxia-induced C4.4A up-regulation promoted in vivo and in vitro wound healing, where increased migration on the C4.4A ligands laminin-111 and -332 was observed after a transient period of pronounced binding. Increased migration was accompanied by C4.4A associating with α(6)β(4), MT1-MMP1, and TACE and by laminin fragmentation. Hypoxia also promoted the release of C4.4A in exosomes and TACE-mediated C4.4A shedding. The association of C4.4A with α(6)β(4) and MT1-MMP1 was maintained in exosomes and exosomal α(6)β(4)- and MT1-MMP1-associated C4.4A but not shed C4.4A sufficient for laminin degradation. Hypoxia-induced recruitment of α(6)β(4) toward raft-located C4.4A, MT1-MMP, and TACE allows for a shift from adhesion to motility, which is supported by laminin degradation. These findings provide the first explanation for the C4.4A contribution to wound healing and metastasis.
Collapse
Affiliation(s)
- Honoré Ngora
- Department of Tumor Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Uwe M Galli
- Department of Tumor Cell Biology, University of Heidelberg, Heidelberg, Germany
| | | | - Margot Zöller
- Department of Tumor Cell Biology, University of Heidelberg, Heidelberg, Germany
- German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
36
|
Jacobsen B, Santoni-Rugiu E, Illemann M, Kriegbaum MC, Laerum OD, Ploug M. Expression of C4.4A in precursor lesions of pulmonary adenocarcinoma and squamous cell carcinoma. Int J Cancer 2011; 130:2734-9. [PMID: 21792890 DOI: 10.1002/ijc.26305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/21/2011] [Indexed: 01/27/2023]
Abstract
The protein C4.4A, a structural homologue of the urokinase-type plasminogen activator receptor, is a potential new biomarker in non-small cell lung cancer, with high levels of expression recently shown to correlate to poor survival of adenocarcinoma patients. In this study, C4.4A immunoreactivity in precursor lesions of lung squamous cell carcinoma and adenocarcinoma was investigated by stainings with a specific anti-C4.4A antibody. In the transformation from normal bronchial epithelium to squamous cell carcinoma, C4.4A was weakly expressed in basal cell hyperplasia but dramatically increased in squamous metaplasia. This was confined to the cell membrane and sustained in dysplasia, carcinoma in situ, and the invasive carcinoma. The induction of C4.4A already at the stage of hyperplasia could indicate that it is a marker of very early squamous differentiation, which aligns well with our earlier finding that C4.4A expression levels do not provide prognostic information on the survival of squamous cell carcinoma patients. In the progression from normal alveolar epithelium to peripheral adenocarcinoma, we observed an unexpected, distinct cytoplasmic staining for C4.4A in a fraction of atypical adenomatous hyperplasias, while most bronchioloalveolar carcinomas were negative. Likewise, only a fraction of the invasive adenocarcinomas was positive for C4.4A. With a view to the prognostic impact of C4.4A in adenocarcinoma patients, this finding might suggest that C4.4A could be an early biomarker for a possibly more malignant subtype of this disease.
Collapse
Affiliation(s)
- Benedikte Jacobsen
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
37
|
Madsen DH, Ingvarsen S, Jürgensen HJ, Melander MC, Kjøller L, Moyer A, Honoré C, Madsen CA, Garred P, Burgdorf S, Bugge TH, Behrendt N, Engelholm LH. The non-phagocytic route of collagen uptake: a distinct degradation pathway. J Biol Chem 2011; 286:26996-7010. [PMID: 21652704 DOI: 10.1074/jbc.m110.208033] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. β1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen.
Collapse
Affiliation(s)
- Daniel H Madsen
- Finsen Laboratory/BRIC, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kriegbaum MC, Jacobsen B, Hald A, Ploug M. Expression of C4.4A, a structural uPAR homolog, reflects squamous epithelial differentiation in the adult mouse and during embryogenesis. J Histochem Cytochem 2011; 59:188-201. [PMID: 21339181 PMCID: PMC3201140 DOI: 10.1369/0022155410394859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/23/2010] [Indexed: 12/28/2022] Open
Abstract
The glycosylphosphatidylinositol (GPI)-anchored C4.4A was originally identified as a metastasis-associated protein by differential screening of rat pancreatic carcinoma cell lines. C4.4A is accordingly expressed in various human carcinoma lesions. Although C4.4A is a structural homolog of the urokinase receptor (uPAR), which is implicated in cancer invasion and metastasis, no function has so far been assigned to C4.4A. To assist future studies on its function in both physiological and pathophysiological conditions, the present study provide a global survey on C4.4A expression in the normal mouse by a comprehensive immunohistochemical mapping. This task was accomplished by staining paraffin-embedded tissues with a specific rabbit polyclonal anti-C4.4A antibody. In the adult mouse, C4.4A was predominantly expressed in the suprabasal layers of the squamous epithelia of the oral cavity, esophagus, non-glandular portion of the rodent stomach, anus, vagina, cornea, and skin. This epithelial confinement was particularly evident from the abrupt termination of C4.4A expression at the squamo-columnar transition zones found at the ano-rectal and utero-vaginal junctions, for example. During mouse embryogenesis, C4.4A expression first appears in the developing squamous epithelium at embryonic day 13.5. This anatomical location of C4.4A is thus concordant with a possible functional role in early differentiation of stratified squamous epithelia.
Collapse
Affiliation(s)
| | | | | | - Michael Ploug
- Michael Ploug, Finsen Laboratory, Rigshospitalet Section 3537, Copenhagen Biocenter room 3.3.31, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark. E-mail:
| |
Collapse
|
39
|
Konishi K, Yamamoto H, Mimori K, Takemasa I, Mizushima T, Ikeda M, Sekimoto M, Matsuura N, Takao T, Doki Y, Mori M. Expression of C4.4A at the invasive front is a novel prognostic marker for disease recurrence of colorectal cancer. Cancer Sci 2010; 101:2269-77. [PMID: 20825414 PMCID: PMC11159794 DOI: 10.1111/j.1349-7006.2010.01674.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastasis-associated gene C4.4A is a glycolipid-anchored membrane protein expressed in several human malignancies. The aim of this study was to explore the expression and clinical relevance of C4.4A in colorectal cancer. By quantitative RT-PCR, 154 colorectal cancer tissues were examined for C4.4A mRNA. We examined 132 colorectal cancer tissues by immunohistochemistry using a new polyclonal antibody that recognizes the C4.4A protein C-terminus containing the glycosylphosphatidyl-inositol anchor signaling sequence. A significant difference in 5-year overall survival was found between samples with high and low expression of C4.4A mRNA (P = 0.0005). Immunohistochemistry showed strong membranous staining of C4.4A at the invasive front of colorectal cancer tumors and at the frontier of metastatic lesions to lymph node and lung. The membranous staining with enhanced intensity at the invasive front of the primary colorectal cancer (Type A: 34/132, 25.6%) was associated with depth of invasion (P = 0.033) and venous invasion (P = 0.003), and was a significant independent prognostic factor (5-year overall survival in the entire series [n = 132; P = 0.004] and disease-free survival in stage II and III colorectal cancers [n = 82; P = 0.003]). Moreover, Type A C4.4A expression was linked to shorter liver metastasis-free survival rate, lung metastasis-free survival rate, or hematogenous metastasis-free survival (P = 0.0279, P = 0.0061, and P = 0.0006, respectively). Our data indicate that expression of the C4.4A protein at the invasive front acts as a novel prognostic marker in colorectal cancer, possibly through invasion-related mechanisms.
Collapse
Affiliation(s)
- Ken Konishi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kritzik MR, Lago CU, Kayali AG, Arnaud-Dabernat S, Liu G, Zhang YQ, Hua H, Fox HS, Sarvetnick NE. Epithelial progenitor 1, a novel factor associated with epithelial cell growth and differentiation. Endocrine 2010; 37:312-21. [PMID: 20960269 PMCID: PMC4288843 DOI: 10.1007/s12020-009-9297-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/21/2009] [Indexed: 01/08/2023]
Abstract
The growth and renewal of epithelial tissue is a highly orchestrated and tightly regulated process occurring in different tissue types under a variety of circumstances. We have been studying the process of pancreatic regeneration in mice. We have identified a cell surface protein, named EP1, which is expressed on the duct epithelium during pancreatic regeneration. Whereas it is not detected in the pancreas of normal mice, it is found in the intestinal epithelium of normal adult mice, as well as during pancreatic repair following cerulein-induced destruction of the acinar tissue. The distinctive situations in which EP1 is expressed, all of which share in common epithelial cell growth in the gastrointestinal tract, suggest that EP1 is involved in the growth and renewal of epithelial tissues in both the intestine and the pancreas.
Collapse
Affiliation(s)
- Marcie R. Kritzik
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Surgery, Leid Transplant Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cory U. Lago
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ayse G. Kayali
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Guoxun Liu
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - You-Qing Zhang
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hong Hua
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Howard S. Fox
- Molecular and Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Pharmacology and Experimental Neuroscience, Leid Transplant Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nora E. Sarvetnick
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Surgery, Leid Transplant Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
41
|
Esselens CW, Malapeira J, Colomé N, Moss M, Canals F, Arribas J. Metastasis-associated C4.4A, a GPI-anchored protein cleaved by ADAM10 and ADAM17. Biol Chem 2008; 389:1075-84. [PMID: 18979631 DOI: 10.1515/bc.2008.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metalloproteases play a complex role in tumor progression. While the activity of some ADAM, ADAMTS and matrix metalloproteases (MMPs) seems to be protumorigenic, the activity of others seems to prevent tumor progression. The identification of the array of substrates of a given metalloprotease (degradome) seems an adequate approach to predict the effect of the inhibition of a metalloprotease in tumors. Here, we present the proteomic identification of a novel substrate for ADAM10 and -17. We used SILAC (Stable Isotope Labeling by Amino acids in Cell culture), a proteomic technique based on the differential metabolic labeling of cells in different conditions. This was applied to MCF7 cells derived from an invasive mammary tumor, and the same cells expressing shRNAs that knock down ADAM10 or -17. Following this approach, we have identified C4.4A as a substrate to both metalloproteases. Since C4.4A is likely involved in tumor invasion, these results indicate that the cleavage of C4.4A by ADAM10 and ADAM17 contributes to tumor progression.
Collapse
Affiliation(s)
- Cary W Esselens
- Medical Oncology Research Program, Vail d'Hebron University Hospital Research Institute, Psg. Vail d'Hebron 119-129, Universitat Autonoma de Barcelona, E-08035 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Esselens CW, Malapeira J, Colomé N, Moss M, Canals F, Arribas J. Metastasis-associated C4.4A, a GPI-anchored protein cleaved by ADAM10 and ADAM17. Biol Chem 2008. [DOI: 10.1515/bc.2008.121_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Hansen LV, Laerum OD, Illemann M, Nielsen BS, Ploug M. Altered expression of the urokinase receptor homologue, C4.4A, in invasive areas of human esophageal squamous cell carcinoma. Int J Cancer 2008; 122:734-41. [PMID: 17849475 DOI: 10.1002/ijc.23082] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
C4.4A is a glycolipid-anchored membrane protein with structural homology to the urokinase-type plasminogen activator receptor (uPAR). Although C4.4A was identified as a metastasis-associated protein little is known about its actual expression and possible function in malignant disease. In the present study, we have therefore analyzed the expression of C4.4A in 14 esophageal squamous cell carcinomas (ESCC). Normal squamous esophageal epithelium shows a strong cell surface associated C4.4A expression in the suprabasal layers, whereas basal cells are negative. Upon transition to dysplasia and carcinoma in situ the expression of C4.4A is abruptly and coordinately weakened. Double immunofluorescence staining of normal and dysplastic tissue showed that C4.4A colocalizes with the epithelial cell surface marker E-cadherin in the suprabasal cells and has a complementary expression pattern compared to the proliferation marker Ki-67. A prominent, but frequently intracellular, C4.4A expression reappeared in tumor cells located at the invasive front and local lymph node metastases. Because C4.4A was reported previously to be a putative laminin-5 (LN5) ligand, and both proteins are expressed by invasive tumor cells, we analyzed the possible coexpression of C4.4A and the gamma 2-chain of LN5 (LN5-gamma 2). Although these proteins are indeed expressed by either neighboring cancer cells or in a few cases even coexpressed by the same cells in the tumor front and metastases, we found no evidence for a general colocalization in the extracellular compartment by confocal microscopy. In conclusion, C4.4A is expressed during invasion and metastasis of human ESCC and may thus provide a new histological marker in this disease.
Collapse
Affiliation(s)
- Line V Hansen
- The Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, DK, Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
44
|
Kneller JM, Ehlen T, Matisic JP, Miller D, Van Niekerk D, Lam WL, Marra M, Richards-Kortum R, Follen M, MacAulay C, Jones SJM. Using LongSAGE to Detect Biomarkers of Cervical Cancer Potentially Amenable to Optical Contrast Agent Labelling. Biomark Insights 2007; 2:447-61. [PMID: 19662225 PMCID: PMC2717845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Sixteen longSAGE libraries from four different clinical stages of cervical intraepithelial neoplasia have enabled us to identify novel cell-surface biomarkers indicative of CIN stage. By comparing gene expression profiles of cervical tissue at early and advanced stages of CIN, several genes are identified to be novel genetic markers. We present fifty-six cell-surface gene products differentially expressed during progression of CIN. These cell surface proteins are being examined to establish their capacity for optical contrast agent binding. Contrast agent visualization will allow real-time assessment of the physiological state of the disease process bringing vast benefit to cancer care. The data discussed in this publication have been submitted to NCBIs Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE6252.
Collapse
Affiliation(s)
- Julie M. Kneller
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Thomas Ehlen
- Department of Gynaecologic Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jasenka P. Matisic
- Cancer Imaging, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Dianne Miller
- Department of Gynaecologic Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Dirk Van Niekerk
- Cervical Cancer Screening Program, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Wan L. Lam
- Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Marco Marra
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | - Michelle Follen
- University of Texas M.D. Anderson Cancer Center, Department of Gynecologic Oncology and Biomedical Engineering Center, Houston, TX, U.S.A
| | - Calum MacAulay
- Cancer Imaging, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Steven J. M. Jones
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
45
|
Paret C, Hildebrand D, Weitz J, Kopp-Schneider A, Kuhn A, Beer A, Hautmann R, Zöller M. C4.4A as a candidate marker in the diagnosis of colorectal cancer. Br J Cancer 2007; 97:1146-56. [PMID: 17912244 PMCID: PMC2360445 DOI: 10.1038/sj.bjc.6604012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C4.4A is a member of the Ly-6 family with restricted expression in non-transformed tissues. C4.4A expression in human cancer has rarely been evaluated. Thus, it became important to explore C4.4A protein expression in human tumour tissue to obtain an estimate on the frequency of expression and the correlation with tumour progression, the study focusing on colorectal cancer. The analysis of C4.4A in human tumour lines by western blot and immunoprecipitation using polyclonal rabbit antibodies that recognize different C4.4A epitopes revealed C4.4A oligomer and heavily glycosylated C4.4A isoform expression that, in some instances, inhibited antibody binding and interaction with the C4.4A ligand galectin-3. In addition, tumour cell lines released C4.4A by vesicle shedding and proteolytic cleavage. C4.4A was expressed in over 80% of primary colorectal cancer and liver metastasis with negligible expression in adjacent colonic mucosa, inflamed colonic tissue and liver. This compares well with EpCAM and CO-029 expression in over 90% of colorectal cancer. C4.4A expression was only observed in about 50% of pancreatic cancer and renal cell carcinoma. By de novo expression in colonic cancer tissue, we consider C4.4A as a candidate diagnostic marker in colorectal cancer, which possibly can be detected in body fluids.
Collapse
Affiliation(s)
- C Paret
- Department of Tumour Progression and Immune Defence, German Cancer Research Centre, Heidelberg, Germany
| | - D Hildebrand
- Department of Tumour Progression and Immune Defence, German Cancer Research Centre, Heidelberg, Germany
| | - J Weitz
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - A Kopp-Schneider
- Department of Biostatistics, German Cancer Research Centre, Heidelberg, Germany
| | - A Kuhn
- Department of Immunogenetics, German Cancer Research Centre, Heidelberg, Germany
| | - A Beer
- Department of Tumour Progression and Immune Defence, German Cancer Research Centre, Heidelberg, Germany
| | - R Hautmann
- Department of Urology, University of Ulm, Ulm, Germany
| | - M Zöller
- Department of Tumour Progression and Immune Defence, German Cancer Research Centre, Heidelberg, Germany
- Department of Applied Genetics, University of Karlsruhe, Karlsruhe, Germany
- Department of Tumour Progression and Immune Defence, German Cancer Research Centre, Im Neuenheimer Feld 280, Heidelberg D 69120, Germany. E-mail:
| |
Collapse
|
46
|
Hansen LV, Skov BG, Ploug M, Pappot H. Tumour cell expression of C4.4A, a structural homologue of the urokinase receptor, correlates with poor prognosis in non-small cell lung cancer. Lung Cancer 2007; 58:260-6. [PMID: 17706320 DOI: 10.1016/j.lungcan.2007.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/31/2007] [Accepted: 06/18/2007] [Indexed: 11/19/2022]
Abstract
PURPOSE C4.4A expression has been implicated in human cancer progression. This protein is a structural homologue of the urokinase receptor, uPAR, which constitutes a well-established prognostic marker in various human cancers. Nonetheless, little is known about the prognostic significance of C4.4A expression. In the present study, we therefore explored the possible association between C4.4A expression and prognosis in patients with non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Tissue sections from 108 NSCLC patients were subjected to immunohistochemical staining using a polyclonal antibody that specifically recognises human C4.4A. Staining frequency and intensity was scored semiquantitatively and grouped into cancers with high and low expression of C4.4A. Kaplan-Meier survival curves were generated to evaluate the significance of C4.4A expression in prognosis of NSCLC patients. RESULTS High C4.4A expression was observed in 42% of the NSCLC specimens analysed, and this correlates with overall survival (p = 0.012). A remarkably strong correlation was noted between high expression of C4.4A in pulmonary adenocarcinoma and survival (p < 0.0001). Multivariate Cox regression analysis shows that high C4.4A expression is an independent predictor of poor disease outcome in NSCLC (risk ratio, 1.42; 95% confidence interval, 1.09-1.86; p = 0.009). Although histological type is not a predictor of outcome in NSCLC, high C4.4A expression in adenocarcinoma is nevertheless a very strong predictor of poor disease outcome (risk ratio, 1.62; 95% confidence interval, 1.24-2.09; p = 0.001). CONCLUSIONS High tumour cell C4.4A expression is associated with shorter survival for NSCLC patients. Patients with pulmonary adenocarcinoma have a particularly poor prognosis if this histological type is combined with high tumour cell C4.4A expression.
Collapse
Affiliation(s)
- Line V Hansen
- The Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | | | | | | |
Collapse
|
47
|
Fries F, Nazarenko I, Hess J, Claas A, Angel P, Zöller M. CEBPbeta, JunD and c-Jun contribute to the transcriptional activation of the metastasis-associated C4.4A gene. Int J Cancer 2007; 120:2135-47. [PMID: 17278103 DOI: 10.1002/ijc.22447] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The glycosylphosphatidylinositol-anchored molecule C4.4A, which shares structural features with uPAR, is frequently expressed on carcinomas with upregulated expression during tumor progression. Moreover, rare expression on nontransformed epithelial cells is strongly increased during tissue remodeling, e.g., during wound healing. This strictly regulated expression prompted us to define transcriptional activation of the C4.4A gene. C4.4A transcription was analyzed in 2 syngenic rat tumor cell lines with low or high metastatic potential, respectively. Though genomic C4.4A DNA was present in both lines, C4.4A mRNA and transcription of a reporter construct containing the C4.4A promoter was only observed in the metastasizing subline. Deletions and point mutations in the C4.4A promoter-driven reporter construct revealed that activation of the TATA-less, GC-rich core promoter (-1 to -50 bp) does not suffice to initiate transcription that requires coactivation of a proximal response element (-71 to -88 bp) and can be further increased by more distal response elements (-89 to -133 bp). Mobility-shift and cotransfection studies showed that Sp3 binding enhances C4.4A transcription, whereas potential Sp1 binding sites were ineffective. C4.4A transcription essentially requires C/EBPbeta binding to a TRE/CCAAT composite element (-71 to -88 bp) as measured by ChIP assay. C4.4A transcription is strikingly enhanced by cotransfection with JunD or c-Jun, such that C4.4A is most strongly transcribed even in the C4.4A-negative tumor cell line after cotransfection with C/EBPbeta plus JunD or c-Jun. Thus, upregulation of C/EBPbeta during tumor progression and wound repair may well provide a sufficient trigger for transcription of the C4.4A gene.
Collapse
Affiliation(s)
- Frank Fries
- Departments of Tumor Progression and Immune Defense, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Jacobsen B, Gårdsvoll H, Juhl Funch G, Ostergaard S, Barkholt V, Ploug M. One-step affinity purification of recombinant urokinase-type plasminogen activator receptor using a synthetic peptide developed by combinatorial chemistry. Protein Expr Purif 2007; 52:286-96. [PMID: 17027282 DOI: 10.1016/j.pep.2006.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/23/2022]
Abstract
Several lines of evidence have pointed to a role of urokinase-type plasminogen activator receptor (uPAR) as a modulator of certain biochemical processes that are active during tumor invasion and metastasis. Consequently, the structure and function of this receptor have been studied extensively, using recombinantly produced uPAR that has been purified by either affinity chromatography using its cognate ligand, the urokinase-type plasminogen activator (uPA), or a monoclonal anti-uPAR antibody (R2), or by hydroxyapatite. Here, we present a new method for the efficient one-step affinity purification of recombinant uPAR exploiting a high-affinity synthetic peptide antagonist (AE152). The corresponding parent peptide was originally identified in a random phage-display library and subsequently subjected to affinity maturation by combinatorial chemistry. This study compares the affinity purification of a soluble, recombinant uPAR using the monoclonal antibody R2 or the peptide AE152 immobilized on Sepharose. The two affinity ligands perform equally well in purifying uPAR from Drosophila melanogaster Schneider 2 cell culture medium and yield products of comparable purity, activity, and stability as judged by SDS-PAGE, size exclusion chromatography and surface plasmon resonance analysis. The general availability of peptide synthesis renders the present AE152-based affinity purification of uPAR more accessible than the traditional protein-based affinity purification strategies. In this way, large amounts of recombinant uPAR can conveniently be purified for further structural and functional studies.
Collapse
Affiliation(s)
- Benedikte Jacobsen
- Finsen Laboratory, Rigshospitalet, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
49
|
Kneller JM, Ehlen T, Matisic JP, Miller D, Van Niekerk D, Lam WL, Marra M, Richards-Kortum R, Follen M, MacAulay C, Jones SJ. Using LongSAGE to Detect Biomarkers of Cervical Cancer Potentially Amenable to Optical Contrast Agent Labelling. Biomark Insights 2007. [DOI: 10.1177/117727190700200020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sixteen longSAGE libraries from four different clinical stages of cervical intraepithelial neoplasia have enabled us to identify novel cell-surface biomarkers indicative of CIN stage. By comparing gene expression profiles of cervical tissue at early and advanced stages of CIN, several genes are identified to be novel genetic markers. We present fifty-six cell-surface gene products differentially expressed during progression of CIN. These cell surface proteins are being examined to establish their capacity for optical contrast agent binding. Contrast agent visualization will allow real-time assessment of the physiological state of the disease process bringing vast benefit to cancer care. The data discussed in this publication have been submitted to NCBIs Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/ ) and are accessible through GEO Series accession number GSE6252.
Collapse
Affiliation(s)
- Julie M. Kneller
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Thomas Ehlen
- Department of Gynaecologic Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jasenka P. Matisic
- Cancer Imaging, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Dianne Miller
- Department of Gynaecologic Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Dirk Van Niekerk
- Cervical Cancer Screening Program, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Wan L. Lam
- Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Marco Marra
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | - Michelle Follen
- University of Texas M.D. Anderson Cancer Center, Department of Gynecologic Oncology and Biomedical Engineering Center, Houston, TX, U.S.A
| | - Calum MacAulay
- Cancer Imaging, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Steven J.M. Jones
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
50
|
Sulek J, Wagenaar-Miller RA, Shireman J, Molinolo A, Madsen DH, Engelholm LH, Behrendt N, Bugge TH. Increased expression of the collagen internalization receptor uPARAP/Endo180 in the stroma of head and neck cancer. J Histochem Cytochem 2006; 55:347-53. [PMID: 17189524 DOI: 10.1369/jhc.6a7133.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Local growth, invasion, and metastasis of malignancies of the head and neck involve extensive degradation and remodeling of the underlying, collagen-rich connective tissue. Urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 is an endocytic receptor recently shown to play a critical role in the uptake and intracellular degradation of collagen by mesenchymal cells. As a step toward determining the putative function of uPARAP/Endo180 in head and neck cancer progression, we used immunohistochemistry to determine the expression of this collagen internalization receptor in 112 human squamous cell carcinomas and 19 normal or tumor-adjacent head and neck tissue samples from the tongue, gingiva, cheek, tonsils, palate, floor of mouth, larynx, maxillary sinus, upper jaw, nasopharynx/nasal cavity, and lymph nodes. Specificity of detection was verified by staining of serial sections with two different monoclonal antibodies against two non-overlapping epitopes on uPARAP/Endo180 and by the use of isotype-matched non-immune antibodies. uPARAP/Endo180 expression was observed in stromal fibroblast-like, vimentin-positive cells. Furthermore, expression of the collagen internalization receptor was increased in tumor stroma compared with tumor-adjacent connective tissue or normal submucosal connective tissue and was most prominent in poorly differentiated tumors. These data suggest that uPARAP/Endo180 participates in the connective tissue destruction during head and neck squamous cell carcinoma progression by mediating cellular uptake and lysosomal degradation of collagen.
Collapse
Affiliation(s)
- Jay Sulek
- Oral & Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|