1
|
Biller M, Kabir S, Nipper S, Allen S, Kayali Y, Kuncik S, Sasanuma H, Zhou P, Vaziri C, Tomida J. REV7 associates with ATRIP and inhibits ATR kinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633588. [PMID: 39868202 PMCID: PMC11761088 DOI: 10.1101/2025.01.17.633588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Integration of DNA replication with DNA repair, cell cycle progression, and other biological processes is crucial for preserving genome stability and fundamentally important for all life. Ataxia-telangiectasia mutated and RAD3-related (ATR) and its partner ATR-interacting protein (ATRIP) function as a critical proximal sensor and transducer of the DNA Damage Response (DDR). Several ATR substrates, including p53 and CHK1, are crucial for coordination of cell cycle phase transitions, transcription, and DNA repair when cells sustain DNA damage. While much is known about ATR activation mechanisms, it is less clear how ATR signaling is negatively regulated in cells. Here, we identify the DNA repair protein REV7 as a novel direct binding partner of ATRIP. We define a REV7-interaction motif in ATRIP, which when mutated abrogates the REV7-ATRIP interaction in vitro and in intact cells. Using in vitro kinase assays, we show that REV7 inhibits ATR-mediated phosphorylation of its substrates, including p53. Disruption of the REV7-ATRIP interaction also enhances phosphorylation of CHK1 at Ser317 (a known ATR target site) in intact cells. Taken together our results establish REV7 as a critical negative regulator of ATR signaling. REV7 has pleiotropic roles in multiple DDR pathways including Trans-Lesion Synthesis, DNA Double-Strand Break resection, and p53 stability and may play a central role in the integration of multiple genome maintenance pathways.
Collapse
|
2
|
Li C, Fan S, Li P, Bai Y, Wang Y, Cui Y, Li M, Wang R, Shao Y, Wang Y, Zheng S, Wang R, Gao L, Li M, Zheng Y, Wang F, Gao S, Feng S, Wang J, Qu X, Li X. A sophisticated mechanism governs Pol ζ activity in response to replication stress. Nat Commun 2024; 15:7562. [PMID: 39215012 PMCID: PMC11364643 DOI: 10.1038/s41467-024-52112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
DNA polymerase ζ (Pol ζ) plays an essential role in replicating damaged DNA templates but contributes to mutagenesis due to its low fidelity. Therefore, ensuring tight control of Pol ζ's activity is critical for continuous and accurate DNA replication, yet the specific mechanisms remain unclear. This study reveals a regulation mechanism of Pol ζ activity in human cells. Under normal conditions, an autoinhibition mechanism keeps the catalytic subunit, REV3L, inactive. Upon encountering replication stress, however, ATR-mediated phosphorylation of REV3L's S279 cluster activates REV3L and triggers its degradation via a caspase-mediated pathway. This regulation confines the activity of Pol ζ, balancing its essential role against its mutations causing potential during replication stress. Overall, our findings elucidate a control scheme that fine tunes the low-fidelity polymerase activity of Pol ζ under challenging replication scenarios.
Collapse
Affiliation(s)
- Chun Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shuchen Fan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Pan Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuzhen Bai
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ye Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yueyun Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Mengdi Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruru Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuan Shao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yingying Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shuo Zheng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Rong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Lijun Gao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Miaomiao Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuanyuan Zheng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Fengting Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Sihang Gao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shiguo Feng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jianing Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xinqi Qu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xialu Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
3
|
Biller M, Kabir S, Boado C, Nipper S, Saffa A, Tal A, Allen S, Sasanuma H, Dréau D, Vaziri C, Tomida J. REV7-p53 interaction inhibits ATM-mediated DNA damage signaling. Cell Cycle 2024; 23:339-352. [PMID: 38557443 PMCID: PMC11174130 DOI: 10.1080/15384101.2024.2333227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
REV7 is an abundant, multifunctional protein that is a known factor in cell cycle regulation and in several key DNA repair pathways including Trans-Lesion Synthesis (TLS), the Fanconi Anemia (FA) pathway, and DNA Double-Strand Break (DSB) repair pathway choice. Thus far, no direct role has been studied for REV7 in the DNA damage response (DDR) signaling pathway. Here we describe a novel function for REV7 in DSB-induced p53 signaling. We show that REV7 binds directly to p53 to block ATM-dependent p53 Ser15 phosphorylation. We also report that REV7 is involved in the destabilization of p53. These findings affirm REV7's participation in fundamental cell cycle and DNA repair pathways. Furthermore, they highlight REV7 as a critical factor for the integration of multiple processes that determine viability and genome stability.
Collapse
Affiliation(s)
- Megan Biller
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sara Kabir
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Chkylle Boado
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sarah Nipper
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alexandra Saffa
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ariella Tal
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sydney Allen
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Hiroyuki Sasanuma
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Junya Tomida
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
4
|
REV7 in Cancer Biology and Management. Cancers (Basel) 2023; 15:cancers15061721. [PMID: 36980607 PMCID: PMC10046837 DOI: 10.3390/cancers15061721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
DNA repair and cell cycle regulation are potential biological fields to develop molecular targeting therapies for cancer. Human REV7 was originally discovered as a homologous molecule to yeast Rev7, which is involved in DNA damage response and mutagenesis, and as the second homolog of yeast Mad2, involved in the spindle assembly checkpoint. Although REV7 principally functions in the fields of DNA repair and cell cycle regulation, many binding partners of REV7 have been identified using comprehensive analyses in the past decade, and the significance of REV7 is expanding in various other biological fields, such as gene transcription, epigenetics, primordial germ cell survival, neurogenesis, intracellular signaling, and microbial infection. In addition, the clinical significance of REV7 has been demonstrated in studies using human cancer tissues, and investigations in cancer cell lines and animal models have revealed the greater impacts of REV7 in cancer biology, which makes it an attractive target molecule for cancer management. This review focuses on the functions of REV7 in human cancer and discusses the utility of REV7 for cancer management with a summary of the recent development of inhibitors targeting REV7.
Collapse
|
5
|
Clairmont CS, D'Andrea AD. REV7 directs DNA repair pathway choice. Trends Cell Biol 2021; 31:965-978. [PMID: 34147298 DOI: 10.1016/j.tcb.2021.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
REV7 is a small multifunctional protein that participates in multiple DNA repair pathways, most notably translesion DNA synthesis and double-strand break (DSB) repair. While the role of REV7 in translesion synthesis has been known for several decades, its function in DSB repair is a recent discovery. Investigations into the DSB repair function of REV7 have led to the discovery of a new DNA repair complex known as Shieldin. Recent studies have also highlighted the importance of REV7's HORMA domain, an ancient structural motif, in REV7 function and have identified the HORMA regulators, TRIP13 and p31, as novel DNA repair factors. In this review, we discuss these recent findings and their implications for repair pathway choice, at both DSBs and replication forks. We suggest that REV7, in particular the activation state of its HORMA domain, can act as a critical determinant of mutagenic versus error-free repair in multiple contexts.
Collapse
Affiliation(s)
- Connor S Clairmont
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Marygold SJ, Attrill H, Speretta E, Warner K, Magrane M, Berloco M, Cotterill S, McVey M, Rong Y, Yamaguchi M. The DNA polymerases of Drosophila melanogaster. Fly (Austin) 2020; 14:49-61. [PMID: 31933406 PMCID: PMC7714529 DOI: 10.1080/19336934.2019.1710076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/08/2022] Open
Abstract
DNA synthesis during replication or repair is a fundamental cellular process that is catalyzed by a set of evolutionary conserved polymerases. Despite a large body of research, the DNA polymerases of Drosophila melanogaster have not yet been systematically reviewed, leading to inconsistencies in their nomenclature, shortcomings in their functional (Gene Ontology, GO) annotations and an under-appreciation of the extent of their characterization. Here, we describe the complete set of DNA polymerases in D. melanogaster, applying nomenclature already in widespread use in other species, and improving their functional annotation. A total of 19 genes encode the proteins comprising three replicative polymerases (alpha-primase, delta, epsilon), five translesion/repair polymerases (zeta, eta, iota, Rev1, theta) and the mitochondrial polymerase (gamma). We also provide an overview of the biochemical and genetic characterization of these factors in D. melanogaster. This work, together with the incorporation of the improved nomenclature and GO annotation into key biological databases, including FlyBase and UniProtKB, will greatly facilitate access to information about these important proteins.
Collapse
Affiliation(s)
- Steven J. Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Helen Attrill
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Elena Speretta
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Kate Warner
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Michele Magrane
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Maria Berloco
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Sue Cotterill
- Department Basic Medical Sciences, St Georges University London, London, UK
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, USA
| | - Yikang Rong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
7
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
8
|
Tomida J, Takata KI, Lange SS, Schibler AC, Yousefzadeh MJ, Bhetawal S, Dent SYR, Wood RD. REV7 is essential for DNA damage tolerance via two REV3L binding sites in mammalian DNA polymerase ζ. Nucleic Acids Res 2015; 43:1000-11. [PMID: 25567983 PMCID: PMC4333420 DOI: 10.1093/nar/gku1385] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA polymerase zeta (pol ζ) is exceptionally important for controlling mutagenesis and genetic instability. REV3L comprises the catalytic subunit, while REV7 (MAD2L2) is considered an accessory subunit. However, it has not been established that the role of REV7 in DNA damage tolerance is necessarily connected with mammalian pol ζ, and there is accumulating evidence that REV7 and REV3L have independent functions. Analysis of pol ζ has been hampered by difficulties in expression of REV3L in mammalian cells, and lack of a functional complementation system. Here, we report that REV7 interacts with full-length REV3L in vivo and we identify a new conserved REV7 interaction site in human REV3L (residues 1993–2003), distinct from the known binding site (residues 1877–1887). Mutation of both REV7-binding sites eliminates the REV3L–REV7 interaction. Invivo complementation shows that both REV7-binding sites in REV3L are necessary for preventing spontaneous chromosome breaks and conferring resistance to UV radiation and cisplatin. This demonstrates a damage-specific function of REV7 in pol ζ, in contrast to the distinct roles of REV3L and REV7 in primary cell viability and embryogenesis.
Collapse
Affiliation(s)
- Junya Tomida
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Kei-ichi Takata
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Sabine S Lange
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Andria C Schibler
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Matthew J Yousefzadeh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Sarita Bhetawal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
Baranovskiy AG, Babayeva ND, Suwa Y, Gu J, Pavlov YI, Tahirov TH. Structural basis for inhibition of DNA replication by aphidicolin. Nucleic Acids Res 2014; 42:14013-21. [PMID: 25429975 PMCID: PMC4267640 DOI: 10.1093/nar/gku1209] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Natural tetracyclic diterpenoid aphidicolin is a potent and specific inhibitor of B-family DNA polymerases, haltering replication and possessing a strong antimitotic activity in human cancer cell lines. Clinical trials revealed limitations of aphidicolin as an antitumor drug because of its low solubility and fast clearance from human plasma. The absence of structural information hampered the improvement of aphidicolin-like inhibitors: more than 50 modifications have been generated so far, but all have lost the inhibitory and antitumor properties. Here we report the crystal structure of the catalytic core of human DNA polymerase α (Pol α) in the ternary complex with an RNA-primed DNA template and aphidicolin. The inhibitor blocks binding of dCTP by docking at the Pol α active site and by rotating the template guanine. The structure provides a plausible mechanism for the selectivity of aphidicolin incorporation opposite template guanine and explains why previous modifications of aphidicolin failed to improve its affinity for Pol α. With new structural information, aphidicolin becomes an attractive lead compound for the design of novel derivatives with enhanced inhibitory properties for B-family DNA polymerases.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yoshiaki Suwa
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jianyou Gu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Chun ACS, Kok KH, Jin DY. REV7 is required for anaphase-promoting complex-dependent ubiquitination and degradation of translesion DNA polymerase REV1. Cell Cycle 2012; 12:365-78. [PMID: 23287467 DOI: 10.4161/cc.23214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
REV1 is a Y-family polymerase specialized for replicating across DNA lesions at the stalled replication folk. Due to the high error rate of REV1-dependent translesion DNA synthesis (TLS), tight regulation of REV1 activity is essential. Here, we show that human REV1 undergoes proteosomal degradation mediated by the E3 ubiquitin ligase known as anaphase-promoting complex (APC). REV1 associates with APC. Overexpression of APC coactivator CDH1 or CDC20 promotes polyubiquitination and proteosomal degradation of REV1. Surprisingly, polyubiquitination of REV1 also requires REV7, a TLS accessory protein that interacts with REV1 and other TLS polymerases. The N-terminal region of REV1 contains both the APC degron and an additional REV7-binding domain. Depletion of REV7 by RNA interference stabilizes REV1 by preventing polyubiquitination, whereas overexpression of REV7 augments REV1 degradation. Taken together, our findings suggest a role of REV7 in governing REV1 stability and interplay between TLS and APC-dependent proteolysis.
Collapse
Affiliation(s)
- Abel Chiu-Shun Chun
- Department of Biochemistry and State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
11
|
McVey M. Strategies for DNA interstrand crosslink repair: insights from worms, flies, frogs, and slime molds. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:646-658. [PMID: 20143343 DOI: 10.1002/em.20551] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA interstrand crosslinks (ICLs) are complex lesions that covalently link both strands of the DNA double helix and impede essential cellular processes such as DNA replication and transcription. Recent studies suggest that multiple repair pathways are involved in their removal. Elegant genetic analysis has demonstrated that at least three distinct sets of pathways cooperate in the repair and/or bypass of ICLs in budding yeast. Although the mechanisms of ICL repair in mammals appear similar to those in yeast, important differences have been documented. In addition, mammalian crosslink repair requires other repair factors, such as the Fanconi anemia proteins, whose functions are poorly understood. Because many of these proteins are conserved in simpler metazoans, nonmammalian models have become attractive systems for studying the function(s) of key crosslink repair factors. This review discusses the contributions that various model organisms have made to the field of ICL repair. Specifically, it highlights how studies performed with C. elegans, Drosophila, Xenopus, and the social amoeba Dictyostelium serve to complement those from bacteria, yeast, and mammals. Together, these investigations have revealed that although the underlying themes of ICL repair are largely conserved, the complement of DNA repair proteins utilized and the ways in which each of the proteins is used can vary substantially between different organisms.
Collapse
Affiliation(s)
- Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
12
|
Abstract
In response to DNA damage, TLS (translesion synthesis) allows replicative bypass of various DNA lesions, which stall normal replication. TLS is achieved by low-fidelity polymerases harbouring less stringent active sites. In humans, Y-family polymerases together with Pol zeta (polymerase zeta) are responsible for TLS across different types of damage. Protein-protein interaction contributes significantly to the regulation of TLS. REV1 plays a central role in TLS because it interacts with all other Y-family members and Pol zeta. Ubiquitin-dependent regulatory mechanisms also play important roles in TLS. Ubiquitin-binding domains have been found in TLS polymerases and they might be required for TLS activity. Mono-ubiquitination of PCNA (proliferating-cell nuclear antigen), the central scaffold of TLS polymerases, is thought to promote TLS. In addition, both non-proteolytic and proteolytic polyubiquitination of PCNA and TLS polymerases has been demonstrated. Owing to their low fidelity, the recruitment of TLS polymerases is strictly restricted to stalled replication forks.
Collapse
|
13
|
A new DNA combing method for biochemical analysis. Anal Biochem 2010; 400:145-7. [PMID: 20085744 DOI: 10.1016/j.ab.2010.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/06/2010] [Accepted: 01/14/2010] [Indexed: 11/23/2022]
Abstract
A simple molecular combing method for analysis of biochemical reactions, called the moving droplet method, has been developed. In this method, small droplets containing DNA molecules run down a sloped glass substrate, and this creates a moving interface among the air, droplet, and substrate that stretches the DNA molecules. This method requires a much smaller volume of sample solution than other established combing methods, allowing wider application in various fields. Using this method, lambdaDNA molecules were stretched and absorbed to a glass substrate, and single-molecule analysis of DNA synthesis by DNA polymerases was performed.
Collapse
|
14
|
Ogawara D, Muroya T, Yamauchi K, Iwamoto TA, Yagi Y, Yamashita Y, Waga S, Akiyama M, Maki H. Near-full-length REV3L appears to be a scarce maternal factor in Xenopus laevis eggs that changes qualitatively in early embryonic development. DNA Repair (Amst) 2009; 9:90-5. [PMID: 19896909 DOI: 10.1016/j.dnarep.2009.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 11/17/2022]
Abstract
REV3 is the catalytic subunit of DNA polymerase zeta (pol zeta), which is responsible for the damage-induced mutagenesis that arises during error-prone translesion synthesis in eukaryotes. The related REV3L genes in human and mouse encode proteins of approximately 350kDa, twice as large as yeast REV3, but full-length REV3L has not been identified in any vertebrate cell. We report that Xenopus laevisREV3L encodes a 352-kDa protein that has high overall amino acid sequence similarity to its mammalian counterparts, and, for the first time in a vertebrate species, we have detected putative REV3L polypeptides of 300 and 340kDa in X. laevis oocytes. Only the 300-kDa form is stored in eggs, where its concentration of about 65pM is much lower than those of other replication and repair proteins including the accessory pol zeta subunit REV7. In fertilized eggs, the levels of this polypeptide did not change until neurula; the larger 340-kDa form first appeared at stages after gastrula, suggesting a pattern of regulation during development. These observations indicate the existence of REV3L as a scarce protein, of approximately the full predicted size, whose level may impose severe constraints on the assembly of pol zeta in X. laevis.
Collapse
Affiliation(s)
- Daichi Ogawara
- Division of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jansen JG, Tsaalbi-Shtylik A, Hendriks G, Verspuy J, Gali H, Haracska L, de Wind N. Mammalian polymerase zeta is essential for post-replication repair of UV-induced DNA lesions. DNA Repair (Amst) 2009; 8:1444-51. [PMID: 19783229 DOI: 10.1016/j.dnarep.2009.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/17/2009] [Accepted: 09/10/2009] [Indexed: 01/11/2023]
Abstract
DNA polymerase zeta is believed to be an essential constituent of DNA damage tolerance, comprising several pathways that allow the replication of DNA templates containing unrepaired damage. We wanted to better define the role of polymerase zeta in DNA damage tolerance in mammalian cells. To this aim we have investigated replication of ultraviolet light-damaged DNA templates in mouse embryonic fibroblasts deficient for Rev3, the catalytic subunit of polymerase zeta. We found that Rev3 is important for a post-replication repair pathway of helix-distorting [6-4]pyrimidine-pyrimidone photoproducts and, to a lesser extent, of cyclobutane pyrimidine dimers. Unlike its partner Rev1, Rev3 appears not to be involved in an immediate translesion synthesis pathway at a stalled replication fork. The deficiency of Rev3(-/-) MEFs in post-replication repair of different photoproducts contributes to the extreme sensitivity of these cells to UV light.
Collapse
Affiliation(s)
- Jacob G Jansen
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Waters LS, Minesinger BK, Wiltrout ME, D'Souza S, Woodruff RV, Walker GC. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 2009; 73:134-54. [PMID: 19258535 PMCID: PMC2650891 DOI: 10.1128/mmbr.00034-08] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repair and DNA damage tolerance machineries are crucial to overcome the vast array of DNA damage that a cell encounters during its lifetime. In this review, we summarize the current state of knowledge about the eukaryotic DNA damage tolerance pathway translesion synthesis (TLS), a process in which specialized DNA polymerases replicate across from DNA lesions. TLS aids in resistance to DNA damage, presumably by restarting stalled replication forks or filling in gaps that remain in the genome due to the presence of DNA lesions. One consequence of this process is the potential risk of introducing mutations. Given the role of these translesion polymerases in mutagenesis, we discuss the significant regulatory mechanisms that control the five known eukaryotic translesion polymerases: Rev1, Pol zeta, Pol kappa, Pol eta, and Pol iota.
Collapse
Affiliation(s)
- Lauren S Waters
- Department of Biology, Massachusetts Institute of Technology, Building 68, Room 653, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K. The multi-replication protein A (RPA) system--a new perspective. FEBS J 2009; 276:943-63. [PMID: 19154342 DOI: 10.1111/j.1742-4658.2008.06841.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.
Collapse
Affiliation(s)
- Kengo Sakaguchi
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan.
| | | | | | | |
Collapse
|
18
|
Szüts D, Marcus AP, Himoto M, Iwai S, Sale JE. REV1 restrains DNA polymerase zeta to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo. Nucleic Acids Res 2008; 36:6767-80. [PMID: 18953031 PMCID: PMC2588525 DOI: 10.1093/nar/gkn651] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/11/2008] [Accepted: 09/18/2008] [Indexed: 12/27/2022] Open
Abstract
Exposure to ultraviolet light induces a number of forms of damage in DNA, of which (6-4) photoproducts present the most formidable challenge to DNA replication. No single DNA polymerase has been shown to bypass these lesions efficiently in vitro suggesting that the coordinate use of a number of different enzymes is required in vivo. To further understand the mechanisms and control of lesion bypass in vivo, we have devised a plasmid-based system to study the replication of site-specific T-T(6-4) photoproducts in chicken DT40 cells. We show that DNA polymerase zeta is absolutely required for translesion synthesis (TLS) of this lesion, while loss of DNA polymerase eta has no detectable effect. We also show that either the polymerase-binding domain of REV1 or ubiquitinated PCNA is required for the recruitment of Polzeta as the catalytic TLS polymerase. Finally, we demonstrate a previously unappreciated role for REV1 in ensuring bypass synthesis remains in frame with the template. Our data therefore suggest that REV1 not only helps to coordinate the delivery of DNA polymerase zeta to a stalled primer terminus but also restrains its activity to ensure that nucleotides are incorporated in register with the template strand.
Collapse
Affiliation(s)
- Dávid Szüts
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK and Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Adam P. Marcus
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK and Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masayuki Himoto
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK and Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shigenori Iwai
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK and Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Julian E. Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK and Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
19
|
Gan GN, Wittschieben JP, Wittschieben BØ, Wood RD. DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 2008; 18:174-83. [PMID: 18157155 DOI: 10.1038/cr.2007.117] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Most current knowledge about DNA polymerase zeta (pol zeta) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where pol zeta consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Rev1. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol zeta can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already apparent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genome instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair of interstrand DNA crosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent developments in these areas.
Collapse
Affiliation(s)
- Gregory N Gan
- Department of Pharmacology, University of Pittsburgh Medical School, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
20
|
Sakamoto A, Iwabata K, Koshiyama A, Sugawara H, Yanai T, Kanai Y, Takeuchi R, Daikuhara Y, Takakusagi Y, Sakaguchi K. Two X family DNA polymerases, λ and μ, in meiotic tissues of the basidiomycete, Coprinus cinereus. Chromosoma 2007; 116:545-56. [PMID: 17764015 DOI: 10.1007/s00412-007-0119-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 07/29/2007] [Accepted: 07/31/2007] [Indexed: 12/13/2022]
Abstract
The X family DNA polymerases lambda (CcPollambda) and mu (CcPolmu) were shown to be expressed during meiotic prophase in the basidiomycete, Coprinus cinereus. These two polymerases are the only members of the X family in the C. cinereus genome. The open reading frame of CcPollambda encoded a predicted product of 800 amino acid residues and that of CcPolmicro of 621 amino acid residues. Both CcPollambda and CcPolmicro required Mn(2+) ions for activity, and both were strongly inhibited by dideoxythymidine triphosphate. Unlike their mammalian counterparts, CcPollambda and CcPolmicro had no terminal deoxynucleotidyl transferase activity. Immunostaining analysis revealed that CcPollambda was present at meiotic prophase nuclei in zygotene and pachytene cells, which is the period when homologous chromosomes pair and recombine. CcPolmicro was present in a slightly wider range of cell stages, zygotene to diplotene. In analyses using D-loop recombination intermediate substrates, we found that both CcPollambda and CcPolmicro could promote primer extension of an invading strand in a D-loop structure. Moreover, both polymerases could fully extend the primer in the D-loop substrate, suggesting that D-loop extension is an activity intrinsic to CcPollambda and CcPolmicro. Based on these data, we discuss the possible roles of these polymerases in meiosis.
Collapse
Affiliation(s)
- Aiko Sakamoto
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Takeuchi R, Kimura S, Saotome A, Sakaguchi K. Biochemical properties of a plastidial DNA polymerase of rice. PLANT MOLECULAR BIOLOGY 2007; 64:601-11. [PMID: 17522954 DOI: 10.1007/s11103-007-9179-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 04/27/2007] [Indexed: 05/04/2023]
Abstract
Plastids are organelles unique to plant cells and are responsible for photosynthesis and other metabolic functions. Despite their important cellular roles, relatively little is known about the mechanism of plastidial DNA replication and repair. Recently, we identified a novel DNA polymerase in Oryza Sativa L. (OsPOLP1, formerly termed OsPolI-like) that is homologous to prokaryotic DNA polymerase Is (PolIs), and suggested that this polymerase might be involved in plastidial DNA replication and repair. Here, we propose to rename the plant PolI homologs as DNA polymerase pi (POLP), and investigate the biochemical properties of full-length OsPOLP1. The purified OsPOLP1 elongated both DNA and RNA primer hybridized to a DNA template, and possessed a 3' exonuclease activity. Moreover, OsPOLP1 displayed high processivity and fidelity, indicating that this polymerase has the biochemical characteristics appropriate for DNA replication. We found that POLPs have two extra sequences in the polymerase domain that are absent in prokaryotic PolIs. Deletion of either insert from OsPOLP1 caused a decrease in DNA synthetic activity, processivity, and DNA binding activity. In addition, OsPOLP1 efficiently catalyzed strand displacement on nicked DNA with a 5'-deoxyribose phosphate, suggesting that this enzyme might be involved in a repair pathway similar to long-patch base excision repair. These results provide insights into the possible role of POLPs in plastidial DNA replication and repair.
Collapse
Affiliation(s)
- Ryo Takeuchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken, 278-8510, Japan.
| | | | | | | |
Collapse
|
22
|
D'Souza S, Walker GC. Novel role for the C terminus of Saccharomyces cerevisiae Rev1 in mediating protein-protein interactions. Mol Cell Biol 2006; 26:8173-82. [PMID: 16923957 PMCID: PMC1636727 DOI: 10.1128/mcb.00202-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae REV3/7-encoded polymerase zeta and Rev1 are central to the replicative bypass of DNA lesions, a process called translesion synthesis (TLS). While yeast polymerase zeta extends from distorted DNA structures, Rev1 predominantly incorporates C residues from across a template G and a variety of DNA lesions. Intriguingly, Rev1 catalytic activity does not appear to be required for TLS. Instead, yeast Rev1 is thought to participate in TLS by facilitating protein-protein interactions via an N-terminal BRCT motif. In addition, higher eukaryotic homologs of Rev1 possess a C terminus that interacts with other TLS polymerases. Due to a lack of sequence similarity, the yeast Rev1 C-terminal region, located after the polymerase domain, had initially been thought not to play a role in TLS. Here, we report that elevated levels of the yeast Rev1 C terminus confer a strong dominant-negative effect on viability and induced mutagenesis after DNA damage, highlighting the crucial role that the C terminus plays in DNA damage tolerance. We show that this phenotype requires REV7 and, using immunoprecipitations from crude extracts, demonstrate that, in addition to the polymerase-associated domain, the extreme Rev1 C terminus and the BRCT region of Rev1 mediate interactions with Rev7.
Collapse
Affiliation(s)
- Sanjay D'Souza
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
23
|
Waters LS, Walker GC. The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G(2)/M phase rather than S phase. Proc Natl Acad Sci U S A 2006; 103:8971-6. [PMID: 16751278 PMCID: PMC1482550 DOI: 10.1073/pnas.0510167103] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Rev1 protein lies at the root of mutagenesis in eukaryotes. Together with DNA polymerase zeta (Rev3/7), Rev1 function is required for the active introduction of the majority of mutations into the genomes of eukaryotes from yeast to humans. Rev1 and polymerase zeta are error-prone translesion DNA polymerases, but Rev1's DNA polymerase catalytic activity is not essential for mutagenesis. Rather, Rev1 is thought to contribute to mutagenesis principally by engaging in crucial protein-protein interactions that regulate the access of translesion DNA polymerases to the primer terminus. This inference is based on the requirement of the N-terminal BRCT (BRCA1 C-terminal) domain of Saccharomyces cerevisiae Rev1 for mutagenesis and the interaction of the C-terminal region of mammalian Rev1 with several other translesion DNA polymerases. Here, we report that S. cerevisiae Rev1 is subject to pronounced cell cycle control in which the levels of Rev1 protein are approximately 50-fold higher in G(2) and throughout mitosis than during G(1) and much of S phase. Differential survival of a rev1Delta strain after UV irradiation at various points in the cell cycle indicates that this unanticipated regulation is physiologically relevant. This unexpected finding has important implications for the regulation of mutagenesis and challenges current models of error-prone lesion bypass as a process involving polymerase switching that operates mainly during S phase to rescue stalled replication forks.
Collapse
Affiliation(s)
- Lauren S. Waters
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- *To whom correspondence should be addressed at:
Department of Biology, Massachusetts Institute of Technology, Building 68-633, Cambridge, MA 02139. E-mail:
| |
Collapse
|
24
|
Takeuchi R, Ruike T, Nakamura RI, Shimanouchi K, Kanai Y, Abe Y, Ihara A, Sakaguchi K. Drosophila DNA polymerase zeta interacts with recombination repair protein 1, the Drosophila homologue of human abasic endonuclease 1. J Biol Chem 2006; 281:11577-85. [PMID: 16507570 DOI: 10.1074/jbc.m512959200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abasic (AP) sites are a threat to cellular viability and genomic integrity, since they impede transcription and DNA replication. In mammalian cells, DNA polymerase (pol) beta plays an important role in the repair of AP sites. However, it is known that many organisms, including Drosophila melanogaster, do not have a pol beta homologue, and it is unclear how they repair AP sites. Here, we screened for DNA polymerases that interact with the Drosophila AP endonuclease 1 homologue, Rrp1 (recombination repair protein 1), and found that Drosophila pol zeta (Dmpol zeta), DmREV3 and DmREV7 bound to Rrp1 in a protein affinity column. Rrp1 directly interacted with DmREV7 in vitro and in vivo but not with DmREV3. These findings suggest that the DNA polymerase partner for Rrp1 is Dmpol zeta and that this interaction occurs through DmREV7. Interestingly, DmREV7 bound to the N-terminal region of Rrp1, which has no known protein homologue, suggesting that this binding is a species-specific event. Moreover, DmREV7 could stimulate the AP endonuclease activity of Rrp1, but not the 3'-exonuclease activity, and form a homomultimer. DmREV3 could not incorporate nucleotides at the 5'-incised tetrahydrofran sites but did show strand displacement activity for one-nucleotide-gapped DNA, which was not influenced by either DmREV7 or Rrp1. Methyl methanesulfonate and hydrogen peroxide treatments increased mRNA levels of DmREV3 and DmREV7. On the basis of the direct interaction between DmREV7 and Rrp1, we suggest that Dmpol zeta may be involved in the repair pathway of AP sites in DNA.
Collapse
Affiliation(s)
- Ryo Takeuchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
McVoy MA, Nixon DE. Impact of 2-bromo-5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole riboside and inhibitors of DNA, RNA, and protein synthesis on human cytomegalovirus genome maturation. J Virol 2005; 79:11115-27. [PMID: 16103162 PMCID: PMC1193602 DOI: 10.1128/jvi.79.17.11115-11127.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus genome maturation is a complex process in which concatemeric DNA molecules are translocated into capsids and cleaved at specific sequences to produce encapsidated-unit genomes. Bacteriophage studies further suggest that important ancillary processes, such as RNA transcription and DNA synthesis, concerned with repeat duplication, recombination, branch resolution, or damage repair may also be involved with the genome maturation process. To gain insight into the biochemical activities needed for herpesvirus genome maturation, 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB) was used to allow the accumulation of human cytomegalovirus concatemeric DNA while the formation of new genomes was being blocked. Genome formation was restored upon BDCRB removal, and addition of various inhibitors during this time window permitted evaluation of their effects on genome maturation. Inhibitors of protein synthesis, RNA transcription, and the viral DNA polymerase only modestly reduced genome formation, demonstrating that these activities are not required for genome maturation. In contrast, drugs that inhibit both viral and host DNA polymerases potently blocked genome formation. Radioisotope incorporation in the presence of a viral DNA polymerase inhibitor further suggested that significant host-mediated DNA synthesis occurs throughout the viral genome. These results indicate a role for host DNA polymerases in genome maturation and are consistent with a need for terminal repeat duplication, debranching, or damage repair concomitant with DNA packaging or cleavage. Similarities to previously reported effects of BDCRB on guinea pig cytomegalovirus were also noted; however, BDCRB induced low-level formation of a supergenomic species called monomer+ DNA that is unique to human cytomegalovirus. Analysis of monomer+ DNA suggested a model for its formation in which BDCRB permits limited packaging of concatemeric DNA but induces skipping of cleavage sites.
Collapse
Affiliation(s)
- Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, 23298-0163, USA.
| | | |
Collapse
|
26
|
Ross AL, Simpson LJ, Sale JE. Vertebrate DNA damage tolerance requires the C-terminus but not BRCT or transferase domains of REV1. Nucleic Acids Res 2005; 33:1280-9. [PMID: 15741181 PMCID: PMC552965 DOI: 10.1093/nar/gki279] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 02/14/2005] [Accepted: 02/14/2005] [Indexed: 11/20/2022] Open
Abstract
REV1 is central to the DNA damage response of eukaryotes through an as yet poorly understood role in translesion synthesis. REV1 is a member of the Y-type DNA polymerase family and is capable of in vitro deoxycytidyl transferase activity opposite a range of damaged bases. However, non-catalytic roles for REV1 have been suggested by the Saccharomyces cerevisiae rev1-1 mutant, which carries a point mutation in the N-terminal BRCT domain, and the recently demonstrated ability of the mammalian protein to interact with each of the other translesion polymerases via its extreme C-terminus. Here, we show that a region adjacent to this polymerase interacting domain mediates an interaction with PCNA. These C-terminal domains of REV1 are necessary, although not sufficient, for effective tolerance of DNA damage in the avian cell line DT40, while the BRCT domain and transferase activity are not directly required. Together these data provide strong support for REV1 playing an important non-catalytic role in coordinating translesion synthesis. Further, unlike in budding yeast, rad18 is not epistatic to rev1 for DNA damage tolerance suggesting that REV1 and RAD18 play largely independent roles in the control of vertebrate translesion synthesis.
Collapse
Affiliation(s)
- Anna-Laura Ross
- Medical Research Council Laboratory of Molecular BiologyHills Road, Cambridge, CB2 2QH, UK
| | - Laura J. Simpson
- Medical Research Council Laboratory of Molecular BiologyHills Road, Cambridge, CB2 2QH, UK
| | - Julian E. Sale
- Medical Research Council Laboratory of Molecular BiologyHills Road, Cambridge, CB2 2QH, UK
| |
Collapse
|