1
|
Marín Viegas VS, Ocampo CG, Restucci FE, Vignolles F, Mazzini FN, Candreva ÁM, Petruccelli S. Synthesis of single-chain antibody fragment fused to the elastin-like polypeptide in Nicotiana benthamiana and its application in affinity precipitation of difficult to produce proteins. Biotechnol Bioeng 2022; 119:2505-2517. [PMID: 35689353 DOI: 10.1002/bit.28158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/06/2022]
Abstract
Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this study, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)-elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in Nicotiana benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by coaggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this study showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low-yield proteins.
Collapse
Affiliation(s)
- Vanesa S Marín Viegas
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Carolina G Ocampo
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Fernando E Restucci
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Florencia Vignolles
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Flavia N Mazzini
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ángela M Candreva
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Silvana Petruccelli
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
2
|
Kumar G, Sterrett S, Hall L, Tabengwa E, Honjo K, Larimer M, Davis RS, Goepfert PA, Larimer BM. Comprehensive mapping of SARS-CoV-2 peptide epitopes for development of a highly sensitive serological test for total and neutralizing antibodies. Protein Eng Des Sel 2022; 35:gzab033. [PMID: 35174857 PMCID: PMC9005051 DOI: 10.1093/protein/gzab033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/30/2021] [Accepted: 06/16/2021] [Indexed: 11/12/2022] Open
Abstract
Quantification of the anti-SARS-CoV-2 antibody response has proven to be a prominent diagnostic tool during the COVID-19 pandemic. Antibody measurements have aided in the determination of humoral protection following infection or vaccination and will likely be essential for predicting the prevalence of population level immunity over the next several years. Despite widespread use, current tests remain limited in part, because antibody capture is accomplished through the use of complete spike and nucleocapsid proteins that contain significant regions of overlap with common circulating coronaviruses. To address this limitation, a unique epitope display platform utilizing monovalent display and protease-driven capture of peptide epitopes was used to select high affinity peptides. A single round of selection using this strategy with COVID-19 positive patient plasma samples revealed surprising differences and specific patterns in the antigenicity of SARS-CoV-2 proteins, especially the spike protein. Putative epitopes were assayed for specificity with convalescent and control samples, and the individual binding kinetics of peptides were also determined. A subset of prioritized peptides was used to develop an antibody diagnostic assay that showed low cross reactivity while detecting 37% more positive antibody cases than a gold standard FDA EUA test. Finally, a subset of peptides were compared with serum neutralization activity to establish a 2 peptide assay that strongly correlates with neutralization. Together, these data demonstrate a novel phage display method that is capable of comprehensively and rapidly mapping patient viral antibody responses and selecting high affinity public epitopes for the diagnosis of humoral immunity.
Collapse
Affiliation(s)
- Garima Kumar
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sarah Sterrett
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucinda Hall
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Edlue Tabengwa
- Multidisciplinary Molecular Interaction Core, Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kazuhito Honjo
- Department of Medicine, Microbiology, and Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Randall S Davis
- Department of Medicine, Microbiology, and Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paul A Goepfert
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Benjamin M Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Verma V, Joshi G, Gupta A, Chaudhary VK. An efficient ORF selection system for DNA fragment libraries based on split beta-lactamase complementation. PLoS One 2020; 15:e0235853. [PMID: 32701967 PMCID: PMC7377443 DOI: 10.1371/journal.pone.0235853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
PCR-based amplification of annotated genes has allowed construction of expression clones at genome-scale using classical and recombination-based cloning technologies. However, genome-scale expression and purification of proteins for down-stream applications is often limited by challenges such as poor expression, low solubility, large size of multi-domain proteins, etc. Alternatively, DNA fragment libraries in expression vectors can serve as the source of protein fragments with each fragment encompassing a function of its whole protein counterpart. However, the random DNA fragmentation and cloning result in only 1 out of 18 clones being in the correct open-reading frame (ORF), thus, reducing the overall efficiency of the system. This necessitates the selection of correct ORF before expressing the protein fragments. This paper describes a highly efficient ORF selection system for DNA fragment libraries, which is based on split beta-lactamase protein fragment complementation. The system has been designed to allow seamless transfer of selected DNA fragment libraries into any downstream vector systems using a restriction enzyme-free cloning strategy. The strategy has been applied for the selection of ORF using model constructs to show near 100% selection of the clone encoding correct ORF. The system has been further validated by construction of an ORF-selected DNA fragment library of 30 genes of M. tuberculosis. Further, we have successfully demonstrated the cytosolic expression of ORF-selected protein fragments in E. coli.
Collapse
Affiliation(s)
- Vaishali Verma
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Gopal Joshi
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Amita Gupta
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Vijay K. Chaudhary
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
4
|
Soluri MF, Puccio S, Caredda G, Edomi P, D’Elios MM, Cianchi F, Troilo A, Santoro C, Sblattero D, Peano C. Defining the Helicobacter pylori Disease-Specific Antigenic Repertoire. Front Microbiol 2020; 11:1551. [PMID: 32849324 PMCID: PMC7396715 DOI: 10.3389/fmicb.2020.01551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The analysis of the interaction between Helicobacter pylori (HP) and the host in vivo is an extremely informative way to enlighten the molecular mechanisms behind the persistency/latency of the bacterium as well as in the progression of the infection. An important source of information is represented by circulating antibodies targeting the bacteria that define a specific "disease signature" with prospective diagnostic implications. The diagnosis of some of the HP induced diseases such as gastric cancer (GC), MALT lymphoma (MALT), and autoimmune gastritis (AIG) is not easy because patients do not show symptoms of illness in early-onset stages, at the same time they progress rapidly. The possibility of identifying markers able to provide an early diagnosis would be extremely beneficial since a late diagnosis results in a delay in undergoing active therapy and reduces the survival rate of patients. With the aim to identify the HP antigens recognized during the host immune-response to the infection and possibly disease progression, we applied a discovery-driven approach, that combines "phage display" and deep sequencing. The procedure is based on the selection of ORF phage libraries, specifically generated from the pathogen's genome, with sera antibodies from patients with different HP-related diseases. To this end two phage display libraries have been constructed starting from genomic DNA from the reference HP 26695 and the pathogenic HP B128 strains; libraries were filtered for ORFs by using an ORF selection vector developed by our group (Di Niro et al., 2005; Soluri et al., 2018), selected with antibodies from patients affected by GC, MALT, and AIG and putative HP antigens/epitopes were identified after Sequencing and ranking. The results show that individual selection significantly reduced the library diversity and comparison of individual ranks for each condition allowed us to highlight a pattern of putative antigens specific for the different pathological outcomes or common for all of them. Within the putative antigens enriched after selection, we have validated protein CagY/Cag7 by ELISA assay as a marker of HP infection and progression. Overall, we have defined HP antigenic repertoire and identified a panel of putative specific antigens/epitopes for three different HP infection pathological outcomes that could be validated in the next future.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giada Caredda
- Department of Excellence in Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Arianna Troilo
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Claudio Santoro
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | | | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
5
|
Martucciello S, Paolella G, Esposito C, Lepretti M, Caputo I. Anti-type 2 transglutaminase antibodies as modulators of type 2 transglutaminase functions: a possible pathological role in celiac disease. Cell Mol Life Sci 2018; 75:4107-4124. [PMID: 30136165 PMCID: PMC11105699 DOI: 10.1007/s00018-018-2902-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Auto-antibodies to the ubiquitous enzyme type-2 transglutaminase (TG2) are a specific hallmark of celiac disease (CD), a widely diffused, multi-factorial disease, affecting genetically predisposed subjects. In CD an inflammatory response, at the intestinal level, is triggered by diet consumption of gluten-containing cereals. Intestinal mucosa displays various degrees of atrophy and hyperplasia, with consequent global intestinal dysfunction and other relevant extra-intestinal symptoms. Through deamidation of specific glutamines of gluten-derived gliadin peptides, TG2 strongly enhances gliadin immunogenicity. In addition, TG2 cross-linking activity may generate complexes between TG2 itself and gliadin peptides, and these complexes seem to cause the auto-immune response by means of an apten-carrier-like mechanism of antigen presentation. Anti-TG2 antibodies can be early detected in the intestinal mucosa of celiac patients and are also abundantly present into the serum, thus potentially reaching other organs and tissues by blood circulation. Recently, the possible pathogenetic role of auto-antibodies to TG2 in CD has been investigated. Here, we report an overview about the genesis of these antibodies, their specificity, their modulating ability toward TG2 enzymatic or non-enzymatic activities and their biological effects exerted by interacting with extracellular TG2 or with cell-surface TG2. We also discuss the auto-immune response occurring in CD against other TG members (i.e. type 3 and type 6) and analyze the occurrence of anti-TG2 antibodies in other auto-immune CD-related diseases. Data now available let us to suppose that, even if antibodies to TG2 do not represent the triggering molecules in CD, they could be important players in disease progression and manifestations.
Collapse
Affiliation(s)
- Stefania Martucciello
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Carla Esposito
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
- Interuniversity Centre "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University of Salerno, Fisciano (SA), Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy.
- Interuniversity Centre "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University of Salerno, Fisciano (SA), Italy.
| |
Collapse
|
6
|
Soluri MF, Puccio S, Caredda G, Grillo G, Licciulli VF, Consiglio A, Edomi P, Santoro C, Sblattero D, Peano C. Interactome-Seq: A Protocol for Domainome Library Construction, Validation and Selection by Phage Display and Next Generation Sequencing. J Vis Exp 2018. [PMID: 30346377 DOI: 10.3791/56981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Folding reporters are proteins with easily identifiable phenotypes, such as antibiotic resistance, whose folding and function is compromised when fused to poorly folding proteins or random open reading frames. We have developed a strategy where, by using TEM-1 β-lactamase (the enzyme conferring ampicillin resistance) on a genomic scale, we can select collections of correctly folded protein domains from the coding portion of the DNA of any intronless genome. The protein fragments obtained by this approach, the so called "domainome", will be well expressed and soluble, making them suitable for structural/functional studies. By cloning and displaying the "domainome" directly in a phage display system, we have showed that it is possible to select specific protein domains with the desired binding properties (e.g., to other proteins or to antibodies), thus providing essential experimental information for gene annotation or antigen identification. The identification of the most enriched clones in a selected polyclonal population can be achieved by using novel next-generation sequencing technologies (NGS). For these reasons, we introduce deep sequencing analysis of the library itself and the selection outputs to provide complete information on diversity, abundance and precise mapping of each of the selected fragment. The protocols presented here show the key steps for library construction, characterization, and validation.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences, Università del Piemonte Orientale & IRCAD, Novara, Italy
| | - Simone Puccio
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Giada Caredda
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Giorgio Grillo
- Institute of Biomedical Technologies, National Research Council, Bari, Italy
| | | | - Arianna Consiglio
- Institute of Biomedical Technologies, National Research Council, Bari, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Italy
| | - Claudio Santoro
- Department of Health Sciences, Università del Piemonte Orientale & IRCAD, Novara, Italy
| | | | - Clelia Peano
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy;
| |
Collapse
|
7
|
Glanville J, D'Angelo S, Khan TA, Reddy ST, Naranjo L, Ferrara F, Bradbury ARM. Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol 2016; 33:146-60. [PMID: 26451649 DOI: 10.1016/j.sbi.2015.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/19/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022]
Abstract
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology.
Collapse
Affiliation(s)
- J Glanville
- Program in Computational and Systems Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - S D'Angelo
- University of New Mexico Comprehensive Cancer Center, and Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - T A Khan
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - S T Reddy
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - L Naranjo
- Bioscience division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - F Ferrara
- University of New Mexico Comprehensive Cancer Center, and Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - A R M Bradbury
- Bioscience division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
8
|
Rojas G, Tundidor Y, Infante YC. High throughput functional epitope mapping: revisiting phage display platform to scan target antigen surface. MAbs 2015; 6:1368-76. [PMID: 25484050 DOI: 10.4161/mabs.36144] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibody engineering must be accompanied by mapping strategies focused on identifying the epitope recognized by each antibody to define its unique functional identity. High throughput fine specificity determination remains technically challenging. We review recent experiences aimed at revisiting the oldest and most extended display technology to develop a robust epitope mapping platform, based on the ability to manipulate target-derived molecules (ranging from the whole native antigen to antigen domains and smaller fragments) on filamentous phages. Single, multiple and combinatorial mutagenesis allowed comprehensive scanning of phage-displayed antigen surface that resulted in the identification of clusters of residues contributing to epitope formation. Functional pictures of the epitope(s) were thus delineated in the natural context. Successful mapping of antibodies against interleukin-2, epidermal growth factor and its receptor, and vascular endothelial growth factor showed the versatility of these procedures, which combine the accuracy of site-directed mutagenesis with the high throughput potential of phage display.
Collapse
Key Words
- Abs, antibodies
- Ag, antigen
- EGF
- EGF receptor
- EGF, epidermal growth factor
- EGFR, EGF receptor
- ELISA, enzyme-linked immunosorbent assay
- IL-2
- IL-2, interleukin-2
- PCR, polymerase chain reaction
- VEGF
- VEGF, vascular endothelial growth factor
- aa, amino acid
- epitope mapping
- library
- mAb, monoclonal Ab
- phage display
- site-directed mutagenesis
Collapse
Affiliation(s)
- Gertrudis Rojas
- a Systems Biology Department ; Center of Molecular Immunology ; La Habana , Cuba
| | | | | |
Collapse
|
9
|
Marín Viegas VS, Acevedo GR, Bayardo MP, Chirdo FG, Petruccelli S. Production of the Main Celiac Disease Autoantigen by Transient Expression in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2015; 6:1067. [PMID: 26648956 PMCID: PMC4664624 DOI: 10.3389/fpls.2015.01067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 05/09/2023]
Abstract
Celiac Disease (CD) is a gluten sensitive enteropathy that remains widely undiagnosed and implementation of massive screening tests is needed to reduce the long term complications associated to untreated CD. The main CD autoantigen, human tissue transglutaminase (TG2), is a challenge for the different expression systems available since its cross-linking activity affects cellular processes. Plant-based transient expression systems can be an alternative for the production of this protein. In this work, a transient expression system for the production of human TG2 in Nicotiana benthamiana leaves was optimized and reactivity of plant-produced TG2 in CD screening test was evaluated. First, a subcellular targeting strategy was tested. Cytosolic, secretory, endoplasmic reticulum (C-terminal SEKDEL fusion) and vacuolar (C-terminal KISIA fusion) TG2 versions were transiently expressed in leaves and recombinant protein yields were measured. ER-TG2 and vac-TG2 levels were 9- to 16-fold higher than their cytosolic and secretory counterparts. As second strategy, TG2 variants were co-expressed with a hydrophobic elastin-like polymer (ELP) construct encoding for 36 repeats of the pentapeptide VPGXG in which the guest residue X were V and F in ratio 8:1. Protein bodies (PB) were induced by the ELP, with a consequent two-fold-increase in accumulation of both ER-TG2 and vac-TG2. Subsequently, ER-TG2 and vac-TG2 were produced and purified using immobilized metal ion affinity chromatography. Plant purified ER-TG2 and vac-TG2 were recognized by three anti-TG2 monoclonal antibodies that bind different epitopes proving that plant-produced antigen has immunochemical characteristics similar to those of human TG2. Lastly, an ELISA was performed with sera of CD patients and healthy controls. Both vac-TG2 and ER-TG2 were positively recognized by IgA of CD patients while they were not recognized by serum from non-celiac controls. These results confirmed the usefulness of plant-produced TG2 to develop screening assays. In conclusion, the combination of subcellular sorting strategy with co-expression with a PB inducing construct was sufficient to increase TG2 protein yields. This type of approach could be extended to other problematic proteins, highlighting the advantages of plant based production platforms.
Collapse
Affiliation(s)
- Vanesa S. Marín Viegas
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)La Plata, Argentina
| | - Gonzalo R. Acevedo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Mariela P. Bayardo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Consejo Nacional de Investigaciones Científicas y Técnicas – Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La PlataLa Plata, Argentina
| | - Fernando G. Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Consejo Nacional de Investigaciones Científicas y Técnicas – Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La PlataLa Plata, Argentina
| | - Silvana Petruccelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)La Plata, Argentina
- *Correspondence: Silvana Petruccelli,
| |
Collapse
|
10
|
Sóñora C, Calo G, Fraccaroli L, Pérez-Leirós C, Hernández A, Ramhorst R. Tissue Transglutaminase on Trophoblast Cells as a Possible Target of Autoantibodies Contributing to Pregnancy Complications in Celiac Patients. Am J Reprod Immunol 2014; 72:485-95. [DOI: 10.1111/aji.12290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Cecilia Sóñora
- Immunology Laboratory; School of Sciences/School of Chemistry; Montevideo Uruguay
- EUTM-School of Medicine UDELAR; Montevideo Uruguay
| | - Guillermina Calo
- Immunopharmacology Laboratory; School of Sciences; University of Buenos Aires and National Research Council (IQUIBICEN-CONICET); Buenos Aires; Argentina
| | - Laura Fraccaroli
- Immunopharmacology Laboratory; School of Sciences; University of Buenos Aires and National Research Council (IQUIBICEN-CONICET); Buenos Aires; Argentina
| | - Claudia Pérez-Leirós
- Immunopharmacology Laboratory; School of Sciences; University of Buenos Aires and National Research Council (IQUIBICEN-CONICET); Buenos Aires; Argentina
| | - Ana Hernández
- Immunology Laboratory; School of Sciences/School of Chemistry; Montevideo Uruguay
| | - Rosanna Ramhorst
- Immunopharmacology Laboratory; School of Sciences; University of Buenos Aires and National Research Council (IQUIBICEN-CONICET); Buenos Aires; Argentina
| |
Collapse
|
11
|
Anti-tissue transglutaminase antibody inhibits apoptotic cell clearance by macrophages in pregnant NOD mice. J Reprod Immunol 2014; 103:59-66. [DOI: 10.1016/j.jri.2013.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/23/2013] [Accepted: 11/12/2013] [Indexed: 12/31/2022]
|
12
|
Infante YC, Pupo A, Rojas G. A combinatorial mutagenesis approach for functional epitope mapping on phage-displayed target antigen: application to antibodies against epidermal growth factor. MAbs 2014; 6:637-48. [PMID: 24589624 DOI: 10.4161/mabs.28395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although multiple different procedures to characterize the epitopes recognized by antibodies have been developed, site-directed mutagenesis remains the method of choice to define the energetic contribution of antigen residues to binding. These studies are useful to identify critical residues and to delineate functional maps of the epitopes. However, they tend to underestimate the roles of residues that are not critical for binding on their own, but contribute to the formation of the target epitope in an additive, or even cooperative, way. Mapping antigenic determinants with a diffuse energetic landscape, which establish multiple individually weak interactions with the antibody paratope, resulting in high affinity and specificity recognition of the epitope as a whole, is thus technically challenging. The current work was aimed at developing a combinatorial strategy to overcome the limitations of site-directed mutagenesis, relying on comprehensive randomization of discrete antigenic regions within phage-displayed antigen libraries. Two model antibodies recognizing epidermal growth factor were used to validate the mapping platform. Abrogation of antibody recognition due to the introduction of simultaneous replacements was able to show the involvement of particular amino acid clusters in epitope formation. The abundance of some of the original residues (or functionally equivalent amino acids sharing their physicochemical properties) among the set of mutated antigen variants selected on a given antibody highlighted their contributions and allowed delineation of a detailed functional map of the corresponding epitope. The use of the combinatorial approach could be expanded to map the interactions between other antigens/antibodies.
Collapse
Affiliation(s)
| | - Amaury Pupo
- Systems Biology Department; Center of Molecular Immunology; La Habana, Cuba
| | - Gertrudis Rojas
- Systems Biology Department; Center of Molecular Immunology; La Habana, Cuba
| |
Collapse
|
13
|
Marcello A, Sblattero D, Cioarec C, Maiuri P, Melpignano P. A deep-blue OLED-based biochip for protein microarray fluorescence detection. Biosens Bioelectron 2013; 46:44-7. [PMID: 23500475 DOI: 10.1016/j.bios.2013.02.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/30/2013] [Accepted: 02/12/2013] [Indexed: 11/27/2022]
Abstract
Integrated biochips exploit a multi-disciplinary approach to produce portable point-of-care medical diagnostic systems that uncouple diagnosis from centralized laboratories. These portable devices are cost effective and have several advantages including broader accessibility to health care worldwide. Fluorescence detection of a disease-specific probe excited by an optical source is one of the most diffused methods for quantitative analysis on biochips. Here we designed and characterized a miniaturized biochip based on a novel deep-blue organic light-emitting diode. The molecular design of the diode was optimized to excite a fluorophore-conjugated antibody and tested on a protein microarray configuration with good sensitivity and specificity. These findings will be instrumental for the development of next generation point-of-care biochips.
Collapse
Affiliation(s)
- Alessandro Marcello
- Laboratory of Virology, the International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | | | | | | | | |
Collapse
|
14
|
Bayardo M, Punzi F, Bondar C, Chopita N, Chirdo F. Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumour necrosis factor-α in human small intestine. Clin Exp Immunol 2012; 168:95-104. [PMID: 22385244 DOI: 10.1111/j.1365-2249.2011.04545.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-γ was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-α and IFN-γ produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-γ was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-α activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-α or IFN-γ was performed in the presence of nuclear factor (NF)-κB inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-α and IFN-γ in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-γ, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-α may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit.
Collapse
Affiliation(s)
- M Bayardo
- Laboratorio de Investigación en el Sistema Inmune, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata Servicio de Gastroenterología, Hospital Interzonal de Agudos José de San Martin, La Plata, Argentina
| | | | | | | | | |
Collapse
|
15
|
A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci U S A 2011; 109:431-6. [PMID: 22198767 DOI: 10.1073/pnas.1107811108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The multifunctional, protein cross-linking transglutaminase 2 (TG2) is the main autoantigen in celiac disease, an autoimmune disorder with defined etiology. Glutamine-rich gliadin peptides from ingested cereals, after their deamidation by TG2, induce T-lymphocyte activation accompanied by autoantibody production against TG2 in 1-2% of the population. The pathogenic role and exact binding properties of these antibodies to TG2 are still unclear. Here we show that antibodies from different celiac patients target the same conformational TG2 epitope formed by spatially close amino acids of adjacent domains. Glu153 and 154 on the first alpha-helix of the core domain and Arg19 on first alpha-helix of the N-terminal domain determine the celiac epitope that is accessible both in the closed and open conformation of TG2 and dependent on the relative position of these helices. Met659 on the C-terminal domain also can cooperate in antibody binding. This composite epitope is disease-specific, recognized by antibodies derived from celiac tissues and associated with biological effects when passively transferred from celiac mothers into their newborns. These findings suggest that celiac antibodies are produced in a surface-specific way for which certain homology of the central glutamic acid residues of the TG2 epitope with deamidated gliadin peptides could be a structural basis. Monoclonal mouse antibodies with partially overlapping epitope specificity released celiac antibodies from patient tissues and antagonized their harmful effects in cell culture experiments. Such antibodies or similar specific competitors will be useful in further functional studies and in exploring whether interference with celiac antibody actions leads to therapeutic benefits.
Collapse
|
16
|
D'Angelo S, Velappan N, Mignone F, Santoro C, Sblattero D, Kiss C, Bradbury ARM. Filtering "genic" open reading frames from genomic DNA samples for advanced annotation. BMC Genomics 2011; 12 Suppl 1:S5. [PMID: 21810207 PMCID: PMC3223728 DOI: 10.1186/1471-2164-12-s1-s5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background In order to carry out experimental gene annotation, DNA encoding open reading frames (ORFs) derived from real genes (termed "genic") in the correct frame is required. When genes are correctly assigned, isolation of genic DNA for functional annotation can be carried out by PCR. However, not all genes are correctly assigned, and even when correctly assigned, gene products are often incorrectly folded when expressed in heterologous hosts. This is a problem that can sometimes be overcome by the expression of protein fragments encoding domains, rather than full-length proteins. One possible method to isolate DNA encoding such domains would to "filter" complex DNA (cDNA libraries, genomic and metagenomic DNA) for gene fragments that confer a selectable phenotype relying on correct folding, with all such domains present in a complex DNA sample, termed the “domainome”. Results In this paper we discuss the preparation of diverse genic ORF libraries from randomly fragmented genomic DNA using ß-lactamase to filter out the open reading frames. By cloning DNA fragments between leader sequences and the mature ß-lactamase gene, colonies can be selected for resistance to ampicillin, conferred by correct folding of the lactamase gene. Our experiments demonstrate that the majority of surviving colonies contain genic open reading frames, suggesting that ß-lactamase is acting as a selectable folding reporter. Furthermore, different leaders (Sec, TAT and SRP), normally translocating different protein classes, filter different genic fragment subsets, indicating that their use increases the fraction of the “domainone” that is accessible. Conclusions The availability of ORF libraries, obtained with the filtering method described here, combined with screening methods such as phage display and protein-protein interaction studies, or with protein structure determination projects, can lead to the identification and structural determination of functional genic ORFs. ORF libraries represent, moreover, a useful tool to proceed towards high-throughput functional annotation of newly sequenced genomes.
Collapse
Affiliation(s)
- Sara D'Angelo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Sóñora C, Muñoz F, Del Río N, Acosta G, Montenegro C, Trucco E, Hernández A. Celiac Disease and Gyneco-obstetrics Complications: Can Serum Antibodies Modulate Tissue Transglutaminase Functions and Contribute to Clinical Pattern? Am J Reprod Immunol 2011; 66:476-87. [DOI: 10.1111/j.1600-0897.2011.01020.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
18
|
Malini E, Maurizio E, Bembich S, Sgarra R, Edomi P, Manfioletti G. HMGA Interactome: new insights from phage display technology. Biochemistry 2011; 50:3462-8. [PMID: 21417337 DOI: 10.1021/bi200101f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High mobility group A proteins (HMGA1 and HMGA2) are architectural factors involved in chromatin remodelling and regulation of gene expression. HMGA are highly expressed during embryogenesis and in cancer cells and are involved in development and cell differentiation as well as cancer formation and progression. These factors, by binding to DNA and interacting with other nuclear proteins, can organize macromolecular complexes involved in transcription, chromatin dynamics, RNA processing, and DNA repair. The identification of protein partners for HMGA has greatly contributed to our understanding of their multiple functions. He we report the identification of HMGA molecular partners using a gene fragment library in a phage display screening. Using an ORF-enriched cDNA library, we have isolated several HMGA1 interacting clones and for two of them, TBP associated factor 3 (TAF3) and chromatin assembly factor 1 p150/CAF-1, have demonstrated an in vivo association with HMGA1. The identification of these new partners suggests that HMGA can also influence general aspects of transcription and once more underlines their involvement in chromatin remodelling and dynamics.
Collapse
Affiliation(s)
- Erika Malini
- Department of Life Sciences, University of Trieste, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Phage display has been extensively used to study protein-protein interactions, receptor- and antibody-binding sites, and immune responses, to modify protein properties, and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein, and coupling phenotype (the protein) to genotype (the gene within). As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background to the technique, and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts. Although this overview concentrates on the use of filamentous phage, which is the most popular platform, other systems are also described.
Collapse
|
20
|
Di Niro R, Sulic AM, Mignone F, D'Angelo S, Bordoni R, Iacono M, Marzari R, Gaiotto T, Lavric M, Bradbury ARM, Biancone L, Zevin-Sonkin D, De Bellis G, Santoro C, Sblattero D. Rapid interactome profiling by massive sequencing. Nucleic Acids Res 2010; 38:e110. [PMID: 20144949 PMCID: PMC2875021 DOI: 10.1093/nar/gkq052] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have developed a high-throughput protein expression and interaction analysis platform that combines cDNA phage display library selection and massive gene sequencing using the 454 platform. A phage display library of open reading frame (ORF) fragments was created from mRNA derived from different tissues. This was used to study the interaction network of the enzyme transglutaminase 2 (TG2), a multifunctional enzyme involved in the regulation of cell growth, differentiation and apoptosis, associated with many different pathologies. After two rounds of panning with TG2 we assayed the frequency of ORFs within the selected phage population using 454 sequencing. Ranking and analysis of more than 120 000 sequences allowed us to identify several potential interactors, which were subsequently confirmed in functional assays. Within the identified clones, three had been previously described as interacting proteins (fibronectin, SMOC1 and GSTO2), while all the others were new. When compared with standard systems, such as microtiter enzyme-linked immunosorbant assay, the method described here is dramatically faster and yields far more information about the interaction under study, allowing better characterization of complex systems. For example, in the case of fibronectin, it was possible to identify the specific domains involved in the interaction.
Collapse
Affiliation(s)
- Roberto Di Niro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hertveldt K, Beliën T, Volckaert G. General M13 phage display: M13 phage display in identification and characterization of protein-protein interactions. Methods Mol Biol 2009; 502:321-39. [PMID: 19082565 DOI: 10.1007/978-1-60327-565-1_19] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In M13 phage display, proteins and peptides are exposed on one of the surface proteins of filamentous phage particles and become accessible to affinity enrichment against a bait of interest. We describe the construction of fragmented whole genome and gene fragment phage display libraries and interaction selection by panning. This strategy allows the identification and characterization of interacting proteins on a genomic scale by screening the fragmented "proteome" against protein baits. Gene fragment libraries allow a more in depth characterization of the protein-protein interaction site by identification of the protein region involved in the interaction.
Collapse
Affiliation(s)
- Kirsten Hertveldt
- Department of Biosystems, Division of Gene Technology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
22
|
Villanacci V, Not T, Sblattero D, Gaiotto T, Chirdo F, Galletti A, Bassotti G. Mucosal tissue transglutaminase expression in celiac disease. J Cell Mol Med 2009; 13:334-340. [PMID: 18373732 PMCID: PMC3823359 DOI: 10.1111/j.1582-4934.2008.00325.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 03/21/2008] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (tTG) plays an important role in celiac disease pathogenesis and antibodies to tTG are a diagnostic marker of gluten-sensitive enteropathy. The aim of this study was to investigate the localization of tTG in the duodenal mucosa in control tissues and in different histological stages of celiac disease by using a commercial and a novel set of anti-tTG monoclonal antibodies, to see whether this assessment can be useful for diagnostic purpose. The distribution of tTG was firstly evaluated in 18 untreated celiac patients by using a commercial monoclonal antibody (CUB7402) against tissue transglutaminase enzyme and directed against the loop-core region of the enzyme. Thereafter, in further 30 untreated celiac patients we employed three newly characterized anti-tTG monoclonal antibodies produced against recombinant human-tTG. The epitopes recognized are located in three distinct domains of the protein corresponding to the core, C1 and C2 protein structure. Eleven age- and sex-matched patients with chronic duodenitis acted as controls. All subjects underwent upper endoscopy to obtain biopsy samples from the duodenum. Overall, we found that (i) tTG is equally expressed in CD at different stages of disease; (ii) tTG is expressed, at similar level, in CD and controls with duodenitis. Assessment of tTG level in biopsy samples by immunohistochemical methods is not useful in the clinical diagnostic work-up of CD.
Collapse
|
23
|
Abstract
Phage-display has become a method of choice for epitope mapping and has been successfully used in numerous published studies. Although the inaugural studies were all done with random peptide libraries (see Chapter "Epitope Mapping Using Phage Display Peptide Libraries"), gene- or genome-targeted random fragment libraries have proven to be a more effective epitope mapping approach for some antibodies. In this chapter, we describe the mapping of linear and conformational epitopes of the major African swine fever virus capsid protein using monoclonal as well as polyclonal antibodies.
Collapse
Affiliation(s)
- Lin-Fa Wang
- CSIRO Livestock Industries, Australian Animal Health Laboratory, PO Bag 24, Geelong, Victoria, 3220, Australia
| | | |
Collapse
|
24
|
Secco P, D'Agostini E, Marzari R, Licciulli M, Di Niro R, D'Angelo S, Bradbury AR, Dianzani U, Santoro C, Sblattero D. Antibody library selection by the β-lactamase protein fragment complementation assay. Protein Eng Des Sel 2008; 22:149-58. [DOI: 10.1093/protein/gzn053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Abstract
OBJECTIVE Deamidated gliadin peptides are efficient antigens in diagnostic tests for celiac disease, and results correlate better with transglutaminase 2-based assays than those with native gliadin. We investigated whether deamidated gliadin antigens are structurally similar to transglutaminase 2 or could mimic transglutaminase epitopes. PATIENTS AND METHODS Serum samples from 74 celiac and 65 control patients, and 13 different transglutaminase 2-specific monoclonal mouse antibodies were investigated for their binding to commercially available deamidated gliadin peptides using enzyme-linked immunosorbent assay, competition studies, and molecular modelling. RESULTS The enzyme-linked immunosorbent assay with deamidated gliadin peptides had 100% sensitivity and 98.5% specificity in patients. Deamidated gliadin epitopes also were recognized by 3 transglutaminase-specific monoclonal antibodies, and antibodies affinity-purified with deamidated gliadin peptides from celiac patient sera reacted with transglutaminase but did not show endomysial binding. The binding of the monoclonal antibodies to deamidated gliadin was inhibited dose dependently by full-length recombinant human transglutaminase, its fragments containing the binding sites of these monoclonal antibodies, or by celiac patient antibodies. Deamidated gliadin peptides decreased the binding of transglutaminase-specific monoclonal antibodies to transglutaminase. Three different cross-reacting transglutaminase epitopes were found, of which 2 are located in the C-terminal domain and 1 is conformational. The binding of celiac serum samples to deamidated gliadin peptides could not be abolished by transglutaminase or by any of the transglutaminase-specific monoclonals, indicating that celiac sera also contain additional antibodies to gliadin epitopes different from transglutaminase. CONCLUSIONS Certain deamidated gliadin-derived peptides and transglutaminase 2 epitopes have similar 3-dimensional appearance. This homology may contribute to the induction of transglutaminase autoantibodies by molecular mimicry.
Collapse
|
26
|
|
27
|
Di Niro R, Sblattero D, Florian F, Stebel M, Zentilin L, Giacca M, Villanacci V, Galletti A, Not T, Ventura A, Marzari R. Anti-idiotypic response in mice expressing human autoantibodies. Mol Immunol 2007; 45:1782-91. [PMID: 17996305 DOI: 10.1016/j.molimm.2007.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 01/23/2023]
Abstract
Celiac disease is an autoimmune illness characterized by intestinal mucosal injury and malabsorption precipitated by dietary exposure to gluten of some cereals. The immune response is based on both cellular and humoral components, although the former seem to be more important in the pathogenesis. The autoantibody response is directed at the enzyme tissue transglutaminase, tTG or TG2, which possibly play a role in the onset of the disease. In this study we sought to develop an animal model in which to analyze the immunological regulation and significance of anti-TG2 antibodies, by expressing specific human single-chain antibody fragments in mice using adeno-associated virus vectors. Upon vector injection in the skeletal muscles, high and persistent systemic levels of anti-TG2 antibodies were obtained. Mice injected with vectors encoding antibodies also recognizing rodent TG2, also developed a strong anti-idiotypic response. This finding raises the question of whether an anti-idiotypic response to anti-TG2 antibodies is a factor associated with celiac disease.
Collapse
Affiliation(s)
- Roberto Di Niro
- Department of Biology, University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Construction of miniantibodies for the in vivo study of human autoimmune diseases in animal models. BMC Biotechnol 2007; 7:46. [PMID: 17678525 PMCID: PMC1963447 DOI: 10.1186/1472-6750-7-46] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 08/01/2007] [Indexed: 12/04/2022] Open
Abstract
Background Phage display antibody libraries have been made from the lymphocytes of patients suffering from autoimmune diseases in which the antibodies are known to play a role in the pathogenesis or are important for the diagnosis of the disease. In the case of Celiac Disease, the immune response is directed against the autoantigen tissue transglutaminase. However, despite numerous studies, the role of these antibodies in the pathogenesis of this disease has not been elucidated. Results We were able to engineer specific anti-transglutaminase antibody fragments in the form called "miniantibody". These are produced by genetic fusion of anti-tTG scFv to Human, Mouse or Rat Fc domains, making them suitable for in vivo expression. The results obtained here indicate that the miniantibody molecule is efficiently secreted, and that the reactivity to the antigen is retained even after fusion to heterologous Fc domains. Further analysis demonstrate that the molecule is secreted as homodimeric, mimicking original antibody structure. Finally, the in vivo expression in mice leads to detectable serum levels with no apparent gross immune response by the host. Conclusion In this work we demonstrated the usefulness of a method for the in vivo expression of miniantibodies specific to transglutaminase, corresponding to the autoimmune specificity of Celiac Disease. This can be proposed as a general method to study the pathogenic role of autoimmune antibodies in autoimmune diseases.
Collapse
|
29
|
Agardh D, Lynch K, Brundin C, Ivarsson SA, Lernmark A, Cilio CM. Reduction of tissue transglutaminase autoantibody levels by gluten-free diet is associated with changes in subsets of peripheral blood lymphocytes in children with newly diagnosed coeliac disease. Clin Exp Immunol 2006; 144:67-75. [PMID: 16542367 PMCID: PMC1809644 DOI: 10.1111/j.1365-2249.2006.03036.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tissue transglutaminase (tTG) autoantibodies decline after gluten-free diet in patients with coeliac disease. We tested the hypothesis that gluten-free diet-induced change in tTG autoantibody levels affects subsets of peripheral blood lymphocytes. Peripheral blood was obtained from 20 children with biopsy-proven active coeliac disease. Gluten-free diet was initiated and the children examined again after three and six months. tTG autoantibodies were measured in radioligand binding assays and lymphocyte subsets by flow cytometry. IgA-tTG levels at diagnosis, 2204 U/ml (median, range 113-24990), were reduced over six months to 76 U/ml (median, range 1-1261) (P < 0.001). At six months, 12/20 (60%) children had reduced their IgA-tTG levels to < 100 U/ml and these children showed a decrease in B cells (mean change -3.8%, P = 0.014), CD4+ T cells (mean -4.32%, P = 0.011) and CD4+ T cells expressing CD25high (mean change -0.62%, P = 0.036). In contrast, the CD4+CD25(high)CCR4+ T cell population increased during the same period (mean change 11.5%, P = 0.0036). The decline in IgA-tTG levels correlated to the decrease in B cells (r = 0.56, P = 0.01), CD4+ T cells (r = 0.66, P = 0.004) as well as CD4+CD25high T cells (r = 0.59, P = 0.01). A negative correlation was found between the decline in IgA-tTG and CD4+CD25high T cells expressing CD45RO (r = -0.49, P = 0.03) and CCR4 (r = -0.54, P = 0.01). This is the first observational study on the effect of gluten-free diet on concurrent changes of tTG autoantibodies and specific peripheral blood lymphocyte subsets. Our data suggest that flow cytometry may be a useful complement to tTG autoantibodies when studying the effects of gluten-free diet in children with coeliac disease.
Collapse
Affiliation(s)
- D Agardh
- Unit of Diabetes and Coeliac Disease, Department of Clinical Sciences/Paediatrics, Lund University, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|