1
|
Feng J, Ye H, Lu C, Pan L, Chen H, Zhu L, Chen X. Application of protein engineering to ene-reductase for the synthesis of chiral compounds through asymmetric reaction. Crit Rev Biotechnol 2025; 45:665-682. [PMID: 39134447 DOI: 10.1080/07388551.2024.2382957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 04/17/2025]
Abstract
Ene-reductase (ER) has been widely applied for asymmetrical synthesis of chiral intermediates due to its substrate promiscuity, photoexcited reactivity, and excellent property with producing two chiral centers at a time. Natural ERs often exhibit the same stereoselectivity, and they need to be engineered for opposite configuration of chiral compounds. The hydrogenation process toward activated alkenes by ERs is composed of reductive half reaction and oxidative half reaction, which are dependent upon two cofactors NAD(P)H and flavin mononucleotide. The catalytic activity of ERs will be affected by the size of the substrate, the activating strength of the electron-withdrawing groups, redox potential of cofactors, and the loop flexibility around catalytic cavity. Currently, protein engineering to ERs has been successfully employed to enhance various catalytic properties, including photoexcited asymmetric synthesis. This review summarizes the approaches to reverse the stereoselectivity and enhance catalytic activity of ERs and new applications of the engineered ERs in photobiocatalytic asymmetric synthesis, besides the discussion with the existing molecular mechanisms of mutants regarding the improved catalytic performance.
Collapse
Affiliation(s)
- Jiacheng Feng
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Huiru Ye
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Changxin Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Linyan Pan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hanchi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Li Z, Gao J, Wang B, Zhang H, Tian Y, Peng R, Yao Q. Ectopic expression of an Old Yellow Enzyme (OYE3) gene from Saccharomyces cerevisiae increases the tolerance and phytoremediation of 2-nitroaniline in rice. Gene 2024; 906:148239. [PMID: 38325666 DOI: 10.1016/j.gene.2024.148239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
2-nitroaniline (2-NA) is an environmental pollutant and has been extensively used as intermediates in organic synthesis. The presence of 2-NA in the environment is not only harmful for aquatic life but also mutagenic for human beings. In this study, we constructed transgenic rice expressing an Old Yellow Enzyme gene, ScOYE3, from Saccharomyces cerevisiae. The ScOYE3 transgenic plants were comprehensively investigated for their biochemical responses to 2-NA treatment and their 2-NA phytoremediation capabilities. Our results showed that the rice seedlings exposed to 2-NA stress, showed growth inhibition and biomass reduction. However, the transgenic plants exhibited strong tolerance to 2-NA stress compared to wild-type plants. Ectopic expression of ScOYE3 could effectively protect transgenic plants against 2-NA damage, which resulted in less reactive oxygen species accumulation in transgenic plants than that in wild-type plants. Our phytoremediation assay revealed that transgenic plants could eliminate more 2-NA from the medium than wild-type plants. Moreover, omics analysis was performed in order to get a deeper insight into the mechanism of ScOYE3-mediated 2-NA transformation in rice. Altogether, the function of ScOYE3 during 2-NA detoxification was characterized for the first time, which serves as strong theoretical support for the phytoremediation potential of 2-NA by Old Yellow Enzyme genes.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Hao Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| |
Collapse
|
3
|
Kerschbaumer B, Totaro MG, Friess M, Breinbauer R, Bijelic A, Macheroux P. Loop 6 and the β-hairpin flap are structural hotspots that determine cofactor specificity in the FMN-dependent family of ene-reductases. FEBS J 2024; 291:1560-1574. [PMID: 38263933 DOI: 10.1111/febs.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Flavin mononucleotide (FMN)-dependent ene-reductases constitute a large family of oxidoreductases that catalyze the enantiospecific reduction of carbon-carbon double bonds. The reducing equivalents required for substrate reduction are obtained from reduced nicotinamide by hydride transfer. Most ene-reductases significantly prefer, or exclusively accept, either NADPH or NADH. Despite their usefulness in biocatalytic applications, the structural determinants for cofactor preference remain elusive. We employed the NADPH-preferring 12-oxophytodienoic acid reductase 3 from Solanum lycopersicum (SlOPR3) as a model enzyme of the ene-reductase family and applied computational and structural methods to investigate the binding specificity of the reducing coenzymes. Initial docking results indicated that the arginine triad R283, R343, and R366 residing on and close to a critical loop at the active site (loop 6) are the main contributors to NADPH binding. In contrast, NADH binds unfavorably in the opposite direction toward the β-hairpin flap within a largely hydrophobic region. Notably, the crystal structures of SlOPR3 in complex with either NADPH4 or NADH4 corroborated these different binding modes. Molecular dynamics simulations confirmed NADH binding near the β-hairpin flap and provided structural explanations for the low binding affinity of NADH to SlOPR3. We postulate that cofactor specificity is determined by the arginine triad/loop 6 and the residue(s) controlling access to a hydrophobic cleft formed by the β-hairpin flap. Thus, NADPH preference depends on a properly positioned arginine triad, whereas granting access to the hydrophobic cleft at the β-hairpin flap favors NADH binding.
Collapse
Affiliation(s)
| | - Massimo G Totaro
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Michael Friess
- Institute of Organic Chemistry, Graz University of Technology, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Austria
| | | | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
4
|
Long Z, Li K, Xue Y, Sun Y, Li J, Su Z, Sun J, Liu Q, Liu H, Wei T. Purification and biochemical characterization of a novel ene- reductase from Kazachstania exigua HSC6 for dihydro-β-ionone from β-ionone. Biotechnol Lett 2023; 45:499-508. [PMID: 36738355 DOI: 10.1007/s10529-023-03355-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE We purified and characterized a novel ene-reductase (KaDBR1) from Kazachstania exigua HSC6 for the synthesis of dihydro-β-ionone from β-ionone. METHODS KaDBR1 was purified to homogeneity by ammonium sulfate precipitation and phenyl-Sepharose Fast Flow and Q-Sepharose chromatography. The purified enzyme was characterized by measuring the amount of dihydro-β-ionone from β-ionone with LC-MS analysis method. RESULTS The molecular mass of KaDBR1 was estimated to be 45 kDa by SDS-PAGE. The purified KaDBR1 enzyme had optimal activity at 60 °C and pH 6.0. The addition of 5 mM Mg2+, Ca2+, Al3+, Na+, and dithiothreitol increased the activity of KaDBR1 by 25%, 18%, 34%, 20%, and 23%, respectively. KaDBR1 favored NADH over NADPH as a cofactor, and its catalytic efficiency (kcat/Km) toward β-ionone using NADH was 8.1-fold greater than when using NADPH. CONCLUSION Owing to its unique properties, KaDBR1 is a potential candidate for the enzymatic biotransformation of β-ionone to dihydro-β-ionone in biotechnology applications.
Collapse
Affiliation(s)
- Zhangde Long
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Kena Li
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Yun Xue
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Yongwei Sun
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Jigang Li
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Zan Su
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Jiansheng Sun
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Qibin Liu
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Hong Liu
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Böhmer S, Marx C, Goss R, Gilbert M, Sasso S, Happe T, Hemschemeier A. Chlamydomonas reinhardtii mutants deficient for Old Yellow Enzyme 3 exhibit increased photooxidative stress. PLANT DIRECT 2023; 7:e480. [PMID: 36685735 PMCID: PMC9840898 DOI: 10.1002/pld3.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2022] [Accepted: 12/31/2022] [Indexed: 05/12/2023]
Abstract
Old Yellow Enzymes (OYEs) are flavin-containing ene-reductases that have been intensely studied with regard to their biotechnological potential for sustainable chemical syntheses. OYE-encoding genes are found throughout the domains of life, but their physiological role is mostly unknown, one reason for this being the promiscuity of most ene-reductases studied to date. The unicellular green alga Chlamydomonas reinhardtii possesses four genes coding for OYEs, three of which we have analyzed biochemically before. Ene-reductase CrOYE3 stood out in that it showed an unusually narrow substrate scope and converted N-methylmaleimide (NMI) with high rates. This was recapitulated in a C. reinhardtii croye3 mutant that, in contrast to the wild type, hardly degraded externally added NMI. Here we show that CrOYE3-mediated NMI conversion depends on electrons generated photosynthetically by photosystem II (PSII) and that the croye3 mutant exhibits slightly decreased photochemical quenching in high light. Non-photochemical quenching is strongly impaired in this mutant, and it shows enhanced oxidative stress. The phenotypes of the mutant suggest that C. reinhardtii CrOYE3 is involved in the protection against photooxidative stress, possibly by converting reactive carbonyl species derived from lipid peroxides or maleimides from tetrapyrrole degradation.
Collapse
Affiliation(s)
- Stefanie Böhmer
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Christina Marx
- SolarBioproducts RuhrBusiness Development Agency HerneHerneGermany
| | - Reimund Goss
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Matthias Gilbert
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Severin Sasso
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
6
|
Santi AMM, Ribeiro JM, Reis-Cunha JL, Burle-Caldas GDA, Santos IFM, Silva PA, Resende DDM, Bartholomeu DC, Teixeira SMR, Murta SMF. Disruption of multiple copies of the Prostaglandin F2alpha synthase gene affects oxidative stress response and infectivity in Trypanosoma cruzi. PLoS Negl Trop Dis 2022; 16:e0010845. [PMID: 36260546 PMCID: PMC9581433 DOI: 10.1371/journal.pntd.0010845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a serious chronic parasitic disease, currently treated with Nifurtimox (NFX) and Benznidazole (BZ). In addition to high toxicity, these drugs have low healing efficacy, especially in the chronic phase of the disease. The existence of drug-resistant T. cruzi strains and the occurrence of cross-resistance between BZ and NFX have also been described. In this context, it is urgent to study the metabolism of these drugs in T. cruzi, to better understand the mechanisms of resistance. Prostaglandin F2α synthase (PGFS) is an enzyme that has been correlated with parasite resistance to BZ, but the mechanism by which resistance occurs is still unclear. Our results show that the genome of the CL Brener clone of T. cruzi, contains five PGFS sequences and three potential pseudogenes. Using CRISPR/Cas9 we generated knockout cell lines in which all PGFS sequences were disrupted, as shown by PCR and western blotting analyses. The PGFS deletion did not alter the growth of the parasites or their susceptibility to BZ and NFX when compared to wild-type (WT) parasites. Interestingly, NTR-1 transcripts were shown to be upregulated in ΔPGFS mutants. Furthermore, the ΔPGFS parasites were 1.6 to 1.7-fold less tolerant to oxidative stress generated by menadione, presented lower levels of lipid bodies than the control parasites during the stationary phase, and were less infective than control parasites.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Martins Ribeiro
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Paula Alves Silva
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela de Melo Resende
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Silvane Maria Fonseca Murta
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
7
|
Singh Y, Sharma R, Mishra M, Verma PK, Saxena AK. Crystal structure of ArOYE6 reveals a novel C‐terminal helical extension and mechanistic insights into the distinct class III OYEs from pathogenic fungi. FEBS J 2022; 289:5531-5550. [DOI: 10.1111/febs.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory National Institute of Plant Genome Research New Delhi India
| | - Ruby Sharma
- Rm‐403/440 Structural Biology Laboratory School of Life Science Jawaharlal Nehru University New Delhi India
| | - Manasi Mishra
- Plant Immunity Laboratory National Institute of Plant Genome Research New Delhi India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory National Institute of Plant Genome Research New Delhi India
- Plant Immunity Laboratory School of Life Science Jawaharlal Nehru University New Delhi India
| | - Ajay Kumar Saxena
- Rm‐403/440 Structural Biology Laboratory School of Life Science Jawaharlal Nehru University New Delhi India
| |
Collapse
|
8
|
Wang Y, Fan J, Shen Y, Ye F, Feng Z, Yang Q, Wang D, Cai X, Mao Y. Bromate reduction by Shewanella oneidensis MR-1 is mediated by dimethylsulfoxide reductase. Front Microbiol 2022; 13:955249. [PMID: 36110297 PMCID: PMC9468665 DOI: 10.3389/fmicb.2022.955249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial bromate reduction plays an important role in remediating bromate-contaminated waters as well as biogeochemical cycling of bromine. However, little is known about the molecular mechanism of microbial bromate reduction so far. Since the model strain Shewanella oneidensis MR-1 is capable of reducing a variety of oxyanions such as iodate, which has a high similarity to bromate, we hypothesize that S. oneidensis MR-1 can reduce bromate. Here, we conducted an experiment to investigate whether S. oneidensis MR-1 can reduce bromate, and report bromate reduction mediated by a dimethylsulfoxide reductase encoded with dmsA. S. oneidensis MR-1 is not a bromate-respiring bacterium but can reduce bromate to bromide under microaerobic conditions. When exposed to 0.15, 0.2, 0.25, 0.5, and 1 mM bromate, S. oneidensis MR-1 reduced bromate by around 100, 75, 64, 48, and 23%, respectively, within 12 h. In vivo evidence from gene deletion mutants and complemented strains of S. oneidensis MR-1 indicates that MtrB, MtrC, CymA, GspD, and DmsA are involved in bromate reduction, but not NapA, FccA, or SYE4. Based on our results as well as previous findings, a proposed molecular mechanism for bromate reduction is presented in this study. Moreover, a genomic survey indicates that 9 of the other 56 reported Shewanella species encode proteins highly homologous to CymA, GspD, and DmsA of S. oneidensis MR-1 by sequence alignment. The results of this study contribute to understanding a pathway for microbial bromate reduction.
Collapse
Affiliation(s)
- Yicheng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jiale Fan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Yonglin Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Fan Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Zhiying Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qianning Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Dan Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xunchao Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Papadopoulou A, Peters C, Borchert S, Steiner K, Buller R. Development of an Ene Reductase-Based Biocatalytic Process for the Production of Flavor Compounds. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Athena Papadopoulou
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Christin Peters
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Sonja Borchert
- Firmenich SA, Rue de la Bergère 7, 1242 Satigny, Switzerland
| | - Kerstin Steiner
- Firmenich SA, Rue de la Bergère 7, 1242 Satigny, Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
10
|
Shi Q, Jia Y, Wang H, Li S, Li H, Guo J, Dou T, Qin B, You S. Identification of four ene reductases and their preliminary exploration in the asymmetric synthesis of (R)-dihydrocarvone and (R)-profen derivatives. Enzyme Microb Technol 2021; 150:109880. [PMID: 34489033 DOI: 10.1016/j.enzmictec.2021.109880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
The ene reductases (ERs) from the old yellow enzymes (OYEs) family have the ability to reduce activated alkenes to generate up to two stereocenters, therefore they have been received extensive attention as powerful biocatalysts. In this study, through gene mining, four ERs were identified from the genomes of Ensifer adhaerens, Pseudomonas fluorescens, and Pseudomonas veronil. The biocatalytic properties of these four ERs were identified, and their applications in the synthesis process of dihydrocarvone and profen derivatives were further evaluated. Among them, three ERs (EaER2, PvER1, and PvER2) belonging to the classic OYEs showed the best catalytic activity at 30 °C and pH 7.0 (100 mM potassium phosphate buffer) and the PfER2, which belongs to the thermophilic-like OYEs exhibited the best catalytic at 40 °C and pH 7.0 (100 mM potassium phosphate buffer). When exploring the influence of organic solvents on the catalytic efficiency, it was found that the four ERs were more sensitive to toluene and had tolerance to several other selected organic solvents. In addition, EaER2, PfER2, PvER1 and PvER2 showed excellent catalytic activity toward carvone, and the stereoselectivity of PvER2 toward carvone could reach up to 88.7 % de. EaER2 and PfER2 can catalyze the synthesis of a variety of profen derivatives with a stereoselectivity over 99 % ee. Moreover, through homology modeling and molecular docking, we preliminarily explained the mechanism of catalytic activity and stereoselectivity of the four ERs, which provided a solid base on the rational design of their stereo-preference in the future. The discovery of EaER2, PfER2, PvER1, and PvER2 provides four new enzyme sources for the study of the OYEs family and enriches the biocatalytic toolbox of ERs. Our exploration of the enzymatic properties of these four ERs will provide the sufficient data basis for future research and industrialization progress.
Collapse
Affiliation(s)
- Qinghua Shi
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Yutian Jia
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Huibin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Shang Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Hengyu Li
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Jiyang Guo
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Tong Dou
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China.
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
11
|
Abstract
Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent oxidative enzymes capable of catalyzing the insertion of an oxygen atom between a carbonylic Csp2 and the Csp3 at the alpha position, therefore transforming linear and cyclic ketones into esters and lactones. These enzymes are dependent on nicotinamides (NAD(P)H) for the flavin reduction and subsequent reaction with molecular oxygen. BVMOs can be included in cascade reactions, coupled to other redox enzymes, such as alcohol dehydrogenases (ADHs) or ene-reductases (EREDs), so that the direct conversion of alcohols or α,β-unsaturated carbonylic compounds to the corresponding esters can be achieved. In the present review, the different synthetic methodologies that have been performed by employing multienzymatic strategies with BVMOs combining whole cells or isolated enzymes, through sequential or parallel methods, are described, with the aim of highlighting the advantages of performing multienzymatic systems, and show the recent advances for overcoming the drawbacks of using BVMOs in these techniques.
Collapse
|
12
|
Old yellow enzymes: structures and structure-guided engineering for stereocomplementary bioreduction. Appl Microbiol Biotechnol 2020; 104:8155-8170. [PMID: 32830294 DOI: 10.1007/s00253-020-10845-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Since the first discovery of old yellow enzyme 1 (OYE1) from Saccharomyces pastorianus in 1932, biocatalytic asymmetric reduction of activated alkenes by OYEs has become a valuable reaction in organic synthesis. To access stereocomplementary C=C-bond bioreduction, the mining of novel OYEs and especially the protein engineering of existing OYEs have been performed, which successfully achieved the stereocomplementary reduction in several cases and further raise the potential of applications. In this review, we analyzed the structures, active sites, and substrate recognition of OYEs, which are the bases for their substrate specificity and stereospecificity. Sequence similarity network of OYEs superfamily was also constructed to investigate the scope of characterized OYEs. The structure-guided engineering to switch the stereoselectivity of OYEs and thus access stereocomplementary bioreduction over the last decade (2009-2020) was then reviewed and discussed, which might give new insights into the mining and engineering of related biocatalysts. KEY POINTS: • The sequence similarity network of OYEs superfamily was constructed and annotated. • The structures and active sites of OYEs from different classes were compared. • "Left/right" binding mode was used to explain the stereopreferences of OYEs. • Structure-guided engineering of OYEs to switch their stereoselectivity was reviewed.
Collapse
|
13
|
Iorgu AI, Hedison TM, Hay S, Scrutton NS. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases. FEBS J 2019; 286:3117-3128. [PMID: 31033202 PMCID: PMC6767020 DOI: 10.1111/febs.14862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 11/30/2022]
Abstract
Most ene‐reductases belong to the Old Yellow Enzyme (OYE) family of flavin‐dependent oxidoreductases. OYEs use nicotinamide coenzymes as hydride donors to catalyze the reduction of alkenes that contain an electron‐withdrawing group. There have been many investigations of the structures and catalytic mechanisms of OYEs. However, the origin of coenzyme specificity in the OYE family is unknown. Structural NMR and X‐ray crystallographic data were used to rationally design variants of two OYEs, pentaerythritol tetranitrate reductase (PETNR) and morphinone reductase (MR), to discover the basis of coenzyme selectivity. PETNR has dual‐specificity and reacts with NADH and NADPH; MR accepts only NADH as hydride donor. Variants of a β‐hairpin motif in an active site loop of both these enzymes were studied using stopped‐flow spectroscopy. Specific attention was placed on the potential role of arginine residues within the β‐hairpin motif. Mutagenesis demonstrated that Arg130 governs the preference of PETNR for NADPH, and that Arg142 interacts with the coenzyme pyrophosphate group. These observations were used to switch coenzyme specificity in MR by replacing either Glu134 or Leu146 with arginine residues. These variants had increased (~15‐fold) affinity for NADH. Mutagenesis enabled MR to accept NADPH as a hydride donor, with E134R MR showing a significant (55‐fold) increase in efficiency in the reductive half‐reaction, when compared to the essentially unreactive wild‐type enzyme. Insight into the question of coenzyme selectivity in OYEs has therefore been addressed through rational redesign. This should enable coenzyme selectivity to be improved and switched in other OYEs.
Collapse
Affiliation(s)
- Andreea I Iorgu
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| | - Tobias M Hedison
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, Faculty of Science and Engineering, The University of Manchester, UK
| |
Collapse
|
14
|
Chromium(VI) reduction in Streptomyces sp. M7 mediated by a novel Old Yellow Enzyme. Appl Microbiol Biotechnol 2019; 103:5015-5022. [DOI: 10.1007/s00253-019-09841-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022]
|
15
|
Novel concurrent redox cascades of (R)- and (S)-carvones enables access to carvo-lactones with distinct regio- and enantioselectivity. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
The crystal structure of XdpB, the bacterial old yellow enzyme, in an FMN-free form. PLoS One 2018; 13:e0195299. [PMID: 29630677 PMCID: PMC5891007 DOI: 10.1371/journal.pone.0195299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
Old Yellow Enzymes (OYEs) are NAD(P)H dehydrogenases of not fully resolved physiological roles that are widespread among bacteria, plants, and fungi and have a great potential for biotechnological applications. We determined the apo form crystal structure of a member of the OYE class, glycerol trinitrate reductase XdpB, from Agrobacterium bohemicum R89-1 at 2.1 Å resolution. In agreement with the structures of the related bacterial OYEs, the structure revealed the TIM barrel fold with an N-terminal β-hairpin lid, but surprisingly, the structure did not contain its cofactor FMN. Its putative binding site was occupied by a pentapeptide TTSDN from the C-terminus of a symmetry related molecule. Biochemical experiments confirmed a specific concentration-dependent oligomerization and a low FMN content. The blocking of the FMN binding site can exist in vivo and regulates enzyme activity. Our bioinformatic analysis indicated that a similar self-inhibition could be expected in more OYEs which we designated as subgroup OYE C1. This subgroup is widespread among G-bacteria and can be recognized by the conserved sequence GxxDYP in proximity of the C termini. In proteobacteria, the C1 subgroup OYEs are typically coded in one operon with short-chain dehydrogenase. This operon is controlled by the tetR-like transcriptional regulator. OYEs coded in these operons are unlikely to be involved in the oxidative stress response as the other known members of the OYE family because no upregulation of XdpB was observed after exposing A. bohemicum R89-1 to oxidative stress.
Collapse
|
17
|
Díaz-Viraqué F, Chiribao ML, Trochine A, González-Herrera F, Castillo C, Liempi A, Kemmerling U, Maya JD, Robello C. Old Yellow Enzyme from Trypanosoma cruzi Exhibits In Vivo Prostaglandin F 2α Synthase Activity and Has a Key Role in Parasite Infection and Drug Susceptibility. Front Immunol 2018; 9:456. [PMID: 29563916 PMCID: PMC5845897 DOI: 10.3389/fimmu.2018.00456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/20/2018] [Indexed: 01/26/2023] Open
Abstract
The discovery that trypanosomatids, unicellular organisms of the order Kinetoplastida, are capable of synthesizing prostaglandins raised questions about the role of these molecules during parasitic infections. Multiple studies indicate that prostaglandins could be related to the infection processes and pathogenesis in trypanosomatids. This work aimed to unveil the role of the prostaglandin F2α synthase TcOYE in the establishment of Trypanosoma cruzi infection, the causative agent of Chagas disease. This chronic disease affects several million people in Latin America causing high morbidity and mortality. Here, we propose a prokaryotic evolutionary origin for TcOYE, and then we used in vitro and in vivo experiments to show that T. cruzi prostaglandin F2α synthase plays an important role in modulating the infection process. TcOYE overexpressing parasites were less able to complete the infective cycle in cell culture infections and increased cardiac tissue parasitic load in infected mice. Additionally, parasites overexpressing the enzyme increased PGF2α synthesis from arachidonic acid. Finally, an increase in benznidazole and nifurtimox susceptibility in TcOYE overexpressing parasites showed its participation in activating the currently anti-chagasic drugs, which added to its observed ability to confer resistance to hydrogen peroxide, highlights the relevance of this enzyme in multiple events including host-parasite interaction.
Collapse
Affiliation(s)
| | - María Laura Chiribao
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| | - Andrea Trochine
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica - ICBM, Facultad de Medicina Universidad de Chile, Santiago de Chile, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Ana Liempi
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica - ICBM, Facultad de Medicina Universidad de Chile, Santiago de Chile, Chile
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
18
|
Romagnolo A, Spina F, Poli A, Risso S, Serito B, Crotti M, Monti D, Brenna E, Lanfranco L, Varese GC. Old Yellow Enzyme homologues in Mucor circinelloides: expression profile and biotransformation. Sci Rep 2017; 7:12093. [PMID: 28935878 PMCID: PMC5608841 DOI: 10.1038/s41598-017-12545-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/06/2017] [Indexed: 12/05/2022] Open
Abstract
The reduction of C=C double bond, a key reaction in organic synthesis, is mostly achieved by traditional chemical methods. Therefore, the search for enzymes capable of performing this reaction is rapidly increasing. Old Yellow Enzymes (OYEs) are flavin-dependent oxidoreductases, initially isolated from Saccharomyces pastorianus. In this study, the presence and activation of putative OYE enzymes was investigated in the filamentous fungus Mucor circinelloides, which was previously found to mediate C=C reduction. Following an in silico approach, using S. pastorianus OYE1 amminoacidic sequence as template, ten putative genes were identified in the genome of M. circinelloides. A phylogenetic analysis revealed a high homology of McOYE1-9 with OYE1-like proteins while McOYE10 showed similarity with thermophilic-like OYEs. The activation of mcoyes was evaluated during the transformation of three different model substrates. Cyclohexenone, α-methylcinnamaldehyde and methyl cinnamate were completely reduced in few hours and the induction of gene expression, assessed by qRT-PCR, was generally fast, suggesting a substrate-dependent activation. Eight genes were activated in the tested conditions suggesting that they may encode for active OYEs. Their expression over time correlated with C=C double bond reduction.
Collapse
Affiliation(s)
- Alice Romagnolo
- Department of Life Sciences and Systems Biology, University of Turin, viale P. A. Mattioli 25, 10125, Turin, Italy
| | - Federica Spina
- Department of Life Sciences and Systems Biology, University of Turin, viale P. A. Mattioli 25, 10125, Turin, Italy
| | - Anna Poli
- Department of Life Sciences and Systems Biology, University of Turin, viale P. A. Mattioli 25, 10125, Turin, Italy
| | - Sara Risso
- Department of Life Sciences and Systems Biology, University of Turin, viale P. A. Mattioli 25, 10125, Turin, Italy
| | - Bianca Serito
- Department of Life Sciences and Systems Biology, University of Turin, viale P. A. Mattioli 25, 10125, Turin, Italy
| | - Michele Crotti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via L. Mancinelli 7, 20131, Milan, Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via M. Bianco 9, 20131, Milan, Italy
| | - Elisabetta Brenna
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via L. Mancinelli 7, 20131, Milan, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, viale P. A. Mattioli 25, 10125, Turin, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Turin, viale P. A. Mattioli 25, 10125, Turin, Italy.
| |
Collapse
|
19
|
Elegheert J, Brigé A, Van Beeumen J, Savvides SN. Structural dissection ofShewanella oneidensisold yellow enzyme 4 bound to a Meisenheimer complex and (nitro)phenolic ligands. FEBS Lett 2017; 591:3391-3401. [DOI: 10.1002/1873-3468.12833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Elegheert
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
| | - Ann Brigé
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
- Ablynx NV; Zwijnaarde Belgium
| | - Jozef Van Beeumen
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
| | - Savvas N. Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
- VIB-UGent Center for Inflammation Research (IRC); Ghent University; Zwijnaarde Belgium
| |
Collapse
|
20
|
Old Yellow Enzyme-Catalysed Asymmetric Hydrogenation: Linking Family Roots with Improved Catalysis. Catalysts 2017. [DOI: 10.3390/catal7050130] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Khairy H, Wübbeler JH, Steinbüchel A. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4'-dithiodibutyric acid degradation. Lett Appl Microbiol 2016; 63:434-441. [PMID: 27564089 DOI: 10.1111/lam.12662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/14/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022]
Abstract
The reduction of the disulphide bond is the initial catabolic step of the microbial degradation of the organic disulphide 4,4'-dithiodibutyric acid (DTDB). Previously, an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 designated as NoxMI2 , which belongs to the old yellow enzyme (OYE) family, was identified. In the present study, it was proven that NoxMI2 has the ability to cleave the sulphur-sulphur bond in DTDB. In silico analysis revealed high sequence similarities to proteins of the flavin mononucleotide (FMN) reductase family identified in many strains of R. erythropolis. Therefore, nox was heterologously expressed in the pET23a(+) expression system using Escherichia coli strain BL21(DE3) pLysS, which effectively produces soluble active NoxMI2 . NoxMI2 showed a maximum specific activity (Vmax ) of 3·36 μmol min-1 mg-1 corresponding to a kcat of 2·5 s-1 and an apparent substrate Km of 0·6 mmol l-1 , when different DTDB concentrations were applied. No metal cofactors were required. Moreover, NoxMI2 had very low activity with other sulphur-containing compounds like 3,3'-dithiodipropionic acid (8·0%), 3,3'-thiodipropionic acid (7·6%) and 5,5'-dithiobis(2-nitrobenzoic acid) (8·0%). The UV/VIS spectrum of NoxMI2 revealed the presence of the cofactor FMN. Based on results obtained, NoxMI2 adds a new physiological substrate and mode of action to OYE members. SIGNIFICANCE AND IMPACT OF THE STUDY It was unequivocally demonstrated in this study that an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 (NoxMI2 ) is able to cleave the xenobiotic disulphide 4,4'-dithiodibutyric acid (DTDB) into two molecules of 4-mercaptobutyric acid (4MB) with concomitant consumption of NADH. NoxMI2 showed a high substrate specificity as well as high heat stability. This study provides the first detailed characterization of the initial cleavage of DTDB, which is considered as a promising polythioester precursor.
Collapse
Affiliation(s)
- H Khairy
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - J H Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - A Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Sheng X, Yan M, Xu L, Wei M. Identification and characterization of a novel Old Yellow Enzyme from Bacillus subtilis str.168. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Wan X, Peng YF, Zhou XR, Gong YM, Huang FH, Moncalián G. Effect of cerulenin on fatty acid composition and gene expression pattern of DHA-producing strain Colwellia psychrerythraea strain 34H. Microb Cell Fact 2016; 15:30. [PMID: 26852325 PMCID: PMC4744452 DOI: 10.1186/s12934-016-0431-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
Background Colwellia psychrerythraea 34H is a psychrophilic bacterium able to produce docosahexaenoic acid (DHA). Polyketide synthase pathway is assumed to be responsible for DHA production in marine bacteria. Results Five pfa genes from strain 34H were confirmed to be responsible for DHA formation by heterogeneous expression in Escherichia coli. The complexity of fatty acid profile of this strain was revealed by GC and GC–MS. Treatment of cells with cerulenin resulted in significantly reduced level of C16 monounsaturated fatty acid (C16:1Δ9t, C16:1Δ7). In contrast, the amount of saturated fatty acids (C10:0, C12:0, C14:0), hydroxyl fatty acids (3-OH C10:0 and 3-OH C12:0), as well as C20:4ω3, C20:5ω3 and C22:6ω3 were increased. RNA sequencing (RNA-Seq) revealed the altered gene expression pattern when C. psychrerythraea cells were treated with cerulenin. Genes involved in polyketide synthase pathway and fatty acid biosynthesis pathway were not obviously affected by cerulenin treatment. In contrast, several genes involved in fatty acid degradation or β-oxidation pathway were dramatically reduced at the transcriptional level. Conclusions Genes responsible for DHA formation in C. psychrerythraea was first cloned and characterized. We revealed the complexity of fatty acid profile in this DHA-producing strain. Cerulenin could substantially change the fatty acid composition by affecting the fatty acid degradation at transcriptional level. Acyl-CoA dehydrogenase gene family involved in the first step of β-oxidation pathway may be important to the selectivity of degraded fatty acids. In addition, inhibition of FabB protein by cerulenin may lead to the accumulation of malonyl-CoA, which is the substrate for DHA formation. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0431-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xia Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China. .,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China.
| | - Yun-Feng Peng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Xue-Rong Zhou
- CSIRO Agriculture, Canberra, ACT, 2601, Australia. .,CSIRO Food and Nutrition, Canberra, ACT, 2601, Australia.
| | - Yang-Min Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Feng-Hong Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China. .,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China.
| | - Gabriel Moncalián
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain.
| |
Collapse
|
24
|
Park JT, Gómez Ramos LM, Bommarius AS. Engineering towards Nitroreductase Functionality in Ene-Reductase Scaffolds. Chembiochem 2015; 16:811-8. [DOI: 10.1002/cbic.201402667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Indexed: 11/10/2022]
|
25
|
Romagnolo A, Spina F, Brenna E, Crotti M, Parmeggiani F, Varese GC. Identification of fungal ene-reductase activity by means of a functional screening. Fungal Biol 2015; 119:487-93. [PMID: 25986545 DOI: 10.1016/j.funbio.2015.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/13/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
Bioeconomy stresses the need of green processes promoting the development of new methods for biocatalyzed alkene reductions. A functional screening of 28 fungi belonging to Ascomycota, Basidiomycota, and Zygomycota isolated from different habitats was performed to analyze their capability to reduce C=C double bonds towards three substrates (cyclohexenone, α-methylnitrostyrene, and α-methylcinnamaldehyde) with different electron-withdrawing groups, i.e., ketone, nitro, and aldehyde, respectively. Almost all the fungi showed this reducing activity. Noteworthy Gliomastix masseei, Mucor circinelloides, and Mucor plumbeus resulted versatile and effective, being able to reduce all the model substrates quickly and with high yields.
Collapse
Affiliation(s)
- Alice Romagnolo
- Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy.
| | - Federica Spina
- Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy.
| | - Elisabetta Brenna
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milan, Italy.
| | - Michele Crotti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milan, Italy.
| | - Fabio Parmeggiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milan, Italy
| | - Giovanna Cristina Varese
- Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy.
| |
Collapse
|
26
|
Xu MY, Pei XQ, Wu ZL. Identification and characterization of a novel “thermophilic-like” Old Yellow Enzyme from the genome of Chryseobacterium sp. CA49. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Romano D, Contente ML, Molinari F, Eberini I, Ruvutuso E, Sensi C, Amaretti A, Rossi M, Raimondi S. Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes. Microb Cell Fact 2014; 13:60. [PMID: 24767246 PMCID: PMC4013436 DOI: 10.1186/1475-2859-13-60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/15/2014] [Indexed: 11/18/2022] Open
Abstract
Background Old Yellow Enzymes (OYEs) are flavin-dependent enoate reductases (EC 1.6.99.1) that catalyze the stereoselective hydrogenation of electron-poor alkenes. Their ability to generate up to two stereocenters by the trans-hydrogenation of the C = C double bond is highly demanded in asymmetric synthesis. Isolated redox enzymes utilization require the addition of cofactors and systems for their regeneration. Microbial whole-cells may represent a valid alternative combining desired enzymatic activity and efficient cofactor regeneration. Considerable efforts were addressed at developing novel whole-cell OYE biocatalysts, based on recombinant Saccharomyces cerevisiae expressing OYE genes. Results Recombinant S. cerevisiae BY4741∆Oye2 strains, lacking endogenous OYE and expressing nine separate OYE genes from non-conventional yeasts, were used as whole-cell biocatalysts to reduce substrates with an electron-poor double bond activated by different electron-withdrawing groups. Ketoisophorone, α-methyl-trans-cinnamaldehyde, and trans-β-methyl-β-nitrostyrene were successfully reduced with high rates and selectivity. A series of four alkyl-substituted cyclohex-2-enones was tested to check the versatility and efficiency of the biocatalysts. Reduction of double bond occurred with high rates and enantioselectivity, except for 3,5,5-trimethyl-2-cyclohexenone. DFT (density functional theory) computational studies were performed to investigate whether the steric hindrance and/or the electronic properties of the substrates were crucial for reactivity. The three-dimensional structure of enoate reductases from Kluyveromyces lodderae and Candida castellii, predicted through comparative modeling, resulted similar to that of S. cerevisiae OYE2 and revealed the key role of Trp116 both in substrate specificity and stereocontrol. All the modeling studies indicate that steric hindrance was a major determinant in the enzyme reactivity. Conclusions The OYE biocatalysts, based on recombinant S. cerevisiae expressing OYE genes from non-conventional yeasts, were able to differently reduce the activated double bond of enones, enals and nitro-olefins, exhibiting a wide range of substrate specificity. Moreover whole-cells biocatalysts bypassed the necessity of the cofactor recycling and, tuning reaction parameters, allowed the synthetic exploitation of endogenous carbonyl reductases. Molecular modeling studies highlighted key structural features for further improvement of catalytic properties of OYE enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Stefano Raimondi
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via G, Campi 183, 41125 Modena, Italy.
| |
Collapse
|
28
|
Wang HB, Pei XQ, Wu ZL. An enoate reductase Achr-OYE4 from Achromobacter sp. JA81: characterization and application in asymmetric bioreduction of C=C bonds. Appl Microbiol Biotechnol 2013; 98:705-15. [PMID: 23644746 DOI: 10.1007/s00253-013-4899-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 11/29/2022]
Abstract
A putative enoate reductase, Achr-OYE4, was mined from the genome of Achromobacter sp. JA81, expressed in Escherichia coli, and was characterized. Sequence analysis and spectral properties indicated that Achr-OYE4 is a typical flavin mononucleotide-dependent protein; it preferred NADH over NADPH as a cofactor. The heterologously expressed protein displayed good activity and excellent stereoselectivity toward some activated alkenes in the presence of NADH, NADPH, or their recycling systems. The glucose dehydrogenase-based recycling system yielded the best results in most cases, with a product yield of up to 99 % and enantiopurity of >99 % ee. Achr-OYE4 is an important addition to the asymmetric reduction reservoir as an "old yellow enzyme" from Achromobacter.
Collapse
Affiliation(s)
- Hai-Bo Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | | | | |
Collapse
|
29
|
Identification of pOENI-1 and related plasmids in Oenococcus oeni strains performing the malolactic fermentation in wine. PLoS One 2012; 7:e49082. [PMID: 23139835 PMCID: PMC3489775 DOI: 10.1371/journal.pone.0049082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/04/2012] [Indexed: 12/22/2022] Open
Abstract
Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly contribute to the technological performance of strains in wine.
Collapse
|
30
|
Reich S, Hoeffken HW, Rosche B, Nestl BM, Hauer B. Crystal structure determination and mutagenesis analysis of the ene reductase NCR. Chembiochem 2012; 13:2400-7. [PMID: 23033175 DOI: 10.1002/cbic.201200404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Indexed: 11/09/2022]
Abstract
The crystal structure of the "ene" nicotinamide-dependent cyclohexenone reductase (NCR) from Zymomonas mobilis (PDB ID: 4A3U) has been determined in complex with acetate ion, FMN, and nicotinamide, to a resolution of 1.95 Å. To study the activity and enantioselectivity of this enzyme in the bioreduction of activated α,β-unsaturated alkenes, the rational design methods site- and loop-directed mutagenesis were applied. Based on a multiple sequence alignment of various members of the Old Yellow Enzyme family, eight single-residue variants were generated and investigated in asymmetric bioreduction. Furthermore, a structural alignment of various ene reductases predicted four surface loop regions that are located near the entrance of the active site. Four NCR loop variants, derived from loop-swapping experiments with OYE1 from Saccharomyces pastorianus, were analysed for bioreduction. The three enzyme variants, P245Q, D337Y and F314Y, displayed increased activity compared to wild-type NCR towards the set of substrates tested. The active-site mutation Y177A demonstrated a clear influence on the enantioselectivity. The loop-swapping variants retained reduction efficiency, but demonstrated decreased enzyme activity compared with the wild-type NCR ene reductase enzyme.
Collapse
Affiliation(s)
- Sabrina Reich
- Universitaet Stuttgart, Institute of Technical Biochemistry, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
31
|
Iqbal N, Rudroff F, Brigé A, Van Beeumen J, Mihovilovic MD. Asymmetric bioreduction of activated carbon-carbon double bonds using Shewanella yellow enzyme (SYE-4) as novel enoate reductase. Tetrahedron 2012; 68:7619-7623. [PMID: 22991485 PMCID: PMC3415682 DOI: 10.1016/j.tet.2012.05.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 12/01/2022]
Abstract
Shewanella yellow enzyme (SYE-4), a novel recombinant enoate reductase, was screened against a variety of different substrates bearing an activated double bond, such as unsaturated cyclic ketones, diesters, and substituted imides. Dimethyl- and ethyl esters of 2-methylmaleic acid were selectively reduced to (R)-configured succinic acid derivatives and various N-substituted maleimides furnished the desired (R)-products in up to >99% enantiomeric excess. Naturally occurring (+)-carvone was selectively reduced to (-)-cis-dihydrocarvone and (-)-carvone was converted to the diastereomeric product, respectively. Overall SYE-4 proved to be a useful biocatalyst for the selective reduction of activated C = C double bonds and complements the pool of synthetic valuable enoate reductases.
Collapse
Affiliation(s)
- Naseem Iqbal
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 163-OC, A-1060 Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 163-OC, A-1060 Vienna, Austria
| | - Ann Brigé
- Laboratory of Protein Biochemistry and Biomolecular Engineering, Ghent University, Ghent, Belgium
| | - Jozef Van Beeumen
- Laboratory of Protein Biochemistry and Biomolecular Engineering, Ghent University, Ghent, Belgium
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 163-OC, A-1060 Vienna, Austria
| |
Collapse
|
32
|
Gao X, Ren J, Wu Q, Zhu D. Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei. Enzyme Microb Technol 2012; 51:26-34. [PMID: 22579387 DOI: 10.1016/j.enzmictec.2012.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 11/19/2022]
Abstract
Carbon-carbon double bond of α,β-unsaturated carbonyl compounds can be reduced by enoate reductase (ER), which is an important reaction in fine chemical synthesis. A putative enoate reductase gene from Lactobacillus casei str. Zhang was cloned into pET-21a+ and expressed in Escherichia coli BL21 (DE3) host cells. The encoded enzyme (LacER) was purified by ammonium sulfate precipitation and treatment in an acidic buffer. This enzyme was identified as a NADH-dependent enoate reductase, which had a K(m) of 0.034 ± 0.006 mM and k(cat) of (3.2 ± 0.2) × 10³ s⁻¹ toward NADH using 2-cyclohexen-1-one as the substrate. Its K(m) and k(cat) toward substrate 2-cyclohexen-1-one were 1.94 ± 0.04 mM and (8.4 ± 0.2) × 10³ s⁻¹, respectively. The enzyme showed a maximum activity at pH 8.0-9.0. The optimum temperature of the enzyme was 50-55°C, and LacER was relatively stable below 60 °C. The enzyme was active toward aliphatic alkenyl aldehyde, ketones and some cyclic anhydrides. Substituted groups of cyclic α,β-unsaturated ketones and its ring size have positive or negative effects on activity. (R)-(-)-Carvone was reduced to (2R,5R)-dihydrocarvone with 99% conversion and 98% (diasteromeric excess: de) stereoselectivity, indicating a high synthetic potential of LacER in asymmetric synthesis.
Collapse
Affiliation(s)
- Xiuzhen Gao
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | | | | | | |
Collapse
|
33
|
Winkler CK, Tasnádi G, Clay D, Hall M, Faber K. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. J Biotechnol 2012; 162:381-9. [PMID: 22498437 PMCID: PMC3521962 DOI: 10.1016/j.jbiotec.2012.03.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 12/01/2022]
Abstract
Ene-reductases from the ‘Old Yellow Enzyme’ family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues.
Collapse
Affiliation(s)
- Christoph K Winkler
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
34
|
Raimondi S, Romano D, Amaretti A, Molinari F, Rossi M. Enoate reductases from non conventional yeasts: Bioconversion, cloning, and functional expression in Saccharomyces cerevisiae. J Biotechnol 2011; 156:279-85. [DOI: 10.1016/j.jbiotec.2011.08.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/30/2011] [Accepted: 08/25/2011] [Indexed: 11/25/2022]
|
35
|
Raimondi S, Roncaglia L, Amaretti A, Leonardi A, Buzzini P, Forti L, Rossi M. Rapid method for screening enoate reductase activity in yeasts. J Microbiol Methods 2010; 83:106-10. [DOI: 10.1016/j.mimet.2010.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
|
36
|
Stenuit BA, Agathos SN. Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 2010; 88:1043-64. [DOI: 10.1007/s00253-010-2830-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/06/2010] [Accepted: 08/08/2010] [Indexed: 12/11/2022]
|
37
|
Toogood H, Gardiner J, Scrutton N. Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases. ChemCatChem 2010. [DOI: 10.1002/cctc.201000094] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Opperman DJ, Sewell BT, Litthauer D, Isupov MN, Littlechild JA, van Heerden E. Crystal structure of a thermostable old yellow enzyme from Thermus scotoductus SA-01. Biochem Biophys Res Commun 2010; 393:426-31. [PMID: 20138824 DOI: 10.1016/j.bbrc.2010.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/03/2010] [Indexed: 11/20/2022]
Abstract
Recent characterization of the chromate reductase (CrS) from the thermophile Thermus scotoductus SA-01 revealed this enzyme to be related to the Old Yellow Enzyme (OYE) family. Here, we report the structure of a thermostable OYE homolog in its holoform at 2.2A as well as its complex with p-hydroxybenzaldehyde (pHBA). The enzyme crystallized as octamers with the monomers showing a classical TIM barrel fold which upon dimerization yields the biologically active form of the protein. A sulfate ion is bound above the si-side of the non-covalently bound FMN cofactor in the oxidized solved structure but is displaced upon pHBA binding. The active-site architecture is highly conserved as with other members of this enzyme family. The pHBA in the CrS complex is positioned by hydrogen bonding to the two conserved catalytic-site histidines. The most prominent structural difference between CrS and other OYE homologs is the size of the "capping domain". Thermostabilization of the enzyme is achieved in part through increased proline content within loops and turns as well as increased intersubunit interactions through hydrogen bonding and complex salt bridge networks. CrS is able to reduce the C=C bonds of alpha,beta-unsaturated carbonyl compounds with a preference towards cyclic substrates however no activity was observed towards beta-substituted substrates. Mutational studies have confirmed the role of Tyr177 as the proposed proton donor although reduction could still occur at a reduced rate when this residue was mutated to phenylalanine.
Collapse
Affiliation(s)
- Diederik J Opperman
- Department of Microbial, Biochemical and Food Biotechnology, BioPAD Metagenomics Platform, University of the Free State, Bloemfontein 9300, South Africa
| | | | | | | | | | | |
Collapse
|
39
|
Spiegelhauer O, Mende S, Dickert F, Knauer SH, Ullmann GM, Dobbek H. Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study. J Mol Biol 2010; 398:66-82. [PMID: 20206186 DOI: 10.1016/j.jmb.2010.02.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/20/2010] [Accepted: 02/24/2010] [Indexed: 11/18/2022]
Abstract
Xenobiotic reductase A (XenA) from Pseudomonas putida 86 catalyzes the NADH/NADPH-dependent reduction of various substrates, including 2-cyclohexenone and 8-hydroxycoumarin. XenA is a member of the old yellow enzyme (OYE) family of flavoproteins and is structurally and functionally similar to other bacterial members of this enzyme class. A characteristic feature of XenA is the presence of a cysteine residue (Cys25) in the active site, where in most members of the OYE family a threonine residue is found that modulates the reduction potential of the FMN/FMNH(-) couple. We investigated the role of Cys25 by studying two variants in which the residue has been exchanged for a serine and an alanine residue. While the exchange against alanine has a remarkably small effect on the reduction potential, the reactivity and the structure of XenA, the exchange against serine increases the reduction potential by +82 mV, increases the rate constant of the reductive half-reaction and decreases the rate constant in the oxidative half-reaction. We determined six crystal structures at high to true atomic resolution (d(min) 1.03-1.80 A) of the three XenA variants with and without the substrate coumarin bound in the active site. The atomic resolution structure of XenA in complex with coumarin reveals a compressed active site geometry in which the isoalloxazine ring is sandwiched between coumarin and the protein backbone. The structures further reveal that the conformation of the active site and substrate interactions are preserved in the two variants, indicating that the observed changes are due to local effects only. We propose that Cys25 and the residues in its place determine which of the two half-reactions is rate limiting, depending on the substrate couple. This might help to explain why the genome of Pseudomonas putida encodes multiple xenobiotic reductases containing either cysteine, threonine or alanine in the active site.
Collapse
Affiliation(s)
- Olivia Spiegelhauer
- Bioinorganic Chemistry, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Ehira S, Teramoto H, Inui M, Yukawa H. A novel redox-sensing transcriptional regulator CyeR controls expression of an Old Yellow Enzyme family protein in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2010; 156:1335-1341. [PMID: 20110293 DOI: 10.1099/mic.0.036913-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Corynebacterium glutamicum cgR_2930 (cyeR) encodes a transcriptional regulator of the ArsR family. Its gene product, CyeR, was shown here to repress the expression of cyeR and the cgR_2931 (cye1)-cgR_2932 operon, which is located upstream of cyeR in the opposite orientation. The cye1 gene encodes an Old Yellow Enzyme family protein, members of which have been implicated in the oxidative stress response. CyeR binds to the intergenic region between cyeR and cye1. Expression of cyeR and cye1 is induced by oxidative stress, and the DNA-binding activity of CyeR is impaired by oxidants such as diamide and H(2)O(2). CyeR contains two cysteine residues, Cys-36 and Cys-43. Whereas mutation of the former (C36A) has no effect on the redox regulation of CyeR activity, mutating the latter (C43A, C43S) abolishes the DNA-binding activity of CyeR. Cys-43 of CyeR and its C36A derivative are modified upon treatment with diamide, suggesting an important role for Cys-43 in the redox regulation of CyeR activity. It is concluded that CyeR is a redox-sensing transcriptional regulator that controls cye1 expression.
Collapse
Affiliation(s)
- Shigeki Ehira
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| |
Collapse
|
41
|
Elegheert J, van den Hemel D, Dix I, Stout J, Van Beeumen J, Brigé A, Savvides SN. Towards structural studies of the old yellow enzyme homologue SYE4 from Shewanella oneidensis and its complexes at atomic resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 66:85-90. [PMID: 20057079 DOI: 10.1107/s1744309109050386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/23/2009] [Indexed: 11/10/2022]
Abstract
Shewanella oneidensis is an environmentally versatile Gram-negative gamma-proteobacterium that is endowed with an unusually large proteome of redox proteins. Of the four old yellow enzyme (OYE) homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1) and were moderately pseudo-merohedrally twinned, emulating a P422 metric symmetry. The native crystals of SYE4 were of exceptional diffraction quality and provided complete data to 1.10 A resolution using synchrotron radiation, while crystals of the reduced enzyme and of the enzyme in complex with a wide range of ligands typically led to high-quality complete data sets to 1.30-1.60 A resolution, thus providing a rare opportunity to dissect the structure-function relationships of a good-sized enzyme (40 kDa) at true atomic resolution. Here, the attainment of a number of experimental milestones in the crystallographic studies of SYE4 and its complexes are reported, including isolation of the elusive hydride-Meisenheimer complex.
Collapse
Affiliation(s)
- Jonathan Elegheert
- Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Spiegelhauer O, Dickert F, Mende S, Niks D, Hille R, Ullmann M, Dobbek H. Kinetic characterization of xenobiotic reductase A from Pseudomonas putida 86. Biochemistry 2009; 48:11412-20. [PMID: 19839648 DOI: 10.1021/bi901370u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Xenobiotic reductase A (XenA) from Pseudomonas putida is a member of the old-yellow-enzyme family of flavin-containing enzymes and catalyzes the NADH/NADPH-dependent reduction of various substrates, including 8-hydroxycoumarin and 2-cyclohexenone. Here we present a kinetic and thermodynamic analysis of XenA. In the reductive half-reaction, complexes of oxidized XenA with NADH or NADPH form charge-transfer (CT) intermediates with increased absorption around 520-560 nm, which occurs with a second-order rate constant of 9.4 x 10(5) M(-1) s(-1) with NADH and 6.4 x 10(5) M(-1) s(-1) with NADPH, while its disappearance is controlled by a rate constant of 210-250 s(-1) with both substrates. Transfer of hydride from NADPH proceeds 24 times more rapidly than from NADH. This modest kinetic preference of XenA for NADPH is unlike the typical discrimination between NADH and NADPH by binding affinity. Docking studies combined with electrostatic energy calculations indicate that the 2'-phosphate group attached to the adenine moiety of NADPH is responsible for this difference. The reductions of 2-cyclohexenone and coumarin in the oxidative half-reaction are both concentration-dependent under the assay conditions and reveal a more than 50-fold larger limiting rate constant for the reduction of 2-cyclohexenone compared to that of coumarin. Our work corroborates the link between XenA and other members of the old-yellow-enzyme family but demonstrates several differences in the reactivity of these enzymes.
Collapse
|
43
|
Subfunctionality of hydride transferases of the old yellow enzyme family of flavoproteins of Pseudomonas putida. Appl Environ Microbiol 2008; 74:6703-8. [PMID: 18791012 DOI: 10.1128/aem.00386-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate potential complementary activities of multiple enzymes belonging to the same family within a single microorganism, we chose a set of Old Yellow Enzyme (OYE) homologs of Pseudomonas putida. The physiological function of these enzymes is not well established; however, an activity associated with OYE family members from different microorganisms is their ability to reduce nitroaromatic compounds. Using an in silico approach, we identified six OYE homologs in P. putida KT2440. Each gene was subcloned into an expression vector, and each corresponding gene product was purified to homogeneity prior to in vitro analysis for its catalytic activity against 2,4,6-trinitrotoluene (TNT). One of the enzymes, called XenD, lacked in vitro activity, whereas the other five enzymes demonstrated type I hydride transferase activity and reduced the nitro groups of TNT to hydroxylaminodinitrotoluene derivatives. XenB has the additional ability to reduce the aromatic ring of TNT to produce Meisenheimer complexes, defined as type II hydride transferase activity. The condensations of the primary products of type I and type II hydride transferases react with each other to yield diarylamines and nitrite; the latter can be further reduced to ammonium and serves as a nitrogen source for microorganisms in vivo.
Collapse
|
44
|
Schweiger P, Gross H, Wesener S, Deppenmeier U. Vinyl ketone reduction by three distinct Gluconobacter oxydans 621H enzymes. Appl Microbiol Biotechnol 2008; 80:995-1006. [PMID: 18629490 DOI: 10.1007/s00253-008-1600-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 06/27/2008] [Accepted: 06/28/2008] [Indexed: 01/20/2023]
Abstract
Three cytosolic NADPH-dependent flavin-associated proteins (Gox2107, Gox0502, and Gox2684) from Gluconobacter oxydans 621H were overproduced in Escherichia coli, and the recombinant enzymes were purified and characterized. Apparent native molecular masses of 65.2, 78.2, and 78.4 kDa were observed for Gox2107, Gox0502, and Gox2684, corresponding to a trimeric structure for Gox2107 and dimers for Gox0502 and Gox2684. Analysis of flavin content revealed Gox2107 was flavin adenine dinucleotide dependent, whereas Gox0502 and Gox2684 contained flavin mononucleotide. The enzymes were able to reduce vinyl ketones and quinones, reducing the olefinic bond of vinyl ketones as shown by (1)H nuclear magnetic resonance. Additionally, Gox0502 and Gox2684 stereospecifically reduced 5S-(+)-carvone to 2R,5S-dihydrocarvone. All enzymes displayed highest activities with 3-butene-2-one and 1,4-naphthoquinone. Gox0502 and Gox2684 displayed a broader substrate spectrum also reducing short-chain alpha-diketones, whereas Gox2107 was most catalytically efficient.
Collapse
Affiliation(s)
- Paul Schweiger
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | |
Collapse
|
45
|
Thiele B, Rieder O, Jehmlich N, von Bergen M, Müller M, Boll M. Aromatizing cyclohexa-1,5-diene-1-carbonyl-coenzyme A oxidase. Characterization and its role in anaerobic aromatic metabolism. J Biol Chem 2008; 283:20713-21. [PMID: 18505724 DOI: 10.1074/jbc.m802841200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benzoyl-CoA reductases (BCRs) are key enzymes of anaerobic aromatic metabolism in facultatively anaerobic bacteria. The highly oxygen-sensitive enzymes catalyze the ATP-dependent reductive de-aromatization of the substrate, yielding cyclohexa-1,5-diene-1-carbonyl-CoA (1,5-dienoyl-CoA). In extracts from anaerobically grown denitrifying Thauera aromatica, we detected a benzoate-induced, benzoyl-CoA-forming, 1,5-dienoyl-CoA:acceptor oxidoreductase activity. This activity co-purified with BCR but could be partially separated from it by hydroxyapatite chromatography. After activity staining on native gels, a monomeric protein with a subunit molecular weight of M(r) 76,000 was identified. Mass spectrometric analysis of tryptic digests identified peptides from NADH oxidases/2,4-dienoyl-CoA reductases/"old yellow" enzymes. The UV-visible spectrum of the enriched enzyme suggested the presence of flavin and Fe/S-cofactors, and it was bleached upon the addition of 1,5-dienoyl-CoA. The enzyme had a high affinity for dioxygen as electron acceptor (K(m) = 10 microm) and therefore is referred to as 1,5-dienoyl-CoA oxidase (DCO). The likely product formed from dioxygen reduction was H(2)O. DCO was highly specific for 1,5-dienoyl-CoA (K(m) = 27 microm). The initial rate of DCO followed a Nernst curve with half-maximal activity at +10 mV. We propose that DCO provides protection for the extremely oxygen-sensitive BCR enzyme when the bacterium degrades aromatic compounds at the edge of steep oxygen gradients. The redox-dependent switch in DCO guarantees that DCO is only active during oxidative stress and circumvents futile de-aromatization/re-aromatization reactions catalyzed by BCR and DCO.
Collapse
Affiliation(s)
- Bärbel Thiele
- Institute of Biochemistry, University of Leipzig, Brüderstrasse 34, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Kang DJ, Ridlon JM, Moore DR, Barnes S, Hylemon PB. Clostridium scindens baiCD and baiH genes encode stereo-specific 7alpha/7beta-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:16-25. [PMID: 18047844 PMCID: PMC2275164 DOI: 10.1016/j.bbalip.2007.10.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 10/16/2007] [Accepted: 10/22/2007] [Indexed: 01/28/2023]
Abstract
Secondary bile acids, formed by intestinal bacteria, are suggested to play a significant role in cancers of the gastrointestinal tract in humans. Bile acid 7alpha/beta-dehydroxylation is carried out by a few species of intestinal clostridia which harbor a multi-gene bile acid inducible (bai) operon. Several genes encoding enzymes in this pathway have been cloned and characterized. However, no gene product(s) has yet been assigned to the production of 3-oxo-Delta4-cholenoic acid intermediates of cholic acid (CA), chenodeoxycholic acid (CDCA) or ursodeoxycholic acid (UDCA). We previously reported that the baiH gene encodes an NADH:flavin oxidoreductase (NADH:FOR); however, the role of this protein in bile acid 7-dehydroxylation is unclear. Homology searches and secondary structural alignments suggest this protein to be similar to flavoproteins which reduce alpha/beta-unsaturated carbonyl compounds. The baiH gene product was expressed in Escherichia coli, purified and discovered to be a stereo-specific NAD(H)-dependent 7beta-hydroxy-3-oxo-Delta4-cholenoic acid oxidoreductase. Additionally, high sequence similarity between the baiH and baiCD gene products suggests the baiCD gene may encode a 3-oxo-Delta4-cholenoic acid oxidoreductase specific for CDCA and CA. We tested this hypothesis using cell extracts prepared from E. coli overexpressing the baiCD gene and discovered that it encodes a stereo-specific NAD(H)-dependent 7alpha-hydroxy-3-oxo-Delta4-cholenoic acid oxidoreductase.
Collapse
Affiliation(s)
- Dae-Joong Kang
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - Jason M. Ridlon
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - Doyle Ray Moore
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
47
|
Stuermer R, Hauer B, Hall M, Faber K. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr Opin Chem Biol 2007; 11:203-13. [PMID: 17353140 DOI: 10.1016/j.cbpa.2007.02.025] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 02/07/2007] [Indexed: 11/28/2022]
Abstract
The asymmetric bioreduction of alkenes bearing an electron-withdrawing group using flavin-dependent enzymes from the 'old yellow enzyme' family at the expense of NAD(P)H yields the corresponding non-racemic alkanes going in hand with the creation of up to two chiral carbon centres. To avoid external cofactor recycling, this intriguing biotransformation was hitherto performed using whole microbial cells, which frequently showed insufficient stereoselectivities and/or undesired side reactions because of the action of competing enzymatic activities. Co-expression of enoate reductases with the corresponding redox enzymes for NAD(P)H recycling in a suitable host enables to overcome these drawbacks to furnish highly stereoselective and 'clean' C=C bioreductions on a preparative scale that are difficult to perform by conventional means.
Collapse
|
48
|
van den Hemel D, Brigé A, Savvides SN, Van Beeumen J. Ligand-induced conformational changes in the capping subdomain of a bacterial old yellow enzyme homologue and conserved sequence fingerprints provide new insights into substrate binding. J Biol Chem 2006; 281:28152-61. [PMID: 16857682 DOI: 10.1074/jbc.m603946200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that Shewanella oneidensis, a Gram-negative gamma-proteobacterium with a rich arsenal of redox proteins, possesses four old yellow enzyme (OYE) homologues. Here, we report a series of high resolution crystal structures for one of these OYEs, Shewanella yellow enzyme 1 (SYE1), in its oxidized form at 1.4A resolution, which binds a molecule of PEG 400 in the active site, and in its NADH-reduced and p-hydroxybenzaldehyde- and p-hydroxyacetophenone-bound forms at 1.7A resolution. Although the overall structure of SYE1 reveals a monomeric enzyme based on the alpha(8)beta(8) barrel scaffold observed for other OYEs, the active site exhibits a unique combination of features: a strongly butterfly-bent FMN cofactor both in the oxidized and NADH-reduced forms, a collapsed and narrow active site tunnel, and a novel combination of conserved residues involved in the binding of phenolic ligands. Furthermore, we identify a second p-hydroxybenzaldehyde-binding site in a hydrophobic cleft next to the entry of the active site tunnel in the capping subdomain, formed by a restructuring of Loop 3 to an "open" conformation. This constitutes the first evidence to date for the entire family of OYEs that Loop 3 may indeed play a dynamic role in ligand binding and thus provides insights into the elusive NADH complex and into substrate binding in general. Structure-based sequence alignments indicate that the novelties we observe in SYE1 are supported by conserved residues in a number of structurally uncharacterized OYEs from the beta- and gamma-proteobacteria, suggesting that SYE1 represents a new subfamily of bacterial OYEs.
Collapse
Affiliation(s)
- Debbie van den Hemel
- Department of Biochemistry, Physiology and Microbiology, Laboratory for Protein Biochemistry and Protein Engineering, K.L. Ledeganckstraat 35, Ghent University, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|