1
|
Evidence for dimerization of ferroportin in a human hepatic cell line using proximity ligation assays. Biosci Rep 2021; 40:222672. [PMID: 32301493 PMCID: PMC7201565 DOI: 10.1042/bsr20191499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Mutations in the only known iron exporter ferroportin (FPN) in humans are associated with the autosomal dominantly inherited iron overload disorder ferroportin disease or type IV hereditary hemochromatosis (HH). While our knowledge of the central role of FPN in iron homeostasis has grown in the last 20 years, there exist some questions surrounding the structure and membrane topology of FPN with conflicting data on whether this receptor acts as a monomer or a multimer. To investigate and determine if FPN dimerization occurs in cells, we used novel tools including a variety of different FPN constructs expressing different tagged versions of the protein, a novel antibody that only detects cell surface FPN and proximity ligation assays. The results of the present study suggest that both the carboxy- and amino-termini of the FPN protein are intracellular. We also show that exogenously transfected FPN forms dimers; these dimers can be formed between the wild-type and mutant FPN proteins. This is the first study to examine the intracellular dimerization of FPN protein. Using proximity ligation assays, we show intracellular localization of FPN dimers and the interaction between FPN and hepcidin proteins as well. These results have important implications in the field of iron metabolism and add to our knowledge about FPN membrane topology and physiology of iron transport. This will be of importance in understanding the clinical implications of FPN mutations and of interest to future research aimed at targeting FPN expression to modulate iron homeostasis.
Collapse
|
2
|
Deshpande CN, Azucenas CR, Qiao B, Nomura N, Xin V, Font J, Iwata S, Ganz T, Nemeth E, Mackenzie B, Jormakka M. Isolation and thermal stabilization of mouse ferroportin. FEBS Open Bio 2021; 11:26-34. [PMID: 33190422 PMCID: PMC7780100 DOI: 10.1002/2211-5463.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 12/03/2022] Open
Abstract
Ferroportin (Fpn) is an essential mammalian iron transporter that is negatively regulated by the hormone hepcidin. Our current molecular understanding of Fpn-mediated iron efflux and regulation is limited due to a lack of biochemical, biophysical and high-resolution structural studies. A critical step towards understanding the transport mechanism of Fpn is to obtain sufficient quantities of pure and stable protein for downstream studies. As such, we detail here an expression and purification protocol for mouse Fpn yielding milligram quantities of pure protein. We have generated deletion constructs exhibiting enhanced thermal stability and which retained iron-transport activity and hepcidin responsiveness, providing a platform for further biophysical studies of Fpn.
Collapse
Affiliation(s)
| | - Corbin R. Azucenas
- Department of Pharmacology & Systems PhysiologyUniversity of Cincinnati College of MedicineOH
- Medical Sciences Baccalaureate ProgramUniversity of Cincinnati College of MedicineOHUSA
| | - Bo Qiao
- Department of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Norimichi Nomura
- Department of Cell BiologyGraduate School of MedicineKyoto UniversityJapan
| | - Vicky Xin
- Structural Biology ProgramCentenary InstituteSydneyNSWAustralia
| | - Josep Font
- Structural Biology ProgramCentenary InstituteSydneyNSWAustralia
- Present address:
Transporter Biology GroupDiscipline of PharmacologySydney Medical SchoolUniversity of SydneyNSW2006Australia
| | - So Iwata
- Department of Cell BiologyGraduate School of MedicineKyoto UniversityJapan
| | - Tomas Ganz
- Department of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Department of PathologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Elizabeta Nemeth
- Department of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Bryan Mackenzie
- Medical Sciences Baccalaureate ProgramUniversity of Cincinnati College of MedicineOHUSA
- Department of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Mika Jormakka
- Structural Biology ProgramCentenary InstituteSydneyNSWAustralia
| |
Collapse
|
3
|
Rishi G, Subramaniam VN. Biology of the iron efflux transporter, ferroportin. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:1-16. [PMID: 33485480 DOI: 10.1016/bs.apcsb.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Iron, the most common metal in the earth, is also an essential component for almost all living organisms. While these organisms require iron for many biological processes, too much or too little iron itself poses many issues; this is most easily recognized in human beings. The control of body iron levels is thus an important metabolic process which is regulated essentially by controlling the expression, activity and levels of the iron transporter ferroportin. Ferroportin is the only known iron exporter. The function and activity of ferroportin is influenced by its interaction with the iron-regulatory peptide hepcidin, which itself is regulated by many factors. Here we review the current state of understanding of the mechanisms that regulate ferroportin and its function.
Collapse
Affiliation(s)
- Gautam Rishi
- Hepatogenomics Research Group, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - V Nathan Subramaniam
- Hepatogenomics Research Group, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
4
|
Yin X, Zhang Y, Gao H, Jin QL, Wen XY. A case report of hereditary hemochromatosis caused by mutation of SLC40A1 gene. Medicine (Baltimore) 2019; 98:e17526. [PMID: 31689754 PMCID: PMC6946363 DOI: 10.1097/md.0000000000017526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/16/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Hereditary hemochromatosis (HH) is a frequent autosomal recessive disease. The pathogenesis of disease is excessive intestinal absorption of dietary iron, resulting in pathologically high iron storage in tissues and organs. As a systemic disease, it has several manifestations including cirrhosis, diabetes mellitus, cardiomyopathy, joint disease. However, a proportion of patients are asymptomatic. PATIENT CONCERNS A 34-year-old man who had abnormal liver function for 9 months without specific symptoms. He underwent various tests, including liver biopsy and genetic testing, which eventually ruled out common liver diseases and identified iron metabolic abnormalities. In addition, we confirmed the pathogenic genes by sequencing the genes of him and his families. DIAGNOSIS Combined with the symptoms, auxiliary examinations and sequencing results, the patient was diagnosed as HH. INTERVENTIONS The patient was given a low iron diet and phlebotomy therapy interval 2 weeks until the ferritin is <100 mg/L. OUTCOMES The patient' condition is stable during the follow-up period. LESSONS When clinicians are confronted with unexplained liver dysfunction, the possibility of the HH should be considered. Liver biopsy and gene sequencing are helpful in diagnosis. Phlebotomy treatment is the most economical and practical treatment for HH at present, but it should vary from person to person.
Collapse
Affiliation(s)
- Xin Yin
- Department of Hepatology, The First Hospital of Jilin University, Changchun
| | - Yu Zhang
- Department of Hepatology, The First Hospital of Jilin University, Changchun
| | - Hui Gao
- Department of Digestive disease, Tai’an Municipal Hospital, Tai’an, China
| | - Qing-long Jin
- Department of Hepatology, The First Hospital of Jilin University, Changchun
| | - Xiao-yu Wen
- Department of Hepatology, The First Hospital of Jilin University, Changchun
| |
Collapse
|
5
|
Choi EK, Nguyen TT, Iwase S, Seo YA. Ferroportin disease mutations influence manganese accumulation and cytotoxicity. FASEB J 2019; 33:2228-2240. [PMID: 30247984 PMCID: PMC6338638 DOI: 10.1096/fj.201800831r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
Abstract
Hemochromatosis is a frequent genetic disorder, characterized by the accumulation of excess iron across tissues. Mutations in the FPN1 gene, encoding a cell surface iron exporter [ferroportin (Fpn)], are responsible for hemochromatosis type 4, also known as ferroportin disease. Recently, Fpn has been implicated in the regulation of manganese (Mn), another essential nutrient required for numerous cellular enzymes. However, the roles of Fpn in Mn regulation remain ill-defined, and the impact of disease mutations on cellular Mn levels is unknown. Here, we provide evidence that Fpn can export Mn from cells into extracellular space. Fpn seems to play protective roles in Mn-induced cellular toxicity and oxidative stress. Finally, disease mutations interfere with the role of Fpn in controlling Mn levels as well as the stability of Fpn. These results define the function of Fpn as an exporter of both iron and Mn and highlight the potential involvement of Mn dysregulation in ferroportin disease.-Choi, E.-K., Nguyen, T.-T., Iwase, S., Seo, Y. A. Ferroportin disease mutations influence manganese accumulation and cytotoxicity.
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA; and
| | - Trang-Tiffany Nguyen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA; and
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA; and
| |
Collapse
|
6
|
Dlouhy AC, Bailey DK, Steimle BL, Parker HV, Kosman DJ. Fluorescence resonance energy transfer links membrane ferroportin, hephaestin but not ferroportin, amyloid precursor protein complex with iron efflux. J Biol Chem 2019; 294:4202-4214. [PMID: 30647129 DOI: 10.1074/jbc.ra118.005142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/08/2019] [Indexed: 11/06/2022] Open
Abstract
Iron efflux from mammalian cells is supported by the synergistic actions of the ferrous iron efflux transporter, ferroportin (Fpn) and a multicopper ferroxidase, that is, hephaestin (Heph), ceruloplasmin (Cp) or both. The two proteins stabilize Fpn in the plasma membrane and catalyze extracellular Fe3+ release. The membrane stabilization of Fpn is also stimulated by its interaction with a 22-amino acid synthetic peptide based on a short sequence in the extracellular E2 domain of the amyloid precursor protein (APP). However, whether APP family members interact with Fpn in vivo is unclear. Here, using cyan fluorescent protein (CFP)-tagged Fpn in conjunction with yellow fluorescent protein (YFP) fusions of Heph and APP family members APP, APLP1, and APLP2 in HEK293T cells we used fluorescence and surface biotinylation to quantify Fpn membrane occupancy and also measured 59Fe efflux. We demonstrate that Fpn and Heph co-localize, and FRET analysis indicated that the two proteins form an iron-efflux complex. In contrast, none of the full-length, cellular APP proteins exhibited Fpn co-localization or FRET. Moreover, iron supplementation increased surface expression of the iron-efflux complex, and copper depletion knocked down Heph activity and decreased Fpn membrane localization. Whereas cellular APP species had no effects on Fpn and Heph localization, addition of soluble E2 elements derived from APP and APLP2, but not APLP1, increased Fpn membrane occupancy. We conclude that a ferroportin-targeting sequence, (K/R)EWEE, present in APP and APLP2, but not APLP1, helps modulate Fpn-dependent iron efflux in the presence of an active multicopper ferroxidase.
Collapse
Affiliation(s)
- Adrienne C Dlouhy
- From the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Danielle K Bailey
- From the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Brittany L Steimle
- From the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Haley V Parker
- From the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Daniel J Kosman
- From the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
7
|
Pietrangelo A. Ferroportin disease: pathogenesis, diagnosis and treatment. Haematologica 2017; 102:1972-1984. [PMID: 29101207 PMCID: PMC5709096 DOI: 10.3324/haematol.2017.170720] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Ferroportin Disease (FD) is an autosomal dominant hereditary iron loading disorder associated with heterozygote mutations of the ferroportin-1 (FPN) gene. It represents one of the commonest causes of genetic hyperferritinemia, regardless of ethnicity. FPN1 transfers iron from the intestine, macrophages and placenta into the bloodstream. In FD, loss-of-function mutations of FPN1 limit but do not impair iron export in enterocytes, but they do severely affect iron transfer in macrophages. This leads to progressive and preferential iron trapping in tissue macrophages, reduced iron release to serum transferrin (i.e. inappropriately low transferrin saturation) and a tendency towards anemia at menarche or after intense bloodletting. The hallmark of FD is marked iron accumulation in hepatic Kupffer cells. Numerous FD-associated mutations have been reported worldwide, with a few occurring in different populations and some more commonly reported (e.g. Val192del, A77D, and G80S). FPN1 polymorphisms also represent the gene variants most commonly responsible for hyperferritinemia in Africans. Differential diagnosis includes mainly hereditary hemochromatosis, the syndrome commonly due to either HFE or TfR2, HJV, HAMP, and, in rare instances, FPN1 itself. Here, unlike FD, hyperferritinemia associates with high transferrin saturation, iron-spared macrophages, and progressive parenchymal cell iron load. Abdominal magnetic resonance imaging (MRI), the key non-invasive diagnostic tool for the diagnosis of FD, shows the characteristic iron loading SSL triad (spleen, spine and liver). A non-aggressive phlebotomy regimen is recommended, with careful monitoring of transferrin saturation and hemoglobin due to the risk of anemia. Family screening is mandatory since siblings and offspring have a 50% chance of carrying the pathogenic mutation.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- Center for Hemochromatosis, Department of Internal Medicine II, University of Modena and Reggio Emilia Policlinico, Modena, Italy
| |
Collapse
|
8
|
Hamp1 but not Hamp2 regulates ferroportin in fish with two functionally distinct hepcidin types. Sci Rep 2017; 7:14793. [PMID: 29093559 PMCID: PMC5665920 DOI: 10.1038/s41598-017-14933-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Hepcidin is a small cysteine rich peptide that regulates the sole known cellular iron exporter, ferroportin, effectively controlling iron metabolism. Contrary to humans, where a single hepcidin exists, many fish have two functionally distinct hepcidin types, despite having a single ferroportin gene. This raises the question of whether ferroportin is similarly regulated by the iron regulator Hamp1 and the antimicrobial Hamp2. In sea bass (Dicentrarchus labrax), iron overload prompted a downregulation of ferroportin, associated with an upregulation of hamp1, whereas an opposite response was observed during anemia, with no changes in hamp2 in either situation. During infection, ferroportin expression decreased, indicating iron withholding to avoid microbial proliferation. In vivo administration of Hamp1 but not Hamp2 synthetic peptides caused significant reduction in ferroportin expression, indicating that in teleost fish with two hepcidin types, ferroportin activity is mediated through the iron-regulator Hamp1, and not through the dedicated antimicrobial Hamp2. Additionally, in vitro treatment of mouse macrophages with fish Hamp1 but not Hamp2 caused a decrease in ferroportin levels. These results raise questions on the evolution of hepcidin and ferroportin functional partnership and open new possibilities for the pharmaceutical use of selected fish Hamp2 hepcidins during infections, with no impact on iron homeostasis.
Collapse
|
9
|
Wallace DF, McDonald CJ, Ostini L, Iser D, Tuckfield A, Subramaniam VN. The dynamics of hepcidin-ferroportin internalization and consequences of a novel ferroportin disease mutation. Am J Hematol 2017; 92:1052-1061. [PMID: 28681497 DOI: 10.1002/ajh.24844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022]
Abstract
The hepcidin-ferroportin axis underlies the pathophysiology of many iron-associated disorders and is a key target for the development of therapeutics for treating iron-associated disorders. The aims of this study were to investigate the dynamics of hepcidin-mediated ferroportin internalization and the consequences of a novel disease-causing mutation on ferroportin function. Specific reagents for ferroportin are limited; we developed and characterized antibodies against the largest extracellular loop of ferroportin and developed a novel cell-based assay for studying hepcidin-ferroportin function. We show that hepcidin-mediated ferroportin internalization is a rapid process and could be induced using low concentrations of hepcidin. Targeted next-generation sequencing utilizing an iron metabolism gene panel developed in our group identified a novel ferroportin p.D84E variant in a patient with iron overload. Wild-type and mutant ferroportin constructs were generated, transfected into HEK293 cells and analysed using an all-in-one flow-cytometry-based assay to study the effects on hepcidin-mediated internalization and iron transport. Consistent with the classical phenotype of ferroportin disease, the p.D84E mutation results in an inability to transport iron and hepcidin insensitivity. These results validate a recently proposed 3D-structural model of ferroportin and highlight the significance of this variant in the structure and function of ferroportin. Our novel ferroportin antibody and assay will be valuable tools for investigating the regulation of hepcidin/ferroportin function and the development of novel approaches for the therapeutic modulation of iron homeostasis.
Collapse
Affiliation(s)
- Daniel F. Wallace
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences. Queensland University of Technology (QUT); Brisbane Queensland Australia
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland Australia
| | - Cameron J. McDonald
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland Australia
| | - Lesa Ostini
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland Australia
| | - David Iser
- Department of Gastroenterology; St Vincent's Hospital; Fitzroy Victoria Australia
| | | | - V. Nathan Subramaniam
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences. Queensland University of Technology (QUT); Brisbane Queensland Australia
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland Australia
| |
Collapse
|
10
|
Knez M, Graham RD, Welch RM, Stangoulis JCR. New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans. Crit Rev Food Sci Nutr 2017; 57:2128-2143. [PMID: 26177050 DOI: 10.1080/10408398.2015.1050483] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Iron deficiency is the most prevalent nutritional deficiency, affecting more than 30% of the total world's population. It is a major public health problem in many countries around the world. Over the years various methods have been used with an effort to try and control iron-deficiency anemia. However, there has only been a marginal reduction in the global prevalence of anemia. Why is this so? Iron and zinc are essential trace elements for humans. These metals influence the transport and absorption of one another across the enterocytes and hepatocytes, due to similar ionic properties. This paper describes the structure and roles of major iron and zinc transport proteins, clarifies iron-zinc interactions at these sites, and provides a model for the mechanism of these interactions both at the local and systemic level. This review provides evidence that much of the massive extent of iron deficiency anemia in the world may be due to an underlying deficiency of zinc. It explains the reasons for predominance of cellular zinc status in determination of iron/zinc interactions and for the first time thoroughly explains mechanisms by which zinc brings about these changes.
Collapse
Affiliation(s)
- Marija Knez
- a School of Biological Sciences, Flinders University , Adelaide , South Australia , Australia
| | - Robin D Graham
- a School of Biological Sciences, Flinders University , Adelaide , South Australia , Australia
| | - Ross M Welch
- b USDA/ARS, Robert W. Holley Centre for Agriculture and Health, Cornell University , Ithaca , New York , USA
| | - James C R Stangoulis
- a School of Biological Sciences, Flinders University , Adelaide , South Australia , Australia
| |
Collapse
|
11
|
Sabelli M, Montosi G, Garuti C, Caleffi A, Oliveto S, Biffo S, Pietrangelo A. Human macrophage ferroportin biology and the basis for the ferroportin disease. Hepatology 2017; 65:1512-1525. [PMID: 28027576 PMCID: PMC5413859 DOI: 10.1002/hep.29007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023]
Abstract
Ferroportin (FPN1) is the sole iron exporter in mammals, but its cell-specific function and regulation are still elusive. This study examined FPN1 expression in human macrophages, the cells that are primarily responsible on a daily basis for plasma iron turnover and are central in the pathogenesis of ferroportin disease (FD), the disease attributed to lack-of-function FPN1 mutations. We characterized FPN1 protein expression and traffic by confocal microscopy, western blotting, gel filtration, and immunoprecipitation studies in macrophages from control blood donors (donor) and patients with either FPN1 p.A77D, p.G80S, and p.Val162del lack-of-function or p.A69T gain-of-function mutations. We found that in normal macrophages, FPN1 cycles in the early endocytic compartment does not multimerize and is promptly degraded by hepcidin (Hepc), its physiological inhibitor, within 3-6 hours. In FD macrophages, endogenous FPN1 showed a similar localization, except for greater accumulation in lysosomes. However, in contrast with previous studies using overexpressed mutant protein in cell lines, FPN1 could still reach the cell surface and be normally internalized and degraded upon exposure to Hepc. However, when FD macrophages were exposed to large amounts of heme iron, in contrast to donor and p.A69T macrophages, FPN1 could no longer reach the cell surface, leading to intracellular iron retention. CONCLUSION FPN1 cycles as a monomer within the endocytic/plasma membrane compartment and responds to its physiological inhibitor, Hepc, in both control and FD cells. However, in FD, FPN1 fails to reach the cell surface when cells undergo high iron turnover. Our findings provide a basis for the FD characterized by a preserved iron transfer in the enterocytes (i.e., cells with low iron turnover) and iron retention in cells exposed to high iron flux, such as liver and spleen macrophages. (Hepatology 2017;65:1512-1525).
Collapse
Affiliation(s)
- Manuela Sabelli
- Division of Internal Medicine 2 and Center for HemochromatosisUniversity Hospital of ModenaModenaItaly
| | - Giuliana Montosi
- Division of Internal Medicine 2 and Center for HemochromatosisUniversity Hospital of ModenaModenaItaly
| | - Cinzia Garuti
- Division of Internal Medicine 2 and Center for HemochromatosisUniversity Hospital of ModenaModenaItaly
| | - Angela Caleffi
- Division of Internal Medicine 2 and Center for HemochromatosisUniversity Hospital of ModenaModenaItaly
| | | | - Stefano Biffo
- INGM, ‘Romeo ed Enrica Invernizzi’MilanoItaly
- Department of BiosciencesUniversity of MilanMilanItaly
| | - Antonello Pietrangelo
- Division of Internal Medicine 2 and Center for HemochromatosisUniversity Hospital of ModenaModenaItaly
| |
Collapse
|
12
|
Abstract
Maintaining physiologic iron concentrations in tissues is critical for metabolism and host defense. Iron absorption in the duodenum, recycling of iron from senescent erythrocytes, and iron mobilization from storage in macrophages and hepatocytes constitute the major iron flows into plasma for distribution to tissues, predominantly for erythropoiesis. All iron transfer to plasma occurs through the iron exporter ferroportin. The concentration of functional membrane-associated ferroportin is controlled by its ligand, the iron-regulatory hormone hepcidin, and fine-tuned by regulatory mechanisms serving iron homeostasis, oxygen utilization, host defense, and erythropoiesis. Fundamental questions about the structure and biology of ferroportin remain to be answered.
Collapse
|
13
|
Musci G, Polticelli F, Bonaccorsi di Patti MC. Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J Biol Chem 2014; 5:204-215. [PMID: 24921009 PMCID: PMC4050113 DOI: 10.4331/wjbc.v5.i2.204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/19/2014] [Indexed: 02/05/2023] Open
Abstract
Safe trafficking of iron across the cell membrane is a delicate process that requires specific protein carriers. While many proteins involved in iron uptake by cells are known, only one cellular iron export protein has been identified in mammals: ferroportin (SLC40A1). Ceruloplasmin is a multicopper enzyme endowed with ferroxidase activity that is found as a soluble isoform in plasma or as a membrane-associated isoform in specific cell types. According to the currently accepted view, ferrous iron transported out of the cell by ferroportin would be safely oxidized by ceruloplasmin to facilitate loading on transferrin. Therefore, the ceruloplasmin-ferroportin system represents the main pathway for cellular iron egress and it is responsible for physiological regulation of cellular iron levels. The most recent findings regarding the structural and functional features of ceruloplasmin and ferroportin and their relationship will be described in this review.
Collapse
|
14
|
Bonaccorsi di Patti MC, Polticelli F, Cece G, Cutone A, Felici F, Persichini T, Musci G. A structural model of human ferroportin and of its iron binding site. FEBS J 2014; 281:2851-60. [PMID: 24767627 DOI: 10.1111/febs.12825] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/17/2014] [Accepted: 04/24/2014] [Indexed: 11/29/2022]
Abstract
A structural model of human ferroportin has been built using two Escherichia coli proteins belonging to the major facilitator superfamily of transporters. A potential iron binding site was identified in the inward-open conformation of the model, and its relevance was tested through measurement of iron export of HEK293T cells expressing wild-type or mutated ferroportin. Aspartates 39 and 181 were found to be essential for the transport ability of the protein. Noteworthy, the D181V mutation is naturally found in type 4 hemochromatosis with reticuloendothelial system iron retention phenotype. The outward-open conformation of ferroportin was also predicted, and showed that significant conformational changes must occur in the inward- to outward-open transition of ferroportin. In particular, putative iron ligands move several ångströms away from each other, leading to the logical conclusion that the iron binding site is not occupied by the metal in the outward-open conformation of ferroportin.
Collapse
|
15
|
Callebaut I, Joubrel R, Pissard S, Kannengiesser C, Gérolami V, Ged C, Cadet E, Cartault F, Ka C, Gourlaouen I, Gourhant L, Oudin C, Goossens M, Grandchamp B, De Verneuil H, Rochette J, Férec C, Le Gac G. Comprehensive functional annotation of 18 missense mutations found in suspected hemochromatosis type 4 patients. Hum Mol Genet 2014; 23:4479-90. [PMID: 24714983 DOI: 10.1093/hmg/ddu160] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hemochromatosis type 4 is a rare form of primary iron overload transmitted as an autosomal dominant trait caused by mutations in the gene encoding the iron transport protein ferroportin 1 (SLC40A1). SLC40A1 mutations fall into two functional categories (loss- versus gain-of-function) underlying two distinct clinical entities (hemochromatosis type 4A versus type 4B). However, the vast majority of SLC40A1 mutations are rare missense variations, with only a few showing strong evidence of causality. The present study reports the results of an integrated approach collecting genetic and phenotypic data from 44 suspected hemochromatosis type 4 patients, with comprehensive structural and functional annotations. Causality was demonstrated for 10 missense variants, showing a clear dichotomy between the two hemochromatosis type 4 subtypes. Two subgroups of loss-of-function mutations were distinguished: one impairing cell-surface expression and one altering only iron egress. Additionally, a new gain-of-function mutation was identified, and the degradation of ferroportin on hepcidin binding was shown to probably depend on the integrity of a large extracellular loop outside of the hepcidin-binding domain. Eight further missense variations, on the other hand, were shown to have no discernible effects at either protein or RNA level; these were found in apparently isolated patients and were associated with a less severe phenotype. The present findings illustrate the importance of combining in silico and biochemical approaches to fully distinguish pathogenic SLC40A1 mutations from benign variants. This has profound implications for patient management.
Collapse
Affiliation(s)
- Isabelle Callebaut
- IMPMC, Sorbonne Universités - UMR CNRS 7590, UPMC Univ Paris 06, Muséum d'Histoire Naturelle, IRD UMR 206, Paris, France
| | - Rozenn Joubrel
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR SnInBioS, CHRU de Brest, Etablissement Français du Sang - Bretagne, Brest, France
| | - Serge Pissard
- Laboratoire de Génétique, UPEC (Université Paris Est Creteil), GHU Henri Mondor, Créteil, France
| | - Caroline Kannengiesser
- Hôpital Bichat, Département de Génétique, Inserm U1149 - Center for Research on Inflammation, Université Paris Diderot, AP-HP, Paris, France
| | | | - Cécile Ged
- Inserm U1035, Biothérapies des Maladies Génétiques et Cancers, Université de Bordeaux, CHU de Bordeaux, Pôle de Biologie et Pathologie, Bordeaux, France
| | - Estelle Cadet
- Laboratoire de Génétique Moléculaire, UPJV EA4666, CHU d'Amiens, Amiens, France
| | | | - Chandran Ka
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR SnInBioS, CHRU de Brest, Etablissement Français du Sang - Bretagne, Brest, France
| | - Isabelle Gourlaouen
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR SnInBioS, CHRU de Brest, Etablissement Français du Sang - Bretagne, Brest, France
| | | | - Claire Oudin
- Hôpital Bichat, Département de Génétique, Inserm U1149 - Center for Research on Inflammation, Université Paris Diderot, AP-HP, Paris, France
| | - Michel Goossens
- Laboratoire de Génétique, UPEC (Université Paris Est Creteil), GHU Henri Mondor, Créteil, France
| | - Bernard Grandchamp
- Hôpital Bichat, Département de Génétique, Inserm U1149 - Center for Research on Inflammation, Université Paris Diderot, AP-HP, Paris, France
| | - Hubert De Verneuil
- Inserm U1035, Biothérapies des Maladies Génétiques et Cancers, Université de Bordeaux, CHU de Bordeaux, Pôle de Biologie et Pathologie, Bordeaux, France
| | - Jacques Rochette
- Laboratoire de Génétique Moléculaire, UPJV EA4666, CHU d'Amiens, Amiens, France
| | - Claude Férec
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR SnInBioS, CHRU de Brest, Etablissement Français du Sang - Bretagne, Brest, France
| | - Gérald Le Gac
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR SnInBioS, CHRU de Brest, Etablissement Français du Sang - Bretagne, Brest, France CHRU de Brest, Inserm CIC0502, Brest, France
| |
Collapse
|
16
|
Abstract
The iron hormone hepcidin and its receptor and cellular iron exporter ferroportin control the major fluxes of iron into blood plasma: intestinal iron absorption, the delivery of recycled iron from macrophages, and the release of stored iron from hepatocytes. Because iron losses are comparatively very small, iron absorption and its regulation by hepcidin and ferroportin determine total body iron content. Hepcidin is in turn feedback-regulated by plasma iron concentration and iron stores, and negatively regulated by the activity of erythrocyte precursors, the dominant consumers of iron. Hepcidin and ferroportin also play a role in host defense and inflammation, and hepcidin synthesis is induced by inflammatory signals including interleukin-6 and activin B. This review summarizes and discusses recent progress in molecular characterization of systemic iron homeostasis and its disorders, and identifies areas for further investigation.
Collapse
|
17
|
Delaby C, Oustric V, Schmitt C, Muzeau F, Robreau AM, Letteron P, Couchi E, Yu A, Lyoumi S, Deybach JC, Puy H, Karim Z, Beaumont C, Grandchamp B, Demant P, Gouya L. Epistasis in iron metabolism: complex interactions between Cp, Mon1a, and Slc40a1 loci and tissue iron in mice. Mamm Genome 2013; 24:427-38. [PMID: 24121729 DOI: 10.1007/s00335-013-9479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/29/2013] [Indexed: 11/29/2022]
Abstract
Disorders of iron metabolism are among the most common acquired and constitutive diseases. Hemochromatosis has a solid genetic basis and in Northern European populations it is usually associated with homozygosity for the C282Y mutation in the HFE protein. However, the penetrance of this mutation is incomplete and the clinical presentation is highly variable. The rare and common variants identified so far as genetic modifiers of HFE-related hemochromatosis are unable to account for the phenotypic heterogeneity of this disorder. There are wide variations in the basal iron status of common inbred mouse strains, and this diversity may reflect the genetic background of the phenotypic diversity under pathological conditions. We therefore examined the genetic basis of iron homeostasis using quantitative trait loci mapping applied to the HcB-15 recombinant congenic strains for tissue and serum iron indices. Two highly significant QTL containing either the N374S Mon1a mutation or the Ferroportin locus were found to be major determinants in spleen and liver iron loading. Interestingly, when considering possible epistatic interactions, the effects of Mon1a on macrophage iron export are conditioned by the genotype at the Slc40a1 locus. Only mice that are C57BL/10ScSnA homozygous at both loci display a lower spleen iron burden. Furthermore, the liver-iron lowering effect of the N374S Mon1a mutation is observed only in mice that display a nonsense mutation in the Ceruloplasmin (Cp) gene. This study highlights the existence of genetic interactions between Cp, Mon1a, and the Slc40a1 locus in iron metabolism, suggesting that epistasis may be a crucial determinant of the variable biological and clinical presentations in iron disorders.
Collapse
|
18
|
Le Gac G, Ka C, Joubrel R, Gourlaouen I, Lehn P, Mornon JP, Férec C, Callebaut I. Structure-function analysis of the human ferroportin iron exporter (SLC40A1): effect of hemochromatosis type 4 disease mutations and identification of critical residues. Hum Mutat 2013; 34:1371-80. [PMID: 23784628 DOI: 10.1002/humu.22369] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/06/2013] [Indexed: 11/06/2022]
Abstract
Ferroportin (SLC40A1) is the only known iron exporter in mammals and is considered a key coordinator of the iron balance between intracellular and systemic iron homeostasis. However, the structural organization of ferroportin in the lipid bilayer remains controversial and very little is known about the mechanism underlying iron egress. In the present study, we have developed an approach based on comparative modeling, which has led to the construction of a model of the three-dimensional (3D) structure of ferroportin by homology to the crystal structure of a Major Facilitator Superfamily member (EmrD). This model predicts atomic details for the organization of ferroportin transmembrane helices and is in agreement with our current understanding of the ferroportin function and its interaction with hepcidin. Using in vitro experiments, we demonstrate that this model can be used to identify novel critical amino acids. In particular, we show that the tryptophan residue 42 (p.Trp42), which is localized within the extracellular end of the ferroportin pore, is likely involved in both the iron export function and in the mechanism of inhibition by hepcidin. Thus, our 3D model provides a new perspective for understanding the molecular basis of ferroportin functions and dysfunctions.
Collapse
Affiliation(s)
- Gérald Le Gac
- Inserm UMR1078, Université de Brest, SFR SnInBioS, Centre Hospitalier Régional Universitaire - Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Etablissement Français du Sang - Bretagne, Brest, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang MLH, Austin CJD, Sari MA, Suryo Rahmanto Y, Ponka P, Vyoral D, Richardson DR. Hepcidin bound to α2-macroglobulin reduces ferroportin-1 expression and enhances its activity at reducing serum iron levels. J Biol Chem 2013; 288:25450-25465. [PMID: 23846698 DOI: 10.1074/jbc.m113.471573] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225-6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down-regulate Fpn1.
Collapse
Affiliation(s)
- Michael Li-Hsuan Huang
- From the Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christopher J D Austin
- From the Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marie-Agnès Sari
- the Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, 45 Rue des Saints Peres, 75006 Paris, France
| | - Yohan Suryo Rahmanto
- From the Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Prem Ponka
- the Lady Davis Institute for Medical Research, Montreal, Quebec H3T1E2, Canada
| | - Daniel Vyoral
- the Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague 2, 128 20, Czech Republic, and; the First Faculty of Medicine, Institute of Pathological Physiology, Charles University in Prague, U Nemocnice 5, Prague 2, 128 53, Czech Republic
| | - Des R Richardson
- From the Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia,.
| |
Collapse
|
20
|
Song G, Jiang Q, Xu T, Liu YL, Xu ZG, Guo ZY. A convenient luminescence assay of ferroportin internalization to study its interaction with hepcidin. FEBS J 2013; 280:1773-81. [PMID: 23413836 DOI: 10.1111/febs.12192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/03/2013] [Accepted: 02/12/2013] [Indexed: 11/29/2022]
Abstract
Hepcidin is a liver-secreted small disulfide-rich peptide that plays a key role in iron homeostasis by binding and mediating the internalization and degradation of the only iron efflux transporter so far known, ferroportin (Fpn). To study hepcidin-Fpn interactions, in the present study we established a convenient luminescence assay for the quantitative measurement of hepcidin-induced Fpn internalization by fusing a small nanoluciferase (NanoLuc, 171 amino acids) at the Fpn C-terminus. Once the NanoLuc-tagged Fpn was internalized, the measured luminescence was significantly decreased when assayed with the intact transiently transfected cells and an inducible expression system. Through the coexpression of a NanoLuc-tagged Fpn and an enhanced green fluorescent protein (EGFP)-tagged Fpn by the use of an inducible bidirectional promoter, we could measure the hepcidin-induced Fpn internalization qualitatively and quantitatively on the basis of the fluorescence of the tagged EGFP and the luminescence of the tagged NanoLuc. Thus, our present study provides a novel and convenient assay for measuring the hepcidin-Fpn interaction qualitatively and quantitatively. Through coexpression of a NanoLuc-tagged wild-type Fpn and an EGFP-tagged hepcidin-insensitive mutant [C326S]Fpn, we demonstrated that the mutant Fpn had no effect on hepcidin-induced internalization of wild-type Fpn, suggesting that wild-type Fpn and mutant Fpn are functionally independent.
Collapse
Affiliation(s)
- Ge Song
- Institute of Protein Research, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
21
|
Yeh KY, Yeh M, Glass J. Interactions between ferroportin and hephaestin in rat enterocytes are reduced after iron ingestion. Gastroenterology 2011; 141:292-9, 299.e1. [PMID: 21473866 DOI: 10.1053/j.gastro.2011.03.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Ferroportin (Fpn) is a multiple transmembrane protein required for iron export into the systemic circulation, in cooperation with hephaestin (Heph). Despite the importance of Fpn in iron transport, there is controversy about its topology and functional state upon interaction with Heph. METHODS The topology of Fpn was determined using monospecific antisera against its different epitopes, in sheets of cells from duodenum that were or were not permeabilized with detergent. Immunoprecipitation and blue native polyacrylamide gel electrophoresis, followed by immunoblot analysis, were used to determine the extent of interactions between Fpn and Heph. Antisera against the intracellular, C-termini of divalent metal transporter (Dmt1) and Heph served as controls. RESULTS Immunofluorescence analysis with antisera against amino acids 172-193 of Fpn (anti-Fpn 172) detected Fpn only in permeabilized cells, whereas anti-Fpn 232 (amino acids 232-249), anti-Fpn 370 (amino acids 370-420), and anti-Fpn C (the C-terminus) detected Fpn in nonpermeabilized and permeabilized cells. Immunoprecipitation studies showed that Fpn and Heph coprecipitated with either anti-Fpn or anti-Heph. Blue native polyacrylamide gel electrophoresis studies revealed that a fraction of Fpn comigrates with Heph; the apparent interaction decreases after iron ingestion. CONCLUSIONS Studies with antisera to different epitopes of Fpn indicate that the topology of Fpn is consistent with an 11-transmembrane model, with the C-terminus exposed on the cell surface. Reduced interactions between Fpn and Heph after iron ingestion indicate that this is a regulatory mechanism for limiting further iron absorption.
Collapse
Affiliation(s)
- Kwo-Yih Yeh
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | | |
Collapse
|
22
|
Beaumont C. Multiple regulatory mechanisms act in concert to control ferroportin expression and heme iron recycling by macrophages. Haematologica 2011; 95:1233-6. [PMID: 20675742 DOI: 10.3324/haematol.2010.025585] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
23
|
McDonald CJ, Wallace DF, Ostini L, Bell SJ, Demediuk B, Subramaniam VN. G80S-linked ferroportin disease: classical ferroportin disease in an Asian family and reclassification of the mutant as iron transport defective. J Hepatol 2011; 54:538-44. [PMID: 21094556 DOI: 10.1016/j.jhep.2010.07.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/18/2010] [Accepted: 07/05/2010] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Hereditary iron overload associated with mutations in the ferroportin gene produces a dichotomy of phenotypes resulting from either increase or decrease in iron efflux capacity. In this study, we examined the molecular basis of iron overload in a family of Vietnamese origin, characterized the molecular and cellular defect, and correlated it with the clinical and pathological phenotype. METHODS We analyzed the ferroportin gene by DNA sequencing. The molecular characterization was performed by immunofluorescence microscopy analysis of transfected cells. We analyzed ferritin levels, in cells expressing wild-type and mutant ferroportin, to define the nature of the molecular defect in iron transport. RESULTS We identified a G to A nucleotide change at position 238 in the ferroportin gene leading to the G80S substitution. Cellular analysis of the mutant protein indicates that this amino acid change does not affect the localization of the protein but does affect its ability to transport iron. CONCLUSIONS The G80S mutation results in a mutated ferroportin associated with iron overload and is predicted to be defective in iron export.
Collapse
Affiliation(s)
- Cameron J McDonald
- Membrane Transport Laboratory, Division of Cancer and Cell Biology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Wolff NA, Liu W, Fenton RA, Lee WK, Thévenod F, Smith CP. Ferroportin 1 is expressed basolaterally in rat kidney proximal tubule cells and iron excess increases its membrane trafficking. J Cell Mol Med 2011; 15:209-19. [PMID: 20015204 PMCID: PMC3822789 DOI: 10.1111/j.1582-4934.2009.00985.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/18/2009] [Indexed: 12/29/2022] Open
Abstract
Ferroportin 1 (FPN1) is an iron export protein expressed in liver and duodenum, as well as in reticuloendothelial macrophages. Previously, we have shown that divalent metal transporter 1 (DMT1) is expressed in late endosomes and lysosomes of the kidney proximal tubule (PT), the nephron segment responsible for the majority of solute reabsorption. We suggested that following receptor mediated endocytosis of transferrin filtered by the glomerulus, DMT1 exports iron liberated from transferrin into the cytosol. FPN1 is also expressed in the kidney yet its role remains obscure. As a first step towards determining the role of renal FPN1, we localized FPN1 in the PT. FPN1 was found to be located in association with the basolateral PT membrane and within the cytosolic compartment. FPN1 was not expressed on the apical brush-border membrane of PT cells. These data support a role for FPN1 in vectorial export of iron out of PT cells. Furthermore, under conditions of iron loading of cultured PT cells, FPN1 was trafficked to the plasma membrane suggesting a coordinated cellular response to export excess iron and limit cellular iron concentrations.
Collapse
Affiliation(s)
- Natascha A Wolff
- Department of Physiology & Pathophysiology, University of Witten/HerdeckeWitten, Germany
| | - Wei Liu
- Faculty of Life Sciences, University of ManchesterManchester, UK
| | - Robert A Fenton
- The Water and Salt Research Center, Institute of Anatomy, University of AarhusAarhus, Denmark
| | - Wing-Kee Lee
- Department of Physiology & Pathophysiology, University of Witten/HerdeckeWitten, Germany
| | - Frank Thévenod
- Department of Physiology & Pathophysiology, University of Witten/HerdeckeWitten, Germany
| | - Craig P Smith
- Faculty of Life Sciences, University of ManchesterManchester, UK
| |
Collapse
|
25
|
Ferroportin and erythroid cells: an update. Adv Hematol 2010; 2010. [PMID: 20827391 PMCID: PMC2935194 DOI: 10.1155/2010/404173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/08/2010] [Accepted: 06/23/2010] [Indexed: 12/21/2022] Open
Abstract
In recent years there have been major advances in our knowledge of the regulation of iron metabolism that have had implications for understanding the pathophysiology of some human disorders like beta-thalassemia and other iron overload diseases. However, little is known about the relationship among ineffective erythropoiesis, the role of iron-regulatory genes, and tissue iron distribution in beta-thalassemia. The principal aim of this paper is an update about the role of Ferroportin during human normal and pathological erythroid differentiation. Particular attention will be given to beta-thalassemia and other diseases with iron overload. Recent discoveries indicate that there is a potential for therapeutic intervention in beta-thalassemia by means of manipulating iron metabolism.
Collapse
|
26
|
Wallace DF, Harris JM, Subramaniam VN. Functional analysis and theoretical modeling of ferroportin reveals clustering of mutations according to phenotype. Am J Physiol Cell Physiol 2009; 298:C75-84. [PMID: 19846751 DOI: 10.1152/ajpcell.00621.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ferroportin disease is a heterogeneous iron release disorder resulting from mutations in the ferroportin gene. Ferroportin protein is a multitransmembrane domain iron transporter, responsible for iron export from cells, which, in turn, is regulated by the peptide hormone hepcidin. Mutations in the ferroportin gene may affect either regulation of the protein's transporter function or the ability of hepcidin to regulate iron efflux. We have used a combination of functional analysis of epitope-tagged ferroportin variants coupled with theoretical modeling to dissect the relationship between ferroportin mutations and their cognate phenotypes. Myc epitope-tagged human ferroportin expression constructs were transfected into Caco-2 intestinal cells and protein localization analyzed by immunofluorescence microscopy and colocalization with organelle markers. The effect of mutations on iron efflux was assessed by costaining with anti-ferritin antibodies and immunoblotting to quantitate cellular expression of ferritin and transferrin receptor 1. Wild-type ferroportin localized mainly to the cell surface and intracellular structures. All ferroportin disease-causing mutations studied had no effect on localization at the cell surface. N144H, N144T, and S338R mutant ferroportin retained the ability to transport iron. In contrast, A77D, V162Delta, and L170F mutants were iron transport defective. Surface staining experiments showed that both ends of the protein were located inside the cell. These data were used as the basis for theoretical modeling of the ferroportin molecule. The model predicted phenotypic clustering of mutations with gain-of-function variants associated with a hypothetical channel through the axis of ferroportin. Conversely, loss-of-function variants were located at the membrane/cytoplasm interface.
Collapse
Affiliation(s)
- Daniel F Wallace
- Membrane Transport Laboratory, The Queensland Institute of Medical Research, 300 Herston Rd., Herston, Brisbane, QLD 4006, Australia
| | | | | |
Collapse
|
27
|
Abstract
The interaction between the hormone hepcidin and the iron exporter ferroportin (Fpn) regulates plasma iron concentrations. Hepcidin binds to Fpn and induces its internalization and degradation, resulting in decreased iron efflux from cells into plasma. Fpn mutations in N144, Y64N, and C326 residue cause autosomal dominant disease with parenchymal iron overload, apparently due to the resistance of mutant Fpn to hepcidin-mediated internalization. To define the mechanism of resistance, we generated human Fpn constructs bearing the pathogenic mutations. The mutants localized to the cell surface and exported iron normally, but were partially or completely resistant to hepcidin-mediated internalization and continued to export iron despite the presence of hepcidin. The primary defect with exofacial C326 substitutions was the loss of hepcidin binding, which resulted in the most severe phenotype. The thiol form of C326 was essential for interaction with hepcidin, suggesting that C326-SH homology is located in or near the binding site of hepcidin. In contrast, N144 and Y64 residues were not required for hepcidin binding, but their mutations impaired the subsequent internalization of the ligand-receptor complex. Our observations explain why the mutations in C326 Fpn residue produce a severe form of hemochromatosis with iron overload at an early age.
Collapse
|
28
|
Rice AE, Mendez MJ, Hokanson CA, Rees DC, Björkman PJ. Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J Mol Biol 2009; 386:717-32. [PMID: 19150361 PMCID: PMC2677177 DOI: 10.1016/j.jmb.2008.12.063] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/03/2008] [Accepted: 12/22/2008] [Indexed: 01/01/2023]
Abstract
Ferroportin is a multipass membrane protein that serves as an iron exporter in many vertebrate cell types. Ferroportin-mediated iron export is controlled by the hormone hepcidin, which binds ferroportin, causing its internalization and degradation. Mutations in ferroportin cause a form of the iron overload hereditary disease hemochromatosis. Relatively little is known about ferroportin's properties or the mechanism by which mutations cause disease. In this study, we expressed and purified human ferroportin to characterize its biochemical/biophysical properties in solution and conducted cell biological studies in mammalian cells. We found that purified detergent-solubilized ferroportin is a well-folded monomer that binds hepcidin. In cell membranes, the N- and C-termini were both cytosolic, implying an even number of transmembrane regions, and ferroportin was mainly localized to the plasma membrane. Hepcidin addition resulted in a redistribution of ferroportin to intracellular compartments that labeled with early endosomal and lysosomal, but not Golgi, markers and that trafficked along microtubules. An analysis of 16 disease-related ferroportin mutants revealed that all were expressed and trafficked to the plasma membrane but that some were resistant to hepcidin-induced internalization. The characterizations reported here form a basis upon which models for ferroportin's role in regulating iron homeostasis in health and disease can be interpreted.
Collapse
Affiliation(s)
- Adrian E. Rice
- Graduate Option in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, California 91125
| | - Michael J. Mendez
- Division of Biology, California Institute of Technology, Pasadena, California 91125
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Craig A. Hokanson
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Pamela J. Björkman
- Division of Biology, California Institute of Technology, Pasadena, California 91125
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
29
|
Yeh KY, Yeh M, Mims L, Glass J, Torre A. Iron feeding induces ferroportin 1 and hephaestin migration and interaction in rat duodenal epithelium. Am J Physiol Gastrointest Liver Physiol 2009; 296:G55-65. [PMID: 18974313 PMCID: PMC3833992 DOI: 10.1152/ajpgi.90298.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal iron absorption involves proteins located in the brush border membrane (BBM), cytoplasm, and basolateral membrane (BLM) of duodenal enterocytes. Ferroportin 1 (FPN1) and hephaestin (Heph) are necessary for transport of iron out of enterocytes, but it is not known whether these two proteins interact during iron absorption. We first examined colocalization of the proteins by cotransfection of HEK293 cells with pDsRed-FPN1 with pEmGFP-Heph or with the COOH-terminal truncated pEmGFP-HephDelta43 or -HephDelta685 and found that FPN1 and Heph with or without the COOH terminus colocalized. In rat duodenal enterocytes, within 1 h of iron feeding prominent migration of FPN1 from the apical subterminal zone to the basal subnuclear zone of the BLM occurred and increased to at least 4 h after feeding. Heph exhibited a similar though less prominent migration after iron ingestion. Analysis using rat duodenal epithelial cell sheets demonstrated that 1) by velocity sedimentation ultracentrifugation, FPN1 and Heph occupied vesicles of different sizes prior to iron feeding and migrated to similar fractions 1 h after iron feeding; 2) by blue native/SDS-PAGE, FPN1, and Heph interacted to form two complexes, one containing dimeric FPN1 and intact Heph and the other consisting of monomeric FPN1 and a Heph fragment; and 3) by immunoprecipitation, anti-Heph or anti-FPN1 antiserum coimmunoprecipitated FPN1 and Heph. Thus the data indicate that FPN1 and Heph migrate and interact during iron feeding and suggest that dimeric FPN1 is associated with intact Heph.
Collapse
Affiliation(s)
- Kwo-yih Yeh
- Departments of Medicine,Molecular and Cellular Physiology,the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Mary Yeh
- the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Laura Mims
- the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jonathan Glass
- Departments of Medicine,the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | | |
Collapse
|
30
|
Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochem J 2008; 411:123-31. [PMID: 18072938 DOI: 10.1042/bj20071474] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue macrophages play an essential role in iron recycling through the phagocytosis of senescent RBCs (red blood cells). Following haem catabolism by HO1 (haem oxygenase 1), they recycle iron back into the plasma through the iron exporter Fpn (ferroportin). We previously described a cellular model of EP (erythrophagocytosis), based on primary cultures of mouse BMDMs (bone-marrow-derived macrophages) and aged murine RBCs, and showed that EP induces changes in the expression profiles of Fpn and HO1. In the present paper, we demonstrate that haem derived from human or murine RBCs or from an exogenous source of haem led to marked transcriptional activation of the Fpn and HO1 genes. Iron released from haem catabolism subsequently stimulated the Fpn mRNA and protein expression associated with localization of the transporter at the cell surface, which probably promotes the export of iron into the plasma. These findings highlight a dual mechanism of Fpn regulation in BMDMs, characterized by early induction of the gene transcription predominantly mediated by haem, followed by iron-mediated post-transcriptional regulation of the exporter.
Collapse
|
31
|
De Domenico I, McVey Ward D, Kaplan J. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol 2008; 9:72-81. [PMID: 17987043 DOI: 10.1038/nrm2295] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian iron homeostasis must be meticulously regulated so that this essential element is available for use, but at the same time prevented from promoting the formation of toxic radicals. Controlling the entry of iron into blood plasma is the main mechanism by which iron stores in the body are physiologically manipulated and regulated. Defects in iron acquisition at the cellular and systemic levels lead to human disorders, which involve either iron overload or iron deficiency. Discoveries of iron transporters and insights into their regulation have provided important information about iron metabolism and genetic iron disorders.
Collapse
Affiliation(s)
- Ivana De Domenico
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
32
|
Schimanski LM, Drakesmith H, Talbott C, Horne K, James JR, Davis SJ, Sweetland E, Bastin J, Cowley D, Townsend ARM. Ferroportin: lack of evidence for multimers. Blood Cells Mol Dis 2007; 40:360-9. [PMID: 17977032 DOI: 10.1016/j.bcmd.2007.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 09/04/2007] [Indexed: 12/26/2022]
Abstract
Ferroportin is a multi-transmembrane glycoprotein that mediates iron export from cells. Mutations in ferroportin are linked to type IV hemochromatosis, a dominantly inherited disorder of iron metabolism. Multimers of ferroportin, whose existence may relate to the dominant inheritance pattern of disease, have been detected in some studies but not others. We looked for evidence of multimerization in several different types of experiment. We assayed the maturation of mutant and wild-type ferroportin and found that loss-of-function mutants had a reduced half-life but did not alter the stability of coexpressed wild-type. Using bioluminescence resonance energy transfer analysis, we tested how mature wild-type ferroportin behaved in intact live cell membranes. Ferroportin-ferroportin interactions gave the very low acceptor/donor ratio-independent energy transfer levels characteristic of random protein-protein interactions, consistent with ferroportin behaving as a monomer. Consistent with these experiments, we were unable to detect a dominant negative functional effect of mutant ferroportin on wild-type, even when expression of wild-type protein was titrated to low levels. These data suggest that dominantly inherited ferroportin disease does not result from the direct action of a mutated protein inhibiting a wild-type protein within multimers. We propose other possible mechanisms of disease.
Collapse
Affiliation(s)
- Lisa M Schimanski
- Molecular Immunology Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, UK OX3 9DS, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV), which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.
Collapse
Affiliation(s)
- Ross-M Graham
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, PO Box 480, Fremantle 6959, Western Australia, Australia
| | | | | | | | | |
Collapse
|
34
|
De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI, Ganz T, Musci G, Kaplan J. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 2007; 18:2569-78. [PMID: 17475779 PMCID: PMC1924807 DOI: 10.1091/mbc.e07-01-0060] [Citation(s) in RCA: 322] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ferroportin (Fpn) is the only known iron exporter in vertebrates. Hepcidin, a peptide secreted by the liver in response to iron or inflammation, binds to Fpn, inducing its internalization and degradation. We show that after binding of hepcidin, Fpn is tyrosine phosphorylated at the plasma membrane. Mutants of human Fpn that do not get internalized or that are internalized slowly show either absent or impaired phosphorylation. We identify adjacent tyrosines as the phosphorylation sites and show that mutation of both tyrosines prevents hepcidin-mediated Fpn internalization. Once internalized, Fpn is dephosphorylated and subsequently ubiquitinated. An inability to ubiquitinate Fpn does not prevent hepcidin-induced internalization, but it inhibits the degradation of Fpn. Ubiquitinated Fpn is trafficked through the multivesicular body pathway en route to degradation in the late endosome/lysosome. Depletion of proteins involved in multivesicular body trafficking (Endosome Sorting Complex Required for Transport proteins), by small-interfering RNA, reduces the trafficking of Fpn-green fluorescent to the lysosome.
Collapse
Affiliation(s)
| | | | - Charles Langelier
- Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84132
| | | | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Wesley I. Sundquist
- Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84132
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Giovanni Musci
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Ambientali e Microbiologiche, Università del Molise, Campobasso, Italy 86100
| | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The past decade has seen extraordinary growth in our understanding of the pathophysiology of Wilson disease, genetic hemochromatosis and alpha-1 antitrypsin deficiency as we continue to elucidate the molecular and cellular machinery involved in their pathogenesis. The continued progress in the elaboration of the molecular biology, genetics, epidemiology, and management of these prototypical inherited metabolic diseases will be the focus of this review. RECENT FINDINGS Wilson disease and genetic hemochromatosis involve defects in metal transport with copper and iron accumulation in hepatocytes, respectively. In alpha-1 antitrypsin deficiency, hepatocytes accumulate defective alpha-1 antitrypsin that misfolds. As a more complete picture of the molecular biology of the proteins and genes involved in transport has evolved, so has our understanding of the etiopathogenesis of these disorders and the variety of phenotypes observed. Finally, new ideas regarding the clinical management of these disorders will emerge with elucidation of the cellular basis for these diseases. SUMMARY The recent developments detailed in this article have important implications for the future diagnosis and treatment of these diseases. Recent discoveries link molecular defects with alterations in the functional machinery of the cell, and provide new avenues for advancing the diagnosis and treatment of these disorders.
Collapse
Affiliation(s)
- Scott Fink
- Division of Digestive and Liver Disease, Center for Liver Disease and Transplantation, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
36
|
Zohn IE, De Domenico I, Pollock A, Ward DM, Goodman JF, Liang X, Sanchez AJ, Niswander L, Kaplan J. The flatiron mutation in mouse ferroportin acts as a dominant negative to cause ferroportin disease. Blood 2007; 109:4174-80. [PMID: 17289807 PMCID: PMC1885502 DOI: 10.1182/blood-2007-01-066068] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ferroportin disease is caused by mutation of one allele of the iron exporter ferroportin (Fpn/IREG1/Slc40a1/MTP1). All reported human mutations are missense mutations and heterozygous null mutations in mouse Fpn do not recapitulate the human disease. Here we describe the flatiron (ffe) mouse with a missense mutation (H32R) in Fpn that affects its localization and iron export activity. Similar to human patients with classic ferroportin disease, heterozygous ffe/+ mice present with iron loading of Kupffer cells, high serum ferritin, and low transferrin saturation. In macrophages isolated from ffe/+ heterozygous mice and through the use of Fpn plasmids with the ffe mutation, we show that Fpn(ffe) acts as a dominant negative, preventing wild-type Fpn from localizing on the cell surface and transporting iron. These results demonstrate that mutations in Fpn resulting in protein mislocalization act in a dominant-negative fashion to cause disease, and the Fpn(ffe) mouse represents the first mouse model of ferroportin disease.
Collapse
Affiliation(s)
- Irene E Zohn
- Howard Hughes Medical Institute, Department of Pediatrics, Section of Developmental Biology, University of Colorado at Denver and Health Sciences Center, Aurora
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Han O, Kim EY. Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells. J Cell Biochem 2007; 101:1000-10. [PMID: 17486601 DOI: 10.1002/jcb.21392] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An iron exporter ferroportin-1 (FPN-1) and a multi-copper oxidase hephaestin (Heph) are predicted to be expressed on the basolateral membrane of the enterocyte and involved in the processes of iron export across the basolateral membrane of the enterocyte. However, it is not clear where these proteins are exactly located in the intestinal absorptive cell. We examined cellular localization of FPN-1 and Heph in the intestinal absorptive cells using the fully differentiated Caco-2 cells. Confocal microscope study showed that FPN-1 and Heph are located on the basolateral membrane and they are associated with the transferrin receptor (TfR) in fully differentiated Caco-2 cells grown on microporous membrane inserts. However, Heph protein was not detected in the crypt cell-like proliferating Caco-2 cell. In stably transfected human intestinal absorptive cells expressing human FPN-1 modified by the addition of GFP at the C-terminus, we show that FPN-1-GFP is located on the basolateral membrane and it is associated with Heph suggesting the possibility that FPN-1 might associate and interact with Heph in the process of iron exit across the basolateral membrane of intestinal absorptive cell.
Collapse
Affiliation(s)
- Okhee Han
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
38
|
Pietrangelo A, Corradini E, Ferrara F, Vegetti A, De Jong G, Luca Abbati G, Paolo Arcuri P, Martinelli S, Cerofolini E. Magnetic resonance imaging to identify classic and nonclassic forms of ferroportin disease. Blood Cells Mol Dis 2006; 37:192-196. [PMID: 17052926 DOI: 10.1016/j.bcmd.2006.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 08/30/2006] [Accepted: 08/30/2006] [Indexed: 12/25/2022]
Abstract
The ferroportin-related disorder is an increasingly recognized cause of hereditary iron overload. Based on the in vitro behavior of different ferroportin mutant subsets, it was suggested that different forms of the disorder might exist in humans. We used MRI to address this question in vivo in 22 patients from four different pedigrees carrying different ferroportin mutations: A77D, N144H, G80S and Val 162del. We found that, based on the iron status of spleen and bone macrophages, two different forms of the disease can be identified: a classic, common form, characterized by hepatocyte, splenic macrophage and bone marrow macrophage iron retention in patients carrying the A77D, G80S and Val 162del ferroportin variants; a rarer non-classic form, associated with liver iron overload but normal spleen and bone marrow iron content in patients with the N144H mutation. The two forms are likely caused by lack- or gain-of-protein function, respectively. Interestingly, in treated patients with the classic form, the spleen and the spine show appreciable iron accumulation even when serum ferritin is normal and liver iron content low. In conclusion, MRI is a useful non-invasive diagnostic tool to categorize and diagnose the disorder, monitor the status of iron depletion and gain insights on its natural history and management.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- Center for Hemochromatosis, Department of Internal Medicine, University Hospital of Modena and Reggio Emilia, Policlinico, Via del Pozzo 71 41100 Modena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Ferroportin (Fpn) (IREG1, SLC40A1, MTP1) is an iron transporter, and mutations in Fpn result in a genetically dominant form of iron overload disease. Previously, we demonstrated that Fpn is a multimer and that mutations in Fpn are dominant negative. Other studies have suggested that Fpn is not a multimer and that overexpression or epitope tags might affect the localization, topology, or multimerization of Fpn. We generated wild-type Fpn with 3 different epitopes, GFP, FLAG, and c-myc, and expressed these constructs in cultured cells. Co-expression of any 2 different epitope-tagged proteins in the same cell resulted in their quantitative coimmunoprecipitation. Treatment of Fpn-GFP/Fpn-FLAG-expressing cells with crosslinking reagents resulted in the crosslinking of Fpn-GFP and Fpn-FLAG. Western analysis of rat glioma C6 cells or mouse bone marrow macrophages exposed to crosslinking reagents showed that endogenous Fpn is a dimer. These results support the hypothesis that the dominant inheritance of Fpn-iron overload disease is due to the dominant-negative effects of mutant Fpn proteins.
Collapse
Affiliation(s)
- Ivana De Domenico
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|