1
|
Hermanns T, Kolek S, Uthoff M, de Heiden RA, Mulder MPC, Baumann U, Hofmann K. A family of bacterial Josephin-like deubiquitinases with an irreversible cleavage mode. Mol Cell 2025; 85:1202-1215.e5. [PMID: 40037356 DOI: 10.1016/j.molcel.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/05/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Many intracellular bacteria secrete deubiquitinase (DUB) effectors into eukaryotic host cells to keep the bacterial surface or the enclosing vesicle membrane free of ubiquitin marks. This study describes a family of DUBs from several bacterial genera, including Simkania, Parachlamydia, Burkholderia, and Pigmentiphaga, which is structurally related to eukaryotic Josephin-type DUBs but contains members that catalyze a unique destructive substrate deubiquitination. These ubiquitin C-terminal clippases (UCCs) cleave ubiquitin before the C-terminal diGly motif, thereby truncating the modifier and leaving a remnant on the substrate. By comparing the crystal structures of substrate-bound clippases and a closely related conventional DUB, we identified the factors causing this shift and found them to be conserved in other clippases, including one highly specific for M1-linked ubiquitin chains. This enzyme class has great potential to serve as tools for studying the ubiquitin system, particularly aspects involving branched chains.
Collapse
Affiliation(s)
- Thomas Hermanns
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Susanne Kolek
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Matthias Uthoff
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
| | - Richard A de Heiden
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Einthovenweg 20, 2333ZC Leiden, the Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Einthovenweg 20, 2333ZC Leiden, the Netherlands
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany.
| |
Collapse
|
2
|
Hermanns T, Uthoff M, Baumann U, Hofmann K. The structural basis for deubiquitination by the fingerless USP-type effector TssM. Life Sci Alliance 2024; 7:e202302422. [PMID: 38170641 PMCID: PMC10719079 DOI: 10.26508/lsa.202302422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Intracellular bacteria are threatened by ubiquitin-mediated autophagy, whenever the bacterial surface or enclosing membrane structures become targets of host ubiquitin ligases. As a countermeasure, many intracellular pathogens encode deubiquitinase (DUB) effectors to keep their surfaces free of ubiquitin. Most bacterial DUBs belong to the OTU or CE-clan families. The betaproteobacteria Burkholderia pseudomallei and Burkholderia mallei, causative agents of melioidosis and glanders, respectively, encode the TssM effector, the only known bacterial DUB belonging to the USP class. TssM is much shorter than typical eukaryotic USP enzymes and lacks the canonical ubiquitin-recognition region. By solving the crystal structures of isolated TssM and its complex with ubiquitin, we found that TssM lacks the entire "Fingers" subdomain of the USP fold. Instead, the TssM family has evolved the functionally analog "Littlefinger" loop, which is located towards the end of the USP domain and recognizes different ubiquitin interfaces than those used by USPs. The structures revealed the presence of an N-terminal immunoglobulin-fold domain, which is able to form a strand-exchange dimer and might mediate TssM localization to the bacterial surface.
Collapse
Affiliation(s)
- Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Matthias Uthoff
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
4
|
Bailey-Elkin BA, Knaap RCM, De Silva A, Boekhoud IM, Mous S, van Vught N, Khajehpour M, van den Born E, Kikkert M, Mark BL. Demonstrating the importance of porcine reproductive and respiratory syndrome virus papain-like protease 2 deubiquitinating activity in viral replication by structure-guided mutagenesis. PLoS Pathog 2023; 19:e1011872. [PMID: 38096325 PMCID: PMC10754444 DOI: 10.1371/journal.ppat.1011872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/28/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Deubiquitination of cellular substrates by viral proteases is a mechanism used to interfere with host cellular signaling processes, shared between members of the coronavirus- and arterivirus families. In the case of Arteriviruses, deubiquitinating and polyprotein processing activities are accomplished by the virus-encoded papain-like protease 2 (PLP2). Several studies have implicated the deubiquitinating activity of the porcine reproductive and respiratory syndrome virus (PRRSV) PLP2 in the downregulation of cellular interferon production, however to date, the only arterivirus PLP2 structure described is that of equine arteritis virus (EAV), a distantly related virus. Here we describe the first crystal structure of the PRRSV PLP2 domain both in the presence and absence of its ubiquitin substrate, which reveals unique structural differences in this viral domain compared to PLP2 from EAV. To probe the role of PRRSV PLP2 deubiquitinating activity in host immune evasion, we selectively removed this activity from the domain by mutagenesis and found that the viral domain could no longer downregulate cellular interferon production. Interestingly, unlike EAV, and also unlike the situation for MERS-CoV, we found that recombinant PRRSV carrying PLP2 DUB-specific mutations faces significant selective pressure to revert to wild-type virus in MARC-145 cells, suggesting that the PLP2 DUB activity, which in PRRSV is present as three different versions of viral protein nsp2 expressed during infection, is critically important for PRRSV replication.
Collapse
Affiliation(s)
- Ben A. Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert C. M. Knaap
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Anuradha De Silva
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ilse M. Boekhoud
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra Mous
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Niek van Vught
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Brian L. Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Boll V, Hermanns T, Uthoff M, Erven I, Hörner EM, Kozjak-Pavlovic V, Baumann U, Hofmann K. Functional and structural diversity in deubiquitinases of the Chlamydia-like bacterium Simkania negevensis. Nat Commun 2023; 14:7335. [PMID: 37957213 PMCID: PMC10643670 DOI: 10.1038/s41467-023-43144-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Besides the regulation of many cellular pathways, ubiquitination is important for defense against invading pathogens. Some intracellular bacteria have evolved deubiquitinase (DUB) effector proteins, which interfere with the host ubiquitin system and help the pathogen to evade xenophagy and lysosomal degradation. Most intracellular bacteria encode one or two DUBs, which are often linkage-promiscuous or preferentially cleave K63-linked chains attached to bacteria or bacteria-containing vacuoles. By contrast, the respiratory pathogen Legionella pneumophila possesses a much larger number of DUB effectors, including a K6-specific enzyme belonging to the OTU family and an M1-specific DUB uniquely found in this bacterium. Here, we report that the opportunistic pathogen Simkania negevensis, which is unrelated to Legionella but has a similar lifestyle, encodes a similarly large number of DUBs, including M1- and K6-specific enzymes. Simkania DUBs are highly diverse and include DUB classes never before seen in bacteria. Interestingly, the M1- and K6-specific DUBs of Legionella and Simkania are unrelated, suggesting that their acquisition occurred independently. We characterize the DUB activity of eight Simkania-encoded enzymes belonging to five different DUB classes. We also provide a structural basis for the M1-specificity of a Simkania DUB, which most likely evolved from a eukaryotic otubain-like precursor.
Collapse
Affiliation(s)
- Vanessa Boll
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Matthias Uthoff
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Bayer AG, Research & Development, Pharmaceuticals, Biologics Research, Wuppertal, Germany
| | - Ilka Erven
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Eva-Maria Hörner
- Chair of Microbiology, Biocenter, Julius Maximilian University, Würzburg, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Chair of Microbiology, Biocenter, Julius Maximilian University, Würzburg, Würzburg, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Luo M, Wang X, Wu S, Yang C, Su Q, Huang L, Fu K, An S, Xie F, To KKW, Wang F, Fu L. A20 promotes colorectal cancer immune evasion by upregulating STC1 expression to block "eat-me" signal. Signal Transduct Target Ther 2023; 8:312. [PMID: 37607946 PMCID: PMC10444827 DOI: 10.1038/s41392-023-01545-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have induced durable clinical responses in a subset of patients with colorectal cancer (CRC). However, the dis-satisfactory response rate and the lack of appropriate biomarkers for selecting suitable patients to be treated with ICIs pose a major challenge to current immunotherapies. Inflammation-related molecule A20 is closely related to cancer immune response, but the effect of A20 on "eat-me" signal and immunotherapy efficacy remains elusive. We found that A20 downregulation prominently improved the antitumor immune response and the efficacy of PD-1 inhibitor in CRC in vitro and in vivo. Higher A20 expression was associated with less infiltration of immune cells including CD3 (+), CD8 (+) T cells and macrophages in CRC tissues and also poorer prognosis. Gain- and loss-A20 functional studies proved that A20 could decrease the "eat-me" signal calreticulin (CRT) protein on cell membrane translocation via upregulating stanniocalcin 1 (STC1), binding to CRT and detaining in mitochondria. Mechanistically, A20 inhibited GSK3β phosphorylating STC1 at Thr86 to slow down the degradation of STC1 protein. Our findings reveal a new crosstalk between inflammatory molecule A20 and "eat-me" signal in CRC, which may represent a novel predictive biomarker for selecting CRC patients most likely to benefit from ICI therapy.
Collapse
Affiliation(s)
- Min Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Shaocong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Qiao Su
- Laboratory Animal Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Lamei Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Sainan An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Fachao Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
7
|
Kang S, Kim G, Choi M, Jeong M, van der Heden van Noort GJ, Roh SH, Shin D. Structural insights into ubiquitin chain cleavage by Legionella ovarian tumor deubiquitinases. Life Sci Alliance 2023; 6:e202201876. [PMID: 37100438 PMCID: PMC10133868 DOI: 10.26508/lsa.202201876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Although ubiquitin is found only in eukaryotes, several pathogenic bacteria and viruses possess proteins that hinder the host ubiquitin system. Legionella, a gram-negative intracellular bacterium, possesses an ovarian tumor (OTU) family of deubiquitinases (Lot DUBs). Herein, we describe the molecular characteristics of Lot DUBs. We elucidated the structure of the LotA OTU1 domain and revealed that entire Lot DUBs possess a characteristic extended helical lobe that is not found in other OTU-DUBs. The structural topology of an extended helical lobe is the same throughout the Lot family, and it provides an S1' ubiquitin-binding site. Moreover, the catalytic triads of Lot DUBs resemble those of the A20-type OTU-DUBs. Furthermore, we revealed a unique mechanism by which LotA OTU domains cooperate together to distinguish the length of the chain and preferentially cleave longer K48-linked polyubiquitin chains. The LotA OTU1 domain itself cleaves K6-linked ubiquitin chains, whereas it is also essential for assisting the cleavage of longer K48-linked polyubiquitin chains by the OTU2 domain. Thus, this study provides novel insights into the structure and mechanism of action of Lot DUBs.
Collapse
Affiliation(s)
- Sangwoo Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Gyuhee Kim
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Minhyeong Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Minwoo Jeong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | - Soung-Hun Roh
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Donghyuk Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
8
|
El Khouri E, Diab F, Louvrier C, Assrawi E, Daskalopoulou A, Nguyen A, Piterboth W, Deshayes S, Desdoits A, Copin B, Dastot Le Moal F, Karabina SA, Amselem S, Aouba A, Giurgea I. A critical region of A20 unveiled by missense TNFAIP3 variations that lead to autoinflammation. eLife 2023; 12:e81280. [PMID: 37342083 PMCID: PMC10284599 DOI: 10.7554/elife.81280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/03/2023] [Indexed: 06/22/2023] Open
Abstract
A20 haploinsufficiency (HA20) is an autoinflammatory disease caused by heterozygous loss-of-function variations in TNFAIP3, the gene encoding the A20 protein. Diagnosis of HA20 is challenging due to its heterogeneous clinical presentation and the lack of pathognomonic symptoms. While the pathogenic effect of TNFAIP3 truncating variations is clearly established, that of missense variations is difficult to determine. Herein, we identified a novel TNFAIP3 variation, p.(Leu236Pro), located in the A20 ovarian tumor (OTU) domain and demonstrated its pathogenicity. In the patients' primary cells, we observed reduced A20 levels. Protein destabilization was predicted in silico for A20_Leu236Pro and enhanced proteasomal degradation was confirmed in vitro through a flow cytometry-based functional assay. By applying this approach to the study of another missense variant, A20_Leu275Pro, for which no functional characterization has been performed to date, we showed that this variant also undergoes enhanced proteasomal degradation. Moreover, we showed a disrupted ability of A20_Leu236Pro to inhibit the NF-κB pathway and to deubiquitinate its substrate TRAF6. Structural modeling revealed that two residues involved in OTU pathogenic missense variations (i.e. Glu192Lys and Cys243Tyr) establish common interactions with Leu236. Interpretation of newly identified missense variations is challenging, requiring, as illustrated here, functional demonstration of their pathogenicity. Together with functional studies, in silico structure analysis is a valuable approach that allowed us (i) to provide a mechanistic explanation for the haploinsufficiency resulting from missense variations and (ii) to unveil a region within the OTU domain critical for A20 function.
Collapse
Affiliation(s)
- Elma El Khouri
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Maladies génétiques d’expression pédiatrique"ParisFrance
| | - Farah Diab
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Maladies génétiques d’expression pédiatrique"ParisFrance
| | - Camille Louvrier
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Maladies génétiques d’expression pédiatrique"ParisFrance
- Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de ParisParisFrance
| | - Eman Assrawi
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Maladies génétiques d’expression pédiatrique"ParisFrance
| | - Aphrodite Daskalopoulou
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Maladies génétiques d’expression pédiatrique"ParisFrance
| | - Alexandre Nguyen
- Département de Médecine Interne et Immunologie Clinique, Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen NormandieCaenFrance
| | - William Piterboth
- Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de ParisParisFrance
| | - Samuel Deshayes
- Département de Médecine Interne et Immunologie Clinique, Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen NormandieCaenFrance
| | | | - Bruno Copin
- Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de ParisParisFrance
| | - Florence Dastot Le Moal
- Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de ParisParisFrance
| | - Sonia Athina Karabina
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Maladies génétiques d’expression pédiatrique"ParisFrance
| | - Serge Amselem
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Maladies génétiques d’expression pédiatrique"ParisFrance
- Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de ParisParisFrance
| | - Achille Aouba
- Département de Médecine Interne et Immunologie Clinique, Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen NormandieCaenFrance
| | - Irina Giurgea
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Maladies génétiques d’expression pédiatrique"ParisFrance
- Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de ParisParisFrance
| |
Collapse
|
9
|
Wilde ML, Ruparel U, Klemm T, Lee VV, Calleja DJ, Komander D, Tonkin CJ. Characterisation of the OTU domain deubiquitinase complement of Toxoplasma gondii. Life Sci Alliance 2023; 6:e202201710. [PMID: 36958824 PMCID: PMC10038098 DOI: 10.26508/lsa.202201710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
The phylum Apicomplexa contains several parasitic species of medical and agricultural importance. The ubiquitination machinery remains, for the most part, uncharacterised in apicomplexan parasites, despite the important roles that it plays in eukaryotic biology. Bioinformatic analysis of the ubiquitination machinery in apicomplexan parasites revealed an expanded ovarian tumour domain-containing (OTU) deubiquitinase (DUB) family in Toxoplasma, potentially reflecting functional importance in apicomplexan parasites. This study presents comprehensive characterisation of Toxoplasma OTU DUBs. AlphaFold-guided structural analysis not only confirmed functional orthologues found across eukaryotes, but also identified apicomplexan-specific enzymes, subsequently enabling discovery of a cryptic OTU DUB in Plasmodium species. Comprehensive biochemical characterisation of 11 Toxoplasma OTU DUBs revealed activity against ubiquitin- and NEDD8-based substrates and revealed ubiquitin linkage preferences for Lys6-, Lys11-, Lys48-, and Lys63-linked chain types. We show that accessory domains in Toxoplasma OTU DUBs impose linkage preferences, and in case of apicomplexan-specific TgOTU9, we discover a cryptic ubiquitin-binding domain that is essential for TgOTU9 activity. Using the auxin-inducible degron (AID) to generate knockdown parasite lines, TgOTUD6B was found to be important for Toxoplasma growth.
Collapse
Affiliation(s)
- Mary-Louise Wilde
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ushma Ruparel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Theresa Klemm
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - V Vern Lee
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia; and Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Australia
| | - Dale J Calleja
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - David Komander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Erven I, Abraham E, Hermanns T, Baumann U, Hofmann K. A widely distributed family of eukaryotic and bacterial deubiquitinases related to herpesviral large tegument proteins. Nat Commun 2022; 13:7643. [PMID: 36496440 PMCID: PMC9741609 DOI: 10.1038/s41467-022-35244-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Distinct families of eukaryotic deubiquitinases (DUBs) are regulators of ubiquitin signaling. Here, we report on the presence of an additional DUB class broadly distributed in eukaryotes and several bacteria. The only described members of this family are the large tegument proteins of herpesviruses, which are attached to the outside of the viral capsid. By using a bioinformatics screen, we have identified distant homologs of this VTD (Viral tegument-like DUB) family in vertebrate transposons, fungi, insects, nematodes, cnidaria, protists and bacteria. While some VTD activities resemble viral tegument DUBs in that they favor K48-linked ubiquitin chains, other members are highly specific for K6- or K63-linked ubiquitin chains. The crystal structures of K48- and K6-specific members reveal considerable differences in ubiquitin recognition. The VTD family likely evolved from non-DUB proteases and spread through transposons, many of which became 'domesticated', giving rise to the Drosophila male sterile (3)76Ca gene and several nematode genes with male-specific expression.
Collapse
Affiliation(s)
- Ilka Erven
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| | - Elena Abraham
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, D-50674 Cologne, Germany
| | - Thomas Hermanns
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| | - Ulrich Baumann
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, D-50674 Cologne, Germany
| | - Kay Hofmann
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| |
Collapse
|
11
|
Chen X, Wang X, Yang Y, Fang C, Liu J, Liang X, Yang Y. A20 Enhances the Expression of the Proto-Oncogene C-Myc by Downregulating TRAF6 Ubiquitination after ALV-A Infection. Viruses 2022; 14:v14102210. [PMID: 36298765 PMCID: PMC9607361 DOI: 10.3390/v14102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Hens infected with avian leukosis virus subgroup A (ALV-A) experience stunted growth, immunosuppression, and potentially, lymphoma development. According to past research, A20 can both promote and inhibit tumor growth. In this study, DF-1 cells were infected with ALV-A rHB2015012, and Gp85 expression was measured at various time points. A recombinant plasmid encoding the chicken A20 gene and short hairpin RNA targeting chicken A20 (A20-shRNA) was constructed and transfected into DF-1 cells to determine the effect on ALV-A replication. The potential signaling pathways of A20 were explored using bioinformatics prediction, co-immunoprecipitation, and other techniques. The results demonstrate that A20 and ALV-A promoted each other after ALV-A infection of DF-1 cells, upregulated A20, inhibited TRAF6 ubiquitination, and promoted STAT3 phosphorylation. The phosphorylated-STAT3 (p-STAT3) promoted the expression of proto-oncogene c-myc, which may lead to tumorigenesis. This study will help to further understand the tumorigenic process of ALV-A and provide a reference for preventing and controlling ALV.
Collapse
Affiliation(s)
- Xueyang Chen
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xingming Wang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Yuxin Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Chun Fang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Jing Liu
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- Correspondence: (X.L.); (Y.Y.)
| | - Yuying Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- Correspondence: (X.L.); (Y.Y.)
| |
Collapse
|
12
|
Structural Insights into the Phosphorylation-Enhanced Deubiquitinating Activity of UCHL3 and Ubiquitin Chain Cleavage Preference Analysis. Int J Mol Sci 2022; 23:ijms231810789. [PMID: 36142702 PMCID: PMC9501053 DOI: 10.3390/ijms231810789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Ubiquitin C-terminal hydrolase-L3 (UCHL3), an important member of the ubiquitin C-terminal hydrolase family, is involved in DNA repair and cancer development. UCHL3 can cleave only complexes of monoubiquitin and its conjugates, such as Ub-AMC, His, or small ubiquitin-like modifier, but not polyubiquitin chains. Phosphorylation of Ser75 promotes the cleavage activity of UCHL3 toward poly-ubiquitin chains in vivo, but biochemical evidence in vitro is still lacking. Here, we first analyzed the structure of simulated phosphorylated UCHL3S75E and the complex of UCHL3S75E with Ub-PA and preliminarily explained the structural mechanism of phosphorylation-enhanced UCHL3 deubiquitinating activity. Additionally, the cleavage activity of UCHL3 toward different types of synthesized poly-ubiquitin chains in vitro was tested. The results showed that purified UCHL3S75E enhanced the cleavage activity toward Ub-AMC compared to UCHL3WT. Meanwhile, UCHL3S75E and UCHL3WT did not show any cleavage activity for different types of di-ubiquitin and tri-ubiquitin chains. However, UCHL3 could hydrolyze the K48 tetra-ubiquitin chain, providing compelling in vitro evidence confirming previous in vivo results. Thus, this study shows that UCHL3 can hydrolyze and has a cleavage preference for polyubiquitin chains, which expands our understanding of the phosphorylation regulation of UCHL3 and lays a foundation for further elucidation of its physiological role.
Collapse
|
13
|
TNFAIP3 mediates FGFR1 activation-induced breast cancer angiogenesis by promoting VEGFA expression and secretion. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2453-2465. [PMID: 36002765 DOI: 10.1007/s12094-022-02918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/30/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the role and mechanism of TNF-inducible protein 3(TNFAIP3) in breast cancer angiogenesis induced by fibroblast growth factor receptor1 (FGFR1) activation. METHODS The immunohistochemical assay was used to detect the expression of vascular endothelial cell marker CD31 and CD105 in mice DCIS.COM-iFGFR1 transplanted tumor (previously established by our group). The effects of TNFAIP3 knockout/knockdown breast cancer cell lines on angiogenesis, migration, and invasion of Human Umbilical Vein Endothelial Cells (HUVEC) were detected by the tubulogenesis and Trewells assay. RNA-seq analysis of TNFAIP3 downstreams differential genes after TNFAIP3 knockdown. The expression and secretion of VEGFA after FGFR1 activation in breast cancer cells were detected by qPCR, Western blot, and ELISA. RESULTS Immunohistochemistry showed that TNFAIP3 knockout inhibited the expression of CD31 and CD105 in DCIS grafted tumors promoted by FGFR1 activation. Tubulogenesis and Trewells experiments showed that TNFAIP3 gene knockout/knockdown inhibited the angiogenesis, migration, and invasion of HUVEC cells promoted by FGFR1 activation. qPCR assay showed that VEGFA mRNA level in the TNFAIP3 knockdown cell line was significantly down-regulated (p < 0.05). qPCR, Western blot and ELISA results showed that TNFAIP3 gene knockout/knockdown could inhibit the expression and secretion of VEGFA in breast cancer cells induced by FGFR1 activation. CONCLUSION TNFAIP3 promotes breast cancer angiogenesis induced by FGFR1 activation through the expression and secretion of VEGFA.
Collapse
|
14
|
Tamura A, Ito G, Matsuda H, Nibe-Shirakihara Y, Hiraoka Y, Kitagawa S, Hiraguri Y, Nagata S, Aonuma E, Otsubo K, Nemoto Y, Nagaishi T, Watanabe M, Okamoto R, Oshima S. Zranb1-mutant mice display abnormal colonic mucus production and exacerbation of DSS-induced colitis. Biochem Biophys Res Commun 2022; 628:147-154. [DOI: 10.1016/j.bbrc.2022.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
|
15
|
Cingöz S, Soydemir D, Öner TÖ, Karaca E, Özden B, Kurul SH, Bayram E, Coe BP, Nickerson DA, Eichler EE. Novel biallelic variants affecting the OTU domain of the gene OTUD6B associate with severe intellectual disability syndrome and molecular dynamics simulations. Eur J Med Genet 2022; 65:104497. [PMID: 35430327 PMCID: PMC9448893 DOI: 10.1016/j.ejmg.2022.104497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/13/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Intellectual developmental disorder with dysmorphic facies, seizures, and distal limb anomalies (IDDFSDA) is an autosomal recessive multisystem disorder caused by compound heterozygous or homozygous variants in the gene OTUD6B. Herein, we describe novel pathogenic compound heterozygous variants in OTUD6B identified via whole-exome sequencing in an index case exhibited the severe IDDFSDA phenotype. The potential pathogenicity of the novel frameshift and missense variants in the index case was investigated using in silico tools. The truncating frameshift variant in one allele was predicted to undergo degradation via nonsense-mediated decay of the mRNA molecule. To predict the severity of the damage to the protein caused by the missense variant in the other allele and its effects on phenotypic severity was further investigated together with a previously reported first homozygous missense variant in the same domain in another patient with a less severe IDDFSDA phenotype using structural modeling and molecular dynamics (MD) simulations for the first time. Based on these analyzes, it is anticipated that Tyr216Cys in the earlier reported case with less severe IDDFSDA will lead to localized destabilization, whereas Ile274Arg in the presented index case with the severe IDDFSDA phenotype will lead to significant distortion in the overall fold of OTUD6B. Our findings suggest that compound LOF and ultrarare missense variants may be contribute to the underlying variability expressivity associated with this disorder. In conclusion, our findings support that the clinical severity could be related with the predicted functional severity of the variations in OTUD6B. However, additional functional studies are required.
Collapse
Affiliation(s)
- Sultan Cingöz
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
| | - Didem Soydemir
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Tülay Öncü Öner
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burcu Özden
- Izmir Biomedicine and Genome Center, Dokuz Eylul Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Semra Hız Kurul
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylul Health Campus, Izmir, Turkey
| | - Erhan Bayram
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Yin H, Karayel O, Chao YY, Seeholzer T, Hamp I, Plettenburg O, Gehring T, Zielinski C, Mann M, Krappmann D. A20 and ABIN-1 cooperate in balancing CBM complex-triggered NF-κB signaling in activated T cells. Cell Mol Life Sci 2022; 79:112. [PMID: 35099607 PMCID: PMC8803816 DOI: 10.1007/s00018-022-04154-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 11/03/2022]
Abstract
T cell activation initiates protective adaptive immunity, but counterbalancing mechanisms are critical to prevent overshooting responses and to maintain immune homeostasis. The CARD11-BCL10-MALT1 (CBM) complex bridges T cell receptor engagement to NF-κB signaling and MALT1 protease activation. Here, we show that ABIN-1 is modulating the suppressive function of A20 in T cells. Using quantitative mass spectrometry, we identified ABIN-1 as an interactor of the CBM signalosome in activated T cells. A20 and ABIN-1 counteract inducible activation of human primary CD4 and Jurkat T cells. While A20 overexpression is able to silence CBM complex-triggered NF-κB and MALT1 protease activation independent of ABIN-1, the negative regulatory function of ABIN-1 depends on A20. The suppressive function of A20 in T cells relies on ubiquitin binding through the C-terminal zinc finger (ZnF)4/7 motifs, but does not involve the deubiquitinating activity of the OTU domain. Our mechanistic studies reveal that the A20/ABIN-1 module is recruited to the CBM complex via A20 ZnF4/7 and that proteasomal degradation of A20 and ABIN-1 releases the CBM complex from the negative impact of both regulators. Ubiquitin binding to A20 ZnF4/7 promotes destructive K48-polyubiquitination to itself and to ABIN-1. Further, after prolonged T cell stimulation, ABIN-1 antagonizes MALT1-catalyzed cleavage of re-synthesized A20 and thereby diminishes sustained CBM complex signaling. Taken together, interdependent post-translational mechanisms are tightly controlling expression and activity of the A20/ABIN-1 silencing module and the cooperative action of both negative regulators is critical to balance CBM complex signaling and T cell activation.
Collapse
Affiliation(s)
- Hongli Yin
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Ying-Yin Chao
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute and Friedrich Schiller University Jena, Jena, Germany.,Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Thomas Seeholzer
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Isabel Hamp
- Institute for Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, 30167, Hannover, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, 30167, Hannover, Germany
| | - Oliver Plettenburg
- Institute for Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, 30167, Hannover, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, 30167, Hannover, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Christina Zielinski
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute and Friedrich Schiller University Jena, Jena, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
17
|
A structural basis for the diverse linkage specificities within the ZUFSP deubiquitinase family. Nat Commun 2022; 13:401. [PMID: 35058438 PMCID: PMC8776766 DOI: 10.1038/s41467-022-28049-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic deubiquitinases are important regulators of ubiquitin signaling and can be subdivided into several structurally distinct classes. The ZUFSP family, with ZUP1 as its sole human member, has a modular architecture with a core catalytic domain highly active against the ubiquitin-derived peptide RLRGG, but not against ubiquitin itself. Ubiquitin recognition is conferred by additional non-catalytic domains, making full-length ZUP1 active against long K63-linked chains. However, non-mammalian ZUFSP family members contain different ubiquitin-binding domains in their N-terminal regions, despite their high conservation within the catalytic domain. Here, by working with representative ZUFSP family members from insects, fungi and plants, we show that different N-terminal domains are associated with different linkage preferences. Biochemical and structural studies suggest that the acquisition of two family-specific proximal domains have changed the default K48 preference of the ZUFSP family to the K63 preference observed in ZUP1 and its insect homolog. Additional N-terminal zinc finger domains promote chain cleavage without changing linkage-specificity. ZUFSP-type enzymes cleave ubiquitin chains in a linkage-specific fashion, but members from different organisms have different specificities. Using an inter-kingdom comparison of activities and structures, the authors identify the domains responsible for this discrepancy.
Collapse
|
18
|
Jiang W, Deng M, Gan C, Wang L, Mao H, Li Q. A novel missense mutation in TNFAIP3 causes haploinsufficiency of A20. Cell Immunol 2021; 371:104453. [PMID: 34808442 DOI: 10.1016/j.cellimm.2021.104453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/09/2021] [Accepted: 10/31/2021] [Indexed: 01/28/2023]
Abstract
A20, encoded by TNFAIP3, is an effective anti-inflammatory molecule that plays a crucial role in inhibiting NF-κB signal transmission and is linked to multiple inflammatory diseases. It has been reported that the haploinsufficiency of A20 (HA20) caused by multiple base mutations in TNFAIP3 shows early-onset spontaneous Behçet-like disease. However, the mechanisms by which A20 mutations involved in inflammatory disease are incompletely defined. Herein, we reported a novel TNFAIP3 (c.1804A > T, p.T602S) variation, which has not been reported before. Summarizing the patient's immunodeficiency phenotype, we aimed to delineate the underlying mechanism for regulation of inflammation and immunity. Candidate genes associated with the Behçet-like phenotypes of the patient were screened and identified by using whole-exome and sanger sequencing. Functional studies were performed in A20(c.1804A > T, p.T602S) patient-derived peripheral blood mononuclear cells (PBMCs) and THP-1 cell lines by lentivirus mediating stable over-expression of A20 and A20(c.1804A > T, p.T602S) to analyze the activity of NF-κB signaling pathway. The clinical manifestations in patients with syndrome are Behçet-like disorder, and sequencing revealed heterozygous mutation in TNFAIP3 (c.1804A > T, p.T602S). Functional tests found that the PBMCs of the patient and his family carrying this heterozygous variant stimulated by LPS, TNF-α, or IL-1β, increased the levels of inflammatory factors and induced over-activation of the canonical NF-κB signaling pathway. Similar results were also observed in the stable transduction THP-1 (A20, c.1804A>T) cell line stimulated by LPS, TNF-α or IL-1β. The novel loss-of-function A20 variation (c.1804A > T, p.T602S) causes over-activation of the canonical NF-κB signaling pathway and fail to terminate NF-κB signaling in response to stimulation by inflammatory cytokines. The variation triggers a dominantly-inherited Behçet-like disorder caused by haploinsufficiency of the A20 protein. Identification of the novel A20 mutation attaches great importance to prenatal diagnosis and fetal therapeutic intervention, drastically reducing the risk of newborns suffering from HA20.
Collapse
Affiliation(s)
- Wei Jiang
- Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Mengyue Deng
- Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Chun Gan
- Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Li Wang
- Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China
| | - Huawei Mao
- Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China; Department of Rheumatology and Immunology, Beijing Children's Hospital, Capital Medical University, Beijing, PR China
| | - Qiu Li
- Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, PR China.
| |
Collapse
|
19
|
Jang JH, Kim H, Jung IY, Cho JH. A20 Inhibits LPS-Induced Inflammation by Regulating TRAF6 Polyubiquitination in Rainbow Trout. Int J Mol Sci 2021; 22:ijms22189801. [PMID: 34575978 PMCID: PMC8472768 DOI: 10.3390/ijms22189801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin-editing enzyme A20 is known to inhibit the NF-κB transcription factor in the Toll-like receptor (TLR) pathways, thereby negatively regulating inflammation. However, its role in the TLR signaling pathway in fish is still largely unknown. Here, we identified a gene encoding A20 (OmA20) in rainbow trout, Oncorhynchus mykiss, and investigated its role in TLR response regulation. The deduced amino acid sequence of OmA20 contained a conserved N-terminal ovarian tumor (OTU) domain and seven C-terminal zinc-finger (ZnF) domains. Lipopolysaccharide (LPS) stimulation increased OmA20 expression in RTH-149 cells. In LPS-stimulated RTH-149 cells, gain- and loss-of-function experiments revealed that OmA20 inhibited MAPK and NF-κB activation, as well as the expression of pro-inflammatory cytokines. OmA20 interacted with TRAF6, a key molecule involved in the activation of TLR-mediated NF-κB signaling pathways. LPS treatment increased the K63-linked polyubiquitination of TRAF6 in RTH-149 cells, which was suppressed when OmA20 was forced expression. Furthermore, mutations in the OTU domain significantly decreased deubiquitination of the K63-linked ubiquitin chain on TRAF6, indicating that deubiquitinase activity is dependent on the OTU domain. These findings suggest that OmA20, like those of mammals, reduces LPS-induced inflammation in rainbow trout, most likely by regulating K63-linked ubiquitination of TRAF6.
Collapse
Affiliation(s)
- Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.H.J.); (H.K.)
| | - Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.H.J.); (H.K.)
| | - In Young Jung
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Korea;
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.H.J.); (H.K.)
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1347; Fax: +82-55-772-1349
| |
Collapse
|
20
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
21
|
Aravilli RK, Vikram SL, Kohila V. The Functional Impact of Alternative Splicing and Single Nucleotide Polymorphisms in Rheumatoid Arthritis. Curr Pharm Biotechnol 2021; 22:1014-1029. [PMID: 33001009 DOI: 10.2174/1389201021666201001142416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Advances in genomics and proteomics aid the identification of genes associated with various diseases. Genome-Wide Association Studies (GWAS) have identified multiple loci as risk alleles for susceptibility to Rheumatoid Arthritis (RA). A bisection of RA risk can be attributed to genetic factors. Over 100 associated genetic loci that encompass immune regulatory factors have been found to be linked with RA. Aberrant Single Nucleotide Polymorphisms (SNPs) and alternative splicing mechanisms in such loci induce RA. These aberrations are viewed as potential therapeutic targets due to their association with a multitude of diseases. This review presents a few imperious genes whose alterations can cause severe bone deformities culminating in RA.
Collapse
Affiliation(s)
- R Kowshik Aravilli
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - S Laveen Vikram
- Department of Computer Science and Engineering, Alagappa University, Karaikudi, India
| | - V Kohila
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
22
|
Steinle H, Ellwanger K, Mirza N, Briese S, Kienes I, Pfannstiel J, Kufer TA. 14-3-3 and erlin proteins differentially interact with RIPK2 complexes. J Cell Sci 2021; 134:jcs258137. [PMID: 34152391 DOI: 10.1242/jcs.258137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/19/2021] [Indexed: 01/11/2023] Open
Abstract
The receptor interacting serine/threonine kinase 2 (RIPK2) is essential for signal transduction induced by the pattern recognition receptors NOD1 and NOD2 (referred to collectively as NOD1/2). Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells. Here, we identified the molecular composition of these complexes. Infection with Shigella flexneri to activate NOD1-RIPK2 revealed that RIPK2 formed dynamic interactions with several cellular proteins, including A20 (also known as TNFAIP3), erlin-1, erlin-2 and 14-3-3. Whereas interaction of RIPK2 with 14-3-3 proteins was strongly reduced upon infection with Shigella, erlin-1 and erlin-2 (erlin-1/2) specifically bound to RIPK2 complexes. The interaction of these proteins with RIPK2 was validated using protein binding assays and immunofluorescence staining. Beside bacterial activation of NOD1/2, depletion of the E3 ubiquitin ligase XIAP and treatment with RIPK2 inhibitors also led to the formation of RIPK2 cytosolic complexes. Although erlin-1/2 were recruited to RIPK2 complexes following XIAP inhibition, these proteins did not associate with RIPK2 structures induced by RIPK2 inhibitors. While the specific recruitment of erlin-1/2 to RIPK2 suggests a role in innate immune signaling, the biological response regulated by the erlin-1/2-RIPK2 association remains to be determined.
Collapse
Affiliation(s)
- Heidrun Steinle
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Nora Mirza
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Selina Briese
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Ioannis Kienes
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim Mass Spectrometry Module, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| |
Collapse
|
23
|
Wang Y, Wang F. Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. Front Pharmacol 2021; 12:685011. [PMID: 34177595 PMCID: PMC8224227 DOI: 10.3389/fphar.2021.685011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications such as ubiquitination play important regulatory roles in several biological processes in eukaryotes. This process could be reversed by deubiquitinating enzymes (DUBs), which remove conjugated ubiquitin molecules from target substrates. Owing to their role as essential enzymes in regulating all ubiquitin-related processes, the abundance, localization, and catalytic activity of DUBs are tightly regulated. Dysregulation of DUBs can cause dramatic physiological consequences and a variety of disorders such as cancer, and neurodegenerative and inflammatory diseases. Multiple factors, such as transcription and translation of associated genes, and the presence of accessory domains, binding proteins, and inhibitors have been implicated in several aspects of DUB regulation. Beyond this level of regulation, emerging studies show that the function of DUBs can be regulated by a variety of post-translational modifications, which significantly affect the abundance, localization, and catalytic activity of DUBs. The most extensively studied post-translational modification of DUBs is phosphorylation. Besides phosphorylation, ubiquitination, SUMOylation, acetylation, oxidation, and hydroxylation are also reported in DUBs. In this review, we summarize the current knowledge on the regulatory effects of post-translational modifications of DUBs.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
24
|
Shi Y, Wang X, Wang J, Wang X, Zhou H, Zhang L. The dual roles of A20 in cancer. Cancer Lett 2021; 511:26-35. [PMID: 33933552 DOI: 10.1016/j.canlet.2021.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
A20 is a prototypical anti-inflammatory molecule that is linked to multiple human diseases, including cancers. The role of A20 as a tumor suppressor was first discovered in B cell lymphomas. Subsequent studies revealed the dual roles of A20 in solid cancers. This review focuses on the roles of A20 in different cancer types to demonstrate that the effects of A20 are cancer type-dependent. A20 plays antitumor roles in colorectal carcinomas and hepatocellular carcinomas, whereas A20 acts as an oncogene in breast cancers, gastric cancers and melanomas. Moreover, the roles of A20 in the setting of glioma therapy are context-dependent. The action mechanisms of A20 in different types of cancer are summarized. Additionally, the role of A20 in antitumor immunity is discussed. Furthermore, some open questions in this rapidly advancing field are proposed. Exploration of the actions and molecular mechanisms of A20 in cancer paves the way for the application of A20-targeting approaches in future cancer therapy.
Collapse
Affiliation(s)
- Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
25
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
26
|
Zammit NW, Seeberger KL, Zamerli J, Walters SN, Lisowski L, Korbutt GS, Grey ST. Selection of a novel AAV2/TNFAIP3 vector for local suppression of islet xenograft inflammation. Xenotransplantation 2020; 28:e12669. [PMID: 33316848 DOI: 10.1111/xen.12669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neonatal porcine islets (NPIs) can restore glucose control in mice, pigs, and non-human primates, representing a potential abundant alternative islet supply for clinical beta cell replacement therapy. However, NPIs are vulnerable to inflammatory insults that could be overcome with genetic modifications. Here, we demonstrate in a series of proof-of-concept experiments the potential of the cytoplasmic ubiquitin-editing protein A20, encoded by the TNFAIP3 gene, as an NPI cytoprotective gene. METHODS We forced A20 expression in NPI grafts using a recombinant adenovirus 5 (Ad5) vector and looked for impact on TNF-stimulated NF-κB activation and NPI graft function. As adeno-associated vectors (AAV) are clinically preferred vectors but exhibit poor transduction efficacy in NPIs, we next screened a series of AAV serotypes under different transduction protocols for their ability achieve high transduction efficiency and suppress NPI inflammation without impacting NPI maturation. RESULTS Forcing the expression of A20 in NPI with Ad5 vector blocked NF-κB activation by inhibiting IκBα phosphorylation and degradation, and reduced the induction of pro-inflammatory genes Cxcl10 and Icam1. A20-expressing NPIs also exhibited superior functional capacity when transplanted into diabetic immunodeficient recipient mice, evidenced by a more rapid return to euglycemia and improved GTT compared to unmodified NPI grafts. We found AAV2 combined with a 14-day culture period maximized NPI transduction efficiency (>70% transduction rate), and suppressed NF-κB-dependent gene expression without adverse impact upon NPI maturation. CONCLUSION We report a new protocol that allows for high-efficiency genetic modification of NPIs, which can be utilized to introduce candidate genes without the need for germline engineering. This approach would be suitable for preclinical and clinical testing of beneficial molecules. We also report for the first time that A20 is cytoprotective for NPI, such that A20 gene therapy could aid the clinical development of NPIs for beta cell replacement.
Collapse
Affiliation(s)
- Nathan W Zammit
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | | | - Jad Zamerli
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Stacey N Walters
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia.,Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Warsaw, Poland
| | | | - Shane T Grey
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Abstract
A20/TNFAIP3 is a TNF induced gene that plays a profound role in preserving cellular and organismal homeostasis (Lee, et al., 2000; Opipari etal., 1990). This protein has been linked to multiple human diseases via genetic, epigenetic, and an emerging series of patients with mono-allelic coding mutations. Diverse cellular functions of this pleiotropically expressed protein include immune-suppressive, anti-inflammatory, and cell protective functions. The A20 protein regulates ubiquitin dependent cell signals; however, the biochemical mechanisms by which it performs these functions is surprisingly complex. Deciphering these cellular and biochemical facets of A20 dependent biology should greatly improve our understanding of murine and human disease pathophysiology as well as unveil new mechanisms of cell and tissue biology.
Collapse
Affiliation(s)
- Bahram Razani
- Department of Dermatology, University of California, San Francisco, CA, United States
| | - Barbara A Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
28
|
Cultrone D, Zammit NW, Self E, Postert B, Han JZR, Bailey J, Warren J, Croucher DR, Kikuchi K, Bogdanovic O, Chtanova T, Hesselson D, Grey ST. A zebrafish functional genomics model to investigate the role of human A20 variants in vivo. Sci Rep 2020; 10:19085. [PMID: 33154446 PMCID: PMC7644770 DOI: 10.1038/s41598-020-75917-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/25/2020] [Indexed: 01/21/2023] Open
Abstract
Germline loss-of-function variation in TNFAIP3, encoding A20, has been implicated in a wide variety of autoinflammatory and autoimmune conditions, with acquired somatic missense mutations linked to cancer progression. Furthermore, human sequence data reveals that the A20 locus contains ~ 400 non-synonymous coding variants, which are largely uncharacterised. The growing number of A20 coding variants with unknown function, but potential clinical impact, poses a challenge to traditional mouse-based approaches. Here we report the development of a novel functional genomics approach that utilizes a new A20-deficient zebrafish (Danio rerio) model to investigate the impact of TNFAIP3 genetic variants in vivo. A20-deficient zebrafish are hyper-responsive to microbial immune activation and exhibit spontaneous early lethality. Ectopic addition of human A20 rescued A20-null zebrafish from lethality, while missense mutations at two conserved A20 residues, S381A and C243Y, reversed this protective effect. Ser381 represents a phosphorylation site important for enhancing A20 activity that is abrogated by its mutation to alanine, or by a causal C243Y mutation that triggers human autoimmune disease. These data reveal an evolutionarily conserved role for TNFAIP3 in limiting inflammation in the vertebrate linage and show how this function is controlled by phosphorylation. They also demonstrate how a zebrafish functional genomics pipeline can be utilized to investigate the in vivo significance of medically relevant human TNFAIP3 gene variants.
Collapse
Affiliation(s)
- Daniele Cultrone
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Nathan W Zammit
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Eleanor Self
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Benno Postert
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Diabetes Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Jeremy Z R Han
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Jacqueline Bailey
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Joanna Warren
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - David R Croucher
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Kazu Kikuchi
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Ozren Bogdanovic
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Epigenetics Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
| | - Daniel Hesselson
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia
- Diabetes Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Shane T Grey
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, The University of New South Wales Sydney, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
29
|
Schubert AF, Nguyen JV, Franklin TG, Geurink PP, Roberts CG, Sanderson DJ, Miller LN, Ovaa H, Hofmann K, Pruneda JN, Komander D. Identification and characterization of diverse OTU deubiquitinases in bacteria. EMBO J 2020; 39:e105127. [PMID: 32567101 PMCID: PMC7396840 DOI: 10.15252/embj.2020105127] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Manipulation of host ubiquitin signaling is becoming an increasingly apparent evolutionary strategy among bacterial and viral pathogens. By removing host ubiquitin signals, for example, invading pathogens can inactivate immune response pathways and evade detection. The ovarian tumor (OTU) family of deubiquitinases regulates diverse ubiquitin signals in humans. Viral pathogens have also extensively co-opted the OTU fold to subvert host signaling, but the extent to which bacteria utilize the OTU fold was unknown. We have predicted and validated a set of OTU deubiquitinases encoded by several classes of pathogenic bacteria. Biochemical assays highlight the ubiquitin and polyubiquitin linkage specificities of these bacterial deubiquitinases. By determining the ubiquitin-bound structures of two examples, we demonstrate the novel strategies that have evolved to both thread an OTU fold and recognize a ubiquitin substrate. With these new examples, we perform the first cross-kingdom structural analysis of the OTU fold that highlights commonalities among distantly related OTU deubiquitinases.
Collapse
Affiliation(s)
- Alexander F Schubert
- Medical Research Council Laboratory of Molecular BiologyCambridgeUK
- Present address:
Department of Structural BiologyGenentech Inc.South San FranciscoCAUSA
| | - Justine V Nguyen
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Paul P Geurink
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical CentreLeidenThe Netherlands
| | - Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Daniel J Sanderson
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Lauren N Miller
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical CentreLeidenThe Netherlands
| | - Kay Hofmann
- Institute for GeneticsUniversity of CologneCologneGermany
| | - Jonathan N Pruneda
- Medical Research Council Laboratory of Molecular BiologyCambridgeUK
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - David Komander
- Medical Research Council Laboratory of Molecular BiologyCambridgeUK
- Ubiquitin Signalling DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
30
|
Hermanns T, Woiwode I, Guerreiro RF, Vogt R, Lammers M, Hofmann K. An evolutionary approach to systematic discovery of novel deubiquitinases, applied to Legionella. Life Sci Alliance 2020; 3:3/9/e202000838. [PMID: 32719160 PMCID: PMC7391069 DOI: 10.26508/lsa.202000838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The analysis of the relationships between different deubiquitinase classes leads to the definition of an aromatic “gatekeeper” motif that distinguishes DUBs from other cysteine proteases and helps to predict new bacterial DUBs. Deubiquitinating enzymes (DUBs) are important regulators of the posttranslational protein ubiquitination system. Mammalian genomes encode about 100 different DUBs, which can be grouped into seven different classes. Members of other DUB classes are found in pathogenic bacteria, which use them to target the host defense. By combining bioinformatical and experimental approaches, we address the question if the known DUB families have a common evolutionary ancestry and share conserved features that set them apart from other proteases. By systematically comparing family-specific hidden Markov models, we uncovered distant relationships between established DUBs and other cysteine protease families. Most DUB families share a conserved aromatic residue linked to the active site, which restricts the cleavage of substrates with side chains at the S2 position, corresponding to Gly-75 in ubiquitin. By applying these criteria to Legionella pneumophila ORFs, we identified lpg1621 and lpg1148 as deubiquitinases, characterized their cleavage specificities, and confirmed the importance of the aromatic gatekeeper motif for substrate selection.
Collapse
Affiliation(s)
- Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Ilka Woiwode
- Institute for Genetics, University of Cologne, Cologne, Germany
| | | | - Robert Vogt
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lammers
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Greifswald, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Priem D, van Loo G, Bertrand MJM. A20 and Cell Death-driven Inflammation. Trends Immunol 2020; 41:421-435. [PMID: 32241683 DOI: 10.1016/j.it.2020.03.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
A20 is a potent anti-inflammatory molecule, and mutations in TNFAIP3, the gene encoding A20, are associated with a wide panel of inflammatory pathologies, both in human and mouse. The anti-inflammatory properties of A20 are commonly attributed to its ability to suppress inflammatory NF-κB signaling by functioning as a ubiquitin-editing enzyme. However, A20 also protects cells from death, independently of NF-κB regulation, and recent work has demonstrated that cell death may drive some of the inflammatory conditions caused by A20 deficiency. Adding to the fact that the protective role of A20 does not primarily rely on its catalytic activities, these findings shed new light on A20 biology.
Collapse
Affiliation(s)
- Dario Priem
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathieu J M Bertrand
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
32
|
Ma K, Zhen X, Zhou B, Gan N, Cao Y, Fan C, Ouyang S, Luo ZQ, Qiu J. The bacterial deubiquitinase Ceg23 regulates the association of Lys-63-linked polyubiquitin molecules on the Legionella phagosome. J Biol Chem 2020; 295:1646-1657. [PMID: 31907282 PMCID: PMC7008378 DOI: 10.1074/jbc.ra119.011758] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
Legionella pneumophila is the causative agent of the lung malady Legionnaires' disease, it modulates host function to create a niche termed the Legionella-containing vacuole (LCV) that permits intracellular L. pneumophila replication. One important aspect of such modulation is the co-option of the host ubiquitin network with a panel of effector proteins. Here, using recombinantly expressed and purified proteins, analytic ultracentrifugation, structural analysis, and computational modeling, along with deubiquitinase (DUB), and bacterial infection assays, we found that the bacterial defective in organelle trafficking/intracellular multiplication effector Ceg23 is a member of the ovarian tumor (OTU) DUB family. We found that Ceg23 displays high specificity toward Lys-63-linked polyubiquitin chains and is localized on the LCV, where it removes ubiquitin moieties from proteins ubiquitinated by the Lys-63-chain type. Analysis of the crystal structure of a Ceg23 variant lacking two putative transmembrane domains at 2.80 Å resolution revealed that despite very limited homology to established members of the OTU family at the primary sequence level, Ceg23 harbors a catalytic motif resembling those associated with typical OTU-type DUBs. ceg23 deletion increased the association of Lys-63-linked polyubiquitin with the bacterial phagosome, indicating that Ceg23 regulates Lys-63-linked ubiquitin signaling on the LCV. In summary, our findings indicate that Ceg23 contributes to the regulation of the association of Lys-63 type polyubiquitin with the Legionella phagosome. Future identification of host substrates targeted by Ceg23 could clarify the roles of these polyubiquitin chains in the intracellular life cycle of L. pneumophila and Ceg23's role in bacterial virulence.
Collapse
Affiliation(s)
- Kelong Ma
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiangkai Zhen
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Biao Zhou
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ninghai Gan
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Songying Ouyang
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
33
|
Martens A, van Loo G. A20 at the Crossroads of Cell Death, Inflammation, and Autoimmunity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036418. [PMID: 31427375 DOI: 10.1101/cshperspect.a036418] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A20 is a potent anti-inflammatory protein, acting by inhibiting nuclear factor κB (NF-κB) signaling and inflammatory gene expression and/or by preventing cell death. Mutations in the A20/TNFAIP3 gene have been associated with a plethora of inflammatory and autoimmune pathologies in humans and in mice. Although the anti-inflammatory role of A20 is well accepted, fundamental mechanistic questions regarding its mode of action remain unclear. Here, we review new findings that further clarify the molecular and cellular mechanisms by which A20 controls inflammatory signaling and cell death, and discuss new evidence for its involvement in inflammatory and autoimmune disease development.
Collapse
Affiliation(s)
- Arne Martens
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
34
|
The function and regulation of OTU deubiquitinases. Front Med 2019; 14:542-563. [PMID: 31884527 DOI: 10.1007/s11684-019-0734-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.
Collapse
|
35
|
Deubiquitinating Enzymes: A Critical Regulator of Mitosis. Int J Mol Sci 2019; 20:ijms20235997. [PMID: 31795161 PMCID: PMC6929034 DOI: 10.3390/ijms20235997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Mitosis is a complex and dynamic process that is tightly regulated by a large number of mitotic proteins. Dysregulation of these proteins can generate daughter cells that exhibit genomic instability and aneuploidy, and such cells can transform into tumorigenic cells. Thus, it is important for faithful mitotic progression to regulate mitotic proteins at specific locations in the cells at a given time in each phase of mitosis. Ubiquitin-dependent modifications play critical roles in this process by regulating the degradation, translocation, or signal transduction of mitotic proteins. Here, we review how ubiquitination and deubiquitination regulate the progression of mitosis. In addition, we summarize the substrates and roles of some deubiquitinating enzymes (DUBs) crucial for mitosis and describe how they contribute error correction during mitosis and control the transition between the mitotic phases.
Collapse
|
36
|
Hameed DS, Sapmaz A, Burggraaff L, Amore A, Slingerland CJ, Westen GJP, Ovaa H. Development of Ubiquitin‐Based Probe for Metalloprotease Deubiquitinases. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dharjath S. Hameed
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Aysegul Sapmaz
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Lindsey Burggraaff
- Drug Discovery and Safety Leiden Academic Center for Drug Research Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Alessia Amore
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Cornelis J. Slingerland
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Gerard J. P. Westen
- Drug Discovery and Safety Leiden Academic Center for Drug Research Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Huib Ovaa
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| |
Collapse
|
37
|
Denisovan, modern human and mouse TNFAIP3 alleles tune A20 phosphorylation and immunity. Nat Immunol 2019; 20:1299-1310. [PMID: 31534238 DOI: 10.1038/s41590-019-0492-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Resisting and tolerating microbes are alternative strategies to survive infection, but little is known about the evolutionary mechanisms controlling this balance. Here genomic analyses of anatomically modern humans, extinct Denisovan hominins and mice revealed a TNFAIP3 allelic series with alterations in the encoded immune response inhibitor A20. Each TNFAIP3 allele encoded substitutions at non-catalytic residues of the ubiquitin protease OTU domain that diminished IκB kinase-dependent phosphorylation and activation of A20. Two TNFAIP3 alleles encoding A20 proteins with partial phosphorylation deficits seemed to be beneficial by increasing immunity without causing spontaneous inflammatory disease: A20 T108A;I207L, originating in Denisovans and introgressed in modern humans throughout Oceania, and A20 I325N, from an N-ethyl-N-nitrosourea (ENU)-mutagenized mouse strain. By contrast, a rare human TNFAIP3 allele encoding an A20 protein with 95% loss of phosphorylation, C243Y, caused spontaneous inflammatory disease in humans and mice. Analysis of the partial-phosphorylation A20 I325N allele in mice revealed diminished tolerance of bacterial lipopolysaccharide and poxvirus inoculation as tradeoffs for enhanced immunity.
Collapse
|
38
|
Priem D, Devos M, Druwé S, Martens A, Slowicka K, Ting AT, Pasparakis M, Declercq W, Vandenabeele P, van Loo G, Bertrand MJM. A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death Dis 2019; 10:692. [PMID: 31534131 PMCID: PMC6751190 DOI: 10.1038/s41419-019-1937-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
The cytokine TNF promotes inflammation either directly by activating the MAPK and NF-κB signaling pathways, or indirectly by triggering cell death. A20 is a potent anti-inflammatory molecule, and mutations in the gene encoding A20 are associated with a wide panel of inflammatory pathologies, both in human and in the mouse. Binding of TNF to TNFR1 triggers the NF-κB-dependent expression of A20 as part of a negative feedback mechanism preventing sustained NF-κB activation. Apart from acting as an NF-κB inhibitor, A20 is also well-known for its ability to counteract the cytotoxic potential of TNF. However, the mechanism by which A20 mediates this function and the exact cell death modality that it represses have remained incompletely understood. In the present study, we provide in vitro and in vivo evidences that deletion of A20 induces RIPK1 kinase-dependent and -independent apoptosis upon single TNF stimulation. We show that constitutively expressed A20 is recruited to TNFR1 signaling complex (Complex I) via its seventh zinc finger (ZF7) domain, in a cIAP1/2-dependent manner, within minutes after TNF sensing. We demonstrate that Complex I-recruited A20 protects cells from apoptosis by stabilizing the linear (M1) ubiquitin network associated to Complex I, a process independent of its E3 ubiquitin ligase and deubiquitylase (DUB) activities and which is counteracted by the DUB CYLD, both in vitro and in vivo. In absence of linear ubiquitylation, A20 is still recruited to Complex I via its ZF4 and ZF7 domains, but this time protects the cells from death by deploying its DUB activity. Together, our results therefore demonstrate two distinct molecular mechanisms by which constitutively expressed A20 protect cells from TNF-induced apoptosis.
Collapse
Affiliation(s)
- Dario Priem
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Michael Devos
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Druwé
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Arne Martens
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karolina Slowicka
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Adrian T Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Wim Declercq
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathieu J M Bertrand
- Center for Inflammation Research, VIB, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
39
|
Discovery and characterization of a novel alphavirus-like RNA virus from the red firebug Pyrrhocoris apterus L. (Heteroptera). J Invertebr Pathol 2019; 166:107213. [DOI: 10.1016/j.jip.2019.107213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
|
40
|
Hameed DS, Sapmaz A, Burggraaff L, Amore A, Slingerland CJ, Westen GJP, Ovaa H. Development of Ubiquitin‐Based Probe for Metalloprotease Deubiquitinases. Angew Chem Int Ed Engl 2019; 58:14477-14482. [DOI: 10.1002/anie.201906790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Dharjath S. Hameed
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Aysegul Sapmaz
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Lindsey Burggraaff
- Drug Discovery and Safety Leiden Academic Center for Drug Research Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Alessia Amore
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Cornelis J. Slingerland
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Gerard J. P. Westen
- Drug Discovery and Safety Leiden Academic Center for Drug Research Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Huib Ovaa
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| |
Collapse
|
41
|
Yoon CI, Ahn SG, Bae SJ, Shin YJ, Cha C, Park SE, Lee JH, Ooshima A, Lee HS, Yang KM, Kim SJ, Park SH, Jeong J. High A20 expression negatively impacts survival in patients with breast cancer. PLoS One 2019; 14:e0221721. [PMID: 31449546 PMCID: PMC6709902 DOI: 10.1371/journal.pone.0221721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background A20 protein has ubiquitin-editing activities and acts as a key regulator of inflammation and immunity. Previously, our group showed that A20 promotes tumor metastasis through multi-monoubiquitylation of SNAIL1 in basal-like breast cancer. Here, we investigated survival outcomes in patients with breast cancer according to A20 expression. Patients and methods We retrospectively collected tumor samples from patients with breast cancer. Immunohistochemistry (IHC) with an A20-specific antibody was performed, and survival outcomes were analyzed. Results A20 expression was evaluated in 442 patients. High A20 expression was associated with advanced anatomical stage and young age. High A20 expression showed significantly inferior recurrence-free-survival and overall-survival (P<0.001 and P<0.001, respectively). Multivariate analysis showed that A20 was an independent prognostic marker for RFS (HRs: 2.324, 95% CIs: 1.446–3.736) and OS (HRs: 2.629, 95% CIs: 1.585–4.361). In human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) subtypes, high A20 levels were associated with poor OS. Conclusion We found that A20 expression is a poor prognostic marker in breast cancer. The prognostic impact of A20 was pronounced in aggressive tumors, such as HER2-positive and TNBC subtypes. Our findings suggested that A20 may be a valuable target in patients with aggressive breast cancer.
Collapse
Affiliation(s)
- Chang Ik Yoon
- Department of Surgery, St Mary’s Hospital, Catholic University College of Medicine, Seoul, Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yun Jin Shin
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chihwan Cha
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Eun Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hyung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do, Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
42
|
Malynn BA, Ma A. A20: A multifunctional tool for regulating immunity and preventing disease. Cell Immunol 2019; 340:103914. [PMID: 31030956 DOI: 10.1016/j.cellimm.2019.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
A20, also known as TNFAIP3, is a potent regulator of ubiquitin (Ub) dependent signals. A20 prevents multiple human diseases, indicating that the critical functions of this protein are clinically as well as biologically impactful. As revealed by mouse models, cell specific functions of A20 are linked to its ability to regulate diverse signaling pathways. Aberrant expression or functions of A20 in specific cell types underlie divergent disease outcomes. Discernment of A20's biochemical functions and their phenotypic outcomes will contribute to our understanding of how ubiquitination is regulated, how Ub mediated functions can prevent disease, and will pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Barbara A Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
43
|
Rawat R, Starczynowski DT, Ntziachristos P. Nuclear deubiquitination in the spotlight: the multifaceted nature of USP7 biology in disease. Curr Opin Cell Biol 2019; 58:85-94. [PMID: 30897496 DOI: 10.1016/j.ceb.2019.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022]
Abstract
Ubiquitination is a versatile and tightly regulated post-translational protein modification with many distinct outcomes affecting protein stability, localization, interactions, and activity. Ubiquitin chain linkages anchored on substrates can be further modified by additional post-translational modifications, including phosphorylation and SUMOylation. Deubiquitinases (DUBs) reverse these ubiquitin marks with matched levels of precision. Over hundred known DUBs regulate a wide variety of cellular events. In this review, we focus on ubiquitin-specific protease 7 (USP7, also known as herpesvirus-associated ubiquitin-specific protease, or HAUSP) as one of the best studied, disease-associated DUBs. By highlighting the functions of USP7, particularly in the nucleus, and the emergence of the newest generation of USP7 inhibitors, we illustrate the importance of individual DUBs in the nucleus, and the therapeutic prospects of DUB targeting in human disease.
Collapse
Affiliation(s)
- Radhika Rawat
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Panagiotis Ntziachristos
- Simpson Querrey Center for Epigenetics; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| |
Collapse
|
44
|
Clague MJ, Urbé S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 2019; 20:338-352. [DOI: 10.1038/s41580-019-0099-1] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci 2019; 76:653-665. [PMID: 30349992 PMCID: PMC11105597 DOI: 10.1007/s00018-018-2949-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Ubiquitination is a reversible cellular process mediated by ubiquitin-conjugating enzymes, whereas deubiquitinating enzymes (DUBs) detach the covalently conjugated ubiquitin from target substrates to counter ubiquitination. DUBs play a crucial role in regulating various signal transduction pathways and biological processes including apoptosis, cell proliferation, DNA damage repair, metastasis, differentiation, etc. Since the transforming growth factor-β (TGF-β) signaling pathway participates in various cellular functions such as inflammation, metastasis and embryogenesis, aberrant regulation of TGF-β signaling induces abnormal cellular functions resulting in numerous diseases. This review focuses on DUBs regulating the TGF-β signaling pathway. We discuss the molecular mechanisms of DUBs involved in TGF-β signaling pathway, and biological and therapeutic implications for various diseases.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
46
|
Abstract
Ubiquitination (also known as ubiquitylation) is a post-translational modification that creates versatility in cell signalling and regulates a multitude of cellular processes. Its versatility lies in the capacity to form eight different inter-ubiquitin linkages through the seven lysine residues of ubiquitin and through its N-terminal methionine (M1). The latter, referred to as linear or M1 linkage, is created by the linear ubiquitin chain assembly complex (LUBAC), the only E3 ligase known to date that is capable of forming linear ubiquitin chains de novo Linear ubiquitin chains are crucial modulators of innate and adaptive immune responses, and act by regulating inflammatory and cell death signalling. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge on the role of LUBAC and linear ubiquitination in immune signalling and human physiology. We specifically focus on the role for LUBAC in signalling that is induced by the cytokine tumour necrosis factor (TNF) and its role in inflammation, gene activation and cell death. Furthermore, we highlight the roles of deubiquitinases (DUBs) that cleave M1 linkages and add an additional layer in the control of LUBAC-mediated immune signalling.
Collapse
Affiliation(s)
- Maureen Spit
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
47
|
Regulation of Gli2 stability by deubiquitinase OTUB2. Biochem Biophys Res Commun 2018; 505:113-118. [DOI: 10.1016/j.bbrc.2018.09.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023]
|
48
|
The pleiotropic effects of TNFα in breast cancer subtypes is regulated by TNFAIP3/A20. Oncogene 2018; 38:469-482. [PMID: 30166590 DOI: 10.1038/s41388-018-0472-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/05/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022]
Abstract
TNFα is a pleiotropic cytokine which fuels tumor cell growth, invasion, and metastasis in some malignancies, while in others it induces cytotoxic cell death. However, the molecular mechanism by which TNFα exerts its diverse effects on breast cancer subtypes remains elusive. Using in vitro assays and mouse xenografts, we show here that TNFα contributes to the aggressive properties of triple negative breast cancer (TNBC) cell lines via upregulation of TNFAIP3(A20). In a striking contrast, TNFα induces a potent cytotoxic cell death in luminal (ER+) breast cancer cell lines which fail to upregulate A20 expression. Overexpression of A20 not only protects luminal breast cancer cell lines from TNFα-induced cell death via inducing HSP70-mediated anti-apoptotic pathway but also promotes a robust EMT/CSC phenotype by activating the pStat3-mediated inflammatory signaling. Furthermore, A20 overexpression in luminal breast cancer cells induces aggressive metastatic properties in mouse xenografts via generating a permissive inflammatory microenvironment constituted by granulocytic-MDSCs. Collectively, our results reveal a mechanism by which A20 mediates pleiotropic effects of TNFα playing role in aggressive behaviors of TNBC subtype while its deficiency results in TNFα-induced apoptotic cell death in luminal breast cancer subtype.
Collapse
|
49
|
Deubiquitinase function of A20 maintains and repairs endothelial barrier after lung vascular injury. Cell Death Discov 2018; 4:60. [PMID: 29796309 PMCID: PMC5955943 DOI: 10.1038/s41420-018-0056-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/02/2018] [Indexed: 01/16/2023] Open
Abstract
Vascular endothelial cadherin (VE-cad) expression at endothelial adherens junctions (AJs) regulates vascular homeostasis. Here we show that endothelial A20 is required for VE-cad expression at AJs to maintain and repair the injured endothelial barrier. In endothelial cell (EC)-restricted Tnfaip3 (A20) knockout (A20∆EC ) mice, LPS challenge caused uncontrolled lung vascular leak and persistent sequestration of polymorphonuclear neutrophil (PMNs). Importantly, A20∆EC mice exhibited drastically reduced VE-cad expression in lungs compared with wild-type counterparts. Endothelial expression of wild-type A20 but not the deubiquitinase-inactive A20 mutant (A20C103A) prevented VE-cad ubiquitination, restored VE-cad expression, and suppressed lung vascular leak in A20∆EC mice. Interestingly, IRAK-M-mediated nuclear factor-κB (NF-κB) signaling downstream of TLR4 was required for A20 expression in ECs. interleukin-1 receptor-associated kinase M (IRAK-M) knockdown suppressed basal and LPS-induced A20 expression in ECs. Further, in vivo silencing of IRAK-M in mouse lung vascular ECs through the CRISPR-Cas9 system prevented expression of A20 and VE-cad while augmenting lung vascular leak. These results suggest that targeting of endothelial A20 is a potential therapeutic strategy to restore endothelial barrier integrity in the setting of acute lung injury.
Collapse
|
50
|
Zhu Y, Qu C, Hong X, Jia Y, Lin M, Luo Y, Lin F, Xie X, Xie X, Huang J, Wu Q, Qiu X, Piao D, Xing Y, Yu T, Lu Y, Huang Q, Yu C, Jin J, Zhang Z. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ 2018; 26:306-320. [PMID: 29748601 PMCID: PMC6329825 DOI: 10.1038/s41418-018-0119-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 11/24/2022] Open
Abstract
TRAF-binding domain (Trabid), one of deubiquitination enzymes, was recently reported to activate Wnt/ β-catenin signaling pathway. However, the role of Trabid in tumors including hepatocellular carcinoma (HCC) and the underlying mechanisms controlling its activity remain poorly understood. Here, we report that Trabid is significantly downregulated in HCC tumor samples and cell lines compared with normal controls and that its expression level is negatively correlated with HCC pathological grading, recurrence, and metastasis. The reintroduction of Trabid expression in tumor cells significantly decreases HCC progression as well as pulmonary metastasis. The effect of Trabid on HCC development occurs at least partially through regulation of Twist1 activity. Mechanistically, Trabid forms a complex with Twist1 and specifically cleaves RNF8-induced K63-linked poly-ubiquitin chains from Twist1, which enhances the association of Twist1 with β-TrCP1 and allows for subsequent K48-linked ubiquitination of Twist1. Knockdown of Trabid increases K63-linked ubiquitination, but abrogates K48-linked ubiquitination and degradation of Twist1, thus enhancing HCC growth and metastasis. Interestingly, Twist1 negatively regulates the promoter activity of Trabid, indicating that a double-negative feedback loop exists. Our findings also identify an essential role for activation of Trabid by AKT-mediated phosphorylation at Ser78/Thr117 in negatively regulating Twist1 signaling, which further provides insights into the mechanisms by which Trabid regulates Twist1 ubiquitination. Our results reveal that Trabid is a previously unrecognized inhibitor of HCC progression and metastasis, which sheds light on new strategies for HCC treatment.
Collapse
Affiliation(s)
- Yuekun Zhu
- Longju Medical Research Center, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou, China.,Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Medical Center, Duke University, Durham, NC, USA
| | - Chao Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Yanyan Jia
- Department of Pharmacy, Xijing Hospital, Fourth Military University, Xi' an, Shanxi, China
| | - Meihua Lin
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yunmei Luo
- Longju Medical Research Center, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou, China
| | - Fengqin Lin
- Longju Medical Research Center, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou, China
| | - Xiaolong Xie
- Longju Medical Research Center, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou, China
| | - Xiaoqi Xie
- Longju Medical Research Center, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou, China
| | - Juan Huang
- Longju Medical Research Center, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou, China
| | - Qin Wu
- Longju Medical Research Center, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Daxun Piao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanwei Xing
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Yu
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou, China
| | - Qiang Huang
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China.
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Zhiyong Zhang
- Longju Medical Research Center, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou, China. .,Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|