1
|
Wu Z, Gao L, Ashraf MA, Nan Q. Interaction Between Actin and Microtubules During Plant Development. Cytoskeleton (Hoboken) 2025. [PMID: 40237573 DOI: 10.1002/cm.22029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
The dynamic interaction between actin filaments (AFs) and microtubules (MTs) plays a crucial role in regulating key developmental and physiological processes in plant cells, particularly in the formation of specialized cell types with distinct shapes and functions, such as pollen tubes, trichomes, and leaf epidermal cells. These cytoskeletal components are organized into specialized structures, and their coordination is tightly regulated by molecular mechanisms, including ROP signaling pathways that control actin- and microtubule-binding proteins. Additionally, bifunctional proteins such as kinesins and myosins, which interact with both AFs and MTs, further facilitate the coordination of cytoskeletal activities, thus regulating cell morphology. Recent advances in understanding of stomatal development (Arabidopsis and maize), moss protonemal cells, and xylem differentiation have provided novel mechanistic insights into cytoskeletal crosstalk. This review, based on recent discoveries, focuses on the role of actin-microtubule interactions in the formation of new cell types, vesicular transport, and cell division. Furthermore, we highlight the molecular mechanisms that govern these interactions and propose future research directions in this field.
Collapse
Affiliation(s)
- Zining Wu
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lidong Gao
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - M Arif Ashraf
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qiong Nan
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Chen Q, Ren Y, Yan Q, Zheng Z, Zhang G, Ma L, Song Q, Niu N. Genome-wide identification and expression analysis of the kinesin gene superfamily suggests roles in response to abiotic stress and fertility of wheat (Triticum aestivum L.). BMC Genomics 2024; 25:1223. [PMID: 39701941 DOI: 10.1186/s12864-024-11156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Kinesin is a motor for microtubule-based motility. It plays a vital role in plant growth and development. The kinesin superfamily members are known mainly from Arabidopsis. Little research about kinesin superfamily has been conducted on hexploid wheat (Triticum aestivum L.). The functions of kinesins in wheat growth and development, regulation of cell division and response to stress are still unclear. RESULTS In this study, we identified 155 kinesin (TaKIN) genes in wheat, which were divided into 10 families and some orphan genes via phylogenetic analysis. Less gene structural differences showed that TaKIN genes had redundant functions. The conserved domains of different family members were different, and some families might have some special functional domains. We found many cis-acting elements related to hormones (GA, Auxin, SA, MeJA), cell cycle and cell division in homeopathic elements of the TaKIN genes. Collinearity analysis showed that TaKIN genes were more conservative in monocotyledons. Expression level in different tissues at different stages suggested that TaKIN family may function during the whole growth and development process in wheat. It was worth noting there were quite different at gene expression level between physiological and heritable male sterile lines during the different stages of pollen development. The differential expression patterns of some TaKIN genes between male sterile line and maintainer line might be related to wheat male sterility. Furthermore, we also found TaKIN genes were involved in response to plant hormones and abiotic stress by stress assays. CONCLUSIONS The result is useful for further exploration of the molecular mechanism of kinesin genes in wheat male sterility and provides important information concerning response to plant hormones and abiotic stress caused by kinesin genes.
Collapse
Affiliation(s)
- Qinge Chen
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Yang Ren
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Qin Yan
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Zhiyuan Zheng
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Gaisheng Zhang
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Lingjian Ma
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Qilu Song
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China.
- Peking University Institute of Advanced Agricultural Sciences/National Key Laboratory of Wheat Improvement, Weifang, Shandong, 261325, China.
| | - Na Niu
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Zhu H, Xu J, Yu K, Wu J, Xu H, Wang S, Wen T. Genome-wide identification of the key kinesin genes during fiber and boll development in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics 2024; 299:38. [PMID: 38517563 DOI: 10.1007/s00438-024-02093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2023] [Indexed: 03/24/2024]
Abstract
Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (G. hirsutum L.). Results showed that 159 kinesin genes, including 15 genes of the kinesin-13 gene subfamily, were identified in upland cotton; of which 157 kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 kinesin genes in upland cotton, including 10 kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 kinesin genes were significantly associated with three fiber traits, among which a kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.
Collapse
Affiliation(s)
- Hong Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jianzhong Xu
- Stock seed farm of Gao'an, Yichun, 330800, Jiangxi, China
| | - Kanbing Yu
- Xishuangbanna Institute of Agricultural Science, Xishuangbanna Autonomous Prefecture, Yunnan, 666100, China
| | - Jianfei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Huifang Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shubin Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Tianwang Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
4
|
Zhu H, Xu J, Yu K, Wu J, Xu H, Wang S, Wen T. Genome-wide identification of the key Kinesin genes during fiber and boll development in upland cotton (Gossypium hirsutum L). Mol Genet Genomics 2024; 299:2. [PMID: 38200363 DOI: 10.1007/s00438-023-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of Kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of Kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key Kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (Gossypium hirsutum L.). Results showed that 159 Kinesin genes, including 15 genes of the Kinesin-13 gene subfamily, were identified in upland cotton; of which 157 Kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 Kinesin genes in upland cotton, including 10 Kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven Kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 Kinesin genes were significantly associated with three fiber traits, among which a Kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one Kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the Kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited Kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.
Collapse
Affiliation(s)
- Hong Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jianzhong Xu
- Agriculture and Rural Affairs Bureau of Gao'an, Yichun, 330800, Jiangxi, China
| | - Kanbing Yu
- Xishuangbanna Institute of Agricultural Science, Xishuangbanna Autonomous Prefecture, 666100, Yunnan, China
| | - Jianfei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Huifang Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shubin Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Tianwang Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
5
|
Meier ND, Seward K, Caplan JL, Dinesh-Kumar SP. Calponin homology domain containing kinesin, KIS1, regulates chloroplast stromule formation and immunity. SCIENCE ADVANCES 2023; 9:eadi7407. [PMID: 37878708 PMCID: PMC10599616 DOI: 10.1126/sciadv.adi7407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Chloroplast morphology changes during immunity, giving rise to tubule-like structures known as stromules. Stromules extend along microtubules and anchor to actin filaments along nuclei to promote perinuclear chloroplast clustering. This facilitates the transport of defense molecules/proteins from chloroplasts to the nucleus. Evidence for a direct role for stromules in immunity is lacking since, currently, there are no known genes that regulate stromule biogenesis. We show that a calponin homology (CH) domain containing kinesin, KIS1 (kinesin required for inducing stromules 1), is required for stromule formation during TNL [TIR (Toll/Interleukin-1 receptor)-type nucleotide-binding leucine-rich repeat]-immune receptor-mediated immunity. Furthermore, KIS1 is required for TNL-mediated immunity to bacterial and viral pathogens. The microtubule-binding motor domain of KIS1 is required for stromule formation while the actin-binding, CH domain is required for perinuclear chloroplast clustering. We show that KIS1 functions through early immune signaling components, EDS1 and PAD4, with salicylic acid-induced stromules requiring KIS1. Thus, KIS1 represents a player in stromule biogenesis.
Collapse
Affiliation(s)
- Nathan D. Meier
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Kody Seward
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA
| | - Jeffrey L. Caplan
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA
- Department of Plant and Soil Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19716, USA
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Du P, Liu Y, Deng L, Qian D, Xue X, Yang T, Li T, Xiang Y, Ren H. AtMAC stabilizes the phragmoplast by crosslinking microtubules and actin filaments during cytokinesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1950-1965. [PMID: 37093857 DOI: 10.1111/jipb.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
The phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro, and the truncated AtMAC protein, N-CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N-CC1(51-154) is the key domain for binding MTs, and N-CC1(51-125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.
Collapse
Affiliation(s)
- Pingzhou Du
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yu Liu
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Lu Deng
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiuhua Xue
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Ting Yang
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Tonghui Li
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haiyun Ren
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
7
|
Song Q, Gao W, Du C, Wang J, Zuo K. Cotton microtubule-associated protein GhMAP20L5 mediates fiber elongation through the interaction with the tubulin GhTUB13. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111545. [PMID: 36464024 DOI: 10.1016/j.plantsci.2022.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/30/2022] [Accepted: 11/27/2022] [Indexed: 05/26/2023]
Abstract
Targeting proteins for Xklp2 (TPX2s) comprise a class of MAPs that are essential for plant growth and development by regulating the dynamic changes of microtubules (MTs) and proper formation of cytoskeleton. However, the function of TPX2 proteins in cotton fiber development remains poorly understood. Here, we identified the function of a fiber elongation-specific TPX2 protein, GhMAP20L5, in cotton. Suppressed GhMAP20L5 gene expression in cotton (GhMAP20L5i) significantly reduced fiber elongation rate, fiber length and lint percentage. GhMAP20L5i fibers had thinner and looser secondary cell walls (SCW), and incompact helix twists. GhMAP20L5 specifically interacted with the tubulin GhTUB13 on the cytoskeleton. Gene coexpression analysis showed that GhMAP20L5 involved in multiple pathways related to cytoskeleton establishment and fiber cell wall formation and affected cellulase genes expressions. In summary, our results revealed that GhMAP20L5 is important for fiber development by regulating cytoskeleton establishment and the cellulose deposition in cotton.
Collapse
Affiliation(s)
- Qingwei Song
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanting Gao
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanhui Du
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Cai G. The legacy of kinesins in the pollen tube thirty years later. Cytoskeleton (Hoboken) 2022; 79:8-19. [PMID: 35766009 PMCID: PMC9542081 DOI: 10.1002/cm.21713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022]
Abstract
The pollen tube is fundamental in the reproduction of seed plants. Particularly in angiosperms, we now have much information about how it grows, how it senses extracellular signals, and how it converts them into a directional growth mechanism. The expansion of the pollen tube is also related to dynamic cytoplasmic processes based on the cytoskeleton (such as polymerization/depolymerization of microtubules and actin filaments) or motor activity along with the two cytoskeletal systems and is dependent on motor proteins. While a considerable amount of information is available for the actomyosin system in the pollen tube, the role of microtubules in the transport of organelles or macromolecular structures is still quite uncertain despite that 30 years ago the first work on the presence of kinesins in the pollen tube was published. Since then, progress has been made in elucidating the role of kinesins in plant cells. However, their role within the pollen tube is still enigmatic. In this review, I will postulate some roles of kinesins in the pollen tube 30 years after their initial discovery based on information obtained in other plant cells in the meantime. The most concrete hypotheses predict that kinesins in the pollen tube enable the short movement of specific organelles or contribute to generative cell or sperm cell transport, as well as mediate specific steps in the process of endocytosis.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, Siena, Italy
| |
Collapse
|
9
|
Zeng J, Xi J, Li B, Yan X, Dai Y, Wu Y, Xiao Y, Pei Y, Zhang M. Microtubules play a crucial role in regulating actin organization and cell initiation in cotton fibers. PLANT CELL REPORTS 2022; 41:1059-1073. [PMID: 35217893 DOI: 10.1007/s00299-022-02837-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Dynamic organization of actin and microtubule cytoskeletons directs a distinct expansion behavior of cotton fiber initiation from cell elongation. Cotton fibers are highly elongated single cells derived from the ovule epidermis. Although actin and microtubule (MT) cytoskeletons have been implicated in cell elongation and secondary wall deposition, their roles in fiber initiation is poorly understood. Here, we used fluorescent probes and pharmacological approaches to study the roles of these cytoskeletal components during cotton fiber initiation. Both cytoskeletons align along the growth axis in initiating fibers. The dorsal view of ovules shows that unlike the fine actin filaments (AFs) in nonfiber cells, the AFs in fiber cells are dense and bundled. MTs are randomized in fiber cells and well-ordered in nonfiber cells. The pharmacological experiments revealed that the depolymerization of AFs and MTs assisted fiber initiation. Both AF stabilization and depolymerization inhibited fiber elongation. In contrast, the proper depolymerization of MTs promoted cell elongation, although the MT-stabilizing drug consistently resulted in a negative effect. Notably, we found that the organization of AFs was correlated with MT dynamics. Stabilizing the MTs by taxol treatment promoted the formation of AF bundles (in fiber initials) and transversely aligned AFs (in elongating fibers), whereas depolymerizing the MTs by oryzalin treatment promoted the fragmentation of AFs. Collectively, our data indicates that MTs plays a crucial role in regulating AF organization and early development of cotton fibers.
Collapse
Affiliation(s)
- Jianyan Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Jing Xi
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Baoxia Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yonglu Dai
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yiping Wu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yuehua Xiao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
10
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
11
|
Methods to Visualize the Actin Cytoskeleton During Plant Cell Division. Methods Mol Biol 2021. [PMID: 34705230 DOI: 10.1007/978-1-0716-1744-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Cell division in plants consists of separating the mother cell in two daughter cells by the centrifugal growth of a new wall. This process involves the reorganization of the structural elements of the cell, namely the microtubules and actin cytoskeleton which allow the coordination, the orientation, and the progression of mitosis. In addition to its implication in those plant-specific structures, the actin cytoskeleton, in close association with the plasma membrane, exhibits specific patterning at the cortex of the dividing cells, and might act as a signaling component. This review proposes an overview of the techniques available to visualize the actin cytoskeleton in fixed tissues or living cells during division, including electron, fluorescent, and super-resolution microscopy techniques.
Collapse
|
12
|
Wang L, Liu Y, Liu C, Ge C, Xu F, Luo M. Ectopic expression of GhIQD14 (cotton IQ67 domain-containing protein 14) causes twisted organ and modulates secondary wall formation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:276-284. [PMID: 33872832 DOI: 10.1016/j.plaphy.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/02/2021] [Indexed: 05/26/2023]
Abstract
In plants, although KNOX genes are known to regulate secondary cell wall (SCW) formation, their protein-regulating mechanisms remain largely unknown. Here, we showed that GhKNL1, which regulates SCW formation and fiber development in cotton, could interact with an IQ67 domain containing protein (GhIQD14) in yeast. Confocal observation showed that GhIQD14 was localized to the microtubules. In Arabidopsis, ectopic expression of GhIQD14 caused hypocotyls to be sensitive to microtubule depolymerization agent, organ twisting of seedlings, trichomes, rosette leaves, and capsules, as well as severely irregular xylem vessels and thicker interfascicular fiber cell walls in the inflorescence stem. Furthermore, we found that GhIQD14 interacted with AtKNAT7 in vivo, and instantaneous co-expression of GhIQD14 and AtKNAT7 in tobacco showed that GhIQD14 weakened the distribution of AtKNAT7 in the nucleus, bringing it into the microtubules, thus affecting the SCW formation related genes expression. Our results suggested that GhIQD14 might be involved in the morphological development and SCW formation in cotton.
Collapse
Affiliation(s)
- Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yujie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chen Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
13
|
Tobias LM, Spokevicius AV, McFarlane HE, Bossinger G. The Cytoskeleton and Its Role in Determining Cellulose Microfibril Angle in Secondary Cell Walls of Woody Tree Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E90. [PMID: 31936868 PMCID: PMC7020502 DOI: 10.3390/plants9010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022]
Abstract
Recent advances in our understanding of the molecular control of secondary cell wall (SCW) formation have shed light on molecular mechanisms that underpin domestication traits related to wood formation. One such trait is the cellulose microfibril angle (MFA), an important wood quality determinant that varies along tree developmental phases and in response to gravitational stimulus. The cytoskeleton, mainly composed of microtubules and actin filaments, collectively contribute to plant growth and development by participating in several cellular processes, including cellulose deposition. Studies in Arabidopsis have significantly aided our understanding of the roles of microtubules in xylem cell development during which correct SCW deposition and patterning are essential to provide structural support and allow for water transport. In contrast, studies relating to SCW formation in xylary elements performed in woody trees remain elusive. In combination, the data reviewed here suggest that the cytoskeleton plays important roles in determining the exact sites of cellulose deposition, overall SCW patterning and more specifically, the alignment and orientation of cellulose microfibrils. By relating the reviewed evidence to the process of wood formation, we present a model of microtubule participation in determining MFA in woody trees forming reaction wood (RW).
Collapse
Affiliation(s)
- Larissa Machado Tobias
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Antanas V. Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Heather E. McFarlane
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| |
Collapse
|
14
|
Vavrdová T, Křenek P, Ovečka M, Šamajová O, Floková P, Illešová P, Šnaurová R, Šamaj J, Komis G. Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:693. [PMID: 32582243 PMCID: PMC7290007 DOI: 10.3389/fpls.2020.00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/01/2020] [Indexed: 05/04/2023]
Abstract
Microtubule bundling is an essential mechanism underlying the biased organization of interphase and mitotic microtubular systems of eukaryotes in ordered arrays. Microtubule bundle formation can be exemplified in plants, where the formation of parallel microtubule systems in the cell cortex or the spindle midzone is largely owing to the microtubule crosslinking activity of a family of microtubule associated proteins, designated as MAP65s. Among the nine members of this family in Arabidopsis thaliana, MAP65-1 and MAP65-2 are ubiquitous and functionally redundant. Crosslinked microtubules can form high-order arrays, which are difficult to track using widefield or confocal laser scanning microscopy approaches. Here, we followed spatiotemporal patterns of MAP65-2 localization in hypocotyl cells of Arabidopsis stably expressing fluorescent protein fusions of MAP65-2 and tubulin. To circumvent imaging difficulties arising from the density of cortical microtubule bundles, we use different superresolution approaches including Airyscan confocal laser scanning microscopy (ACLSM), structured illumination microscopy (SIM), total internal reflection SIM (TIRF-SIM), and photoactivation localization microscopy (PALM). We provide insights into spatiotemporal relations between microtubules and MAP65-2 crossbridges by combining SIM and ACLSM. We obtain further details on MAP65-2 distribution by single molecule localization microscopy (SMLM) imaging of either mEos3.2-MAP65-2 stochastic photoconversion, or eGFP-MAP65-2 stochastic emission fluctuations under specific illumination conditions. Time-dependent dynamics of MAP65-2 were tracked at variable time resolution using SIM, TIRF-SIM, and ACLSM and post-acquisition kymograph analysis. ACLSM imaging further allowed to track end-wise dynamics of microtubules labeled with TUA6-GFP and to correlate them with concomitant fluctuations of MAP65-2 tagged with tagRFP. All different microscopy modules examined herein are accompanied by restrictions in either the spatial resolution achieved, or in the frame rates of image acquisition. PALM imaging is compromised by speed of acquisition. This limitation was partially compensated by exploiting emission fluctuations of eGFP which allowed much higher photon counts at substantially smaller time series compared to mEos3.2. SIM, TIRF-SIM, and ACLSM were the methods of choice to follow the dynamics of MAP65-2 in bundles of different complexity. Conclusively, the combination of different superresolution methods allowed for inferences on the distribution and dynamics of MAP65-2 within microtubule bundles of living A. thaliana cells.
Collapse
|
15
|
Yasuhara H, Kitamoto K. TBK11, a Tobacco Kinesin-14-II, Associates with the Nuclear Envelope through Its Central Coiled-Coil Domain. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hiroki Yasuhara
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Kazuki Kitamoto
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
16
|
Nebenführ A, Dixit R. Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:329-361. [PMID: 29489391 PMCID: PMC6653565 DOI: 10.1146/annurev-arplant-042817-040024] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Kinesins and myosins are motor proteins that can move actively along microtubules and actin filaments, respectively. Plants have evolved a unique set of motors that function as regulators and organizers of the cytoskeleton and as drivers of long-distance transport of various cellular components. Recent progress has established the full complement of motors encoded in plant genomes and has revealed valuable insights into the cellular functions of many kinesin and myosin isoforms. Interestingly, several of the motors were found to functionally connect the two cytoskeletal systems and thereby to coordinate their activities. In this review, we discuss the available genetic, cell biological, and biochemical data for each of the plant kinesin and myosin families from the context of their subcellular mechanism of action as well as their physiological function in the whole plant. We particularly emphasize work that illustrates mechanisms by which kinesins and myosins coordinate the activities of the cytoskeletal system.
Collapse
Affiliation(s)
- Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA;
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130-4899, USA;
| |
Collapse
|
17
|
Abstract
In animals and fungi, cytoplasmic dynein is a processive minus-end-directed motor that plays dominant roles in various intracellular processes. In contrast, land plants lack cytoplasmic dynein but contain many minus-end-directed kinesin-14s. No plant kinesin-14 is known to produce processive motility as a homodimer. OsKCH2 is a plant-specific kinesin-14 with an N-terminal actin-binding domain and a central motor domain flanked by two predicted coiled-coils (CC1 and CC2). Here, we show that OsKCH2 specifically decorates preprophase band microtubules in vivo and transports actin filaments along microtubules in vitro. Importantly, OsKCH2 exhibits processive minus-end-directed motility on single microtubules as individual homodimers. We find that CC1, but not CC2, forms the coiled-coil to enable OsKCH2 dimerization. Instead, our results reveal that removing CC2 renders OsKCH2 a nonprocessive motor. Collectively, these results show that land plants have evolved unconventional kinesin-14 homodimers with inherent minus-end-directed processivity that may function to compensate for the loss of cytoplasmic dynein. Land plants lack the cytoplasmic dynein motor in fungi and animals that shows processive minus-end-directed motility on microtubules. Here the authors demonstrate that land plants have evolved novel processive minus-end-directed kinesin-14 motors that likely compensate for the absence of dynein.
Collapse
|
18
|
Li YJ, Zhu SH, Zhang XY, Liu YC, Xue F, Zhao LJ, Sun J. Expression and functional analyses of a Kinesin gene GhKIS13A1 from cotton (Gossypium hirsutum) fiber. BMC Biotechnol 2017; 17:50. [PMID: 28606082 PMCID: PMC5469014 DOI: 10.1186/s12896-017-0373-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
Background Cotton fiber, a natural fiber widely used in the textile industry, is differentiated from single cell of ovule epidermis. A large number of genes are believed to be involved in fiber formation, but so far only a few fiber genes have been isolated and functionally characterized in this developmental process. The Kinesin13 subfamily was found to play key roles during cell division and cell elongation, and was considered to be involved in the regulation of cotton fiber development. Results The full length of coding sequence of GhKIS13A1 was cloned using cDNA from cotton fiber for functional characterization. Expression pattern analysis showed that GhKIS13A1 maintained a lower expression level during cotton fiber development. Biochemical assay showed that GhKIS13A1 has microtubule binding activity and basal ATPase activity that can be activated significantly by the presence of microtubules. Overexpression of GhKIS13A1 in Arabidopsis reduced leaf trichomes and the percentage of three-branch trichomes, and increased two-branch and shriveled trichomes compared to wild-type. Additionally, the expression of GhKIS13A1 in the Arabidopsis Kinesin-13a-1 mutant rescued the defective trichome branching pattern of the mutant, making its overall trichome branching pattern back to normal. Conclusions Our results suggested that GhKIS13A1 is functionally compatible with AtKinesin-13A regarding their role in regulating the number and branching pattern of leaf trichomes. Given the developmental similarities between cotton fibers and Arabidopsis trichomes, it is speculated that GhKIS13A1 may also be involved in the regulation of cotton fiber development.
Collapse
Affiliation(s)
- Yan-Jun Li
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Bei 4 Road, Shihezi, 832003, Xinjiang, China
| | - Shou-Hong Zhu
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Bei 4 Road, Shihezi, 832003, Xinjiang, China
| | - Xin-Yu Zhang
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Bei 4 Road, Shihezi, 832003, Xinjiang, China
| | - Yong-Chang Liu
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Bei 4 Road, Shihezi, 832003, Xinjiang, China
| | - Fei Xue
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Bei 4 Road, Shihezi, 832003, Xinjiang, China
| | - Lan-Jie Zhao
- College of Life Sciences, Shihezi University, Bei 4 Road, Shihezi, 832003, Xinjiang, China
| | - Jie Sun
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Bei 4 Road, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
19
|
Krtková J, Benáková M, Schwarzerová K. Multifunctional Microtubule-Associated Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:474. [PMID: 27148302 PMCID: PMC4838777 DOI: 10.3389/fpls.2016.00474] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of WashingtonSeattle, WA, USA
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martina Benáková
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- Department of Biology, Faculty of Science, University of Hradec KrálovéRokitanského, Czech Republic
| | - Kateřina Schwarzerová
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
20
|
Takeuchi M, Karahara I, Kajimura N, Takaoka A, Murata K, Misaki K, Yonemura S, Staehelin LA, Mineyuki Y. Single microfilaments mediate the early steps of microtubule bundling during preprophase band formation in onion cotyledon epidermal cells. Mol Biol Cell 2016; 27:1809-20. [PMID: 27053663 PMCID: PMC4884071 DOI: 10.1091/mbc.e15-12-0820] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/30/2016] [Indexed: 12/11/2022] Open
Abstract
The preprophase band (PPB) is a cytokinetic apparatus that determines the site of cell division in plants. It originates as a broad band of microtubules (MTs) in G2 and narrows to demarcate the future division site during late prophase. Studies with fluorescent probes have shown that PPBs contain F-actin during early stages of their development but become actin depleted in late prophase. Although this suggests that actins contribute to the early stages of PPB formation, how actins contribute to PPB-MT organization remains unsolved. To address this question, we used electron tomography to investigate the spatial relationship between microfilaments (MFs) and MTs at different stages of PPB assembly in onion cotyledon epidermal cells. We demonstrate that the PPB actins observed by fluorescence microscopy correspond to short, single MFs. A majority of the MFs are bound to MTs, with a subset forming MT-MF-MT bridging structures. During the later stages of PPB assembly, the MF-mediated links between MTs are displaced by MT-MT linkers as the PPB MT arrays mature into tightly packed MT bundles. On the basis of these observations, we propose that the primary function of actins during PPB formation is to mediate the initial bundling of the PPB MTs.
Collapse
Affiliation(s)
- Miyuki Takeuchi
- Graduate School of Life Science, University of Hyogo, Himeji 671-2201, Japan Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ichirou Karahara
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Naoko Kajimura
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
| | - Akio Takaoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kazuyo Misaki
- RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | | | - L Andrew Staehelin
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - Yoshinobu Mineyuki
- Graduate School of Life Science, University of Hyogo, Himeji 671-2201, Japan
| |
Collapse
|
21
|
Qin X, Chen Z, Li P, Liu G. Crystallization and X-ray diffraction analysis of the CH domain of the cotton kinesin GhKCH2. Acta Crystallogr F Struct Biol Commun 2016; 72:240-3. [PMID: 26919529 PMCID: PMC4774884 DOI: 10.1107/s2053230x16001825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/29/2016] [Indexed: 11/13/2022] Open
Abstract
GhKCH2 belongs to a group of plant-specific kinesins (KCHs) containing an actin-binding calponin homology (CH) domain in the N-terminus. Previous studies revealed that the GhKCH2 CH domain (GhKCH2-CH) had a higher affinity for F-actin (Kd = 0.42 ± 0.02 µM) than most other CH-domain-containing proteins. To understand the underlying mechanism, prokaryotically expressed GhKCH2-CH (amino acids 30-166) was purified and crystallized. Crystals were grown by the sitting-drop vapour-diffusion method using 0.1 M Tris-HCl pH 7.0, 20%(w/v) PEG 8000 as a precipitant. The crystals diffracted to a resolution of 2.5 Å and belonged to space group P21, with unit-cell parameters a = 41.57, b = 81.92, c = 83.00 Å, α = 90.00, β = 97.31, γ = 90.00°. Four molecules were found in the asymmetric unit with a Matthews coefficient of 2.22 Å(3) Da(-1), corresponding to a solvent content of 44.8%.
Collapse
Affiliation(s)
- Xinghua Qin
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuanxilu, Haidian District, Beijing 100094, People’s Republic of China
- School of Aerospace Medicine, The Fourth Military Medical University, No. 169 Changlexi Road, Xincheng District, Xi’an 710032, People’s Republic of China
| | - Ziwei Chen
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuanxilu, Haidian District, Beijing 100094, People’s Republic of China
| | - Ping Li
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuanxilu, Haidian District, Beijing 100094, People’s Republic of China
| | - Guoqin Liu
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuanxilu, Haidian District, Beijing 100094, People’s Republic of China
| |
Collapse
|
22
|
Wang K, Huang G, Zhu Y. Transposable elements play an important role during cotton genome evolution and fiber cell development. SCIENCE CHINA-LIFE SCIENCES 2015; 59:112-21. [PMID: 26687725 DOI: 10.1007/s11427-015-4928-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 11/26/2022]
Abstract
Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities.
Collapse
Affiliation(s)
- Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
23
|
Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol Adv 2015; 33:1043-62. [DOI: 10.1016/j.biotechadv.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/23/2022]
|
24
|
Shevchenko G. Participation of proteins binding both actin filaments and microtubules in higher plant cell growth. CYTOL GENET+ 2015. [DOI: 10.3103/s009545271504009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Walter WJ, Machens I, Rafieian F, Diez S. The non-processive rice kinesin-14 OsKCH1 transports actin filaments along microtubules with two distinct velocities. NATURE PLANTS 2015; 1:15111. [PMID: 27250543 DOI: 10.1038/nplants.2015.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/02/2015] [Indexed: 05/28/2023]
Abstract
Microtubules and actin filaments function coordinately in many cellular processes(1-3). Although much of this coordination is mediated by proteins that statically bridge the two cytoskeletal networks(4-6), kinesin-14 motors with an actin binding calponin homology domain (KCHs) have been discovered as putatively dynamic crosslinkers in plants(7,8). OsKCH1, a KCH from rice, interacts with both microtubules and actin filaments in vivo and in vitro(9). However, it has remained unclear whether this interaction is dynamic or if actin binding reduces or even abolishes the motor's motility on microtubules(10,11). Here, we directly show in vitro that OsKCH1 is a non-processive, minus-end-directed motor that transports actin filaments along microtubules. Interestingly, we observe two distinct transport velocities dependent on the relative orientation of the actin filaments with respect to the microtubules. In addition, torsional compliance measurements on individual molecules reveal low flexibility in OsKCH1. We suggest that the orientation-dependent transport velocities emerge from OsKCH1's low torsional compliance combined with an inherently oriented binding to the actin filament. Together, our results imply a central role of OsKCH1 in the polar orientation of actin filaments along microtubules, and thus a contribution to the organization of the cytoskeletal architecture.
Collapse
Affiliation(s)
- Wilhelm J Walter
- Molecular Plant Physiology, Biocentre Klein Flottbek, University of Hamburg, 22609 Hamburg, Germany
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Isabel Machens
- Molecular Plant Physiology, Biocentre Klein Flottbek, University of Hamburg, 22609 Hamburg, Germany
| | - Fereshteh Rafieian
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
26
|
Schneider R, Persson S. Connecting two arrays: the emerging role of actin-microtubule cross-linking motor proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:415. [PMID: 26082793 PMCID: PMC4451249 DOI: 10.3389/fpls.2015.00415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/22/2015] [Indexed: 05/07/2023]
Abstract
The cytoskeleton of plant cells, consisting of actin filaments (AFs) and microtubules (MTs), is a central structure for various intracellular processes, such as cell division, isotropic and polar growth, vesicle transport, cell shape, and morphogenesis. Pharmaceutical and genetic studies have provided indications for interdependent cross-talk between the cytoskeletal components. Recent live-cell imaging studies have cemented this notion, in particular when the cytoskeleton rearranges. However, the proteins that directly mediate this cross-talk have remained largely elusive. Recent data indicate that certain proteins can interact with both cytoskeletal arrays at the same time, and hence connecting them. In this review, we summarize the recent literature of the AF- and MT-interactors, mainly focusing on a plant-specific mediator of cytoskeletal cross-talk: the calponin homology (CH) domain-containing kinesin-14 motor proteins (KCHs).
Collapse
Affiliation(s)
- René Schneider
- Max-Planck-Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
- *Correspondence: René Schneider, Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany,
| | - Staffan Persson
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
Li S, Sun T, Ren H. The functions of the cytoskeleton and associated proteins during mitosis and cytokinesis in plant cells. FRONTIERS IN PLANT SCIENCE 2015; 6:282. [PMID: 25964792 PMCID: PMC4410512 DOI: 10.3389/fpls.2015.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/08/2015] [Indexed: 05/12/2023]
Abstract
In higher plants, microtubule (MT)-based, and actin filament (AF)-based structures play important roles in mitosis and cytokinesis. Besides the mitotic spindle, the evolution of a band comprising cortical MTs and AFs, namely, the preprophase band (PPB), is evident in plant cells. This band forecasts a specific division plane before the initiation of mitosis. During cytokinesis, another plant-specific cytoskeletal structure called the phragmoplast guides vesicles in the creation of a new cell wall. In addition, a number of cytoskeleton-associated proteins are reportedly involved in the formation and function of the PPB, mitotic spindle, and phragmoplast. This review summarizes current knowledge on the cytoskeleton-associated proteins that mediate the cytoskeletal arrays during mitosis and cytokinesis in plant cells and discusses the interaction between MTs and AFs involved in mitosis and cytokinesis.
Collapse
Affiliation(s)
| | | | - Haiyun Ren
- *Correspondence: Haiyun Ren, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, No.19, XinJieKouWai Street, Beijing 100875, China
| |
Collapse
|
28
|
Sambade A, Findlay K, Schäffner AR, Lloyd CW, Buschmann H. Actin-Dependent and -Independent Functions of Cortical Microtubules in the Differentiation of Arabidopsis Leaf Trichomes. THE PLANT CELL 2014; 26:1629-1644. [PMID: 24714762 PMCID: PMC4036576 DOI: 10.1105/tpc.113.118273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arabidopsis thaliana tortifolía2 carries a point mutation in α-tubulin 4 and shows aberrant cortical microtubule dynamics. The microtubule defect of tortifolia2 leads to overbranching and right-handed helical growth in the single-celled leaf trichomes. Here, we use tortifolia2 to further our understanding of microtubules in plant cell differentiation. Trichomes at the branching stage show an apical ring of cortical microtubules, and our analyses support that this ring is involved in marking the prospective branch site. tortifolia2 showed ectopic microtubule bundles at this stage, consistent with a function for microtubules in selecting new branch sites. Overbranching of tortifolia2 required the C-terminal binding protein/brefeldin A-ADP ribosylated substrate protein ANGUSTIFOLIA1, and our results indicate that the angustifolia1 mutant is hypersensitive to alterations in microtubule dynamics. To analyze whether actin and microtubules cooperate in the trichome cell expansion process, we generated double mutants of tortifolia2 with distorted1, a mutant that is defective in the actin-related ARP2/3 complex. The double mutant trichomes showed a complete loss of growth anisotropy, suggesting a genetic interaction of actin and microtubules. Green fluorescent protein labeling of F-actin or microtubules in tortifolia2 distorted1 double mutants indicated that F-actin enhances microtubule dynamics and enables reorientation. Together, our results suggest actin-dependent and -independent functions of cortical microtubules in trichome differentiation.
Collapse
Affiliation(s)
- Adrian Sambade
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Kim Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Clive W Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Henrik Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
29
|
Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:1-52. [PMID: 25262237 DOI: 10.1016/b978-0-12-800178-3.00001-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plants have unique microtubule (MT) arrays, cortical MTs, preprophase band, mitotic spindle, and phragmoplast, in the processes of evolution. These MT arrays control the directions of cell division and expansion especially in plants and are essential for plant morphogenesis and developments. Organizations and functions of these MT arrays are accomplished by diverse MT-associated proteins (MAPs). This review introduces 10 of conserved MAPs in eukaryote such as γ-TuC, augmin, katanin, kinesin, EB1, CLASP, MOR1/MAP215, MAP65, TPX2, formin, and several plant-specific MAPs such as CSI1, SPR2, MAP70, WVD2/WDL, RIP/MIDD, SPR1, MAP18/PCaP, EDE1, and MAP190. Most of the studies cited in this review have been analyzed in the particular model plant, Arabidopsis thaliana. The significant knowledge of A. thaliana is the important established base to understand MT organizations and functions in plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4541-57. [PMID: 24023249 PMCID: PMC3808332 DOI: 10.1093/jxb/ert269] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid cell division and expansion in early fruit development are important phases for cucumber fruit yield and quality. Kinesin proteins are microtubule-based motors responsible for modulating cell division and enlargement. In this work, the candidate kinesin genes involved in rapid cell division and expansion during cucumber fruit development were investigated. The morphological and cellular changes during early fruit development were compared in four cucumber genotypes with varied fruit size. The correlation between the expression profiles of cucumber kinesin genes and cellular changes in fruit was investigated. Finally, the biochemical characteristics and subcellular localizations of three candidate kinesins were studied. The results clarified the morphological and cellular changes during early cucumber fruit development. This study found that CsKF2-CsKF6 were positively correlated with rapid cell production; CsKF1 and CsKF7 showed a strongly positive correlation with rapid cell expansion. The results also indicated that CsKF1 localized to the plasma membrane of fast-expanding fruit cells, that CsKF2 might play a role in fruit chloroplast division, and that CsKF3 is involved in the function or formation of phragmoplasts in fruit telophase cells. The results strongly suggest that specific fruit-enriched kinesins are specialized in their functions in rapid cell division and expansion during cucumber fruit development.
Collapse
Affiliation(s)
- Xue Yong Yang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Yan Wang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Wei Jie Jiang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- To whom correspondence should be addressed. E-mail: or /
| | - Xiao Ling Liu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiao Meng Zhang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hong Jun Yu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - San Wen Huang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guo Qin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Lazzaro MD, Marom EY, Reddy ASN. Polarized cell growth, organelle motility, and cytoskeletal organization in conifer pollen tube tips are regulated by KCBP, the calmodulin-binding kinesin. PLANTA 2013; 238:587-97. [PMID: 23784715 DOI: 10.1007/s00425-013-1919-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/11/2013] [Indexed: 05/07/2023]
Abstract
Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin 14 family, is a minus end directed C-terminal motor unique to plants and green algae. Its motor activity is negatively regulated by calcium/calmodulin binding, and its tail region contains a secondary microtubule-binding site. It has been identified but not functionally characterized in the conifer Picea abies. Conifer pollen tubes exhibit polarized growth as organelles move into the tip in an unusual fountain pattern directed by microfilaments but uniquely organized by microtubules. We demonstrate here that PaKCBP and calmodulin regulate elongation and motility. PaKCBP is a 140 kDa protein immunolocalized to the elongating tip, coincident with microtubules. This localization is lost when microtubules are disrupted with oryzalin, which also reorganizes microfilaments into bundles. Colocalization of PaKCBP along microtubules is enhanced when microfilaments are disrupted with latrunculin B, which also disrupts the fine network of microtubules throughout the tip while preserving thicker microtubule bundles. Calmodulin inhibition by W-12 perfusion reversibly slows pollen tube elongation, alters organelle motility, promotes microfilament bundling, and microtubule bundling coincident with increased PaKCBP localization. The constitutive activation of PaKCBP by microinjection of an antibody that displaces calcium/calmodulin and activates microtubule bundling repositions vacuoles in the tip before rapidly stopping organelle streaming and pollen tube elongation. We propose that PaKCBP is one of the target proteins in conifer pollen modulated by calmodulin inhibition leading to microtubule bundling, which alters microtubule and microfilament organization, repositions vacuoles and slows organelle motility and pollen tube elongation.
Collapse
Affiliation(s)
- Mark D Lazzaro
- Department of Biology, College of Charleston, Charleston, SC, USA.
| | | | | |
Collapse
|
32
|
Brandizzi F, Wasteneys GO. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:339-49. [PMID: 23647215 DOI: 10.1111/tpj.12227] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 05/07/2023]
Abstract
Movement of secretory organelles is a fascinating yet largely mysterious feature of eukaryotic cells. Microtubule-based endomembrane and organelle motility utilizing the motor proteins dynein and kinesin is commonplace in animal cells. In contrast, it has been long accepted that intracellular motility in plant cells is predominantly driven by myosin motors dragging organelles and endomembrane-bounded cargo along actin filament bundles. Consistent with this, defects in the acto-myosin cytoskeleton compromise plant growth and development. Recent findings, however, challenge the actin-centric view of the motility of critical secretory organelles and distribution of associated protein machinery. In this review, we provide an overview of the current knowledge on actin-mediated organelle movement within the secretory pathway of plant cells, and report on recent and exciting findings that support a critical role of microtubules in plant cell development, in fine-tuning the positioning of Golgi stacks, as well as their involvement in cellulose synthesis and auxin polar transport. These emerging aspects of the biology of microtubules highlight adaptations of an ancestral machinery that plants have specifically evolved to support the functioning of the acto-myosin cytoskeleton, and mark new trends in our global appreciation of the complexity of organelle movement within the plant secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-Department of Energy-Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|
33
|
McMichael CM, Bednarek SY. Cytoskeletal and membrane dynamics during higher plant cytokinesis. THE NEW PHYTOLOGIST 2013; 197:1039-1057. [PMID: 23343343 DOI: 10.1111/nph.12122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/02/2012] [Indexed: 05/08/2023]
Abstract
Following mitosis, cytoplasm, organelles and genetic material are partitioned into daughter cells through the process of cytokinesis. In somatic cells of higher plants, two cytoskeletal arrays, the preprophase band and the phragmoplast, facilitate the positioning and de novo assembly of the plant-specific cytokinetic organelle, the cell plate, which develops across the division plane and fuses with the parental plasma membrane to yield distinct new cells. The coordination of cytoskeletal and membrane dynamics required to initiate, assemble and shape the cell plate as it grows toward the mother cell cortex is dependent upon a large array of proteins, including molecular motors, membrane tethering, fusion and restructuring factors and biosynthetic, structural and regulatory elements. This review focuses on the temporal and molecular requirements of cytokinesis in somatic cells of higher plants gleaned from recent studies using cell biology, genetics, pharmacology and biochemistry.
Collapse
Affiliation(s)
- Colleen M McMichael
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| |
Collapse
|
34
|
Era A, Kutsuna N, Higaki T, Hasezawa S, Nakano A, Ueda T. Microtubule stability affects the unique motility of F-actin in Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2013; 126:113-119. [PMID: 22678689 DOI: 10.1007/s10265-012-0496-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/20/2012] [Indexed: 06/01/2023]
Abstract
Actin microfilaments play crucial roles in diverse plant functions. Some specific cellular processes require interaction between F-actin and microtubules, and it is believed that there are direct or indirect connections between F-actin and microtubules. We previously reported that actin microfilaments exhibit unique dynamic motility in cells of the liverwort, Marchantia polymorpha; the relevance of this activity to microtubules has not been explored. To examine whether the dynamics of F-actin in M. polymorpha were somehow regulated by microtubules, we investigated the effects of stabilization or destabilization of microtubules on dynamics of actin bundles, which were visualized by Lifeact-Venus. To our surprise, both stabilization and destabilization of microtubules exerted similar effects on F-actin motility; apparent sliding movement of F-actin in M. polymorpha cells was accelerated by both oryzalin and paclitaxel, with the effect of paclitaxel more evident than that of oryzalin. Immunofluorescence staining revealed that some F-actin bundles were arrayed along with microtubules in M. polymorpha thallus cells. These results suggest that microtubules play regulatory roles in the unique F-actin dynamics in M. polymorpha.
Collapse
Affiliation(s)
- Atsuko Era
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Shi K, Li J, Han K, Jiang H, Xue L. The degradation of kinesin-like calmodulin binding protein of D. salina (DsKCBP) is mediated by the ubiquitin-proteasome system. Mol Biol Rep 2012; 40:3113-21. [PMID: 23271117 DOI: 10.1007/s11033-012-2385-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 12/16/2022]
Abstract
Kinesin-like calmodulin binding protein (KCBP) is a member of kinesin-14 subfamily with unconventional domains distinct from other kinesins. This unique kinesin has the myosin tail homology 4 domain (MyTH4) and band4.1, ezrin, radixin and moesin domain (FERM) at the N-terminal which interact with several cytoskeleton proteins. Although KCBP is implicated in several microtubule-related cellular processes, studies on the KCBP of Dunaliella salina (DsKCBP) have not been reported. In this study, the roles of DsKCBP in flagella and cytoskeleton were investigated and the results showed that DsKCBP was present in flagella and upregulated during flagellar assembly indicting that it may be a flagellar kinesin and plays a role in flagellar assembly. A MyTH4-FERM domain of the DsKCBP was identified as a microtubule and actin interacting site. The interaction of DsKCBP with both microtubules and actin microfilaments suggests that this kinesin may be employed to coordinate these two cytoskeleton elements in algal cells. To gain more insights into the cellular function of the kinesin, DsKCBP-interacting proteins were examined using yeast two-hybrid screen. A 26S proteasome subunit Rpn8 was identified as a novel interacting partner of DsKCBP and the MyTH4-FERM domain was necessary for the interaction of DsKCBP with Rpn8. Furthermore, the DsKCBP was polyubiquitinated and up-regulated by proteasome inhibitor and degraded by ubiquitin-proteasome system indicating that proteasome is related to kinesin degradation.
Collapse
Affiliation(s)
- Ke Shi
- Laboratory for Cell Biology, The First Affiliated Hospital, Zhengzhou University, 40 Daxue Road, Henan 450052, China
| | | | | | | | | |
Collapse
|
36
|
Zhu C, Dixit R. Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. PROTOPLASMA 2012; 249:887-99. [PMID: 22038119 DOI: 10.1007/s00709-011-0343-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/12/2011] [Indexed: 05/02/2023]
Abstract
Plants possess a large number of microtubule-based kinesin motor proteins. While the kinesin-2, 3, 9, and 11 families are absent from land plants, the kinesin-7 and 14 families are greatly expanded. In addition, some kinesins are specifically present only in land plants. The distinctive inventory of plant kinesins suggests that kinesins have evolved to perform specialized functions in plants. Plants assemble unique microtubule arrays during their cell cycle, including the interphase cortical microtubule array, preprophase band, anastral spindle and phragmoplast. In this review, we explore the functions of plant kinesins from a microtubule array viewpoint, focusing mainly on Arabidopsis kinesins. We emphasize the conserved and novel functions of plant kinesins in the organization and function of the different microtubule arrays.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Biology Department, Washington University, 1 Brookings Drive, CB 1137, St. Louis, MO 63130, USA
| | | |
Collapse
|
37
|
Zhu C, Dixit R. Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. PROTOPLASMA 2012; 249:887-899. [PMID: 22038119 DOI: 10.1007/s00709-011-0343-9 [epub ahead print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/12/2011] [Indexed: 05/17/2023]
Abstract
Plants possess a large number of microtubule-based kinesin motor proteins. While the kinesin-2, 3, 9, and 11 families are absent from land plants, the kinesin-7 and 14 families are greatly expanded. In addition, some kinesins are specifically present only in land plants. The distinctive inventory of plant kinesins suggests that kinesins have evolved to perform specialized functions in plants. Plants assemble unique microtubule arrays during their cell cycle, including the interphase cortical microtubule array, preprophase band, anastral spindle and phragmoplast. In this review, we explore the functions of plant kinesins from a microtubule array viewpoint, focusing mainly on Arabidopsis kinesins. We emphasize the conserved and novel functions of plant kinesins in the organization and function of the different microtubule arrays.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Biology Department, Washington University, 1 Brookings Drive, CB 1137, St. Louis, MO 63130, USA
| | | |
Collapse
|
38
|
Qin X, Chen Z, Xu T, Li P, Liu G. Crystallization and preliminary X-ray diffraction studies of the GhKCH2 motor domain: alteration of pH significantly improved the quality of the crystals. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:798-801. [PMID: 22750868 DOI: 10.1107/s1744309112016351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 04/15/2012] [Indexed: 11/10/2022]
Abstract
GhKCH2, a member of the kinesin superfamily, is a plant-specific microtubule-dependent motor protein from cotton with the ability to bind to both microtubules and microfilaments. Here, the motor domain of GhKCH2 (GhKCH2MD; amino acids 371-748) was overexpressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method. The pH of the crystallization buffer was shown to have a significant effect on the crystal morphology and diffraction quality. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 60.7, b = 78.6, c = 162.8 Å, α = β = γ = 90°. The Matthews coefficient and solvent content were calculated as 2.27 Å(3) Da(-1) and 45.87%, respectively. X-ray diffraction data for GhKCH2MD were collected on beamline BL17U1 at Shanghai Synchrotron Radiation Facility and processed to 2.8 Å resolution.
Collapse
Affiliation(s)
- Xinghua Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Li J, Xu Y, Chong K. The novel functions of kinesin motor proteins in plants. PROTOPLASMA 2012; 249 Suppl 2:S95-100. [PMID: 22167300 PMCID: PMC3389602 DOI: 10.1007/s00709-011-0357-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/28/2011] [Indexed: 05/17/2023]
Abstract
Kinesin superfamily proteins are important microtubule-based motor proteins with a kinesin motor domain that is conserved among all eukaryotic organisms. They are responsible for unidirectionally transporting various cargoes, including membranous organelles, protein complexes, and mRNAs. They also play critical roles in mitosis, morphogenesis, and signal transduction. Most kinesins in plants are evolutionarily divergent from their counterparts in animals and fungi. The mitotic kinesins in the plant kinesin-5 and kinesin-14 subfamilies appear to be similar to those in fungi and animals. However, others with nonmotor sequences are unique to plants. The kinesins affect microtubule organization, organelle distribution, vesicle transport, and cellulose microfibril order. Ultimately, plant kinesins contribute directly or indirectly to cell division and cell growth in various tissues. Here, we review a novel function of kinesins with transcription activation activity in regulating gibberellin biosynthesis and cell growth. These findings will open exciting new areas of kinesin research.
Collapse
Affiliation(s)
- Juan Li
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Yunyuan Xu
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Kang Chong
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
40
|
Klotz J, Nick P. A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. THE NEW PHYTOLOGIST 2012; 193:576-589. [PMID: 22074362 DOI: 10.1111/j.1469-8137.2011.03944.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
• Kinesins with a calponin homology domain (KCHs) have been identified recently as a plant-specific subgroup of the kinesin-14 family and are suspected to act as microtubule-actin filament cross-linkers. The cellular function, however, has remained elusive. • In order to address the function of KCHs, we isolated NtKCH, a novel KCH homologue from tobacco BY-2 cells. Following synchronization, NtKCH transcripts were shown to be abundant during mitosis, whereas, during interphase, expression was low. • Using fluorescent-tagged cell lines and immunolabelling techniques, the localization of tobacco KCH was found to differ depending on the cell cycle. During interphase, NtKCH mainly associated with cortical microtubules, whereas a subfraction also co-localized with perinuclear actin cables. In dividing cells, NtKCH accumulated at the pre-prophase band and at the phragmoplast. However, it remained absent from spindle microtubules, but, instead, concentrated at two agglomerations in proximity to the two cell poles. • This work develops a detailed model for the dual localization and function of NtKCH during cell division vs cell expansion. This model implies two dynamic states of KCHs that differ with regard to actin interaction. This allows the modulation of force generation by KCH in a cell cycle-dependent capture mechanism.
Collapse
Affiliation(s)
- Jan Klotz
- Molecular Cell Biology, Botanical Institute, and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| |
Collapse
|
41
|
Dixit R. Putting a bifunctional motor to work: insights into the role of plant KCH kinesins. THE NEW PHYTOLOGIST 2012; 193:543-545. [PMID: 22235983 DOI: 10.1111/j.1469-8137.2011.04030.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Ram Dixit
- Department of Biology, Washington University, St Louis, MO 63130-4899, USA (tel +1 314 935 8823; email )
| |
Collapse
|
42
|
Shen Z, Collatos AR, Bibeau JP, Furt F, Vidali L. Phylogenetic analysis of the Kinesin superfamily from physcomitrella. FRONTIERS IN PLANT SCIENCE 2012; 3:230. [PMID: 23087697 PMCID: PMC3472504 DOI: 10.3389/fpls.2012.00230] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/25/2012] [Indexed: 05/08/2023]
Abstract
Kinesins are an ancient superfamily of microtubule dependent motors. They participate in an extensive and diverse list of essential cellular functions, including mitosis, cytokinesis, cell polarization, cell elongation, flagellar development, and intracellular transport. Based on phylogenetic relationships, the kinesin superfamily has been subdivided into 14 families, which are represented in most eukaryotic phyla. The functions of these families are sometimes conserved between species, but important variations in function across species have been observed. Plants possess most kinesin families including a few plant specific families. With the availability of an ever increasing number of genome sequences from plants, it is important to document the complete complement of kinesins present in a given organism. This will help develop a molecular framework to explore the function of each family using genetics, biochemistry, and cell biology. The moss Physcomitrella patens has emerged as a powerful model organism to study gene function in plants, which makes it a key candidate to explore complex gene families, such as the kinesin superfamily. Here we report a detailed phylogenetic characterization of the 71 kinesins of the kinesin superfamily in Physcomitrella. We found a remarkable conservation of families and subfamily classes with Arabidopsis, which is important for future comparative analysis of function. Some of the families, such as kinesins 14s are composed of fewer members in moss, while other families, such as the kinesin 12s are greatly expanded. To improve the comparison between species, and to simplify communication between research groups, we propose a classification of subfamilies based on our phylogenetic analysis.
Collapse
Affiliation(s)
- Zhiyuan Shen
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcester, MA, USA
| | - Angelo R. Collatos
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcester, MA, USA
| | - Jeffrey P. Bibeau
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcester, MA, USA
| | - Fabienne Furt
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcester, MA, USA
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcester, MA, USA
- *Correspondence: Luis Vidali, Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA. e-mail:
| |
Collapse
|
43
|
Poulter NS, Bosch M, Franklin-Tong VE. Proteins implicated in mediating self-incompatibility-induced alterations to the actin cytoskeleton of Papaver pollen. ANNALS OF BOTANY 2011; 108:659-75. [PMID: 21320881 PMCID: PMC3170148 DOI: 10.1093/aob/mcr022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/04/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Sexual reproduction in angiosperms involves a network of signalling and interactions between pollen and pistil. To promote out-breeding, an additional layer of interactions, involving self-incompatibility (SI), is used to prevent self-fertilization. SI is generally controlled by the S-locus, and comprises allelic pollen and pistil S-determinants. This provides the basis of recognition, and consequent rejection, of incompatible pollen. In Papaver rhoeas, SI involves interaction of pistil PrsS and pollen PrpS, triggering a Ca(2+)-dependent signalling network. This results in rapid and distinctive alterations to both the actin and microtubule cytoskeleton being triggered in 'self' pollen. Some of these alterations are implicated in mediating programmed cell death, involving activation of several caspase-like proteases. SCOPE Here we review and discuss our current understanding of the cytoskeletal alterations induced in incompatible pollen during SI and their relationship with programmed cell death. We focus on data relating to the formation of F-actin punctate foci, which have, to date, not been well characterized. The identification of two actin-binding proteins that interact with these structures are reviewed. Using an approach that enriched for F-actin from SI-induced pollen tubes using affinity purification followed by mass spectrometry, further proteins were identified as putative interactors with the F-actin foci in an SI situation. KEY RESULTS Previously two important actin-binding proteins, CAP and ADF, had been identified whose localization altered with SI, both showing co-localization with the F-actin punctate foci based on immunolocalization studies. Further analysis has identified differences between proteins associated with F-actin from SI-induced pollen samples and those associated with F-actin in untreated pollen. This provides candidate proteins implicated in either the formation or stabilization of the punctate actin structures formed during SI. CONCLUSIONS This review brings together for the first time, our current understanding of proteins and events involved in SI-induced signalling to the actin cytoskeleton in incompatible Papaver pollen.
Collapse
|
44
|
Sampathkumar A, Lindeboom JJ, Debolt S, Gutierrez R, Ehrhardt DW, Ketelaar T, Persson S. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. THE PLANT CELL 2011; 23:2302-13. [PMID: 21693695 PMCID: PMC3160026 DOI: 10.1105/tpc.111.087940] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 05/18/2023]
Abstract
In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells.
Collapse
Affiliation(s)
- Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jelmer J. Lindeboom
- Laboratory of Plant Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Seth Debolt
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546
| | - Ryan Gutierrez
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Department of Biology, Stanford University, Stanford, California 94305
| | - David W. Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Department of Biology, Stanford University, Stanford, California 94305
| | - Tijs Ketelaar
- Laboratory of Plant Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Staffan Persson
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Address correspondence to
| |
Collapse
|
45
|
Buschmann H, Green P, Sambade A, Doonan JH, Lloyd CW. Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells. THE NEW PHYTOLOGIST 2011; 190:258-267. [PMID: 21182528 DOI: 10.1111/j.1469-8137.2010.03587.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transient transformation with Agrobacterium is a widespread tool allowing rapid expression analyses in plants. However, the available methods generate expression in interphase and do not allow the routine analysis of dividing cells. Here, we present a transient transformation method (termed 'TAMBY2') to enable cell biological studies in interphase and cell division. Agrobacterium-mediated transient gene expression in tobacco BY-2 was analysed by Western blotting and quantitative fluorescence microscopy. Time-lapse microscopy of cytoskeletal markers was employed to monitor cell division. Double-labelling in interphase and mitosis enabled localization studies. We found that the transient transformation efficiency was highest when BY-2/Agrobacterium co-cultivation was performed on solid medium. Transformants produced in this way divided at high frequency. We demonstrated the utility of the method by defining the behaviour of a previously uncharacterized microtubule motor, KinG, throughout the cell cycle. Our analyses demonstrated that TAMBY2 provides a flexible tool for the transient transformation of BY-2 with Agrobacterium. Fluorescence double-labelling showed that KinG localizes to microtubules and to F-actin. In interphase, KinG accumulates on microtubule lagging ends, suggesting a minus-end-directed function in vivo. Time-lapse studies of cell division showed that GFP-KinG strongly labels preprophase band and phragmoplast, but not the metaphase spindle.
Collapse
Affiliation(s)
- H Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - P Green
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - A Sambade
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - J H Doonan
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - C W Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
46
|
|
47
|
Friedberg F. Single and multiple CH (calponin homology) domain containing multidomain proteins in Arabidopsis and Saccharomyces: an inventory. Mol Biol Rep 2011; 38:213-8. [PMID: 20349140 DOI: 10.1007/s11033-010-0097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
Genes for individual domains such as CH, lim, ankyrin, PH and RhoGAP, IQ motif, Ig_FLMN, spectrin, and EF hand probably existed in early evolution before there were plants, fungi or animals so that when we examine multidomain proteins in Arabidopsis, Saccharomyces, Dictyostelium or Homo Sapiens we encounter various combinations of such domains. While all of these four species express Fimbrin and EB1, the lists of CH containing multidomain proteins, however, differ in number and in type for each of them. There was no further great increase in the number of new single domain proteins. Still many new multidomain genes evolved--but far more so in metazoans--than in plants or fungi. In both plants and fungi only singlet CH domains but no doublets (other than those forming the Fimbrin quadruplet) were incorporated. That is in these two branches one finds no alpha actinin, dystrophin or filamin even though the individual building blocks (i.e. domains such as spectrin or IG-FLMN) were available in Arabidopsis. Possibly transposons create new chimeric multidomain genes by mixing and matching genes or gene fragments.
Collapse
|
48
|
Umezu N, Umeki N, Mitsui T, Kondo K, Maruta S. Characterization of a novel rice kinesin O12 with a calponin homology domain. J Biochem 2011; 149:91-101. [PMID: 21047815 DOI: 10.1093/jb/mvq122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genomic analysis predicted that the rice (Oryza sativa var. japonica) genome encodes at least 41 kinesin-like proteins including the novel kinesin O12, which is classified as a kinesin-14 family member. O12 has a calponin homology (CH) domain that is known as an actin-binding domain. In this study, we expressed the functional domains of O12 in Escherichia coli and determined its enzymatic characteristics compared with other kinesins. The microtubule-dependent ATPase activity of recombinant O12 containing the motor and CH domains was significantly reduced in the presence of actin. Interestingly, microtubule-dependent ATPase activity of the motor domain was also affected by actin in the absence of the CH domain. Our findings suggest that the motor activity of the rice plant-specific kinesin O12 may be regulated by actin.
Collapse
Affiliation(s)
- Nozomi Umezu
- Division of Bioengineering, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | |
Collapse
|
49
|
Boggs JM, Rangaraj G, Heng YM, Liu Y, Harauz G. Myelin basic protein binds microtubules to a membrane surface and to actin filaments in vitro: effect of phosphorylation and deimination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:761-73. [PMID: 21185260 DOI: 10.1016/j.bbamem.2010.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 12/16/2022]
Abstract
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and other proteins. It assembles actin filaments and microtubules, can bind actin filaments and SH3-domains to a membrane surface, and may be able to tether them to the oligodendrocyte membrane and participate in signal transduction in oligodendrocytes/myelin. In the present study, we have shown that the 18.5 kDa MBP isoform can also bind microtubules to lipid vesicles in vitro. Phosphorylation of MBP at Thr94 and Thr97 (bovine sequence) by MAPK, and deimination of MBP (using a pseudo-deiminated recombinant form), had little detectable effect on its ability to polymerize and bundle microtubules, in contrast to the effect of these modifications on MBP-mediated assembly of actin. However, these modifications dramatically decreased the ability of MBP to tether microtubules to lipid vesicles. MBP and its phosphorylated and pseudo-deiminated variants were also able to bind microtubules to actin filaments. These results suggest that MBP may be able to tether microtubules to the cytoplasmic surface of the oligodendrocyte membrane, and that this binding can be regulated by post-translational modifications to MBP. We further show that MBP appears to be co-localized with actin filaments and microtubules in cultured oligodendrocytes, and also at the interface between actin filaments at the leading edge of membrane processes and microtubules behind them. Thus, MBP may also cross-link microtubules to actin filaments in vivo.
Collapse
Affiliation(s)
- Joan M Boggs
- Molecular Structure and Function Program, Research Institute, the Hospital for Sick Children, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
50
|
Romagnoli S, Faleri C, Bini L, Baskin TI, Cresti M. Cytosolic proteins from tobacco pollen tubes that crosslink microtubules and actin filaments in vitro are metabolic enzymes. Cytoskeleton (Hoboken) 2010; 67:745-54. [PMID: 20862688 DOI: 10.1002/cm.20483] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/24/2010] [Accepted: 09/03/2010] [Indexed: 12/21/2022]
Abstract
In plant cells, many processes require cooperative action of both microtubules and actin filaments, but proteins mediating interactions between these cytoskeletal members are mostly undiscovered. Here, we attempt to identify such proteins by affinity purification. Cytosol from Nicotiana tabacum (tobacco) pollen tubes was incubated first with actin filaments, and then proteins eluted from the actin were incubated with microtubules, and finally those microtubule-binding proteins were pooled in an active fraction. This fraction bundled actin filaments but not microtubules. However, when the fraction was added to both actin and microtubules, large bundles resulted, containing both polymers, regardless of the order of addition of components. Similar results were obtained when the order of affinity purification was reversed. The four most abundant bands from the fractions were identified from peptide fragments analyzed by mass spectrometry. The same four proteins were identified regardless of the order of affinity purification. The proteins are: homocysteine methyltransferase, phosphofructokinase, pyruvate decarboxylase, and glucan protein synthase (reversibly glycosylated protein). These results suggest the importance of structuring metabolism within the confines of the pollen tube cytoplasm.
Collapse
Affiliation(s)
- Silvia Romagnoli
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, Siena, Italy
| | | | | | | | | |
Collapse
|