1
|
Mancuso F, Di Chio C, Di Matteo F, Smaldone G, Iraci N, Giofrè SV. Recent Advances in the Development of Immunoproteasome Inhibitors as Anti-Cancer Agents: The Past 5 Years. Molecules 2025; 30:755. [PMID: 39942858 PMCID: PMC11819894 DOI: 10.3390/molecules30030755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The immunoproteasome (iCP) is an isoform of the 20S proteasome that is expressed in response to cellular stress or inflammatory stimuli. The primary role of the iCP is to hydrolyze proteins into peptides that can be loaded into the MHC-I complex. Beyond its primary role in the adaptive immune response, it is also involved in the pathogenic mechanism of numerous disease states such as inflammatory conditions and cancer. In the last decade, a huge number of immunoproteasome-specific inhibitors have been described, allowing researchers to elucidate the role of the immunoproteasome as a potential therapeutic target for these diseases. The present manuscript summarizes the latest advances regarding immunoproteasome inhibitors tested against different cancer models. Specifically, it will focus on peptide and non-peptide analogs that have been reported in the last five years, together with their structure-activity relationship (SAR) studies. It aims to provide structural insights into this class of compounds pertaining to their favorable applicability as selective iCP inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (F.M.)
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (F.M.)
| | - Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (F.M.)
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (F.M.)
| |
Collapse
|
2
|
Liu LJ, O'Donoghue AJ, Caffrey CR. The proteasome as a drug target for treatment of parasitic diseases. ADVANCES IN PARASITOLOGY 2024; 126:53-96. [PMID: 39448194 DOI: 10.1016/bs.apar.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The proteasome is a proteolytically active molecular machine comprising many different protein subunits. It is essential for growth and survival in eukaryotic cells and has long been considered a drug target. Here, we summarize the biology of the proteasome, the early research relating to the development of specific proteasome inhibitors (PIs) for treatment of various cancers, and their translation and eventual evolution as exciting therapies for parasitic diseases. We also highlight the development and adaptation of technologies that have allowed for a deep understanding of the idiosyncrasies of individual parasite proteasomes, as well as the preclinical and clinical advancement of PIs with remarkable therapeutic indices.
Collapse
Affiliation(s)
- Lawrence J Liu
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States; Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States.
| | - Anthony J O'Donoghue
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
3
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
4
|
Arai Y, Shitama H, Yamagishi M, Ono S, Kashima A, Hiraizumi M, Tsuda N, Katayama K, Tanaka K, Koda Y, Kato S, Sakata K, Nureki O, Miyazaki H. Optimization of α-amido boronic acids via cryo-electron microscopy analysis: Discovery of a novel highly selective immunoproteasome subunit LMP7 (β5i)/LMP2 (β1i) dual inhibitor. Bioorg Med Chem 2024; 109:117790. [PMID: 38906067 DOI: 10.1016/j.bmc.2024.117790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
The immunoproteasome subunit LMP7 (β5i)/LMP2 (β1i) dual blockade has been reported to suppress B cell differentiation and activation, suggesting that the dual inhibition of LMP7/LMP2 is a promising approach for treating autoimmune diseases. In contrast, the inhibition of the constitutive proteasome subunit β5c correlates with cytotoxicity against non-immune cells. Therefore, LMP7/LMP2 dual inhibitors with high selectivity over β5c may be desirable for treating autoimmune diseases. In this study, we present the optimization and discovery of α-amido boronic acids using cryo-electron microscopy (cryo-EM). The exploitation of structural differences between the proteasome subunits led to the identification of a highly selective LMP7/LMP2 dual inhibitor 19. Molecular dynamics simulation based on cryo-EM structures of the proteasome subunits complexed with 19 explained the inhibitory activity profile. In mice immunized with 4-hydroxy-3-nitrophenylacetyl conjugated to ovalbumin, results indicate that 19 is orally bioavailable and shows promise as potential treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Yuuki Arai
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| | - Hiroaki Shitama
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahito Yamagishi
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Satoshi Ono
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Akiko Kashima
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahiro Hiraizumi
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Naoki Tsuda
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Koushirou Katayama
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kouji Tanaka
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Yuzo Koda
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Sayuka Kato
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kei Sakata
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Miyazaki
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| |
Collapse
|
5
|
Li B, Adam Eichhorn PJ, Chng WJ. Targeting the ubiquitin pathway in lymphoid malignancies. Cancer Lett 2024; 594:216978. [PMID: 38795760 DOI: 10.1016/j.canlet.2024.216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore; Department of Medicine, School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Chan AM, Mitchell A, Grogan L, Shapiro P, Fletcher S. Histone deacetylase (HDAC) inhibitor specificity determinants are preserved in a class of dual HDAC/non-covalent proteasome inhibitors. Bioorg Med Chem 2024; 104:117680. [PMID: 38582047 PMCID: PMC11177207 DOI: 10.1016/j.bmc.2024.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Many disease states require multiple drugs to inhibit multiple targets for their effective treatment/management, i.e. a drug cocktail regimen, or "polypharmacy". Polypharmacology, in contrast, is the development of single agents that can inhibit multiple targets. Each strategy is associated with advantages and disadvantages. Motivated by promising clinical trial data for the treatment of multiple myeloma with the combination of the HDAC6 inhibitor ricolinostat and the proteasome inhibitor bortezomib, we herein describe a focused family of dual HDAC/non-covalent proteasome inhibitors, and explore the impact of linker and zinc-binding group identities on HDAC1/6 isozyme selectivity. In general, previously reported specificity determinants of monovalent HDAC1/6 inhibitors were preserved in our dual HDAC/proteasome inhibitors.
Collapse
Affiliation(s)
- Alexandria M Chan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Ashley Mitchell
- University of Maryland Baltimore County, 1000 Hilltop Cir., Baltimore, MD 21250, USA
| | - Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA.
| |
Collapse
|
7
|
Fernandes PMP, Guedes RA, Victor BL, Salvador JAR, Guedes RC. Decoding the secrets: how conformational and structural regulators inhibit the human 20S proteasome. Front Chem 2024; 11:1322628. [PMID: 38260042 PMCID: PMC10801056 DOI: 10.3389/fchem.2023.1322628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Acquired resistance to drugs that modulate specific protein functions, such as the human proteasome, presents a significant challenge in targeted therapies. This underscores the importance of devising new methodologies to predict drug binding and potential resistance due to specific protein mutations. In this work, we conducted an extensive computational analysis to ascertain the effects of selected mutations (Ala49Thr, Ala50Val, and Cys52Phe) within the active site of the human proteasome. Specifically, we sought to understand how these mutations might disrupt protein function either by altering protein stability or by impeding interactions with a clinical administered drug. Leveraging molecular dynamics simulations and molecular docking calculations, we assessed the effect of these mutations on protein stability and ligand affinity. Notably, our results indicate that the Cys52Phe mutation critically impacts protein-ligand binding, providing valuable insights into potential proteasome inhibitor resistance.
Collapse
Affiliation(s)
- Pedro M. P. Fernandes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Romina A. Guedes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno L. Victor
- BioISI─Biosystems & Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Wang H, Wu Z, Cao Y, Gao L, Shao J, Zhao Y, Zhang J, Zhou Y, Wei G, Li J, Zhu H. Exploration of novel four-membered-heterocycle constructed peptidyl proteasome inhibitors with improved metabolic stability for cancer treatment. Bioorg Chem 2023; 138:106626. [PMID: 37295239 DOI: 10.1016/j.bioorg.2023.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Peptides have limitations as active pharmaceutical agents due to rapid hydrolysis by proteases and poor cell permeability. To overcome these limitations, a series of peptidyl proteasome inhibitors embedded with four-membered heterocycles were designed to enhance their metabolic stabilities. All synthesized compounds were screened for their inhibitory activities against human 20S proteasome, and 12 target compounds displayed potent efficacy with IC50 values lower than 20 nM. Additionally, these compounds exhibited strong anti-proliferative activities against multiple myeloma (MM) cell lines (MM1S: 72, IC50 = 4.86 ± 1.34 nM; RPMI-8226: 67, IC50 = 12.32 ± 1.44). Metabolic stability assessments of SGF, SIF, plasma and blood were conducted, and the representative compound 73 revealed long half-lives (Plasma: T1/2 = 533 min; Blood: T1/2 > 1000 min) and good proteasome inhibitory activity in vivo. These results suggest that compound 73 serve as a lead compound for the development of more novel proteasome inhibitors.
Collapse
Affiliation(s)
- Hanlin Wang
- School of Pharmacy, Fudan University, Shanghai 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoxiao Wu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Cao
- Department of pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanmei Zhao
- Department of pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Wei
- School of Pharmacy, Fudan University, Shanghai 210023, China.
| | - Jia Li
- School of Pharmacy, Fudan University, Shanghai 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Guedes RA, Grilo JH, Carvalho AN, Fernandes PMP, Ressurreição AS, Brito V, Santos AO, Silvestre S, Gallerani E, Gama MJ, Gavioli R, Salvador JAR, Guedes RC. New Scaffolds of Proteasome Inhibitors: Boosting Anticancer Potential by Exploiting the Synergy of In Silico and In Vitro Methodologies. Pharmaceuticals (Basel) 2023; 16:1096. [PMID: 37631011 PMCID: PMC10458307 DOI: 10.3390/ph16081096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a complex multifactorial disease whose pathophysiology involves multiple metabolic pathways, including the ubiquitin-proteasome system, for which several proteasome inhibitors have already been approved for clinical use. However, the resistance to existing therapies and the occurrence of severe adverse effects is still a concern. The purpose of this study was the discovery of novel scaffolds of proteasome inhibitors with anticancer activity, aiming to overcome the limitations of the existing proteasome inhibitors. Thus, a structure-based virtual screening protocol was developed using the structure of the human 20S proteasome, and 246 compounds from virtual databases were selected for in vitro evaluation, namely proteasome inhibition assays and cell viability assays. Compound 4 (JHG58) was shortlisted as the best hit compound based on its potential in terms of proteasome inhibitory activity and its ability to induce cell death (both with IC50 values in the low micromolar range). Molecular docking studies revealed that compound 4 interacts with key residues, namely with the catalytic Thr1, Ala20, Thr21, Lys33, and Asp125 at the chymotrypsin-like catalytic active site. The hit compound is a good candidate for additional optimization through a hit-to-lead campaign.
Collapse
Affiliation(s)
- Romina A. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Jorge H. Grilo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
| | - Andreia N. Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
| | - Pedro M. P. Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana S. Ressurreição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
| | - Vanessa Brito
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (V.B.); (A.O.S.); (S.S.)
| | - Adriana O. Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (V.B.); (A.O.S.); (S.S.)
| | - Samuel Silvestre
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (V.B.); (A.O.S.); (S.S.)
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Jorge A. R. Salvador
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal or (R.A.G.); (J.H.G.); (A.N.C.); (P.M.P.F.); (A.S.R.); (M.J.G.)
| |
Collapse
|
10
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
11
|
Synthesis, crystal structure, Hirshfeld surface, energy framework, NCI-RDG, theoretical calculations and molecular docking of (Z)4,4′-bis[-3-N-ethyl-2-N'-(phenylimino) thiazolidin-4-one] methane. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Yeast PI31 inhibits the proteasome by a direct multisite mechanism. Nat Struct Mol Biol 2022; 29:791-800. [PMID: 35927584 PMCID: PMC9399903 DOI: 10.1038/s41594-022-00808-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Proteasome inhibitors are widely used as therapeutics and research tools, and typically target one of the three active sites, each present twice in the proteasome complex. An endogeneous proteasome inhibitor, PI31, was identified 30 years ago, but its inhibitory mechanism has remained unclear. Here, we identify the mechanism of Saccharomyces cerevisiae PI31, also known as Fub1. Using cryo-electron microscopy (cryo-EM), we show that the conserved carboxy-terminal domain of Fub1 is present inside the proteasome's barrel-shaped core particle (CP), where it simultaneously interacts with all six active sites. Targeted mutations of Fub1 disrupt proteasome inhibition at one active site, while leaving the other sites unaffected. Fub1 itself evades degradation through distinct mechanisms at each active site. The gate that allows substrates to access the CP is constitutively closed, and Fub1 is enriched in mutant CPs with an abnormally open gate, suggesting that Fub1 may function to neutralize aberrant proteasomes, thereby ensuring the fidelity of proteasome-mediated protein degradation.
Collapse
|
13
|
Zhang H, Ginn J, Zhan W, Liu YJ, Leung A, Toita A, Okamoto R, Wong TT, Imaeda T, Hara R, Yukawa T, Michino M, Vendome J, Beuming T, Sato K, Aso K, Meinke PT, Nathan CF, Kirkman LA, Lin G. Design, Synthesis, and Optimization of Macrocyclic Peptides as Species-Selective Antimalaria Proteasome Inhibitors. J Med Chem 2022; 65:9350-9375. [PMID: 35727231 PMCID: PMC10152543 DOI: 10.1021/acs.jmedchem.2c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With over 200 million cases and close to half a million deaths each year, malaria is a threat to global health, particularly in developing countries. Plasmodium falciparum, the parasite that causes the most severe form of the disease, has developed resistance to all antimalarial drugs. Resistance to the first-line antimalarial artemisinin and to artemisinin combination therapies is widespread in Southeast Asia and is emerging in sub-Saharan Africa. The P. falciparum proteasome is an attractive antimalarial target because its inhibition kills the parasite at multiple stages of its life cycle and restores artemisinin sensitivity in parasites that have become resistant through mutation in Kelch K13. Here, we detail our efforts to develop noncovalent, macrocyclic peptide malaria proteasome inhibitors, guided by structural analysis and pharmacokinetic properties, leading to a potent, species-selective, metabolically stable inhibitor.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, New York 10065, United States
| | - John Ginn
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, New York 10065, United States
| | - Yi J Liu
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, New York 10065, United States
| | - Annie Leung
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Ave., New York, New York 10065, United States
| | - Akinori Toita
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | - Rei Okamoto
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | - Tzu-Tshin Wong
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | - Toshihiro Imaeda
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | - Ryoma Hara
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | - Takafumi Yukawa
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | | | - Thijs Beuming
- Schrödinger, Inc., New York, New York 10036, United States
| | - Kenjiro Sato
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | - Peter T Meinke
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, New York 10065, United States
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, New York 10065, United States
| | - Laura A Kirkman
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, New York 10065, United States.,Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Ave., New York, New York 10065, United States
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, New York 10065, United States
| |
Collapse
|
14
|
Immunoproteasome Activity in Chronic Lymphocytic Leukemia as a Target of the Immunoproteasome-Selective Inhibitors. Cells 2022; 11:cells11050838. [PMID: 35269460 PMCID: PMC8909520 DOI: 10.3390/cells11050838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Targeting proteasome with proteasome inhibitors (PIs) is an approved treatment strategy in multiple myeloma that has also been explored pre-clinically and clinically in other hematological malignancies. The approved PIs target both the constitutive and the immunoproteasome, the latter being present predominantly in cells of lymphoid origin. Therapeutic targeting of the immunoproteasome in cells with sole immunoproteasome activity may be selectively cytotoxic in malignant cells, while sparing the non-lymphoid tissues from the on-target PIs toxicity. Using activity-based probes to assess the proteasome activity profile and correlating it with the cytotoxicity assays, we identified B-cell chronic lymphocytic leukemia (B-CLL) to express predominantly immunoproteasome activity, which is associated with high sensitivity to approved proteasome inhibitors and, more importantly, to the immunoproteasome selective inhibitors LU005i and LU035i, targeting all immunoproteasome active subunits or only the immunoproteasome β5i, respectively. At the same time, LU102, a proteasome β2 inhibitor, sensitized B-CLL or immunoproteasome inhibitor-inherently resistant primary cells of acute myeloid leukemia, B-cell acute lymphoblastic leukemia, multiple myeloma and plasma cell leukemia to low doses of LU035i. The immunoproteasome thus represents a novel therapeutic target, which warrants further testing with clinical stage immunoproteasome inhibitors in monotherapy or in combinations.
Collapse
|
15
|
Kisselev AF. Site-Specific Proteasome Inhibitors. Biomolecules 2021; 12:54. [PMID: 35053202 PMCID: PMC8773591 DOI: 10.3390/biom12010054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Proteasome is a multi-subunit protein degradation machine, which plays a key role in the maintenance of protein homeostasis and, through degradation of regulatory proteins, in the regulation of numerous cell functions. Proteasome inhibitors are essential tools for biomedical research. Three proteasome inhibitors, bortezomib, carfilzomib, and ixazomib are approved by the FDA for the treatment of multiple myeloma; another inhibitor, marizomib, is undergoing clinical trials. The proteolytic core of the proteasome has three pairs of active sites, β5, β2, and β1. All clinical inhibitors and inhibitors that are widely used as research tools (e.g., epoxomicin, MG-132) inhibit multiple active sites and have been extensively reviewed in the past. In the past decade, highly specific inhibitors of individual active sites and the distinct active sites of the lymphoid tissue-specific immunoproteasome have been developed. Here, we provide a comprehensive review of these site-specific inhibitors of mammalian proteasomes and describe their utilization in the studies of the biology of the active sites and their roles as drug targets for the treatment of different diseases.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
16
|
Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome. Proc Natl Acad Sci U S A 2021; 118:2107213118. [PMID: 34548400 PMCID: PMC8488693 DOI: 10.1073/pnas.2107213118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Here, we describe inhibitors of the Plasmodium proteasome, an enzymatic complex that malaria parasites rely on to degrade proteins. Starting from inhibitors developed to treat cancer, derivatives were designed and synthesized with the aim of increasing potency against the Plasmodium proteasome and decreasing activity against the human enzyme. Biochemical and cellular assays identified compounds that exhibit selectivity and potency, both in vitro and in vivo, at different stages of the parasite’s lifecycle. Cryo-electron microscopy revealed that the inhibitors bind in a hydrophobic pocket that is structurally different in the human proteasome—underpinning their selectivity. The work will help develop antimalarial therapeutics, which are desperately needed to treat a disease that kills nearly half a million people annually. The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) β5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax. They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.
Collapse
|
17
|
Reboud-Ravaux M. [The proteasome - structural aspects and inhibitors: a second life for a validated drug target]. Biol Aujourdhui 2021; 215:1-23. [PMID: 34397372 DOI: 10.1051/jbio/2021005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 02/06/2023]
Abstract
The proteasome is the central component of the adaptable ubiquitin proteasome system (UPS) discovered in the 1980's. It sustains protein homeostasis (proteostasis) under a large variety of physiological and pathological conditions. Its dysregulation has been often associated to various human diseases. Its potential regulation by modulators has emerged as promising avenue to develop treatments of various pathologies. The FDA approval in 2003 of the proteasome inhibitor bortezomib to treat multiple myeloma, then mantle lymphoma in 2006, has considerably increased the clinical interest of proteasome inhibition. Second-generation proteasome inhibitors (carfilzomib and ixazomib) have been approved to overcome bortezomib resistance and improved toxicity profile and route of administration. Selective inhibition of immunoproteasome is a promising approach towards the development of immunomodulatory drugs. The design of these drugs relies greatly on the elucidation of high-resolution structures of the targeted proteasomes. The ATPase-dependent 26S proteasome (2.4 MDa) consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of catalytic sites. In recent years, due to technical advances especially in atomic cryo-electron microscopy, significant progress has been made in the understanding of 26S proteasome structure and its dynamics. Stepwise conformational changes of the 19S particle induced by ATP hydrolysis lead to substrate translocation, 20S pore opening and processive protein degradation by the 20S proteolytic subunits (2β1, 2β2 and 2β5). A large variety of structurally different inhibitors, both natural products or synthetic compounds targeting immuno- and constitutive proteasomes, has been discovered. The latest advances in this drug discovery are presented. Knowledge about structures, inhibition mechanism and detailed biological regulations of proteasomes can guide strategies for the development of next-generation inhibitors to treat human diseases, especially cancers, immune disorders and pathogen infections. Proteasome activators are also potentially applicable to the reduction of proteotoxic stresses in neurodegeneration and aging.
Collapse
Affiliation(s)
- Michèle Reboud-Ravaux
- Sorbonne Université, Institut de Biologie Paris Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| |
Collapse
|
18
|
A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Cells 2021; 10:cells10081929. [PMID: 34440698 PMCID: PMC8394499 DOI: 10.3390/cells10081929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
At the heart of the ubiquitin-proteasome system, the 20S proteasome core particle (CP) breaks down the majority of intracellular proteins tagged for destruction. Thereby, the CP controls many cellular processes including cell cycle progression and cell signalling. Inhibitors of the CP can suppress these essential biological pathways, resulting in cytotoxicity, an effect that is beneficial for the treatment of certain blood cancer patients. During the last decade, several preclinical studies demonstrated that selective inhibition of the immunoproteasome (iCP), one of several CP variants in mammals, suppresses autoimmune diseases without inducing toxic side effects. These promising findings led to the identification of natural and synthetic iCP inhibitors with distinct chemical structures, varying potency and subunit selectivity. This review presents the most prominent iCP inhibitors with respect to possible scientific and medicinal applications, and discloses recent trends towards pan-immunoproteasome reactive inhibitors that cumulated in phase II clinical trials of the lead compound KZR-616 for chronic inflammations.
Collapse
|
19
|
Klein M, Busch M, Friese-Hamim M, Crosignani S, Fuchss T, Musil D, Rohdich F, Sanderson MP, Seenisamy J, Walter-Bausch G, Zanelli U, Hewitt P, Esdar C, Schadt O. Structure-Based Optimization and Discovery of M3258, a Specific Inhibitor of the Immunoproteasome Subunit LMP7 (β5i). J Med Chem 2021; 64:10230-10245. [PMID: 34228444 DOI: 10.1021/acs.jmedchem.1c00604] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (β1, β2, and β5). LMP7 (β5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs. Here, we describe the discovery and structure-based hit optimization of novel amido boronic acids, which selectively inhibit LMP7 while sparing all other subunits. The exploitation of structural differences between the proteasome subunits culminated in the identification of the highly potent, exquisitely selective, and orally available LMP7 inhibitor 50 (M3258). Based on the strong antitumor activity observed with M3258 in MM models and a favorable preclinical data package, a phase I clinical trial was initiated in relapsed/refractory MM patients.
Collapse
Affiliation(s)
- Markus Klein
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Michael Busch
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | - Thomas Fuchss
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Djordje Musil
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Felix Rohdich
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | | | - Ugo Zanelli
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Philip Hewitt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | - Oliver Schadt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| |
Collapse
|
20
|
Estevez-Fregoso E, Farfán-García ED, García-Coronel IH, Martínez-Herrera E, Alatorre A, Scorei RI, Soriano-Ursúa MA. Effects of boron-containing compounds in the fungal kingdom. J Trace Elem Med Biol 2021; 65:126714. [PMID: 33453473 DOI: 10.1016/j.jtemb.2021.126714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The number of known boron-containing compounds (BCCs) is increasing due to their identification in nature and innovative synthesis procedures. Their effects on the fungal kingdom are interesting, and some of their mechanisms of action have recently been elucidated. METHODS In this review, scientific reports from relevant chemistry and biomedical databases were collected and analyzed. RESULTS It is notable that several BCC actions in fungi induce social and economic benefits for humans. In fact, boric acid was traditionally used for multiple purposes, but some novel synthetic BCCs are effective antifungal agents, particularly in their action against pathogen species, and some were recently approved for use in humans. Moreover, most reports testing BCCs in fungal species suggest a limiting effect of these compounds on some vital reactions. CONCLUSIONS New BCCs have been synthesized and tested for innovative technological and biomedical emerging applications, and new interest is developing for discovering new strategic compounds that can act as environmental or wood protectors, as well as antimycotic agents that let us improve food acquisition and control some human infections.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Eunice D Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| | - Itzel H García-Coronel
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico; Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Alberto Alatorre
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Romulus I Scorei
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Marvin A Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| |
Collapse
|
21
|
Zhan W, Zhang H, Ginn J, Leung A, Liu YJ, Michino M, Toita A, Okamoto R, Wong TT, Imaeda T, Hara R, Yukawa T, Chelebieva S, Tumwebaze PK, Lafuente-Monasterio MJ, Martinez-Martinez MS, Vendome J, Beuming T, Sato K, Aso K, Rosenthal PJ, Cooper RA, Meinke PT, Nathan CF, Kirkman LA, Lin G. Development of a Highly Selective Plasmodium falciparum Proteasome Inhibitor with Anti-malaria Activity in Humanized Mice. Angew Chem Int Ed Engl 2021; 60:9279-9283. [PMID: 33433953 PMCID: PMC8087158 DOI: 10.1002/anie.202015845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/29/2020] [Indexed: 01/01/2023]
Abstract
Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the β5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice.
Collapse
Affiliation(s)
- Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - John Ginn
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Annie Leung
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Yi J Liu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Akinori Toita
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Rei Okamoto
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Tzu-Tshin Wong
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Toshihiro Imaeda
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Ryoma Hara
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Takafumi Yukawa
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Sevil Chelebieva
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | | | - Maria Jose Lafuente-Monasterio
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Maria Santos Martinez-Martinez
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | | | | | - Kenjiro Sato
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Peter T Meinke
- Tri-Institutional Therapeutics Discovery Institute, 413 E 69th St, New York, NY, 10065, USA
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Laura A Kirkman
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| |
Collapse
|
22
|
Zhan W, Zhang H, Ginn J, Leung A, Liu YJ, Michino M, Toita A, Okamoto R, Wong T, Imaeda T, Hara R, Yukawa T, Chelebieva S, Tumwebaze PK, Lafuente‐Monasterio MJ, Martinez‐Martinez MS, Vendome J, Beuming T, Sato K, Aso K, Rosenthal PJ, Cooper RA, Meinke PT, Nathan CF, Kirkman LA, Lin G. Development of a Highly Selective
Plasmodium falciparum
Proteasome Inhibitor with Anti‐malaria Activity in Humanized Mice. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wenhu Zhan
- Department of Microbiology & Immunology Weill Cornell Medicine 1300 York Ave New York NY 10065 USA
| | - Hao Zhang
- Department of Microbiology & Immunology Weill Cornell Medicine 1300 York Ave New York NY 10065 USA
| | - John Ginn
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | - Annie Leung
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine 1300 York Ave New York NY 10065 USA
| | - Yi J. Liu
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine 1300 York Ave New York NY 10065 USA
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | - Akinori Toita
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | - Rei Okamoto
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | - Tzu‐Tshin Wong
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | - Toshihiro Imaeda
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | - Ryoma Hara
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | - Takafumi Yukawa
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | - Sevil Chelebieva
- Department of Natural Sciences and Mathematics Dominican University of California San Rafael CA 94901 USA
| | | | - Maria Jose Lafuente‐Monasterio
- Diseases of the Developing World (DDW) Tres Cantos Medicine Development Campus GlaxoSmithKline Severo Ochoa 2 28760, Tres Cantos Madrid Spain
| | - Maria Santos Martinez‐Martinez
- Diseases of the Developing World (DDW) Tres Cantos Medicine Development Campus GlaxoSmithKline Severo Ochoa 2 28760, Tres Cantos Madrid Spain
| | | | | | - Kenjiro Sato
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | | | - Roland A. Cooper
- Department of Natural Sciences and Mathematics Dominican University of California San Rafael CA 94901 USA
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute 413 E 69th St New York NY 10065 USA
| | - Carl F. Nathan
- Department of Microbiology & Immunology Weill Cornell Medicine 1300 York Ave New York NY 10065 USA
| | - Laura A. Kirkman
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine 1300 York Ave New York NY 10065 USA
| | - Gang Lin
- Department of Microbiology & Immunology Weill Cornell Medicine 1300 York Ave New York NY 10065 USA
| |
Collapse
|
23
|
Zhao Y, Xu L, Zhang J, Zhang M, Lu J, He R, Xi J, Zhuang R, Li J, Zhou Y. Optimization of piperidine constructed peptidyl derivatives as proteasome inhibitors. Bioorg Med Chem 2021; 29:115867. [PMID: 33223460 DOI: 10.1016/j.bmc.2020.115867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 11/01/2020] [Indexed: 11/28/2022]
Abstract
A series of non-covalent piperidine-containing peptidyl derivatives with various substituents at side chains of different residues were designed, synthesized and evaluated as proteasome inhibitors. After proteasome inhibitory evaluations of all the synthesized target compounds, selected ones were tested for their anti-proliferation activities against three multiple myeloma (MM) cell lines. 8 analogues displayed more potent activities than carfilzomib, and the most promising compound 24 showed IC50 values of 0.8 ± 0.2 nM against 20S proteasome and 8.42 ± 0.74 nM, 7.14 ± 0.52 nM, 14.20 ± 1.08 nM for RPMI 8226, NCI-H929 and MM.1S cell lines, respectively. Additionally, mechanisms of anti-cancer activity of representative compound 24 were further investigated. Apoptosis of RPMI-8226 cells were achieved through accumulating polyubiquitin and inducing the cleavage of caspase and PARP. Besides, half-life in rat plasma of compound 24 was prolonged after optimization, which would be helpful for increasing in vivo activities of this series of derivatives. All the studies confirmed that piperidine-containing non-covalent proteasome inhibitors can be potential leads for anti-MM drug development.
Collapse
Affiliation(s)
- Yanmei Zhao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China
| | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiankang Zhang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China; School of Medicine, Zhejiang University City College, Hangzhou 310015, Zhejiang Province, China
| | - Mengmeng Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingyi Lu
- School of Medicine, Zhejiang University City College, Hangzhou 310015, Zhejiang Province, China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, Zhejiang Province, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
24
|
Maurits E, Degeling CG, Kisselev AF, Florea BI, Overkleeft HS. Structure-Based Design of Fluorogenic Substrates Selective for Human Proteasome Subunits. Chembiochem 2020; 21:3220-3224. [PMID: 32598532 PMCID: PMC7754458 DOI: 10.1002/cbic.202000375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Indexed: 11/07/2022]
Abstract
Proteasomes are established therapeutic targets for hematological cancers and promising targets for autoimmune diseases. In the past, we have designed and synthesized mechanism-based proteasome inhibitors that are selective for the individual catalytic activities of human constitutive proteasomes and immunoproteasomes: β1c, β1i, β2c, β2i, β5c and β5i. We show here that by taking the oligopeptide recognition element and substituting the electrophile for a fluorogenic leaving group, fluorogenic substrates are obtained that report on the proteasome catalytic activity also targeted by the parent inhibitor. Though not generally applicable (β5c and β2i substrates showing low activity), effective fluorogenic substrates reporting on the individual activity of β1c, β1i, β2c and β5i subunits in Raji (human B cell) lysates and purified 20S proteasome were identified in this manner. Our work thus adds to the expanding proteasome research toolbox through the identification of new and/or more effective subunit-selective fluorogenic substrates.
Collapse
Affiliation(s)
- Elmer Maurits
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Christian G. Degeling
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Alexei F. Kisselev
- Department of Drug Discovery and DevelopmentHarrison School of PharmacyAuburn UniversityAuburnAL 36849USA
| | - Bogdan I. Florea
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
25
|
Zhan W, Singh PK, Ban Y, Qing X, Ah Kioon MD, Fan H, Zhao Q, Wang R, Sukenick G, Salmon J, Warren JD, Ma X, Barrat FJ, Nathan CF, Lin G. Structure-Activity Relationships of Noncovalent Immunoproteasome β5i-Selective Dipeptides. J Med Chem 2020; 63:13103-13123. [PMID: 33095579 PMCID: PMC8086754 DOI: 10.1021/acs.jmedchem.0c01520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunoproteasome (i-20S) has emerged as a therapeutic target for autoimmune and inflammatory disorders and hematological malignancies. Inhibition of the chymotryptic β5i subunit of i-20S inhibits T cell activation, B cell proliferation, and dendritic cell differentiation in vitro and suppresses immune responses in animal models of autoimmune disorders and allograft rejection. However, cytotoxicity to immune cells has accompanied the use of covalently reactive β5i inhibitors, whose activity against the constitutive proteasome (c-20S) is cumulative with the time of exposure. Herein, we report a structure-activity relationship study of a class of noncovalent proteasome inhibitors with picomolar potencies and 1000-fold selectivity for i-20S over c-20S. Furthermore, these inhibitors are specific for β5i over the other five active subunits of i-20S and c-20S, providing useful tools to study the functions of β5i in immune responses. The potency of these compounds in inhibiting human T cell activation suggests that they may have therapeutic potential.
Collapse
Affiliation(s)
- Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065
| | - Pradeep K Singh
- Department of Biochemistry, Milstein Chemistry Core Facility
| | - Yi Ban
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065
| | - Xiaoping Qing
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery, New York, NY 10065, USA
| | - Marie Dominique Ah Kioon
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery, New York, NY 10065, USA
| | - Hao Fan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065
| | - Quanju Zhao
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065
| | - Rong Wang
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center
| | - George Sukenick
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center
| | - Jane Salmon
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery, New York, NY 10065, USA
| | - J David Warren
- Department of Biochemistry, Milstein Chemistry Core Facility
| | - Xiaojing Ma
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065
| | - Franck J. Barrat
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery, New York, NY 10065, USA
| | - Carl F. Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065
| |
Collapse
|
26
|
Uysal S, Soyer Z, Saylam M, Tarikogullari AH, Yilmaz S, Kirmizibayrak PB. Design, synthesis and biological evaluation of novel naphthoquinone-4-aminobenzensulfonamide/carboxamide derivatives as proteasome inhibitors. Eur J Med Chem 2020; 209:112890. [PMID: 33039723 DOI: 10.1016/j.ejmech.2020.112890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
A series of novel 4-aminobenzensulfonamide/carboxamide derivatives bearing naphthoquinone pharmacophore were designed, sythesized and evaluated for their proteasome inhibitory and antiproliferative activities against human breast cancer cell line (MCF-7). The structures of the synthesized compounds were confirmed by spectral and elemental analyses. The proteasome inhibitory activity studies were carried out using cell-based assay. The antiproteasomal activity results revealed that most of the compounds exhibited inhibitory activity with different percentages against the caspase-like (C-L, β1 subunit), trypsin-like (T-L, β2 subunit) and chymotrypsin-like (ChT-L, β5 subunit) activities of proteasome. Among the tested compounds, compound 14 bearing 5-chloro-2-pyridyl ring on the nitrogen atom of sulfonamide group is the most active compound in the series and displayed higher inhibition with IC50 values of 9.90 ± 0.61, 44.83 ± 4.23 and 22.27 ± 0.15 μM against ChT-L, C-L and T-L activities of proteasome compared to the lead compound PI-083 (IC50 = 12.47 ± 0.21, 53.12 ± 2.56 and 26.37 ± 0.5 μM), respectively. The antiproliferative activity was also determined by MTT (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay in vitro. According to the antiproliferative activity results, all of the compounds exhibited cell growth inhibitory activity in a range of IC50 = 1.72 ± 0.14-20.8 ± 0.5 μM and compounds 13 and 28 were found to be the most active compounds with IC50 values of 1.79 ± 0.21 and 1.72 ± 0.14 μM, respectively. Furthermore, molecular modeling studies were carried out for the compounds 13, 14 and 28 to investigate the ligand-enzyme binding interactions.
Collapse
Affiliation(s)
- Sirin Uysal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Zeynep Soyer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey.
| | - Merve Saylam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İzmir Katip Celebi University, İzmir, Turkey
| | - Ayse H Tarikogullari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sinem Yilmaz
- Department of Biotechnology, Institute of Science, Ege University, İzmir, Turkey; Department of Bioengineering, Faculty of Engineering, University of Alaaddin Keykubat, Antalya, Turkey
| | | |
Collapse
|
27
|
Moreira R, Jervis PJ, Carvalho A, Ferreira PMT, Martins JA, Valentão P, Andrade PB, Pereira DM. Biological Evaluation of Naproxen-Dehydrodipeptide Conjugates with Self-Hydrogelation Capacity as Dual LOX/COX Inhibitors. Pharmaceutics 2020; 12:E122. [PMID: 32028608 PMCID: PMC7076388 DOI: 10.3390/pharmaceutics12020122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
The use of peptide-drug conjugates is emerging as a powerful strategy for targeted drug delivery. Previously, we have found that peptides conjugated to a non-steroidal anti-inflammatory drug (NSAID), more specifically naproxen-dehydrodipeptide conjugates, readily form nanostructured fibrilar supramolecular hydrogels. These hydrogels were revealed as efficacious nano-carriers for drug delivery applications. Moreover, the incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) rendered the hydrogels responsive to external magnetic fields, undergoing gel-to-solution phase transition upon remote magnetic excitation. Thus, magnetic dehydrodipeptide-based hydrogels may find interesting applications as responsive Magnetic Resonance Imaging (MRI) contrast agents and for magnetic hyperthermia-triggered drug-release applications. Supramolecular hydrogels where the hydrogelator molecule is endowed with intrinsic pharmacological properties can potentially fulfill a dual function in drug delivery systems as (passive) nanocariers for incorporated drugs and as active drugs themselves. In this present study, we investigated the pharmacological activities of a panel of naproxen-dehydrodipeptide conjugates, previously studied for their hydrogelation ability and as nanocarriers for drug-delivery applications. A focused library of dehydrodipeptides, containing N-terminal canonical amino acids (Phe, Tyr, Trp, Ala, Asp, Lys, Met) N-capped with naproxen and linked to a C-terminal dehydroaminoacid (ΔPhe, ΔAbu), were evaluated for their anti-inflammatory and anti-cancer activities, as well as for their cytotoxicity to non-cancer cells, using a variety of enzymatic and cellular assays. All compounds except one were able to significantly inhibit lipoxygenase (LOX) enzyme at a similar level to naproxen. One of the compounds 4 was able to inhibit the cyclooxygenase-2 (COX-2) to a greater extent than naproxen, without inhibiting cyclooxygenase-1 (COX-1), and therefore is a potential lead in the search for selective COX-2 inhibitors. This hydrogelator is a potential candidate for dual COX/LOX inhibition as an optimised strategy for treating inflammatory conditions.
Collapse
Affiliation(s)
- Rute Moreira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (R.M.); (P.V.); (P.B.A.)
| | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (P.M.T.F.); (J.A.M.)
| | - André Carvalho
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (P.M.T.F.); (J.A.M.)
| | - Paula M. T. Ferreira
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (P.M.T.F.); (J.A.M.)
| | - José A. Martins
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (P.M.T.F.); (J.A.M.)
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (R.M.); (P.V.); (P.B.A.)
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (R.M.); (P.V.); (P.B.A.)
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (R.M.); (P.V.); (P.B.A.)
| |
Collapse
|
28
|
Sari G, Okat Z, Sahin A, Karademir B. Proteasome Inhibitors in Cancer Therapy and their Relation to Redox Regulation. Curr Pharm Des 2019; 24:5252-5267. [PMID: 30706779 DOI: 10.2174/1381612825666190201120013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/25/2019] [Indexed: 01/23/2023]
Abstract
Redox homeostasis is important for the maintenance of cell survival. Under physiological conditions, redox system works in a balance and involves activation of many signaling molecules. Regulation of redox balance via signaling molecules is achieved by different pathways and proteasomal system is a key pathway in this process. Importance of proteasomal system on signaling pathways has been investigated for many years. In this direction, many proteasome targeting molecules have been developed. Some of them are already in the clinic for cancer treatment and some are still under investigation to highlight underlying mechanisms. Although there are many studies done, molecular mechanisms of proteasome inhibitors and related signaling pathways need more detailed explanations. This review aims to discuss redox status and proteasomal system related signaling pathways. In addition, cancer therapies targeting proteasomal system and their effects on redox-related pathways have been summarized.
Collapse
Affiliation(s)
- Gulce Sari
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, Okan University, 34959, Tuzla, I stanbul, Turkey
| | - Zehra Okat
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ali Sahin
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| |
Collapse
|
29
|
Patel KD, De Zoysa GH, Kanamala M, Patel K, Pilkington LI, Barker D, Reynisson J, Wu Z, Sarojini V. Novel Cell-Penetrating Peptide Conjugated Proteasome Inhibitors: Anticancer and Antifungal Investigations. J Med Chem 2019; 63:334-348. [DOI: 10.1021/acs.jmedchem.9b01694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kamal D. Patel
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Gayan Heruka De Zoysa
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Manju Kanamala
- School of Pharmacy, University of Auckland, Auckland 1142, New Zealand
| | - Krunal Patel
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Lisa I. Pilkington
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - David Barker
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences and the Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
30
|
Kam A, Loo S, Fan JS, Sze SK, Yang D, Tam JP. Roseltide rT7 is a disulfide-rich, anionic, and cell-penetrating peptide that inhibits proteasomal degradation. J Biol Chem 2019; 294:19604-19615. [PMID: 31727740 DOI: 10.1074/jbc.ra119.010796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/02/2019] [Indexed: 12/21/2022] Open
Abstract
Disulfide-rich plant peptides with molecular masses of 2-6 kDa represent an expanding class of peptidyl-type natural products with diverse functions. They are structurally compact, hyperstable, and underexplored as cell-penetrating agents that inhibit intracellular functions. Here, we report the discovery of an anionic, 34-residue peptide, the disulfide-rich roseltide rT7 from Hibiscus sabdariffa (of the Malvaceae family) that penetrates cells and inhibits their proteasomal activities. Combined proteomics and NMR spectroscopy revealed that roseltide rT7 is a cystine-knotted, six-cysteine hevein-like cysteine-rich peptide. A pair-wise comparison indicated that roseltide rT7 is >100-fold more stable against protease degradation than its S-alkylated analog. Confocal microscopy studies and cell-based assays disclosed that after roseltide rT7 penetrates cells, it causes accumulation of ubiquitinated proteins, inhibits human 20S proteasomes, reduces tumor necrosis factor-induced IκBα degradation, and decreases expression levels of intercellular adhesion molecule-1. Structure-activity studies revealed that roseltide rT7 uses a canonical substrate-binding mechanism for proteasomal inhibition enabled by an IIML motif embedded in its proline-rich and exceptionally long intercysteine loop 4. Taken together, our results provide mechanistic insights into a novel disulfide-rich, anionic, and cell-penetrating peptide, representing a potential lead for further development as a proteasomal inhibitor in anti-cancer or anti-inflammatory therapies.
Collapse
Affiliation(s)
- Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
31
|
Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design. Int J Mol Sci 2019; 20:ijms20215326. [PMID: 31731563 PMCID: PMC6862029 DOI: 10.3390/ijms20215326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Drug discovery now faces a new challenge, where the availability of experimental data is no longer the limiting step, and instead, making sense of the data has gained a new level of importance, propelled by the extensive incorporation of cheminformatics and bioinformatics methodologies into the drug discovery and development pipeline. These enable, for example, the inference of structure-activity relationships that can be useful in the discovery of new drug candidates. One of the therapeutic applications that could benefit from this type of data mining is proteasome inhibition, given that multiple compounds have been designed and tested for the last 20 years, and this collection of data is yet to be subjected to such type of assessment. This study presents a retrospective overview of two decades of proteasome inhibitors development (680 compounds), in order to gather what could be learned from them and apply this knowledge to any future drug discovery on this subject. Our analysis focused on how different chemical descriptors coupled with statistical tools can be used to extract interesting patterns of activity. Multiple instances of the structure-activity relationship were observed in this dataset, either for isolated molecular descriptors (e.g., molecular refractivity and topological polar surface area) as well as scaffold similarity or chemical space overlap. Building a decision tree allowed the identification of two meaningful decision rules that describe the chemical parameters associated with high activity. Additionally, a characterization of the prevalence of key functional groups gives insight into global patterns followed in drug discovery projects, and highlights some systematically underexplored parts of the chemical space. The various chemical patterns identified provided useful insight that can be applied in future drug discovery projects, and give an overview of what has been done so far.
Collapse
|
32
|
Xi J, Zhuang R, Kong L, He R, Zhu H, Zhang J. Immunoproteasome-selective inhibitors: An overview of recent developments as potential drugs for hematologic malignancies and autoimmune diseases. Eur J Med Chem 2019; 182:111646. [PMID: 31521028 DOI: 10.1016/j.ejmech.2019.111646] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
The immunoproteasome, a specialized form of proteasome, is mainly expressed in lymphocytes and monocytes of jawed vertebrates and responsible for the generation of antigenic peptides for cell-mediated immunity. Overexpression of immunoproteasome have been detected in a wide range of diseases including malignancies, autoimmune and inflammatory diseases. Following the successful approval of constitutive proteasome inhibitors bortezomib, carfilzomib and Ixazomib, and with the clarification of immunoproteasome crystal structure and functions, a variety of immunoproteasome inhibitors were discovered or rationally developed. Not only the inhibitory activities, the selectivities for immunoproteasome over constitutive proteasome are essential for the clinical potential of these analogues, which has been validated by the clinical evaluation of immunoproteasome-selective inhibitor KZR-616 for the treatment of systemic lupus erythematosus. In this review, structure, function as well as the current developments of various inhibitors against immunoproteasome are going to be summarized, which help to fully understand the target for drug discovery.
Collapse
Affiliation(s)
- Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
33
|
Muli CS, Tian W, Trader DJ. Small-Molecule Inhibitors of the Proteasome's Regulatory Particle. Chembiochem 2019; 20:1739-1753. [PMID: 30740849 PMCID: PMC6765334 DOI: 10.1002/cbic.201900017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Cells need to synthesize and degrade proteins consistently. Maintaining a balanced level of protein in the cell requires a carefully controlled system and significant energy. Degradation of unwanted or damaged proteins into smaller peptide units can be accomplished by the proteasome. The proteasome is composed of two main subunits. The first is the core particle (20S CP), and within this core particle are three types of threonine proteases. The second is the regulatory complex (19S RP), which has a myriad of activities including recognizing proteins marked for degradation and shuttling the protein into the 20S CP to be degraded. Small-molecule inhibitors of the 20S CP have been developed and are exceptional treatments for multiple myeloma (MM). 20S CP inhibitors disrupt the protein balance, leading to cellular stress and eventually to cell death. Unfortunately, the 20S CP inhibitors currently available have dose-limiting off-target effects and resistance can be acquired rapidly. Herein, we discuss small molecules that have been discovered to interact with the 19S RP subunit or with a protein closely associated with 19S RP activity. These molecules still elicit their toxicity by preventing the proteasome from degrading proteins, but do so through different mechanisms of action.
Collapse
Affiliation(s)
- Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Wenzhi Tian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Zhou J, Jiang X, He S, Jiang H, Feng F, Liu W, Qu W, Sun H. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. J Med Chem 2019; 62:8881-8914. [PMID: 31082225 DOI: 10.1021/acs.jmedchem.9b00017] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the complexity of multifactorial diseases, single-target drugs do not always exhibit satisfactory efficacy. Recently, increasing evidence indicates that simultaneous modulation of multiple targets may improve both therapeutic safety and efficacy, compared with single-target drugs. However, few multitarget drugs are on market or in clinical trials, despite the best efforts of medicinal chemists. This article discusses the systematic establishment of target combination, lead generation, and optimization of multitarget-directed ligands (MTDLs). Moreover, we analyze some MTDLs research cases for several complex diseases in recent years and the physicochemical properties of 117 clinical multitarget drugs, with the aim to reveal the trends and insights of the potential use of MTDLs.
Collapse
Affiliation(s)
- Junting Zhou
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Xueyang Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Siyu He
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Hongli Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China.,Jiangsu Food and Pharmaceutical Science College , Huaian 223003 , People's Republic of China
| | - Wenyuan Liu
- Department of Analytical Chemistry , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| |
Collapse
|
35
|
Javitt A, Barnea E, Kramer MP, Wolf-Levy H, Levin Y, Admon A, Merbl Y. Pro-inflammatory Cytokines Alter the Immunopeptidome Landscape by Modulation of HLA-B Expression. Front Immunol 2019; 10:141. [PMID: 30833945 PMCID: PMC6387973 DOI: 10.3389/fimmu.2019.00141] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Antigen presentation on HLA molecules is a major mechanism by which the immune system monitors self and non-self-recognition. Importantly, HLA-I presentation has gained much attention through its role in eliciting anti-tumor immunity. Several determinants controlling the peptides presented on HLA have been uncovered, mainly through the study of model substrates and large-scale immunopeptidome analyses. These determinants include the relative abundances of proteins in the cell, the stability or turnover rate of these proteins and the binding affinities of a given peptide to the HLA haplotypes found in a cell. However, the regulatory principles involved in selection and regulation of specific antigens in response to tumor pro-inflammatory signals remain largely unknown. Here, we chose to examine the effect that TNFα and IFNγ stimulation may exert on the immunopeptidome landscape of lung cancer cells. We show that the expression of many of the proteins involved in the class I antigen presentation pathway are changed by pro-inflammatory cytokines. Further, we could show that increased expression of the HLA-B allomorph drives a significant change in HLA-bound antigens, independently of the significant changes observed in the cellular proteome. Finally, we observed increased HLA-B levels in correlation with tumor infiltration across the TCGA lung cancer cohorts. Taken together, our results suggest that the immunopeptidome landscape should be examined in the context of anti-tumor immunity whereby signals in the microenvironment may be critical in shaping and modulating this important aspect of host-tumor interactions.
Collapse
Affiliation(s)
- Aaron Javitt
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| | - Eilon Barnea
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Hila Wolf-Levy
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, de Botton Institute for Protein Profiling, Weizmann Institute of Science, Rehovot, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
36
|
Yu J, Liu J, Li D, Xu L, Hong D, Chang S, Xu L, Li J, Liu T, Zhou Y. Exploration of novel macrocyclic dipeptide N-benzyl amides as proteasome inhibitors. Eur J Med Chem 2019; 164:423-439. [DOI: 10.1016/j.ejmech.2018.12.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
|
37
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Eine strukturelle Evaluierung medizinalchemischer Strategien gegen Wirkstoffresistenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201802416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Agnello
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Michael Brand
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Mathieu F. Chellat
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Silvia Gazzola
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
38
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Angew Chem Int Ed Engl 2019; 58:3300-3345. [PMID: 29846032 DOI: 10.1002/anie.201802416] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Indexed: 12/31/2022]
Abstract
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.
Collapse
Affiliation(s)
- Stefano Agnello
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Silvia Gazzola
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
39
|
Jang HH. Regulation of Protein Degradation by Proteasomes in Cancer. J Cancer Prev 2018; 23:153-161. [PMID: 30671397 PMCID: PMC6330989 DOI: 10.15430/jcp.2018.23.4.153] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
Imbalance of protein homeostasis (proteostasis) is known to cause cellular malfunction, cell death, and diseases. Elaborate regulation of protein synthesis and degradation is one of the important processes in maintaining normal cellular functions. Protein degradation pathways in eukaryotes are largely divided into proteasome-mediated degradation and lysosome-mediated degradation. Proteasome is a multisubunit complex that selectively degrades 80% to 90% of cellular proteins. Proteasome-mediated degradation can be divided into 26S proteasome (20S proteasome + 19S regulatory particle) and free 20S proteasome degradation. In 1980, it was discovered that during ubiquitination process, wherein ubiquitin binds to a substrate protein in an ATP-dependent manner, ubiquitin acts as a degrading signal to degrade the substrate protein via proteasome. Conversely, 20S proteasome degrades the substrate protein without using ATP or ubiquitin because it recognizes the oxidized and structurally modified hydrophobic patch of the substrate protein. To date, most studies have focused on protein degradation via 26S proteasome. This review describes the 26S/20S proteasomal pathway of protein degradation and discusses the potential of proteasome as therapeutic targets for cancer treatment as well as against diseases caused by abnormalities in the proteolytic system.
Collapse
Affiliation(s)
- Ho Hee Jang
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, Korea
| |
Collapse
|
40
|
Basler M, Lindstrom MM, LaStant JJ, Bradshaw JM, Owens TD, Schmidt C, Maurits E, Tsu C, Overkleeft HS, Kirk CJ, Langrish CL, Groettrup M. Co-inhibition of immunoproteasome subunits LMP2 and LMP7 is required to block autoimmunity. EMBO Rep 2018; 19:e46512. [PMID: 30279279 PMCID: PMC6280796 DOI: 10.15252/embr.201846512] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cells of hematopoietic origin express high levels of the immunoproteasome, a cytokine-inducible proteasome variant comprising the proteolytic subunits LMP2 (β1i), MECL-1 (β2i), and LMP7 (β5i). Targeting the immunoproteasome in pre-clinical models of autoimmune diseases with the epoxyketone inhibitor ONX 0914 has proven to be effective. ONX 0914 was previously described as a selective LMP7 inhibitor. Here, we show that PRN1126, developed as an exclusively LMP7-specific inhibitor, has limited effects on IL-6 secretion, experimental colitis, and experimental autoimmune encephalomyelitis (EAE). We demonstrate that prolonged exposure of cells with ONX 0914 leads to inhibition of both LMP7 and LMP2. Co-inhibition of LMP7 and LMP2 with PRN1126 and LMP2 inhibitors LU-001i or ML604440 impairs MHC class I cell surface expression, IL-6 secretion, and differentiation of naïve T helper cells to T helper 17 cells, and strongly ameliorates disease in experimental colitis and EAE. Hence, co-inhibition of LMP2 and LMP7 appears to be synergistic and advantageous for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Michael Basler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | - Christian Schmidt
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Elmer Maurits
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Christopher Tsu
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | | | | | | | - Marcus Groettrup
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
41
|
Salama Y, Lin SY, Dhahri D, Hattori K, Heissig B. The fibrinolytic factor tPA drives LRP1-mediated melanoma growth and metastasis. FASEB J 2018; 33:3465-3480. [PMID: 30458112 DOI: 10.1096/fj.201801339rrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The multifunctional endocytic receptor low-density lipoprotein receptor-related protein (LRP)1 has recently been identified as a hub within a biomarker network for multicancer clinical outcome prediction. The mechanism how LRP1 modulates cancer progression is poorly understood. In this study we found that LRP1 and one of its ligands, tissue plasminogen activator (tPA), are expressed in melanoma cells and control melanoma growth and lung metastasis in vivo. Mechanistic studies were performed on 2 melanoma cancer cell lines, B16F10 and the B16F1 cells, both of which form primary melanoma tumors, but only B16F10 cells metastasize to the lungs. Tumor-, but not niche cell-derived tPA, enhanced melanoma cell proliferation in tPA-/- mice. Gain-of-function experiments revealed that melanoma LRP1 is critical for tumor growth, recruitment of mesenchymal stem cells into the tumor bed, and metastasis. Melanoma LRP1 was found to enhance ERK activation, resulting in increased matrix metalloproteinase (MMP)-9 RNA, protein, and secreted activity, a well-known modulator of melanoma metastasis. Restoration of LRP1 and tPA in the less aggressive, poorly metastatic B16F1 tumor cells enhanced tumor cell proliferation and led to massive lung metastasis in murine tumor models. Antimelanoma drug treatment induced tPA and LRP1 expression. tPA or LRP1 knockdown enhanced chemosensitivity in melanoma cells. Our results identify the tPA-LRP1 pathway as a key switch that drives melanoma progression, in part by modulating the cellular composition and proteolytic makeup of the tumor niche. Targeting this pathway may be a novel treatment strategy in combination treatments for melanoma.-Salama, Y., Lin, S.-Y., Dhahri, D., Hattori, K., Heissig, B. The fibrinolytic factor tPA drives LRP1-mediated melanoma growth and metastasis.
Collapse
Affiliation(s)
- Yousef Salama
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Shiou-Yuh Lin
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Douaa Dhahri
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine Juntendo University School of Medicine, Tokyo, Japan; and
| | - Beate Heissig
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Atopy (Allergy) Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Bhatia S, Krieger V, Groll M, Osko JD, Reßing N, Ahlert H, Borkhardt A, Kurz T, Christianson DW, Hauer J, Hansen FK. Discovery of the First-in-Class Dual Histone Deacetylase-Proteasome Inhibitor. J Med Chem 2018; 61:10299-10309. [PMID: 30365892 DOI: 10.1021/acs.jmedchem.8b01487] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dual- or multitarget drugs have emerged as a promising alternative to combination therapies. Proteasome inhibitors (PIs) possess synergistic activity with histone deacetylase (HDAC) inhibitors due to the simultaneous blockage of the ubiquitin degradation and aggresome pathways. Here, we present the design, synthesis, binding modes, and anticancer properties of RTS-V5 as the first-in-class dual HDAC-proteasome ligand. The inhibition of both targets was confirmed by biochemical and cellular assays as well as X-ray crystal structures of the 20S proteasome and HDAC6 complexed with RTS-V5. Cytotoxicity assays with leukemia and multiple myeloma cell lines as well as therapy refractory primary patient-derived leukemia cells demonstrated that RTS-V5 possesses potent and selective anticancer activity. Our results will thus guide the structure-based optimization of dual HDAC-proteasome inhibitors for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty , Heinrich Heine University Düsseldorf , Moorenstrasse 5 , 40225 Düsseldorf , Germany
| | - Viktoria Krieger
- Institute for Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Jeremy D Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Nina Reßing
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty , Leipzig University , Brüderstraße 34 , 04103 Leipzig , Germany
| | - Heinz Ahlert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty , Heinrich Heine University Düsseldorf , Moorenstrasse 5 , 40225 Düsseldorf , Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty , Heinrich Heine University Düsseldorf , Moorenstrasse 5 , 40225 Düsseldorf , Germany
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Julia Hauer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty , Heinrich Heine University Düsseldorf , Moorenstrasse 5 , 40225 Düsseldorf , Germany
| | - Finn K Hansen
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty , Leipzig University , Brüderstraße 34 , 04103 Leipzig , Germany
| |
Collapse
|
43
|
Xie SC, Gillett DL, Spillman NJ, Tsu C, Luth MR, Ottilie S, Duffy S, Gould AE, Hales P, Seager BA, Charron CL, Bruzzese F, Yang X, Zhao X, Huang SC, Hutton CA, Burrows JN, Winzeler EA, Avery VM, Dick LR, Tilley L. Target Validation and Identification of Novel Boronate Inhibitors of the Plasmodium falciparum Proteasome. J Med Chem 2018; 61:10053-10066. [PMID: 30373366 PMCID: PMC6257627 DOI: 10.1021/acs.jmedchem.8b01161] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The Plasmodium proteasome
represents a potential
antimalarial drug target for compounds with activity against multiple
life cycle stages. We screened a library of human proteasome inhibitors
(peptidyl boronic acids) and compared activities against purified P. falciparum and human 20S proteasomes. We chose four hits
that potently inhibit parasite growth and show a range of selectivities
for inhibition of the growth of P. falciparum compared
with human cell lines. P. falciparum was selected
for resistance in vitro to the clinically used
proteasome inhibitor, bortezomib, and whole genome sequencing was
applied to identify mutations in the proteasome β5 subunit.
Active site profiling revealed inhibitor features that enable retention
of potent activity against the bortezomib-resistant line. Substrate
profiling reveals P. falciparum 20S proteasome active
site preferences that will inform attempts to design more selective
inhibitors. This work provides a starting point for the identification
of antimalarial drug leads that selectively target the P.
falciparum proteasome.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | - David L Gillett
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | - Natalie J Spillman
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | - Christopher Tsu
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Madeline R Luth
- Host-Microbe Systems and Therapeutics Division , UC San Diego School of Medicine , La Jolla , California 92093 , United States
| | - Sabine Ottilie
- Host-Microbe Systems and Therapeutics Division , UC San Diego School of Medicine , La Jolla , California 92093 , United States
| | - Sandra Duffy
- Griffith Institute for Drug Discovery , Griffith University , Brisbane , QLD 4111 , Australia
| | - Alexandra E Gould
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Paul Hales
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Benjamin A Seager
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | - Carlie L Charron
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | - Frank Bruzzese
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Xiaofeng Yang
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Xiansi Zhao
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Shih-Chung Huang
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Craig A Hutton
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | | | - Elizabeth A Winzeler
- Host-Microbe Systems and Therapeutics Division , UC San Diego School of Medicine , La Jolla , California 92093 , United States
| | - Vicky M Avery
- Griffith Institute for Drug Discovery , Griffith University , Brisbane , QLD 4111 , Australia
| | - Lawrence R Dick
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| |
Collapse
|
44
|
Zhao W, Bachhav B, McWhite C, Segatori L. A yeast selection system for the detection of proteasomal activation. Protein Eng Des Sel 2018; 31:437-445. [PMID: 30989230 DOI: 10.1093/protein/gzz006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is a complex cellular machinery that catalyzes degradation of misfolded or damaged proteins and regulates turnover of native proteins in eukaryotic cells, thus playing a crucial role in maintaining protein homeostasis. The UPS has emerged as a drug target for a diverse range of diseases characterized by accumulation of misfolded or aggregated proteins. While enhancement of UPS activity is widely recognized as a promising strategy to prevent accumulation of aberrant, off-pathway protein conformations and ameliorate the phenotypes of a wide range of protein misfolding diseases, the molecular mechanisms underlying activation of proteasomal degradation are poorly characterized. We report the development of a yeast selection platform for genome-wide selection of UPS activators. We engineered the Saccharomyces cerevisiae selection marker orotidine-5'-phosphate decarboxylase (URA3) to function as a substrate of proteasomal degradation through fusion to UPS-sensitive tags. The resulting UPS-sensitive URA3 variant links UPS activity to cell growth. The yeast selection platform reported in this study will open the way to high-throughput, genome-wide studies aimed at identifying modulators of UPS function that might provide novel target for therapeutic applications.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston TX, USA
| | - Bhagyashree Bachhav
- Department of Chemical and Biomolecular Engineering, Rice University, Houston TX, USA
| | - Claire McWhite
- Department of BioSciences, Rice University, Houston TX, USA
| | - Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston TX, USA.,Department of BioSciences, Rice University, Houston TX, USA.,Department of Bioengineering, Rice University, Houston TX, USA
| |
Collapse
|
45
|
Yu J, Xu L, Hong D, Zhang X, Liu J, Li D, Li J, Zhou Y, Liu T. Design, synthesis, and biological evaluation of novel phenol ether derivatives as non-covalent proteasome inhibitors. Eur J Med Chem 2018; 161:543-558. [PMID: 30391816 DOI: 10.1016/j.ejmech.2018.10.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022]
Abstract
A series of novel phenol ether derivatives were designed, synthesized, and evaluated as non-covalent proteasome inhibitors. Most compounds exhibited moderate to excellent proteasome inhibitory activity. In particular, compound 18x proved to be the most potent compound (chymotrypsin-like: IC50 = 49 nM), exhibiting a 2-fold higher potency compared to the reported PI-1840. Besides, compound 18x exhibited excellent metabolic stability and selective anti-proliferative activity against solid cancer cell lines including HepG2 and HGC27, providing incentive for the further development as a potential anticancer agent against solid cancers.
Collapse
Affiliation(s)
- Jianjun Yu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lei Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201203, PR China; National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, Graduate School, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Duidui Hong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaotuan Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, Graduate School, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Jieyu Liu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, Graduate School, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Daqiang Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, Graduate School, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, Graduate School, No. 19A Yuquan Road, Beijing, 100049, PR China.
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
46
|
Downey-Kopyscinski S, Daily EW, Gautier M, Bhatt A, Florea BI, Mitsiades CS, Richardson PG, Driessen C, Overkleeft HS, Kisselev AF. An inhibitor of proteasome β2 sites sensitizes myeloma cells to immunoproteasome inhibitors. Blood Adv 2018; 2:2443-2451. [PMID: 30266819 PMCID: PMC6177641 DOI: 10.1182/bloodadvances.2018016360] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/18/2018] [Indexed: 12/22/2022] Open
Abstract
Proteasome inhibitors bortezomib, carfilzomib and ixazomib (approved by the US Food and Drug Administration [FDA]) induce remissions in patients with multiple myeloma (MM), but most patients eventually become resistant. MM and other hematologic malignancies express ubiquitous constitutive proteasomes and lymphoid tissue-specific immunoproteasomes; immunoproteasome expression is increased in resistant patients. Immunoproteasomes contain 3 distinct pairs of active sites, β5i, β1i, and β2i, which are different from their constitutive β5c, β1c, and β2c counterparts. Bortezomib and carfilzomib block β5c and β5i sites. We report here that pharmacologically relevant concentrations of β5i-specific inhibitor ONX-0914 show cytotoxicity in MM cell lines similar to that of carfilzomib and bortezomib. In addition, increasing immunoproteasome expression by interferon-γ increases sensitivity to ONX-0914 but not to carfilzomib. LU-102, an inhibitor of β2 sites, dramatically sensitizes MM cell lines and primary cells to ONX-0914. ONX-0914 synergizes with all FDA-approved proteasome inhibitors in MM in vitro and in vivo. Thus, immunoproteasome inhibitors, currently in clinical trials for the treatment of autoimmune diseases, should also be considered for the treatment of MM.
Collapse
Affiliation(s)
- Sondra Downey-Kopyscinski
- Program in Experimental and Molecular Medicine and
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
- Dana-Farber Cancer Institute, Boston MA
| | - Ellen W Daily
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Marc Gautier
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Ananta Bhatt
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Bogdan I Florea
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden University, Leiden, The Netherlands
| | | | | | - Christoph Driessen
- Department of Hematology and Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland; and
| | - Herman S Overkleeft
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden University, Leiden, The Netherlands
| | - Alexei F Kisselev
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
- Veterans Affairs Medical Center, White River Junction, VT
| |
Collapse
|
47
|
Yoo E, Stokes BH, de Jong H, Vanaerschot M, Kumar TRS, Lawrence N, Njoroge M, Garcia A, Van der Westhuyzen R, Momper JD, Ng CL, Fidock DA, Bogyo M. Defining the Determinants of Specificity of Plasmodium Proteasome Inhibitors. J Am Chem Soc 2018; 140:11424-11437. [PMID: 30107725 PMCID: PMC6407133 DOI: 10.1021/jacs.8b06656] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Plasmodium proteasome is an emerging antimalarial target due to its essential role in all the major life cycle stages of the parasite and its contribution to the establishment of resistance to artemisinin (ART)-based therapies. However, because of a similarly essential role for the host proteasome, the key property of any antiproteasome therapeutic is selectivity. Several parasite-specific proteasome inhibitors have recently been reported, however, their selectivity must be improved to enable clinical development. Here we describe screening of diverse libraries of non-natural synthetic fluorogenic substrates to identify determinants at multiple positions on the substrate that produce enhanced selectivity. We find that selection of an optimal electrophilic "warhead" is essential to enable high selectivity that is driven by the peptide binding elements on the inhibitor. We also find that host cell toxicity is dictated by the extent of coinhibition of the human β2 and β5 subunits. Using this information, we identify compounds with over 3 orders of magnitude selectivity for the parasite enzyme. Optimization of the pharmacological properties resulted in molecules that retained high potency and selectivity, were soluble, sufficiently metabolically stable and orally bioavailable. These molecules are highly synergistic with ART and can clear parasites in a mouse model of infection, making them promising leads as antimalarial drugs.
Collapse
Affiliation(s)
- Euna Yoo
- Department of Pathology and Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Barbara H. Stokes
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
| | - Hanna de Jong
- Department of Pathology and Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Manu Vanaerschot
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
| | - TRS Kumar
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D),
University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D),
University of Cape Town, Rondebosch 7701, South Africa
| | - Arnold Garcia
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California, San Diego, La Jolla, California 92093, United States
| | | | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California, San Diego, La Jolla, California 92093, United States
| | - Caroline L. Ng
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
- Department of Pathology and Microbiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - David A. Fidock
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
- Division of Infectious Diseases, Department of
Medicine, Columbia University Medical Center, New York 10032, United States
| | - Matthew Bogyo
- Department of Pathology and Stanford University
School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford
University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
48
|
Park JE, Miller Z, Jun Y, Lee W, Kim KB. Next-generation proteasome inhibitors for cancer therapy. Transl Res 2018; 198:1-16. [PMID: 29654740 PMCID: PMC6151281 DOI: 10.1016/j.trsl.2018.03.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 02/06/2023]
Abstract
Over 2 decades ago, the proteasome was considered a risky or even untenable therapeutic target. Today, proteasome inhibitors are a mainstay in the treatment of multiple myeloma (MM) and have sales in excess of 3 billion US dollars annually. More importantly, the availability of proteasome inhibitors has greatly improved the survival and quality of life for patients with MM. Despite the remarkable success of proteasome inhibitor therapies to date, the potential for improvement remains, and the development and optimal use of proteasome inhibitors as anticancer agents continues to be an active area of research. In this review, we briefly discuss the features and limitations of the 3 proteasome inhibitor drugs currently used in the clinic and provide an update on current efforts to develop next-generation proteasome inhibitors with the potential to overcome the limitations of existing proteasome inhibitor drugs.
Collapse
Affiliation(s)
- Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Zachary Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Yearin Jun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
49
|
Villoutreix BO, Khatib AM, Cheng Y, Miteva MA, Maréchal X, Vidal J, Reboud-Ravaux M. Blockade of the malignant phenotype by β-subunit selective noncovalent inhibition of immuno- and constitutive proteasomes. Oncotarget 2018; 8:10437-10449. [PMID: 28060729 PMCID: PMC5354670 DOI: 10.18632/oncotarget.14428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023] Open
Abstract
A structure-based virtual screening of over 400,000 small molecules against the constitutive proteasome activity followed by in vitro assays led to the discovery of a family of proteasome inhibitors with a sulfonyl piperazine scaffold. Some members of this family of small non-peptidic inhibitors were found to act selectively on the β2 trypsin-like catalytic site with a preference for the immunoproteasome β2i over the constitutive proteasome β2c, while some act on the β5 site and post-acid site β1 of both, the immunoproteasome and the constitutive proteasome. Anti-proliferative and anti-invasive effects on tumor cells were investigated and observed for two compounds. We report novel chemical inhibitors able to interfere with the three types of active centers of both, the immuno- and constitutive proteasomes. Identifying and analyzing a novel scaffold with decorations able to shift the binders’ active site selectivity is essential to design a future generation of proteasome inhibitors able to distinguish the immunoproteasome from the constitutive proteasome.
Collapse
Affiliation(s)
| | | | - Yan Cheng
- Sorbonne Universités, UPMC Université Paris 6, UMR 8256, ERL U1164, B2A, IBPS, Paris, France
| | - Maria A Miteva
- INSERM, U 973, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Xavier Maréchal
- Sorbonne Universités, UPMC Université Paris 6, UMR 8256, ERL U1164, B2A, IBPS, Paris, France
| | - Joëlle Vidal
- Institut des Sciences Chimiques de Rennes, Université de Rennes 1, UMR-CNRS 6226, Rennes, France
| | - Michèle Reboud-Ravaux
- Sorbonne Universités, UPMC Université Paris 6, UMR 8256, ERL U1164, B2A, IBPS, Paris, France
| |
Collapse
|
50
|
Richy N, Sarraf D, Maréchal X, Janmamode N, Le Guével R, Genin E, Reboud-Ravaux M, Vidal J. Structure-based design of human immuno- and constitutive proteasomes inhibitors. Eur J Med Chem 2018; 145:570-587. [PMID: 29339252 DOI: 10.1016/j.ejmech.2018.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
Starting from the X-ray structure of our previous tripeptidic linear mimics of TMC-95A in complex with yeast 20S proteasome, we introduced new structural features to induce a differential inhibition between human constitutive and immunoproteasome 20S particles. Libraries of 24 tripeptidic and 6 dipeptidic derivatives were synthesized. The optimized preparation of 3-hydroxyoxindolyl alanine residues from tryptophan and their incorporation in peptides were described. Several potent inhibitors of human constitutive proteasome and immunoproteasome acting at the nanomolar level (IC50 = 7.1 nM against the chymotrypsin-like activity for the best inhibitor) were obtained. A cytotoxic effect at the submicromolar level was observed against 6 human cancer cell lines.
Collapse
Affiliation(s)
- Nicolas Richy
- Université Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Bâtiment 10A, Campus de Beaulieu, 35042 Rennes, Cedex, France
| | - Daad Sarraf
- Université Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Bâtiment 10A, Campus de Beaulieu, 35042 Rennes, Cedex, France
| | - Xavier Maréchal
- Sorbonne Universités, UPMC Univ Paris 06-CNRS, IBPS, UMR 8256, Inserm ERL1164, B2A, 7 Quai Saint Bernard, F75005 Paris, France
| | - Naëla Janmamode
- Université Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Bâtiment 10A, Campus de Beaulieu, 35042 Rennes, Cedex, France
| | - Rémy Le Guével
- Université Rennes 1, Technology Platform ImPACcell, SFR UMS CNRS 3480, INSERM 018, Bâtiment 8, Campus de Villejean, 35043 Rennes, Cedex, France
| | - Emilie Genin
- Université Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Bâtiment 10A, Campus de Beaulieu, 35042 Rennes, Cedex, France
| | - Michèle Reboud-Ravaux
- Sorbonne Universités, UPMC Univ Paris 06-CNRS, IBPS, UMR 8256, Inserm ERL1164, B2A, 7 Quai Saint Bernard, F75005 Paris, France.
| | - Joëlle Vidal
- Université Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Bâtiment 10A, Campus de Beaulieu, 35042 Rennes, Cedex, France.
| |
Collapse
|