1
|
Zoladek J, El Kazzi P, Caval V, Vivet-Boudou V, Cannac M, Davies EL, Rossi S, Bribes I, Rouilly L, Simonin Y, Jouvenet N, Decroly E, Paillart JC, Wilson SJ, Nisole S. A specific domain within the 3' untranslated region of Usutu virus confers resistance to the exonuclease ISG20. Nat Commun 2024; 15:8528. [PMID: 39358425 PMCID: PMC11447015 DOI: 10.1038/s41467-024-52870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are two closely related emerging mosquito-borne flaviviruses. Their natural hosts are wild birds, but they can also cause severe neurological disorders in humans. Both viruses are efficiently suppressed by type I interferon (IFN), which interferes with viral replication, dissemination, pathogenesis and transmission. Here, we show that the replication of USUV and WNV are inhibited through a common set of IFN-induced genes (ISGs), with the notable exception of ISG20, which USUV is resistant to. Strikingly, USUV was the only virus among all the other tested mosquito-borne flaviviruses that demonstrated resistance to the 3'-5' exonuclease activity of ISG20. Our findings highlight that the intrinsic resistance of the USUV genome, irrespective of the presence of cellular or viral proteins or protective post-transcriptional modifications, relies on a unique sequence present in its 3' untranslated region. Importantly, this genomic region alone can confer ISG20 resistance to a susceptible flavivirus, without compromising its infectivity, suggesting that it could be acquired by other flaviviruses. This study provides new insights into the strategy employed by emerging flaviviruses to overcome host defense mechanisms.
Collapse
Affiliation(s)
- Jim Zoladek
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Priscila El Kazzi
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Vincent Caval
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Marion Cannac
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Emma L Davies
- MRC-University of Glasgow, Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Soléna Rossi
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Inès Bribes
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Lucile Rouilly
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections (PCCEI), INSERM, Etablissement Français du Sang, Université de Montpellier, Montpellier, France
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Sam J Wilson
- MRC-University of Glasgow, Centre for Virus Research, University of Glasgow, Glasgow, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France.
| |
Collapse
|
2
|
Bampali M, Kouvela A, Kesesidis N, Kassela K, Dovrolis N, Karakasiliotis I. West Nile Virus Subgenomic RNAs Modulate Gene Expression in a Neuronal Cell Line. Viruses 2024; 16:812. [PMID: 38793693 PMCID: PMC11125720 DOI: 10.3390/v16050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.B.); (A.K.); (N.K.); (K.K.); (N.D.)
| |
Collapse
|
3
|
Sinha S, Singh K, Ravi Kumar YS, Roy R, Phadnis S, Meena V, Bhattacharyya S, Verma B. Dengue virus pathogenesis and host molecular machineries. J Biomed Sci 2024; 31:43. [PMID: 38649998 PMCID: PMC11036733 DOI: 10.1186/s12929-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024] Open
Abstract
Dengue viruses (DENV) are positive-stranded RNA viruses belonging to the Flaviviridae family. DENV is the causative agent of dengue, the most rapidly spreading viral disease transmitted by mosquitoes. Each year, millions of people contract the virus through bites from infected female mosquitoes of the Aedes species. In the majority of individuals, the infection is asymptomatic, and the immune system successfully manages to control virus replication within a few days. Symptomatic individuals may present with a mild fever (Dengue fever or DF) that may or may not progress to a more critical disease termed Dengue hemorrhagic fever (DHF) or the fatal Dengue shock syndrome (DSS). In the absence of a universally accepted prophylactic vaccine or therapeutic drug, treatment is mostly restricted to supportive measures. Similar to many other viruses that induce acute illness, DENV has developed several ways to modulate host metabolism to create an environment conducive to genome replication and the dissemination of viral progeny. To search for new therapeutic options, understanding the underlying host-virus regulatory system involved in various biological processes of the viral life cycle is essential. This review aims to summarize the complex interaction between DENV and the host cellular machinery, comprising regulatory mechanisms at various molecular levels such as epigenetic modulation of the host genome, transcription of host genes, translation of viral and host mRNAs, post-transcriptional regulation of the host transcriptome, post-translational regulation of viral proteins, and pathways involved in protein degradation.
Collapse
Affiliation(s)
- Saumya Sinha
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Kinjal Singh
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, MSR Nagar, Bengaluru, India
| | - Riya Roy
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sushant Phadnis
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Varsha Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
4
|
Boon PLS, Martins AS, Lim XN, Enguita FJ, Santos NC, Bond PJ, Wan Y, Martins IC, Huber RG. Dengue Virus Capsid Protein Facilitates Genome Compaction and Packaging. Int J Mol Sci 2023; 24:ijms24098158. [PMID: 37175867 PMCID: PMC10179140 DOI: 10.3390/ijms24098158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Dengue virus (DENV) is a single-stranded (+)-sense RNA virus that infects humans and mosquitoes, posing a significant health risk in tropical and subtropical regions. Mature virions are composed of an icosahedral shell of envelope (E) and membrane (M) proteins circumscribing a lipid bilayer, which in turn contains a complex of the approximately 11 kb genomic RNA with capsid (C) proteins. Whereas the structure of the envelope is clearly defined, the structure of the packaged genome in complex with C proteins remains elusive. Here, we investigated the interactions of C proteins with viral RNA, in solution and inside mature virions, via footprinting and cross-linking experiments. We demonstrated that C protein interaction with DENV genomes saturates at an RNA:C protein ratio below 1:250. Moreover, we also showed that the length of the RNA genome interaction sites varies, in a multimodal distribution, consistent with the C protein binding to each RNA site mostly in singlets or pairs (and, in some instances, higher numbers). We showed that interaction sites are preferentially sites with low base pairing, as previously measured by 2'-acetylation analyzed by primer extension (SHAPE) reactivity indicating structuredness. We found a clear association pattern emerged: RNA-C protein binding sites are strongly associated with long-range RNA-RNA interaction sites, particularly inside virions. This, in turn, explains the need for C protein in viral genome packaging: the protein has a chief role in coordinating these key interactions, promoting proper packaging of viral RNA. Such sites are, thus, highly consequential for viral assembly, and, as such, may be targeted in future drug development strategies against these and related viruses.
Collapse
Affiliation(s)
- Priscilla L S Boon
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore
| | - Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Xin Ni Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore
| | - Yue Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| |
Collapse
|
5
|
Ge Y, Tang S, Xia T, Shi C. Research progress on the role of RNA N6-methyladenosine methylation in HCV infection. Virology 2023; 582:35-42. [PMID: 36996690 DOI: 10.1016/j.virol.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Hepatitis C virus (HCV) is a positive-stranded RNA virus causing chronic liver diseases. The chemical modification of RNA is a research hotspot in related fields in recent years, including the methylation and acetylation of adenine, guanine, cytosine and other bases, among which methylation is the most important modification form. m6A (N6-methyladenosine), as the most abundant RNA modification form, plays an important role in HCV virus infection by modifying viral RNA and cell transcripts. This review aims to summarize the current knowledge on the roles of m6A modification in HCV infection, and discuss the research prospect.
Collapse
|
6
|
Yeh SC, Strilets T, Tan WL, Castillo D, Medkour H, Rey-Cadilhac F, Serrato-Pomar IM, Rachenne F, Chowdhury A, Chuo V, Azar SR, Singh MK, Hamel R, Missé D, Kini RM, Kenney LJ, Vasilakis N, Marti-Renom MA, Nir G, Pompon J, Garcia-Blanco MA. The anti-immune dengue subgenomic flaviviral RNA is present in vesicles in mosquito saliva and is associated with increased infectivity. PLoS Pathog 2023; 19:e1011224. [PMID: 36996041 PMCID: PMC10062553 DOI: 10.1371/journal.ppat.1011224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/20/2023] [Indexed: 03/31/2023] Open
Abstract
Mosquito transmission of dengue viruses to humans starts with infection of skin resident cells at the biting site. There is great interest in identifying transmission-enhancing factors in mosquito saliva in order to counteract them. Here we report the discovery of high levels of the anti-immune subgenomic flaviviral RNA (sfRNA) in dengue virus 2-infected mosquito saliva. We established that sfRNA is present in saliva using three different methods: northern blot, RT-qPCR and RNA sequencing. We next show that salivary sfRNA is protected in detergent-sensitive compartments, likely extracellular vesicles. In support of this hypothesis, we visualized viral RNAs in vesicles in mosquito saliva and noted a marked enrichment of signal from 3'UTR sequences, which is consistent with the presence of sfRNA. Furthermore, we show that incubation with mosquito saliva containing higher sfRNA levels results in higher virus infectivity in a human hepatoma cell line and human primary dermal fibroblasts. Transfection of 3'UTR RNA prior to DENV2 infection inhibited type I and III interferon induction and signaling, and enhanced viral replication. Therefore, we posit that sfRNA present in salivary extracellular vesicles is delivered to cells at the biting site to inhibit innate immunity and enhance dengue virus transmission.
Collapse
Affiliation(s)
- Shih-Chia Yeh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Tania Strilets
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wei-Lian Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - David Castillo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hacène Medkour
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | | | | | | | - Avisha Chowdhury
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Moirangthem Kiran Singh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rodolphe Hamel
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - R. Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Vector-Borne and Zoonotic Diseases, University of University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Preventive Medicine and Population Health, University of University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marc A. Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Guy Nir
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Mariano A. Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
7
|
Shen TJ, Chen CL, Tsai TT, Jhan MK, Bai CH, Yen YC, Tsai CW, Tseng PC, Yu CY, Lin CF. Hyperglycemia exacerbates dengue virus infection by facilitating poly(A)-binding protein-mediated viral translation. JCI Insight 2022; 7:e142805. [PMID: 36125898 PMCID: PMC9675471 DOI: 10.1172/jci.insight.142805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is highly comorbid with severe dengue diseases; however, the underlying mechanisms are unclear. Patients with DM have a 1.61-fold increased risk of developing dengue hemorrhagic fever. In search of host factors involved in dengue virus (DENV) infection, we used high-glucose (HG) treatment and showed that HG increased viral protein expression and virion release but had no effects on the early stages of viral infection. After HG stimulation, DENV-firefly luciferase-transfected assay and cellular replicon-based assay indicated increased viral translation, whereas using the glucose uptake inhibitor phloretin blocked this effect. HG treatment increased the translational factor poly(A)-binding protein (PABP) in a glucose transporter-associated, PI3K/AKT-regulated manner. Silencing PABP significantly decreased HG-prompted virion production. HG enhanced the formation of the PABP-eukaryotic translation initiation factor 4G complex, which is regulated by protein-disulfide isomerase. Hyperglycemia increased PABP expression, mortality rate, viral protein expression, and viral loads in streptozotocin-induced DM mice. Overall, hyperglycemic stress facilitates DENV infection by strengthening PABP-mediated viral translation.
Collapse
Affiliation(s)
- Ting-Jing Shen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Kai Jhan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Yen
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Ching-Wen Tsai
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Berzal-Herranz A, Berzal-Herranz B, Ramos-Lorente SE, Romero-López C. The Genomic 3' UTR of Flaviviruses Is a Translation Initiation Enhancer. Int J Mol Sci 2022; 23:8604. [PMID: 35955738 PMCID: PMC9369090 DOI: 10.3390/ijms23158604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 12/21/2022] Open
Abstract
Viruses rely on the cellular machinery of host cells to synthesize their proteins, and have developed different mechanisms enabling them to compete with cellular mRNAs for access to it. The genus Flavivirus is a large group of positive, single-stranded RNA viruses that includes several important human pathogens, such as West Nile, Dengue and Zika virus. The genome of flaviviruses bears a type 1 cap structure at its 5' end, needed for the main translation initiation mechanism. Several members of the genus also use a cap-independent translation mechanism. The present work provides evidence that the WNV 5' end also promotes a cap-independent translation initiation mechanism in mammalian and insect cells, reinforcing the hypothesis that this might be a general strategy of flaviviruses. In agreement with previous reports, we show that this mechanism depends on the presence of the viral genomic 3' UTR. The results also show that the 3' UTR of the WNV genome enhances translation of the cap-dependent mechanism. Interestingly, WNV 3' UTR can be replaced by the 3' UTR of other flaviviruses and the translation enhancing effect is maintained, suggesting a molecular mechanism that does not involve direct RNA-RNA interactions to be at work. In addition, the deletion of specific structural elements of the WNV 3' UTR leads to increased cap-dependent and cap-independent translation. These findings suggest the 3' UTR to be involved in a fine-tuned translation regulation mechanism.
Collapse
Affiliation(s)
| | | | | | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN), CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Granada, Spain; (B.B.-H.); (S.E.R.-L.)
| |
Collapse
|
9
|
Sherman TJ, Petty D, Schountz T, Hodges N, Hawkinson AC. Increased Ifng and Il10 Expression Correlate with Disease in Rodent Models Experimentally Infected with Modoc Virus. Viruses 2022; 14:v14051026. [PMID: 35632766 PMCID: PMC9146023 DOI: 10.3390/v14051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Flaviviruses present an ongoing threat to global public health, although the factors that contribute to the disease remain incompletely understood. We examined an acute Modoc virus (MODV) infection of two rodent models. Viral RNA was detected in the kidneys, spleen, liver, brain, urine, and sera of experimentally infected deer mice, a reservoir host of MODV, and Syrian hamsters, a known disease model. As expected, clinical outcomes differed between species, and the levels of viral RNA recovered from various tissues demonstrated signs of differential replication and tissue tropism. Multivariate analysis indicated significance in the profile of expressed genes between species when analyzed across tissues and over time (p = 0.02). Between-subject effects with corrected models revealed a significance specific to the expression of Ifng (p = 0.01). the expression of Ifng was elevated in hamsters as compared to deer mice in brain tissues at all timepoints. As the over-expression of Ifng has been shown to correlate with decreased vascular integrity, the findings presented here offer a potential mechanism for viral dissemination into the CNS. The expression of IL10 also differed significantly between species at certain timepoints in brain tissues; however, it is uncertain how increased expression of this cytokine may influence the outcome of MODV-induced pathology.
Collapse
Affiliation(s)
- Tyler J. Sherman
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
- Correspondence:
| | - Douglas Petty
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
| | - Natasha Hodges
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (D.P.); (T.S.); (N.H.)
| | - Ann C. Hawkinson
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO 80524, USA;
| |
Collapse
|
10
|
Cheung YP, Park S, Pagtalunan J, Maringer K. The antiviral role of NF-κB-mediated immune responses and their antagonism by viruses in insects. J Gen Virol 2022; 103. [PMID: 35510990 DOI: 10.1099/jgv.0.001741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The antiviral role of innate immune responses mediated by the NF-κB family of transcription factors is well established in vertebrates but was for a long time less clear in insects. Insects encode two canonical NF-κB pathways, the Toll and Imd ('immunodeficiency') pathways, which are best characterised for their role in antibacterial and antifungal defence. An increasing body of evidence has also implicated NF-κB-mediated innate immunity in antiviral responses against some, but not all, viruses. Specific pattern recognition receptors (PRRs) and molecular events leading to NF-κB activation by viral pathogen-associated molecular patterns (PAMPs) have been elucidated for a number of viruses and insect species. Particularly interesting are recent findings indicating that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway detects viral RNA to activate NF-κB-regulated gene expression. We summarise the literature on virus-NF-κB pathway interactions across the class Insecta, with a focus on the dipterans Drosophila melanogaster and Aedes aegypti. We discuss potential reasons for differences observed between different virus-host combinations, and highlight similarities and differences between cGAS-STING signalling in insects versus vertebrates. Finally, we summarise the increasing number of known molecular mechanisms by which viruses antagonise NF-κB responses, which suggest that NF-κB-mediated immunity exerts strong evolutionary pressures on viruses. These developments in our understanding of insect antiviral immunity have relevance to the large number of insect species that impact on humans through their transmission of human, livestock and plant diseases, exploitation as biotechnology platforms, and role as parasites, pollinators, livestock and pests.
Collapse
Affiliation(s)
- Yin P Cheung
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sohyun Park
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Justine Pagtalunan
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
11
|
Dailey GP, Premadasa LS, Ruzicka JA, Taylor EW. Inhibition of selenoprotein synthesis by Zika virus may contribute to congenital Zika syndrome and microcephaly by mimicking SELENOP knockout and the genetic disease PCCA. BBA ADVANCES 2022; 1. [PMID: 34988542 DOI: 10.1016/j.bbadva.2021.100023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selenium status plays a major role in health impacts of various RNA viruses. We previously reported potential antisense interactions between viral mRNAs and host mRNAs encoding isoforms of the antioxidant selenoprotein thioredoxin reductase (TXNRD). Here, we examine possible targeting of selenoprotein mRNAs by Zika virus (ZIKV), because one of the most devastating outcomes of ZIKV infection in neonates, microcephaly, is a key manifestation of Progressive Cerebello-Cerebral Atrophy (PCCA), a genetic disease of impaired selenoprotein synthesis. Potential antisense matches between ZIKV and human selenoprotein mRNAs were identified computationally, the strongest being against human TXNRD1 and selenoprotein P (SELENOP), a selenium carrier protein essential for delivery of selenium to the brain. Computationally, ZIKV has regions of extensive (~30bp) and stable (ΔE < -50kcal/mol) antisense interactions with both TXNRD1 and SELENOP mRNAs. The core ZIKV/SELENOP hybridization was experimentally confirmed at the DNA level by gel shift assay using synthetic oligonucleotides. In HEK293T cells, using Western blot probes for SELENOP and TXNRD1, ZIKV infection knocked down SELENOP protein expression almost completely, by 99% (p<0.005), and TXNRD1 by ~90% (p<0.05). In contrast, by RT-qPCR, there was no evidence of significant changes in SELENOP and TXNRD1 mRNA levels after ZIKV infection, suggesting that their knockdown at the protein level is not primarily a result of mRNA degradation. These results suggest that knockdown of SELENOP and TXNRD1 by ZIKV in fetal brain, possibly antisense-mediated, could mimic SELENOP knockout, thereby contributing to neuronal cell death and symptoms similar to the genetic disease PCCA, including brain atrophy and microcephaly.
Collapse
Affiliation(s)
- Gabrielle P Dailey
- Dept. of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, PO Box 26170, Greensboro, NC 27402-6170, United States of America
| | - Lakmini S Premadasa
- Texas Biomedical Research Institute, Southwest National Primate Research Center, P.O. Box 760549, San Antonio, Texas 78245-0549, United States of America
| | - Jan A Ruzicka
- Dept. of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, NC 27268, United States of America
| | - Ethan Will Taylor
- Dept. of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, PO Box 26170, Greensboro, NC 27402-6170, United States of America
| |
Collapse
|
12
|
Effects of the noncoding subgenomic RNA of red clover necrotic mosaic virus in virus infection. J Virol 2021; 96:e0181521. [PMID: 34851690 PMCID: PMC8826918 DOI: 10.1128/jvi.01815-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, a new class of viral noncoding subgenomic RNA (ncsgRNA) has been identified. This RNA is generated as a stable degradation product via an exoribonuclease-resistant RNA (xrRNA) structure, which blocks the progression of 5′→3′ exoribonuclease on viral RNAs in infected cells. Here, we assess the effects of the ncsgRNA of red clover necrotic mosaic virus (RCNMV), called SR1f, in infected plants. We demonstrate the following: (i) the absence of SR1f reduces symptoms and decreases viral RNA accumulation in Nicotiana benthamiana and Arabidopsis thaliana plants; (ii) SR1f has an essential function other than suppression of RNA silencing; and (iii) the cytoplasmic exoribonuclease involved in mRNA turnover, XRN4, is not required for SR1f production or virus infection. A comparative transcriptomic analysis in N. benthamiana infected with wild-type RCNMV or an SR1f-deficient mutant RCNMV revealed that wild-type RCNMV infection, which produces SR1f and much higher levels of virus, has a greater and more significant impact on cellular gene expression than the SR1f-deficient mutant. Upregulated pathways include plant hormone signaling, plant-pathogen interaction, MAPK signaling, and several metabolic pathways, while photosynthesis-related genes were downregulated. We compare this to host genes known to participate in infection by other tombusvirids. Viral reads revealed a 10- to 100-fold ratio of positive to negative strand, and the abundance of reads of both strands mapping to the 3′ region of RCNMV RNA1 support the premature transcription termination mechanism of synthesis for the coding sgRNA. These results provide a framework for future studies of the interactions and functions of noncoding RNAs of plant viruses. IMPORTANCE Knowledge of how RNA viruses manipulate host and viral gene expression is crucial to our understanding of infection and disease. Unlike viral protein-host interactions, little is known about the control of gene expression by viral RNA. Here, we begin to address this question by investigating the noncoding subgenomic RNA (ncsgRNA) of red clover necrotic mosaic virus (RCNMV), called SR1f. Similar exoribonuclease-resistant RNAs of flaviviruses are well studied, but the roles of plant viral ncsgRNAs, and how they arise, are poorly understood. Surprisingly, we find the likely exonuclease candidate, XRN4, is not required to generate SR1f, and we assess the effects of SR1f on virus accumulation and symptom development. Finally, we compare the effects of infection by wild-type RCNMV versus an SR1f-deficient mutant on host gene expression in Nicotiana benthamiana, which reveals that ncsgRNAs such as SR1f are key players in virus-host interactions to facilitate productive infection.
Collapse
|
13
|
Xu P, Tong W, Chen YM. FUSE binding protein FUBP3 is a potent regulator in Japanese encephalitis virus infection. Virol J 2021; 18:224. [PMID: 34794468 PMCID: PMC8600714 DOI: 10.1186/s12985-021-01697-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Background The JEV genome is a positive-sense RNA with a highly structured capped 5′UTR, 3′UTR and a large open reading frame. 3′UTR is the untranslated region of flavivirus and has various important functions during viral replication, such as translation, replication and encapsidation. During viral replication, the 3′UTR interacts with viral proteins and host proteins and is required for viral RNA replication and translocation. Methods The expression level of FUBP3 was knocked down by siRNA and Flag-tagged FUBP3 overexpression plasmid was constructed for overexpression. BHK-21 cells were cultured and infected with JEV to investigate the functional role of FUBP3 in the viral infection cycle. Subcellular localization of FUBP3 and viral replication complexes was observed by dual immunofluorescence staining. Results Four host proteins were specifically associated with the 3′UTR of JEV, and FUBP3 was selected to further investigate its potential functional role in the JEV infection cycle. Knockdown of FUBP3 protein resulted in a significant decrease in JEV viral titer, whereas ectopic overexpression of FUBP3 resulted in increased JE viral infectivity. In cells stably knocked down for FUBP3 and then infected with JEV, we found almost no detectable viral NS5 protein. In contrast, when cells stably knocking-down of FUBP3 overexpressed FUBP3, we found a significant increase in viral RNA production over time compared to controls. We also demonstrated that FUBP3 re-localized in the cytoplasm after infection with JEV and co-localized with viral proteins. Exogenous overexpression of FUBP3 was also shown to be located in the JE replication complex and to assist viral replication after JEV infection. Conclusions The overall results suggest that FUBP3 regulates RNA replication of JEV and promotes subsequent viral translation and viral particle production.
Collapse
Affiliation(s)
- Peng Xu
- Xiangyang No.1 People's HospitalHubei University of Medicine, Xiangyang, Hubei Province, China
| | - Wei Tong
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Young-Mao Chen
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan. .,Center of Excellence for the Oceans and Matsu Marine Research Center, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
14
|
Rothamel K, Arcos S, Kim B, Reasoner C, Lisy S, Mukherjee N, Ascano M. ELAVL1 primarily couples mRNA stability with the 3' UTRs of interferon-stimulated genes. Cell Rep 2021; 35:109178. [PMID: 34038724 PMCID: PMC8225249 DOI: 10.1016/j.celrep.2021.109178] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Upon pathogen detection, the innate immune system triggers signaling events leading to upregulation of pro-inflammatory and anti-microbial mRNA transcripts. RNA-binding proteins (RBPs) interact with these critical mRNAs and regulate their fates at the post-transcriptional level. One such RBP is ELAVL1. Although significant progress has been made in understanding how embryonic lethal vision-like protein 1 (ELAVL1) regulates mRNAs, its target repertoire and binding distribution within an immunological context remain poorly understood. We overlap four high-throughput approaches to define its context-dependent targets and determine its regulatory impact during immune activation. ELAVL1 transitions from binding overwhelmingly intronic sites to 3′ UTR sites upon immune stimulation of cells, binding previously and newly expressed mRNAs. We find that ELAVL1 mediates the RNA stability of genes that regulate pathways essential to pathogen sensing and cytokine production. Our findings reveal the importance of examining RBP regulatory impact under dynamic transcriptomic events to understand their post-transcriptional regulatory roles within specific biological circuitries. Rothamel et al. show that upon immune activation, the RNA-binding protein ELAVL1 accumulates in the cytoplasm and redistributes from introns to mRNA 3′ UTRs. 3′ UTR binding confers enrichment and transcript stability. Many top-ranking transcripts are interferon-stimulated genes (ISGs), indicating that ELAVL1 is a positive regulator of an innate immune response.
Collapse
Affiliation(s)
- Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah Arcos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Byungil Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Clara Reasoner
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Samantha Lisy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Dilweg IW, Bouabda A, Dalebout T, Gultyaev AP, Bredenbeek PJ, Olsthoorn RCL. Xrn1-resistant RNA structures are well-conserved within the genus flavivirus. RNA Biol 2021; 18:709-717. [PMID: 33064973 PMCID: PMC8078501 DOI: 10.1080/15476286.2020.1830238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Subgenomic RNAs are produced by several RNA viruses through incomplete degradation of their genomic RNA by the exoribonuclease Xrn1, and have been shown to be essential for viral growth and pathogenicity. Within the flavivirus genus of the Flaviviridae family, two distinct classes of Xrn1-resistant RNA motifs have been proposed; one for mosquito-borne and insect-specific flaviviruses, and one for tick-borne flaviviruses and no-known-vector flaviviruses. We investigated tick-borne and no-known-vector flavivirus Xrn1-resistant RNA motifs through systematic in vitro mutational analysis and showed that both classes actually possess very similar structural configurations, including a double pseudoknot and a base-triple at identical, conserved locations. For the no-known-vector flavivirus Modoc virus, we show that in vivo generation of subgenomic flaviviral RNA was affected by mutations targeted at nucleotides involved in the structural features of flaviviral Xrn1-resistant RNA motifs that were defined in this work. Our results suggest that throughout the genus flavivirus Xrn1-resistant RNA motifs adopt the same topologically conserved structure.
Collapse
Affiliation(s)
- Ivar W. Dilweg
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Assia Bouabda
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tim Dalebout
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander P. Gultyaev
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter J. Bredenbeek
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - R. C. L. Olsthoorn
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
16
|
The Pseudo-Circular Genomes of Flaviviruses: Structures, Mechanisms, and Functions of Circularization. Cells 2021; 10:cells10030642. [PMID: 33805761 PMCID: PMC7999817 DOI: 10.3390/cells10030642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
The circularization of viral genomes fulfills various functions, from evading host defense mechanisms to promoting specific replication and translation patterns supporting viral proliferation. Here, we describe the genomic structures and associated host factors important for flaviviruses genome circularization and summarize their functional roles. Flaviviruses are relatively small, single-stranded, positive-sense RNA viruses with genomes of approximately 11 kb in length. These genomes contain motifs at their 5′ and 3′ ends, as well as in other regions, that are involved in circularization. These motifs are highly conserved throughout the Flavivirus genus and occur both in mature virions and within infected cells. We provide an overview of these sequence motifs and RNA structures involved in circularization, describe their linear and circularized structures, and discuss the proteins that interact with these circular structures and that promote and regulate their formation, aiming to clarify the key features of genome circularization and understand how these affect the flaviviruses life cycle.
Collapse
|
17
|
Thames JE, Waters CD, Valle C, Bassetto M, Aouadi W, Martin B, Selisko B, Falat A, Coutard B, Brancale A, Canard B, Decroly E, Seley-Radtke KL. Synthesis and biological evaluation of novel flexible nucleoside analogues that inhibit flavivirus replication in vitro. Bioorg Med Chem 2020; 28:115713. [PMID: 33128910 PMCID: PMC7457965 DOI: 10.1016/j.bmc.2020.115713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
Flaviviruses, such as Dengue (DENV) and Zika (ZIKV) viruses, represent a severe health burden. There are currently no FDA-approved treatments, and vaccines against most flaviviruses are still lacking. We have developed several flexible analogues ("fleximers") of the FDA-approved nucleoside Acyclovir that exhibit activity against various RNA viruses, demonstrating their broad-spectrum potential. The current study reports activity against DENV and Yellow Fever Virus (YFV), particularly for compound 1. Studies to elucidate the mechanism of action suggest the flex-analogue triphosphates, especially 1-TP, inhibit DENV and ZIKV methyltransferases, and a secondary, albeit weak, effect on the DENV RNA-dependent RNA polymerase was observed at high concentrations. The results of these studies are reported herein.
Collapse
Affiliation(s)
- Joy E Thames
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Charles D Waters
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Coralie Valle
- AFMB-UMR7257, CNRS, Aix Marseille University, Marseille, France
| | - Marcella Bassetto
- Department of Chemistry, College of Science, Swansea University, Swansea, UK
| | - Wahiba Aouadi
- AFMB-UMR7257, CNRS, Aix Marseille University, Marseille, France
| | - Baptiste Martin
- AFMB-UMR7257, CNRS, Aix Marseille University, Marseille, France
| | - Barbara Selisko
- AFMB-UMR7257, CNRS, Aix Marseille University, Marseille, France
| | - Arissa Falat
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Bruno Coutard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Bruno Canard
- AFMB-UMR7257, CNRS, Aix Marseille University, Marseille, France
| | - Etienne Decroly
- AFMB-UMR7257, CNRS, Aix Marseille University, Marseille, France
| | - Katherine L Seley-Radtke
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
18
|
Chun J, Na B, Kim DH. Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of "Fusagraviridae" with changes in antifungal activity of the host fungus. J Microbiol 2020; 58:1046-1053. [PMID: 33095387 DOI: 10.1007/s12275-020-0380-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
Trichoderma atroviride is a common fungus found in various ecosystems that shows mycoparasitic ability on other fungi. A novel dsRNA virus was isolated from T. atroviride NFCF377 strain and its molecular features were analyzed. The viral genome consists of a single segmented double-stranded RNA and is 9,584 bp in length, with two discontinuous open reading frames (ORF1 and ORF2). A mycoviral structural protein and an RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively, between which is found a canonical shifty heptameric signal motif (AAAAAAC) followed by an RNA pseudoknot. Analysis of sequence similarity and phylogeny showed that it is closely related to members of the proposed family "Fusagraviridae", with a highest similarity to the Trichoderma atroviride mycovirus 1 (TaMV1). Although the sequence similarity of deduced amino acid to TaMV1 was evident, sequence deviations were distinctive at untranslated regions (UTRs) due to the extended size. Thus, we inferred this dsRNA to be a different strain of Trichoderma atroviride mycovirus 1 (TaMV1-NFCF377). Electron microscopy image exhibited an icosahedral viral particle of 40 nm diameter. Virus-cured isogenic isolates were generated and no differences in growth rate, colony morphology, or conidia production were observed between virus-infected and virus-cured strains. However, culture filtrates of TaMV1-NFCF377-infected strain showed enhanced antifungal activity against the plant pathogen Rhizoctonia solani but not to edible mushroom Pleurotus ostreatus. These results suggested that TaMV1-NFCF377 affected the metabolism of the fungal host to potentiate antifungal compounds against a plant pahogen, but this enhanced antifungal activity appeared to be species-specific.
Collapse
Affiliation(s)
- Jeesun Chun
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Byeonghak Na
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
19
|
Szucs MJ, Nichols PJ, Jones RA, Vicens Q, Kieft JS. A New Subclass of Exoribonuclease-Resistant RNA Found in Multiple Genera of Flaviviridae. mBio 2020; 11:mBio.02352-20. [PMID: 32994331 DOI: 10.1101/2020.06.26.172668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Viruses have developed innovative strategies to exploit the cellular machinery and overcome the antiviral defenses of the host, often using specifically structured RNA elements. Examples are found in the Flavivirus genus (in the family Flaviviridae), where during flaviviral infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) accumulate in the cell. These sfRNAs are formed when a host cell 5' to 3' exoribonuclease degrades the viral genomic RNA but is blocked by an exoribonuclease-resistant RNA structure (xrRNA) located in the viral genome's 3' untranslated region (UTR). Although known to exist in several Flaviviridae genera, the full distribution and diversity of xrRNAs in this family were unknown. Using the recently solved high-resolution structure of an xrRNA from the divergent flavivirus Tamana bat virus (TABV) as a reference, we used bioinformatic searches to identify xrRNAs in the remaining three genera of Flaviviridae: Pegivirus, Pestivirus, and Hepacivirus We biochemically and structurally characterized several examples, determining that they are genuine xrRNAs with a conserved fold. These new xrRNAs look superficially similar to the previously described xrRNAs but possess structural differences making them distinct from previous classes of xrRNAs. Overall, we have identified the presence of xrRNA in all four genera of Flaviviridae, but not in all species. Our findings thus require adjustments of previous xrRNA classification schemes and expand the previously known distribution of xrRNA in Flaviviridae.IMPORTANCE The members of the Flaviviridae comprise one of the largest families of positive-sense single-stranded RNA (+ssRNA) and are divided into the Flavivirus, Pestivirus, Pegivirus, and Hepacivirus genera. The genus Flavivirus contains many medically relevant viruses such as Zika virus, dengue virus, and Powassan virus. In these, a part of the RNA of the virus twists up into a distinct three-dimensional shape called an exoribonuclease-resistant RNA (xrRNA) that blocks the ability of the cell to "chew up" the viral RNA. Hence, part of the RNA of the virus remains intact, and this protected part is important for viral infection. These xrRNAs were known to occur in flaviviruses, but whether they existed in the other members of the family was not known. In this study, we identified a new subclass of xrRNA found not only in flaviviruses but also in the remaining three genera. The fact that these structured viral RNAs exist throughout the Flaviviridae family suggests they are important parts of the infection strategy of diverse pathogens, which could lead to new avenues of research.
Collapse
Affiliation(s)
- Matthew J Szucs
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Rachel A Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
20
|
Abstract
The members of the Flaviviridae comprise one of the largest families of positive-sense single-stranded RNA (+ssRNA) and are divided into the Flavivirus, Pestivirus, Pegivirus, and Hepacivirus genera. The genus Flavivirus contains many medically relevant viruses such as Zika virus, dengue virus, and Powassan virus. In these, a part of the RNA of the virus twists up into a distinct three-dimensional shape called an exoribonuclease-resistant RNA (xrRNA) that blocks the ability of the cell to “chew up” the viral RNA. Hence, part of the RNA of the virus remains intact, and this protected part is important for viral infection. These xrRNAs were known to occur in flaviviruses, but whether they existed in the other members of the family was not known. In this study, we identified a new subclass of xrRNA found not only in flaviviruses but also in the remaining three genera. The fact that these structured viral RNAs exist throughout the Flaviviridae family suggests they are important parts of the infection strategy of diverse pathogens, which could lead to new avenues of research. Viruses have developed innovative strategies to exploit the cellular machinery and overcome the antiviral defenses of the host, often using specifically structured RNA elements. Examples are found in the Flavivirus genus (in the family Flaviviridae), where during flaviviral infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) accumulate in the cell. These sfRNAs are formed when a host cell 5′ to 3′ exoribonuclease degrades the viral genomic RNA but is blocked by an exoribonuclease-resistant RNA structure (xrRNA) located in the viral genome’s 3′ untranslated region (UTR). Although known to exist in several Flaviviridae genera, the full distribution and diversity of xrRNAs in this family were unknown. Using the recently solved high-resolution structure of an xrRNA from the divergent flavivirus Tamana bat virus (TABV) as a reference, we used bioinformatic searches to identify xrRNAs in the remaining three genera of Flaviviridae: Pegivirus, Pestivirus, and Hepacivirus. We biochemically and structurally characterized several examples, determining that they are genuine xrRNAs with a conserved fold. These new xrRNAs look superficially similar to the previously described xrRNAs but possess structural differences making them distinct from previous classes of xrRNAs. Overall, we have identified the presence of xrRNA in all four genera of Flaviviridae, but not in all species. Our findings thus require adjustments of previous xrRNA classification schemes and expand the previously known distribution of xrRNA in Flaviviridae.
Collapse
|
21
|
Liu Y, Zhang Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao X, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Structures and Functions of the 3' Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Front Cell Infect Microbiol 2020; 10:453. [PMID: 32974223 PMCID: PMC7481400 DOI: 10.3389/fcimb.2020.00453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
The 3′ untranslated region (3′ UTR) of positive-sense single-stranded RNA [ssRNA(+)] viruses is highly structured. Multiple elements in the region interact with other nucleotides and proteins of viral and cellular origin to regulate various aspects of the virus life cycle such as replication, translation, and the host-cell response. This review attempts to summarize the primary and higher order structures identified in the 3′UTR of ssRNA(+) viruses and their functional roles.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Kanodia P, Prasanth KR, Roa-Linares VC, Bradrick SS, Garcia-Blanco MA, Miller WA. A rapid and simple quantitative method for specific detection of smaller coterminal RNA by PCR (DeSCo-PCR): application to the detection of viral subgenomic RNAs. RNA (NEW YORK, N.Y.) 2020; 26:888-901. [PMID: 32238481 PMCID: PMC7297113 DOI: 10.1261/rna.074963.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/26/2020] [Indexed: 05/10/2023]
Abstract
RNAs that are 5'-truncated versions of a longer RNA but share the same 3' terminus can be generated by alternative promoters in transcription of cellular mRNAs or by replicating RNA viruses. These truncated RNAs cannot be distinguished from the longer RNA by a simple two-primer RT-PCR because primers that anneal to the cDNA from the smaller RNA also anneal to-and amplify-the longer RNA-derived cDNA. Thus, laborious methods, such as northern blot hybridization, are used to distinguish shorter from longer RNAs. For rapid, low-cost, and specific detection of these truncated RNAs, we report detection of smaller coterminal RNA by PCR (DeSCo-PCR). DeSCo-PCR uses a nonextendable blocking primer (BP), which outcompetes a forward primer (FP) for annealing to longer RNA-derived cDNA, while FP outcompetes BP for annealing to shorter RNA-derived cDNA. In the presence of BP, FP, and the reverse primer, only cDNA from the shorter RNA is amplified in a single-tube reaction containing both RNAs. Many positive strand RNA viruses generate 5'-truncated forms of the genomic RNA (gRNA) called subgenomic RNAs (sgRNA), which play key roles in viral gene expression and pathogenicity. We demonstrate that DeSCo-PCR is easily optimized to selectively detect relative quantities of sgRNAs of red clover necrotic mosaic virus from plants and Zika virus from human cells, each infected with viral strains that generate different amounts of sgRNA. This technique should be readily adaptable to other sgRNA-producing viruses, and for quantitative detection of any truncated or alternatively spliced RNA.
Collapse
Affiliation(s)
- Pulkit Kanodia
- Interdepartmental Genetics and Genomics, Iowa State University, Ames, Iowa 50011, USA
- Plant Pathology and Microbiology Department, Iowa State University, Ames, Iowa 50011, USA
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Vicky C Roa-Linares
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Molecular and Translational Medicine Group, Institute of Medical Research, Faculty of Medicine University of Antioquia, Medellin 050010, Colombia
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - W Allen Miller
- Interdepartmental Genetics and Genomics, Iowa State University, Ames, Iowa 50011, USA
- Plant Pathology and Microbiology Department, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
23
|
Aguilar-Tipacamu G, Carvajal-Gamez BI, García-Rejon J, Machain-Willians C, Mosqueda J. Immuno-molecular prospecting for vector-borne diseases in central Mexico. Transbound Emerg Dis 2020; 67 Suppl 2:185-192. [PMID: 32090486 DOI: 10.1111/tbed.13504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Climatic changes have influenced the temporal and spatial distribution of diseases. In livestock-grazing areas, rodents are reservoirs of zoonotic pathogens; therefore, they play an important role in the transmission of diseases affecting domestic animals and humans. The objective of this study was to investigate the presence of the zoonotic agents: Anaplasma phagocytophilum, Borrelia burgdorferi, Ehrlichia canis and Rickettsia rickettsii, as well as the presence of viral RNA from the Bunyaviridae, Togaviridae and Flaviviridae families, in wild rodents from animal production units in central Mexico. The samples were obtained from wild rodents that had access and contact with animal production units. A total of 92 rodents were captured, and samples of blood, serum and organs, such as spleen, kidney, heart and liver, were obtained. The serum was used to detect antibodies against Anaplasma phagocytophilum, Borrelia burgdorferi, Ehrlichia canis and Rickettsia rickettsii by an immunofluorescence antibody test (IFAT); the blood was used for PCR analysis; and the organs were used to obtain RNA (cDNA) to perform RT-PCR. By IFAT, all samples were positive to A. phagocytophilum and E. canis, and negative to B. burgdorferi and R. rickettsii. The samples that were positive to IFAT were used to confirm the presence of pathogen by PCR analysis. The results from the PCR were as follows: 34 samples were positive to A. phagocytophilum, and 59 to E. canis. There was no amplification of genetic material from the Bunyaviridae, Flaviviridae and Togaviridae virus families from the organs that were sampled, which suggests that the samples obtained did not contain RNA specific to these families. This is the first immuno-molecular prospecting study on vector-borne diseases in central Mexico demonstrating the presence of A. phagocytophilum and E. canis in wild rodents living in cattle grazing areas.
Collapse
Affiliation(s)
- Gabriela Aguilar-Tipacamu
- C. A. Salud Animal y Microbiologia Ambiental, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Bertha I Carvajal-Gamez
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
| | - Julian García-Rejon
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autonoma de Yucatán, Merida, Mexico
| | - Carlos Machain-Willians
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autonoma de Yucatán, Merida, Mexico
| | - Juan Mosqueda
- C. A. Salud Animal y Microbiologia Ambiental, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico.,Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
| |
Collapse
|
24
|
Withers JB, Mondol V, Pawlica P, Rosa-Mercado NA, Tycowski KT, Ghasempur S, Torabi SF, Steitz JA. Idiosyncrasies of Viral Noncoding RNAs Provide Insights into Host Cell Biology. Annu Rev Virol 2019; 6:297-317. [PMID: 31039329 PMCID: PMC6768742 DOI: 10.1146/annurev-virology-092818-015811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Like their host cells, many viruses express noncoding RNAs (ncRNAs). Despite the technical challenge of ascribing function to ncRNAs, diverse biological roles for virally expressed ncRNAs have been described, including regulation of viral replication, modulation of host gene expression, host immune evasion, cellular survival, and cellular transformation. Insights into conserved interactions between viral ncRNAs and host cell machinery frequently lead to novel findings concerning host cell biology. In this review, we discuss the functions and biogenesis of ncRNAs produced by animal viruses. Specifically, we describe noncanonical pathways of microRNA (miRNA) biogenesis and novel mechanisms used by viruses to manipulate miRNA and messenger RNA stability. We also highlight recent advances in understanding the function of viral long ncRNAs and circular RNAs.
Collapse
Affiliation(s)
- Johanna B Withers
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Vanessa Mondol
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Paulina Pawlica
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Nicolle A Rosa-Mercado
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Salehe Ghasempur
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Seyed F Torabi
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
25
|
Michalski D, Ontiveros JG, Russo J, Charley PA, Anderson JR, Heck AM, Geiss BJ, Wilusz J. Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem 2019; 294:16282-16296. [PMID: 31519749 DOI: 10.1074/jbc.ra119.009129] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Insect-borne flaviviruses produce a 300-500-base long noncoding RNA, termed subgenomic flavivirus RNA (sfRNA), by stalling the cellular 5'-3'-exoribonuclease 1 (XRN1) via structures located in their 3' UTRs. In this study, we demonstrate that sfRNA production by Zika virus represses XRN1 analogous to what we have previously shown for other flaviviruses. Using protein-RNA reconstitution and a stringent RNA pulldown assay with human choriocarcinoma (JAR) cells, we demonstrate that the sfRNAs from both dengue type 2 and Zika viruses interact with a common set of 21 RNA-binding proteins that contribute to the regulation of post-transcriptional processes in the cell, including splicing, RNA stability, and translation. We found that four of these sfRNA-interacting host proteins, DEAD-box helicase 6 (DDX6) and enhancer of mRNA decapping 3 (EDC3) (two RNA decay factors), phosphorylated adaptor for RNA export (a regulator of the biogenesis of the splicing machinery), and apolipoprotein B mRNA-editing enzyme catalytic subunit 3C (APOBEC3C, a nucleic acid-editing deaminase), inherently restrict Zika virus infection. Furthermore, we demonstrate that the regulations of cellular mRNA decay and RNA splicing are compromised by Zika virus infection as well as by sfRNA alone. Collectively, these results reveal the large extent to which Zika virus-derived sfRNAs interact with cellular RNA-binding proteins and highlight the potential for widespread dysregulation of post-transcriptional control that likely limits the effective response of these cells to viral infection.
Collapse
Affiliation(s)
- Daniel Michalski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - J Gustavo Ontiveros
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Joseph Russo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Phillida A Charley
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Adam M Heck
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523 .,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
26
|
Yu DS, Weng TH, Hu CY, Wu ZG, Li YH, Cheng LF, Wu NP, Li LJ, Yao HP. Chaperones, Membrane Trafficking and Signal Transduction Proteins Regulate Zaire Ebola Virus trVLPs and Interact With trVLP Elements. Front Microbiol 2018; 9:2724. [PMID: 30483236 PMCID: PMC6240689 DOI: 10.3389/fmicb.2018.02724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/24/2018] [Indexed: 01/19/2023] Open
Abstract
Ebolavirus (EBOV) life cycle involves interactions with numerous host factors, but it remains poorly understood, as does pathogenesis. Herein, we synthesized 65 siRNAs targeting host genes mostly connected with aspects of the negative-sense RNA virus life cycle (including viral entry, uncoating, fusion, replication, assembly, and budding). We produced EBOV transcription- and replication-competent virus-like particles (trVLPs) to mimic the EBOV life cycle. After screening host factors associated with the trVLP life cycle, we assessed interactions of host proteins with trVLP glycoprotein (GP), VP40, and RNA by co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP). The results demonstrate that RNAi silencing with 11 siRNAs (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) decreased the replication efficiency of trVLPs. Co-IP revealed nine candidate host proteins (FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) potentially interacting with trVLP GP, and four (ANXA5, GRP78, HSPA1A, and HSP90AB1) potentially interacting with trVLP VP40. Ch-IP identified nine candidate host proteins (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, MAPK11, MEK2, and NTRK1) interacting with trVLP RNA. This study was based on trVLP and could not replace live ebolavirus entirely; in particular, the interaction between trVLP RNA and host proteins cannot be assumed to be identical in live virus. However, the results provide valuable information for further studies and deepen our understanding of essential host factors involved in the EBOV life cycle.
Collapse
Affiliation(s)
- Dong-Shan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen-Yu Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Gang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan-Hua Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin-Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Luo H, Winkelmann ER, Zhu S, Ru W, Mays E, Silvas JA, Vollmer LL, Gao J, Peng BH, Bopp NE, Cromer C, Shan C, Xie G, Li G, Tesh R, Popov VL, Shi PY, Sun SC, Wu P, Klein RS, Tang SJ, Zhang W, Aguilar PV, Wang T. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest 2018; 128:4980-4991. [PMID: 30247157 PMCID: PMC6205407 DOI: 10.1172/jci99902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
The E3 ubiquitin ligase Pellino 1 (Peli1) is a microglia-specific mediator of autoimmune encephalomyelitis. Its role in neurotropic flavivirus infection is largely unknown. Here, we report that mice deficient in Peli1 (Peli1-/-) were more resistant to lethal West Nile virus (WNV) infection and exhibited reduced viral loads in tissues and attenuated brain inflammation. Peli1 mediates chemokine and proinflammatory cytokine production in microglia and promotes T cell and macrophage infiltration into the CNS. Unexpectedly, Peli1 was required for WNV entry and replication in mouse macrophages and mouse and human neurons and microglia. It was also highly expressed on WNV-infected neurons and adjacent inflammatory cells from postmortem patients who died of acute WNV encephalitis. WNV passaged in Peli1-/- macrophages or neurons induced a lower viral load and impaired activation in WT microglia and thereby reduced lethality in mice. Smaducin-6, which blocks interactions between Peli1 and IRAK1, RIP1, and IKKε, did not inhibit WNV-triggered microglia activation. Collectively, our findings suggest a nonimmune regulatory role for Peli1 in promoting microglia activation during WNV infection and identify a potentially novel host factor for flavivirus cell entry and replication.
Collapse
Affiliation(s)
- Huanle Luo
- Department of Microbiology and Immunology
| | | | - Shuang Zhu
- Department of Ophthalmology and Visual Sciences
| | - Wenjuan Ru
- Department of Neuroscience, Cell Biology and Anatomy, and
| | | | - Jesus A. Silvas
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Lauren L. Vollmer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, and
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, and
| | - Nathen E. Bopp
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Courtney Cromer
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, and
| | - Guorui Xie
- Department of Microbiology and Immunology
| | - Guangyu Li
- Department of Microbiology and Immunology
| | - Robert Tesh
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shao-Jun Tang
- Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences,,Department of Neuroscience, Cell Biology and Anatomy, and,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| | - Tian Wang
- Department of Microbiology and Immunology,,Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.,Institute for Human Infections and Immunity, UTMB, Galveston, Texas, USA
| |
Collapse
|
28
|
Mlera L, Bloom ME. The Role of Mammalian Reservoir Hosts in Tick-Borne Flavivirus Biology. Front Cell Infect Microbiol 2018; 8:298. [PMID: 30234026 PMCID: PMC6127651 DOI: 10.3389/fcimb.2018.00298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Small-to-medium sized mammals and large animals are lucrative sources of blood meals for ixodid ticks that transmit life-threatening tick-borne flaviviruses (TBFVs). TBFVs have been isolated from various organs obtained from wild-caught Myodes and Apodemus species in Europe and Asia. Thus, these rodents are well-established reservoirs of TBFVs. Wild-caught Peromyscus species have demonstrated seropositivity against Powassan virus, the only TBFV known to circulate in North America, suggesting that they may play an important role in the biology of the virus in this geographic region. However, virus isolation from Peromyscus species is yet to be demonstrated. Wild-caught medium-sized mammals, such as woodchucks (Marmota monax) and skunks (Mephitis mephitis) have also demonstrated seropositivity against POWV, and virus was isolated from apparently healthy animals. Despite the well-established knowledge that small-to-medium sized animals are TBFV reservoirs, specific molecular biology addressing host-pathogen interactions remains poorly understood. Elucidating these interactions will be critical for gaining insight into the mechanism(s) of viral pathogenesis and/or resistance.
Collapse
Affiliation(s)
- Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| |
Collapse
|
29
|
Kellman EM, Offerdahl DK, Melik W, Bloom ME. Viral Determinants of Virulence in Tick-Borne Flaviviruses. Viruses 2018; 10:v10060329. [PMID: 29914165 PMCID: PMC6024809 DOI: 10.3390/v10060329] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022] Open
Abstract
Tick-borne flaviviruses have a global distribution and cause significant human disease, including encephalitis and hemorrhagic fever, and often result in neurologic sequelae. There are two distinct properties that determine the neuropathogenesis of a virus. The ability to invade the central nervous system (CNS) is referred to as the neuroinvasiveness of the agent, while the ability to infect and damage cells within the CNS is referred to as its neurovirulence. Examination of laboratory variants, cDNA clones, natural isolates with varying pathogenicity, and virally encoded immune evasion strategies have contributed extensively to our understanding of these properties. Here we will review the major viral determinants of virulence that contribute to pathogenesis and influence both neuroinvasiveness and neurovirulence properties of tick-borne flaviviruses, focusing particularly on the envelope protein (E), nonstructural protein 5 (NS5), and the 3′ untranslated region (UTR).
Collapse
Affiliation(s)
- Eliza M Kellman
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Danielle K Offerdahl
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Wessam Melik
- School of Medical Sciences, Orebro University, SE-703 62 Örebro, Sweden.
| | - Marshall E Bloom
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
30
|
Liao KC, Chuo V, Ng WC, Neo SP, Pompon J, Gunaratne J, Ooi EE, Garcia-Blanco MA. Identification and characterization of host proteins bound to dengue virus 3' UTR reveal an antiviral role for quaking proteins. RNA (NEW YORK, N.Y.) 2018; 24:803-814. [PMID: 29572260 PMCID: PMC5959249 DOI: 10.1261/rna.064006.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
The four dengue viruses (DENV1-4) are rapidly reemerging infectious RNA viruses. These positive-strand viral genomes contain structured 3' untranslated regions (UTRs) that interact with various host RNA binding proteins (RBPs). These RBPs are functionally important in viral replication, pathogenesis, and defense against host immune mechanisms. Here, we combined RNA chromatography and quantitative mass spectrometry to identify proteins interacting with DENV1-4 3' UTRs. As expected, RBPs displayed distinct binding specificity. Among them, we focused on quaking (QKI) because of its preference for the DENV4 3' UTR (DENV-4/SG/06K2270DK1/2005). RNA immunoprecipitation experiments demonstrated that QKI interacted with DENV4 genomes in infected cells. Moreover, QKI depletion enhanced infectious particle production of DENV4. On the contrary, QKI did not interact with DENV2 3' UTR, and DENV2 replication was not affected consistently by QKI depletion. Next, we mapped the QKI interaction site and identified a QKI response element (QRE) in DENV4 3' UTR. Interestingly, removal of QRE from DENV4 3' UTR abolished this interaction and increased DENV4 viral particle production. Introduction of the QRE to DENV2 3' UTR led to QKI binding and reduced DENV2 infectious particle production. Finally, reporter assays suggest that QKI reduced translation efficiency of viral RNA. Our work describes a novel function of QKI in restricting viral replication.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857
| | - Wy Ching Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857
| | - Suat Peng Neo
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Singapore 138673
| | - Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857
- MIVEGEC, UMR IRD 224-CNRS5290-Université de Montpellier, 34394 Montpellier, France
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics Laboratory, Institute of Molecular and Cell Biology, Singapore 138673
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117545
- Singapore MIT Alliance in Research and Technology Infectious Diseases Interdisciplinary Research Group, Singapore 138602
| | - Mariano A Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
31
|
Viral immunogenicity determines epidemiological fitness in a cohort of DENV-1 infection in Brazil. PLoS Negl Trop Dis 2018; 12:e0006525. [PMID: 29813061 PMCID: PMC5993327 DOI: 10.1371/journal.pntd.0006525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/08/2018] [Accepted: 05/14/2018] [Indexed: 01/17/2023] Open
Abstract
The dynamics of dengue virus (DENV) circulation depends on serotype, genotype and lineage replacement and turnover. In São José do Rio Preto, Brazil, we observed that the L6 lineage of DENV-1 (genotype V) remained the dominant circulating lineage even after the introduction of the L1 lineage. We investigated viral fitness and immunogenicity of the L1 and L6 lineages and which factors interfered with the dynamics of DENV epidemics. The results showed a more efficient replicative fitness of L1 over L6 in mosquitoes and in human and non-human primate cell lines. Infections by the L6 lineage were associated with reduced antigenicity, weak B and T cell stimulation and weak host immune system interactions, which were associated with higher viremia. Our data, therefore, demonstrate that reduced viral immunogenicity and consequent greater viremia determined the increased epidemiological fitness of DENV-1 L6 lineage in São José do Rio Preto.
Collapse
|
32
|
Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, Schott-Lerner G, Pompon J, Sessions OM, Bradrick SS, Garcia-Blanco MA. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev 2018; 118:4448-4482. [PMID: 29652486 DOI: 10.1021/acs.chemrev.7b00719] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.
Collapse
Affiliation(s)
- Nicholas J Barrows
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Rafael K Campos
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Ruben Soto-Acosta
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Shih-Chia Yeh
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Geraldine Schott-Lerner
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Julien Pompon
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore.,MIVEGEC, IRD, CNRS, Université de Montpellier , Montpellier 34090 , France
| | - October M Sessions
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| |
Collapse
|
33
|
Full-Genome Characterization and Genetic Evolution of West African Isolates of Bagaza Virus. Viruses 2018; 10:v10040193. [PMID: 29652824 PMCID: PMC5923487 DOI: 10.3390/v10040193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 01/26/2023] Open
Abstract
Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic. It has currently been identified in mosquito pools collected in the field in West and Central Africa. Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns, recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation to human house-keeping genes is also observed to be higher than those of other flaviviruses well known in human infections. Genetic variations on genome of West African Bagaza virus could play an important role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become an important threat in human health.
Collapse
|
34
|
Dengue Virus Selectively Annexes Endoplasmic Reticulum-Associated Translation Machinery as a Strategy for Co-opting Host Cell Protein Synthesis. J Virol 2018; 92:JVI.01766-17. [PMID: 29321322 DOI: 10.1128/jvi.01766-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023] Open
Abstract
A primary question in dengue virus (DENV) biology is the molecular strategy for recruitment of host cell protein synthesis machinery. Here, we combined cell fractionation, ribosome profiling, and transcriptome sequencing (RNA-seq) to investigate the subcellular organization of viral genome translation and replication as well as host cell translation and its response to DENV infection. We report that throughout the viral life cycle, DENV plus- and minus-strand RNAs were highly partitioned to the endoplasmic reticulum (ER), identifying the ER as the primary site of DENV translation. DENV infection was accompanied by an ER compartment-specific remodeling of translation, where ER translation capacity was subverted from host transcripts to DENV plus-strand RNA, particularly at late stages of infection. Remarkably, translation levels and patterns in the cytosol compartment were only modestly affected throughout the experimental time course of infection. Comparisons of ribosome footprinting densities of the DENV plus-strand RNA and host mRNAs indicated that DENV plus-strand RNA was only sparsely loaded with ribosomes. Combined, these observations suggest a mechanism where ER-localized translation and translational control mechanisms, likely cis encoded, are used to repurpose the ER for DENV virion production. Consistent with this view, we found ER-linked cellular stress response pathways commonly associated with viral infection, namely, the interferon response and unfolded protein response, to be only modestly activated during DENV infection. These data support a model where DENV reprograms the ER protein synthesis and processing environment to promote viral survival and replication while minimizing the activation of antiviral and proteostatic stress response pathways.IMPORTANCE DENV, a prominent human health threat with no broadly effective or specific treatment, depends on host cell translation machinery for viral replication, immune evasion, and virion biogenesis. The molecular mechanism by which DENV commandeers the host cell protein synthesis machinery and the subcellular organization of DENV replication and viral protein synthesis is poorly understood. Here, we report that DENV has an almost exclusively ER-localized life cycle, with viral replication and translation largely restricted to the ER. Surprisingly, DENV infection largely affects only ER-associated translation, with relatively modest effects on host cell translation in the cytosol. DENV RNA translation is very inefficient, likely representing a strategy to minimize disruption of ER proteostasis. Overall these findings demonstrate that DENV has evolved an ER-compartmentalized life cycle; thus, targeting the molecular signatures and regulation of the DENV-ER interaction landscape may reveal strategies for therapeutic intervention.
Collapse
|
35
|
Wolbachia-mediated virus blocking in mosquito cells is dependent on XRN1-mediated viral RNA degradation and influenced by viral replication rate. PLoS Pathog 2018; 14:e1006879. [PMID: 29494679 PMCID: PMC5833283 DOI: 10.1371/journal.ppat.1006879] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
Wolbachia is currently being developed as a novel tool to block the transmission of dengue viruses (DENV) by Aedes aegypti. A number of mechanisms have been proposed to explain the DENV-blocking phenotype in mosquitoes, including competition for fatty acids like cholesterol, manipulation of host miRNAs and upregulation of innate immune pathways in the mosquito. We examined the various stages in the DENV infection process to better understand the mechanism of Wolbachia-mediated virus blocking (WMVB). Our results suggest that infection with Wolbachia does not inhibit DENV binding or cell entry, but reduces virus replication. In contrast to a previous report, we also observed a similar reduction in replication of West Nile virus (WNV). This reduced replication is associated with rapid viral RNA degradation in the cytoplasm. We didn't find a role for host miRNAs in WMVB. Further analysis showed that the 3' end of the virus subgenomic RNA was protected and accumulated over time suggesting that the degradation is XRN1-mediated. We also found that sub genomic flavivirus RNA accumulation inactivated XRN1 in mosquito cells in the absence of Wolbachia and led to enhancement of RNA degradation in its presence. Depletion of XRN1 decreased WMVB which was associated with a significant increase in DENV RNA. We also observed that WMVB is influenced by virus MOI and rate of virus replication. A comparatively elevated blocking was observed for slowly replicating DENV, compared to WNV. Similar results were obtained while analysing different DENV serotypes.
Collapse
|
36
|
The Host Factor AUF1 p45 Supports Flavivirus Propagation by Triggering the RNA Switch Required for Viral Genome Cyclization. J Virol 2018; 92:JVI.01647-17. [PMID: 29263261 DOI: 10.1128/jvi.01647-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2017] [Indexed: 01/21/2023] Open
Abstract
In previous studies, we showed that the cellular RNA-binding protein AUF1 supports the replication process of the flavivirus West Nile virus. Here we demonstrate that the protein also enables effective proliferation of dengue virus and Zika virus, indicating that AUF1 is a general flavivirus host factor. Further studies demonstrated that the AUF1 isoform p45 significantly stimulates the initiation of viral RNA replication and that the protein's RNA chaperone activity enhances the interactions of the viral 5'UAR and 3'UAR genome cyclization sequences. Most interestingly, we observed that AUF1 p45 destabilizes not only the 3'-terminal stem-loop (3'SL) but also 5'-terminal stem-loop B (SLB) of the viral genome. RNA structure analyses revealed that AUF1 p45 increases the accessibility of defined nucleotides within the 3'SL and SLB and, in this way, exposes both UAR cyclization elements. Conversely, AUF1 p45 does not modulate the fold of stem-loop A (SLA) at the immediate genomic 5' end, which is proposed to function as a promoter of the viral RNA-dependent RNA polymerase (RdRp). These findings suggest that AUF1 p45, by destabilizing specific stem-loop structures within the 5' and 3' ends of the flaviviral genome, assists genome cyclization and concurrently enables the RdRp to initiate RNA synthesis. Our study thus highlights the role of a cellular RNA-binding protein inducing a flaviviral RNA switch that is crucial for viral replication.IMPORTANCE The genus Flavivirus within the Flaviviridae family includes important human pathogens, such as dengue, West Nile, and Zika viruses. The initiation of replication of the flaviviral RNA genome requires a transformation from a linear to a cyclized form. This involves considerable structural reorganization of several RNA motifs at the genomic 5' and 3' ends. Specifically, it needs a melting of stem structures to expose complementary 5' and 3' cyclization elements to enable their annealing during cyclization. Here we show that a cellular RNA chaperone, AUF1 p45, which supports the replication of all three aforementioned flaviviruses, specifically rearranges stem structures at both ends of the viral genome and in this way permits 5'-3' interactions of cyclization elements. Thus, AUF1 p45 triggers the RNA switch in the flaviviral genome that is crucial for viral replication. These findings represent an important example of how cellular (host) factors promote the propagation of RNA viruses.
Collapse
|
37
|
Flaviviral RNA Structures and Their Role in Replication and Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:45-62. [PMID: 29845524 DOI: 10.1007/978-981-10-8727-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than simple vectors of genetic information, flaviviral RNAs have emerged as critical regulators of the virus life cycle. Viral RNAs regulate interactions with viral and cellular proteins in both, mosquito and mammalian hosts to ultimately influence processes as diverse as RNA replication, translation, packaging or pathogenicity. In this chapter, we will review the current knowledge of the role of sequence and structures in the flaviviral RNA in viral propagation and interaction with the host cell. We will also cover the increasing body of evidence linking viral non-coding RNAs with pathogenicity, host immunity and epidemic potential.
Collapse
|
38
|
Abstract
West Nile virus (WNV) is an arbovirus with increased global incidence in the last decade. It is also a major cause of human encephalitis in the USA. WNV is an arthropod-transmitted virus that mainly affects birds but humans become infected as incidental dead-end hosts which can cause outbreaks in naïve populations. The main vectors of WNV are mosquitoes of the genus Culex, which preferentially feed on birds. As in many other arboviruses, the characteristics that allow Flaviviruses like WNV to replicate and transmit to different hosts are encrypted in their genome, which also contains information for the production of structural and nonstructural proteins needed for host cell infection. WNV and other Flaviviruses have developed different strategies to establish infection, replication, and successful transmission. Most of these strategies include the diversion of the host's immune responses away from the virus. In this review, we describe the molecular structure and protein function of WNV with emphasis on protein involvement in the modulation of antiviral immune responses.
Collapse
|
39
|
Munjal A, Khandia R, Tiwari R, Chakrabort S, Karthik K, Dhama K. Advances in Designing and Developing Vaccines Against Zika Virus. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.667.676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Pompon J, Manuel M, Ng GK, Wong B, Shan C, Manokaran G, Soto-Acosta R, Bradrick SS, Ooi EE, Missé D, Shi PY, Garcia-Blanco MA. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathog 2017; 13:e1006535. [PMID: 28753642 PMCID: PMC5555716 DOI: 10.1371/journal.ppat.1006535] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/14/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022] Open
Abstract
Globally re-emerging dengue viruses are transmitted from human-to-human by Aedes mosquitoes. While viral determinants of human pathogenicity have been defined, there is a lack of knowledge of how dengue viruses influence mosquito transmission. Identification of viral determinants of transmission can help identify isolates with high epidemiological potential. Additionally, mechanistic understanding of transmission will lead to better understanding of how dengue viruses harness evolution to cycle between the two hosts. Here, we identified viral determinants of transmission and characterized mechanisms that enhance production of infectious saliva by inhibiting immunity specifically in salivary glands. Combining oral infection of Aedes aegypti mosquitoes and reverse genetics, we identified two 3’ UTR substitutions in epidemic isolates that increased subgenomic flaviviral RNA (sfRNA) quantity, infectious particles in salivary glands and infection rate of saliva, which represents a measure of transmission. We also demonstrated that various 3’UTR modifications similarly affect sfRNA quantity in both whole mosquitoes and human cells, suggesting a shared determinism of sfRNA quantity. Furthermore, higher relative quantity of sfRNA in salivary glands compared to midgut and carcass pointed to sfRNA function in salivary glands. We showed that the Toll innate immune response was preferentially inhibited in salivary glands by viruses with the 3’UTR substitutions associated to high epidemiological fitness and high sfRNA quantity, pointing to a mechanism for higher saliva infection rate. By determining that sfRNA is an immune suppressor in a tissue relevant to mosquito transmission, we propose that 3’UTR/sfRNA sequence evolution shapes dengue epidemiology not only by influencing human pathogenicity but also by increasing mosquito transmission, thereby revealing a viral determinant of epidemiological fitness that is shared between the two hosts. Dengue is a re-emerging global disease transmitted from human-to-human by mosquitoes. While environmental and host immune factors are important, viral determinants of mosquito transmission also shape the epidemiology of dengue. Understanding how dengue viruses influence transmission will help identify isolates with high epidemic potential and untangle the evolutionary pressures at play in the dual-host cycle. Here, we identified 2 substitutions in the 3’UTR of epidemic isolates that increase transmission through immune suppression in the salivary glands. Using oral infection of Aedes aegypti mosquitoes, we reported that epidemic isolates produced more subgenomic flaviviral RNA (sfRNA) in salivary glands. SfRNA is generated from the 3’UTR sequence remaining after partial genome degradation by a host nuclease. Using reverse genetics, we identified the two 3’UTR substitutions responsible for the higher sfRNA quantity in salivary glands. We further showed that these substitutions increased dengue virus titer in salivary glands and rate of saliva infection, and suppressed the Toll immune response in salivary glands. Our study identifies the substitutions that determine virus epidemiological fitness and provides a mechanism for sfRNA-mediated enhancement of transmission. Together with previous work demonstrating that sfRNA sequence modification influences dengue virus pathogenicity in human, and that shows variation in sfRNA sequence when the viruses transition from one host to vector and vice versa, our study supports that sfRNA evolution is constrained in the two hosts.
Collapse
Affiliation(s)
- Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- UMR IRD-CNRS MIVEGEC, IRD, Montpellier, France
- * E-mail: (JP); (MAGB)
| | - Menchie Manuel
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Geok Kee Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Benjamin Wong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Gayathri Manokaran
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Ruben Soto-Acosta
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Shelton S. Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Mariano A. Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail: (JP); (MAGB)
| |
Collapse
|
41
|
The 5' and 3' Untranslated Regions of the Flaviviral Genome. Viruses 2017; 9:v9060137. [PMID: 28587300 PMCID: PMC5490814 DOI: 10.3390/v9060137] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 01/30/2023] Open
Abstract
Flaviviruses are enveloped arthropod-borne viruses with a single-stranded, positive-sense RNA genome that can cause serious illness in humans and animals. The 11 kb 5′ capped RNA genome consists of a single open reading frame (ORF), and is flanked by 5′ and 3′ untranslated regions (UTR). The ORF is a polyprotein that is processed into three structural and seven non-structural proteins. The UTRs have been shown to be important for viral replication and immune modulation. Both of these regions consist of elements that are essential for genome cyclization, resulting in initiation of RNA synthesis. Genome mutation studies have been employed to investigate each component of the essential elements to show the necessity of each component and its role in viral RNA replication and growth. Furthermore, the highly structured 3′UTR is responsible for the generation of subgenomic flavivirus RNA (sfRNA) that helps the virus evade host immune response, thereby affecting viral pathogenesis. In addition, changes within the 3′UTR have been shown to affect transmissibility between vector and host, which can influence the development of vaccines.
Collapse
|
42
|
Wiley CA, Chimelli L. Human Zika and West Nile virus neurological infections: What is the difference? Neuropathology 2017; 37:393-397. [PMID: 28493351 DOI: 10.1111/neup.12385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
Abstract
The recent epidemic of West Nile Virus (WNV) infection in the United States was associated with severe neurological disease in immunocompromised hosts, while the emergence of Zika virus infection in the Americas has been notable for an association with increased microcephaly in the fetuses of infected mothers. Rare autopsies of WNV infected humans have shown multiple organ involvement with a clear neurotropism. We have recently had the opportunity to examine the distribution of Zika virus in autopsies of newborns from infected pregnancies. While both viruses infect multiple organs, Zika appears to cause neurological disease in the fetus through two different mechanisms. Infection during the first trimester showed the potential to infect neural progenitor cells causing severe developmental abnormalities, while infection later in gestation was associated with meningeal infection and destructive ischemic lesions of the brain. Both viruses infect kidney tubules but Zika shares a prominent hepatotropism characteristic of other flaviviruses (e.g., Dengue). Limited transplacental Zika infection would be consistent with restriction to primary maternal infections with high viremia. In the absence of a vaccine, restriction of travel by immunosuppressed and pregnant non-immune individuals to endemic regions seems prudent.
Collapse
Affiliation(s)
- Clayton A Wiley
- University of Pittsburgh School of Medicine, Department of Pathology, Pittsburgh, Pennsylvania, USA
| | - Leila Chimelli
- Laboratory of Neuropathology, State Institute of Brain Paulo Niemeyer, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Fernández-Sanlés A, Ríos-Marco P, Romero-López C, Berzal-Herranz A. Functional Information Stored in the Conserved Structural RNA Domains of Flavivirus Genomes. Front Microbiol 2017; 8:546. [PMID: 28421048 PMCID: PMC5376627 DOI: 10.3389/fmicb.2017.00546] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
The genus Flavivirus comprises a large number of small, positive-sense single-stranded, RNA viruses able to replicate in the cytoplasm of certain arthropod and/or vertebrate host cells. The genus, which has some 70 member species, includes a number of emerging and re-emerging pathogens responsible for outbreaks of human disease around the world, such as the West Nile, dengue, Zika, yellow fever, Japanese encephalitis, St. Louis encephalitis, and tick-borne encephalitis viruses. Like other RNA viruses, flaviviruses have a compact RNA genome that efficiently stores all the information required for the completion of the infectious cycle. The efficiency of this storage system is attributable to supracoding elements, i.e., discrete, structural units with essential functions. This information storage system overlaps and complements the protein coding sequence and is highly conserved across the genus. It therefore offers interesting potential targets for novel therapeutic strategies. This review summarizes our knowledge of the features of flavivirus genome functional RNA domains. It also provides a brief overview of the main achievements reported in the design of antiviral nucleic acid-based drugs targeting functional genomic RNA elements.
Collapse
Affiliation(s)
| | | | | | - Alfredo Berzal-Herranz
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina “López-Neyra,” Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| |
Collapse
|
44
|
Abstract
Zika virus (ZIKV) is a previously little-known flavivirus closely related to Japanese encephalitis, West Nile, dengue, and yellow fever viruses, all of which are primarily transmitted by blood-sucking mosquitoes. Since its discovery in Uganda in 1947, ZIKV has continued to expand its geographic range, from equatorial Africa and Asia to the Pacific Islands, then further afield to South and Central America and the Caribbean. Currently, ZIKV is actively circulating not only in much of Latin America and its neighbors but also in parts of the Pacific Islands and Southeast Asia. Although ZIKV infection generally causes only mild symptoms in some infected individuals, it is associated with a range of neuroimmunological disorders, including Guillain-Barré syndrome, meningoencephalitis, and myelitis. Recently, maternal ZIKV infection during pregnancy has been linked to neonatal malformations, resulting in various degrees of congenital abnormalities, microcephaly, and even abortion. Despite its emergence as an important public health problem, however, little is known about ZIKV biology, and neither vaccine nor drug is available to control ZIKV infection. This article provides a brief introduction to ZIKV with a major emphasis on its molecular virology, in order to help facilitate the development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4815, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4815, USA.
- Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322-4815, USA.
| |
Collapse
|
45
|
Wang CC, Hsu YC, Wu HC, Wu HN. Insights into the coordinated interplay of the sHP hairpin and its co-existing and mutually-exclusive dengue virus terminal RNA elements for viral replication. Virology 2017; 505:56-70. [PMID: 28235683 DOI: 10.1016/j.virol.2017.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022]
Abstract
Terminal RNA elements of the dengue virus (DENV) genome are necessary for balanced stability of linear and circular conformations during replication. We examined the small hairpin (sHP) and co-existing and mutually-exclusive terminal RNA elements by mutagenesis analysis, compensatory mutation screening, and by probing with RNA fragments to explore localized RNA folding and long-range RNA interactions. We found that the first base pair of the sHP and the stability of SLB and the 3'SL bottom stem affected circularization; sHPgc/C10631G+G10644C prohibited circularization, sHPuG accelerated and stabilized 5'-to-3' RNA hybridization, while C94A and A97G and C10649 mutations loosened SLB and 3'SL, respectively, for circularization. sHPuG+C10649G induced circularization and impeded replication, whereas point mutations that loosened the UAR or DAR ds region, strengthened the sHP, or reinforced the 3'SL bottom stem, rescued the replication deficiency. Overall, we reveal structural and sequence features and interplay of DENV genome terminal RNA elements essential to viral replication.
Collapse
Affiliation(s)
- Chun-Chung Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hsin-Chieh Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China; Faculty of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Huey-Nan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
46
|
Abstract
Vector mosquitoes are responsible for transmission of the majority of arthropod-borne (arbo-) viruses. Virus replication in these vectors needs to be sufficiently high to permit efficient virus transfer to vertebrate hosts. The mosquito immune response therefore is a key determinant for arbovirus transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. Besides this well-established antiviral machinery, the PIWI-interacting RNA (piRNA) pathway processes viral RNA into piRNAs. In recent years, significant progress has been made in characterizing the biogenesis and function of these viral piRNAs. In this review, we discuss these developments, identify knowledge gaps, and suggest directions for future research.
Collapse
|
47
|
N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host Microbe 2016; 20:654-665. [PMID: 27773535 PMCID: PMC5123813 DOI: 10.1016/j.chom.2016.09.015] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 01/01/2023]
Abstract
The RNA modification N6-methyladenosine (m6A) post-transcriptionally regulates RNA function. The cellular machinery that controls m6A includes methyltransferases and demethylases that add or remove this modification, as well as m6A-binding YTHDF proteins that promote the translation or degradation of m6A-modified mRNA. We demonstrate that m6A modulates infection by hepatitis C virus (HCV). Depletion of m6A methyltransferases or an m6A demethylase, respectively, increases or decreases infectious HCV particle production. During HCV infection, YTHDF proteins relocalize to lipid droplets, sites of viral assembly, and their depletion increases infectious viral particles. We further mapped m6A sites across the HCV genome and determined that inactivating m6A in one viral genomic region increases viral titer without affecting RNA replication. Additional mapping of m6A on the RNA genomes of other Flaviviridae, including dengue, Zika, yellow fever, and West Nile virus, identifies conserved regions modified by m6A. Altogether, this work identifies m6A as a conserved regulatory mark across Flaviviridae genomes. The RNA genomes of HCV, ZIKV, DENV, YFV, and WNV contain m6A modification The cellular m6A machinery regulates HCV infectious particle production YTHDF proteins reduce HCV particle production and localize at viral assembly sites m6A-abrogating mutations in HCV E1 increase infectious particle production
Collapse
|
48
|
Gorzelnik KV, Cui Z, Reed CA, Jakana J, Young R, Zhang J. Asymmetric cryo-EM structure of the canonical Allolevivirus Qβ reveals a single maturation protein and the genomic ssRNA in situ. Proc Natl Acad Sci U S A 2016; 113:11519-11524. [PMID: 27671640 PMCID: PMC5068298 DOI: 10.1073/pnas.1609482113] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-stranded (ss) RNA viruses infect all domains of life. To date, for most ssRNA virions, only the structures of the capsids and their associated protein components have been resolved to high resolution. Qβ, an ssRNA phage specific for the conjugative F-pilus, has a T = 3 icosahedral lattice of coat proteins assembled around its 4,217 nucleotides of genomic RNA (gRNA). In the mature virion, the maturation protein, A2, binds to the gRNA and is required for adsorption to the F-pilus. Here, we report the cryo-electron microscopy (cryo-EM) structures of Qβ with and without symmetry applied. The icosahedral structure, at 3.7-Å resolution, resolves loops not previously seen in the published X-ray structure, whereas the asymmetric structure, at 7-Å resolution, reveals A2 and the gRNA. A2 contains a bundle of α-helices and replaces one dimer of coat proteins at a twofold axis. The helix bundle binds gRNA, causing denser packing of RNA in its proximity, which asymmetrically expands the surrounding coat protein shell to potentially facilitate RNA release during infection. We observe a fixed pattern of gRNA organization among all viral particles, with the major and minor grooves of RNA helices clearly visible. A single layer of RNA directly contacts every copy of the coat protein, with one-third of the interactions occurring at operator-like RNA hairpins. These RNA-coat interactions stabilize the tertiary structure of gRNA within the virion, which could further provide a roadmap for capsid assembly.
Collapse
Affiliation(s)
- Karl V Gorzelnik
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Zhicheng Cui
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Catrina A Reed
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Joanita Jakana
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ry Young
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
49
|
Friedrich S, Schmidt T, Schierhorn A, Lilie H, Szczepankiewicz G, Bergs S, Liebert UG, Golbik RP, Behrens SE. Arginine methylation enhances the RNA chaperone activity of the West Nile virus host factor AUF1 p45. RNA (NEW YORK, N.Y.) 2016; 22:1574-1591. [PMID: 27520967 PMCID: PMC5029455 DOI: 10.1261/rna.055269.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
A prerequisite for the intracellular replication process of the Flavivirus West Nile virus (WNV) is the cyclization of the viral RNA genome, which enables the viral replicase to initiate RNA synthesis. Our earlier studies indicated that the p45 isoform of the cellular AU-rich element binding protein 1 (AUF1) has an RNA chaperone activity, which supports RNA cyclization and viral RNA synthesis by destabilizing a stem structure at the WNV RNA's 3'-end. Here we show that in mammalian cells, AUF1 p45 is consistently modified by arginine methylation of its C terminus. By a combination of different experimental approaches, we can demonstrate that the methyltransferase PRMT1 is necessary and sufficient for AUF1 p45 methylation and that PRMT1 is required for efficient WNV replication. Interestingly, in comparison to the nonmethylated AUF1 p45, the methylated AUF1 p45(aDMA) exhibits a significantly increased affinity to the WNV RNA termini. Further data also revealed that the RNA chaperone activity of AUF1 p45(aDMA) is improved and the methylated protein stimulates viral RNA synthesis considerably more efficiently than the nonmethylated AUF1 p45. In addition to its destabilizing RNA chaperone activity, we identified an RNA annealing activity of AUF1 p45, which is not affected by methylation. Arginine methylation of AUF1 p45 thus represents a specific determinant of its RNA chaperone activity while functioning as a WNV host factor. Our data suggest that the methylation modifies the conformation of AUF1 p45 and in this way affects its RNA binding and restructuring activities.
Collapse
Affiliation(s)
- Susann Friedrich
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| | - Tobias Schmidt
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| | - Angelika Schierhorn
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| | | | - Sandra Bergs
- Institute of Virology, Leipzig University, 04130 Leipzig, Germany
| | - Uwe G Liebert
- Institute of Virology, Leipzig University, 04130 Leipzig, Germany
| | - Ralph P Golbik
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| |
Collapse
|
50
|
Hamel R, Liégeois F, Wichit S, Pompon J, Diop F, Talignani L, Thomas F, Desprès P, Yssel H, Missé D. Zika virus: epidemiology, clinical features and host-virus interactions. Microbes Infect 2016; 18:441-9. [DOI: 10.1016/j.micinf.2016.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
|