1
|
Adanas R, Turkoglu V. Exploration of inhibitor effect of Gly-Pro (GP), Arg-Gly-Asp-Ser (RGDS) and Ser-Asp-Gly-Arg-Gly (SDGRG) bioactive peptides on angiotensin-converting enzyme activity purified from human serum. J Biomol Struct Dyn 2024:1-9. [PMID: 38247271 DOI: 10.1080/07391102.2024.2306195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Bioactive peptides (BPs) are a natural and important alternative to synthetic angiotensin-converting enzyme (ACE) inhibitors used in the treatment of hypertension. In this study, ACE was 3575-fold purified from human serum with the affinity chromatography process in one step. The molecular weight and purity of ACE were identified using the SDS-PAGE process and seen in two bands at around 60 kDa and 70 kDa on the gel. Vmax and KM values from the Lineweaver-Burk graphic were determined as 96.15 (µmol/min) mL-1 and 0.2 mM, respectively. The effects of Gly-Pro (GP), Arg-Gly-Asp-Ser (RGDS) and Ser-Asp-Gly-Arg-Gly (SDGRG) BPs on purified ACE were researched. Also, lisinopril was used as a reference inhibitor. GP, RGDS and SDGRG on purified ACE demonstrated an inhibitory effect. IC50 values for these peptides were found as 184.71, 107.16 and 32.54 µM, respectively. Ki values and type of inhibitory for GP, RGDS and SDGRG by the Lineweaver-Burk chart were found. The type of inhibitory for these peptides was calculated as reversible-competitive inhibitory. Ki values for GP, RGDS and SDGRG were calculated to be 260.02, 63.44 and 11.42 µM, respectively. Also, the SDGRG indicated a higher inhibition effect on ACE activity than the GP and RGDS. The IC50 value of lisinopril was designated as 0.35 nM. The inhibition type of lisinopril was designated as reversible noncompetitive inhibition from the Lineweaver-Burk chart and the Ki value was 0.15 nM. Herein, it was concluded that GP, RGDS and SDGRG have ACE inhibitor potential.
Collapse
Affiliation(s)
- Resul Adanas
- Science Faculty, Chemistry Department, Van Yüzüncü Yıl University, Van, Turkey
| | - Vedat Turkoglu
- Science Faculty, Chemistry Department, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
2
|
Danilov SM, Adzhubei IA, Kozuch AJ, Petukhov PA, Popova IA, Choudhury A, Sengupta D, Dudek SM. Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer's Disease. Biomedicines 2024; 12:162. [PMID: 38255267 PMCID: PMC10813023 DOI: 10.3390/biomedicines12010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
We hypothesized that subjects with heterozygous loss-of-function (LoF) ACE mutations are at risk for Alzheimer's disease because amyloid Aβ42, a primary component of the protein aggregates that accumulate in the brains of AD patients, is cleaved by ACE (angiotensin I-converting enzyme). Thus, decreased ACE activity in the brain, either due to genetic mutation or the effects of ACE inhibitors, could be a risk factor for AD. To explore this hypothesis in the current study, existing SNP databases were analyzed for LoF ACE mutations using four predicting tools, including PolyPhen-2, and compared with the topology of known ACE mutations already associated with AD. The combined frequency of >400 of these LoF-damaging ACE mutations in the general population is quite significant-up to 5%-comparable to the frequency of AD in the population > 70 y.o., which indicates that the contribution of low ACE in the development of AD could be under appreciated. Our analysis suggests several mechanisms by which ACE mutations may be associated with Alzheimer's disease. Systematic analysis of blood ACE levels in patients with all ACE mutations is likely to have clinical significance because available sequencing data will help detect persons with increased risk of late-onset Alzheimer's disease. Patients with transport-deficient ACE mutations (about 20% of damaging ACE mutations) may benefit from preventive or therapeutic treatment with a combination of chemical and pharmacological (e.g., centrally acting ACE inhibitors) chaperones and proteosome inhibitors to restore impaired surface ACE expression, as was shown previously by our group for another transport-deficient ACE mutation-Q1069R.
Collapse
Affiliation(s)
- Sergei M. Danilov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| | - Ivan A. Adzhubei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA;
| | - Alexander J. Kozuch
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Isolda A. Popova
- Toxicology Research Laboratory, University of Illinois Chicago, IL 60612, USA;
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2193, South Africa; (A.C.); (D.S.)
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2193, South Africa; (A.C.); (D.S.)
| | - Steven M. Dudek
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| |
Collapse
|
3
|
Popova E, Tikhomirova V, Beznos O, Chesnokova N, Grigoriev Y, Taliansky M, Kost O. A Direct Comparison of Peptide Drug Delivery Systems Based on the Use of Hybrid Calcium Phosphate/Chitosan Nanoparticles versus Unmixed Calcium Phosphate or Chitosan Nanoparticles In Vitro and In Vivo. Int J Mol Sci 2023; 24:15532. [PMID: 37958515 PMCID: PMC10648411 DOI: 10.3390/ijms242115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Nanocarriers provide a number of undeniable advantages that could improve the bioavailability of active agents for human, animal, and plant cells. In this study, we compared hybrid nanoparticles (HNPs) consisting of a calcium phosphate core coated with chitosan with unmixed calcium phosphate (CaP) and chitosan nanoparticles (CSNPs) as carriers of a model substrate, enalaprilat. This tripeptide analog is an inhibitor of angiotensin-converting enzyme and was chosen by its ability to lower intraocular pressure (IOP). In particular, we evaluated the physicochemical characteristics of the particles using dynamic light scattering (DLS) and scanning electron microscopy (SEM) and analyzed their ability to incorporate and release enalaprilat. HNPs exhibited the highest drug loading capacity and both HNPs and CSNPs demonstrated slow drug release. The comparison of the physiological effects of enalaprilat-loaded CaP particles, HNPs, and CSNPs in terms of their impact on IOP in rabbits revealed a clear advantage of hybrid nanoparticles over both inorganic and chitosan nanoparticles. These results could have important mechanistic implications for developing nano-based delivery systems for other medical, veterinary, and agricultural applications.
Collapse
Affiliation(s)
- Ekaterina Popova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (E.P.); (V.T.); (M.T.)
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (E.P.); (V.T.); (M.T.)
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Beznos
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (O.B.); (N.C.)
| | - Natalia Chesnokova
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (O.B.); (N.C.)
| | - Yuri Grigoriev
- Shubnikov Institute of Crystallography, Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (E.P.); (V.T.); (M.T.)
| | - Olga Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (E.P.); (V.T.); (M.T.)
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Safwat A, Helmy A, Gupta A. The Role of Substance P Within Traumatic Brain Injury and Implications for Therapy. J Neurotrauma 2023; 40:1567-1583. [PMID: 37132595 DOI: 10.1089/neu.2022.0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
This review examines the role of the neuropeptide substance P within the neuroinflammation that follows traumatic brain injury. It examines it in reference to its preferential receptor, the neurokinin-1 receptor, and explores the evidence for antagonism of this receptor in traumatic brain injury with therapeutic intent. Expression of substance P increases following traumatic brain injury. Subsequent binding to the neurokinin-1 receptor results in neurogenic inflammation, a cause of deleterious secondary effects that include an increased intracranial pressure and poor clinical outcome. In several animal models of TBI, neurokinin-1 receptor antagonism has been shown to reduce brain edema and the resultant rise in intracranial pressure. A brief overview of the history of substance P is presented, alongside an exploration into the chemistry of the neuropeptide with a relevance to its functions within the central nervous system. This review summarizes the scientific and clinical rationale for substance P antagonism as a promising therapy for human TBI.
Collapse
Affiliation(s)
- Adam Safwat
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Arun Gupta
- Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
5
|
Popova E, Matveeva O, Beznos O, Tikhomirova V, Kudryashova E, Grigoriev Y, Chesnokova N, Kost O. Chitosan-Covered Calcium Phosphate Particles Co-Loaded with Superoxide Dismutase 1 and ACE Inhibitor: Development, Characterization and Effect on Intraocular Pressure. Pharmaceutics 2023; 15:pharmaceutics15020550. [PMID: 36839871 PMCID: PMC9962464 DOI: 10.3390/pharmaceutics15020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Improvement of the efficiency of drug penetration into the eye tissues is still an actual problem in ophthalmology. One of the most promising solutions is drug encapsulation in carriers capable of overcoming the cornea/sclera tissue barrier. Formulations on the base of antioxidant enzyme, superoxide dismutase 1 (SOD1), and an inhibitor of angiotensin-converting enzyme, enalaprilat, were prepared by simultaneous inclusion of both drugs into calcium phosphate (CaP) particles in situ with subsequent covering of the particles with 5 kDa chitosan. The formulations obtained were characterized by dynamic light scattering and scanning electron microscopy. Hybrid CaP-chitosan particles co-loaded with SOD1 and enalaprilat had a mean hydrodynamic diameter of 120-160 nm and ζ-potential +20 ± 1 mV. The percentage of the inclusion of SOD1 and enalaprilat in hybrid particles was 30% and 56%, respectively. The ability of SOD1 and enalaprilat to reduce intraocular pressure (IOP) was examined in vivo in normotensive Chinchilla rabbits. It was shown that topical instillations of SOD1/enalaprilat co-loaded hybrid particles were much more effective in decreasing IOP compared to free enzyme or free enalaprilat and even to the same particles that contained a single drug. Thus, the proposed formulations demonstrate potential as prospective therapeutic agents for the treatment of glaucoma.
Collapse
Affiliation(s)
- Ekaterina Popova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya Matveeva
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Beznos
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia
| | - Victoria Tikhomirova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Kudryashova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yuri Grigoriev
- Shubnikov Institute of Crystallography, Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Natalia Chesnokova
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia
| | - Olga Kost
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-939-34-30
| |
Collapse
|
6
|
Boginskaya I, Safiullin R, Tikhomirova V, Kryukova O, Nechaeva N, Bulaeva N, Golukhova E, Ryzhikov I, Kost O, Afanasev K, Kurochkin I. Human Angiotensin I-Converting Enzyme Produced by Different Cells: Classification of the SERS Spectra with Linear Discriminant Analysis. Biomedicines 2022; 10:biomedicines10061389. [PMID: 35740411 PMCID: PMC9219671 DOI: 10.3390/biomedicines10061389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiotensin I-converting enzyme (ACE) is a peptidase widely presented in human tissues and biological fluids. ACE is a glycoprotein containing 17 potential N-glycosylation sites which can be glycosylated in different ways due to post-translational modification of the protein in different cells. For the first time, surface-enhanced Raman scattering (SERS) spectra of human ACE from lungs, mainly produced by endothelial cells, ACE from heart, produced by endothelial heart cells and miofibroblasts, and ACE from seminal fluid, produced by epithelial cells, have been compared with full assignment. The ability to separate ACEs’ SERS spectra was demonstrated using the linear discriminant analysis (LDA) method with high accuracy. The intervals in the spectra with maximum contributions of the spectral features were determined and their contribution to the spectrum of each separate ACE was evaluated. Near 25 spectral features forming three intervals were enough for successful separation of the spectra of different ACEs. However, more spectral information could be obtained from analysis of 50 spectral features. Band assignment showed that several features did not correlate with band assignments to amino acids or peptides, which indicated the carbohydrate contribution to the final spectra. Analysis of SERS spectra could be beneficial for the detection of tissue-specific ACEs.
Collapse
Affiliation(s)
- Irina Boginskaya
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
- Correspondence:
| | - Robert Safiullin
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Victoria Tikhomirova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Olga Kryukova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Natalia Nechaeva
- Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, Russia;
| | - Naida Bulaeva
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
| | - Elena Golukhova
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
| | - Ilya Ryzhikov
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- FMN Laboratory, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Olga Kost
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Konstantin Afanasev
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
| | - Ilya Kurochkin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
- Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, Russia;
| |
Collapse
|
7
|
Sultan F, Parkin ET. The Amyloid Precursor Protein Plays Differential Roles in the UVA
Resistance and Proliferation of Human Retinal Pigment Epithelial Cells. Protein Pept Lett 2022; 29:313-327. [DOI: 10.2174/0929866529666220217124152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Background:
Age-related macular degeneration (AMD) can be characterised by
degeneration of retinal pigment epithelial (RPE) cells and the accumulation, in retinal drusen
deposits, of amyloid beta-peptides proteolytically derived, by secretases, from the amyloid precursor
protein (APP). Ultraviolet (UV) light exposure is a risk factor for the development of AMD.
Objectives:
In the current study, we investigated whether APP and/or its proteolysis are linked to the
UVA resistance or proliferation of ARPE-19 human RPE cells.
Methods:
Cell viability was determined, following UVA exposure, with prior small interfering
RNA-mediated APP depletion or secretase inhibitor treatments. APP levels/proteolysis were
analysed by immunoblotting. Cells were also grown in the presence/absence of secretase inhibitors
to assess their effects on longer-term culture growth. Finally, the effects of APP proteolytic
fragments on ARPE-19 cell proliferation were monitored following co-culture with human
embryonic kidney cells stably over-expressing these fragments.
Results:
Endogenous APP was depleted following UVA irradiation and β-secretase, but not α-
secretase, and the processing of the protein was reduced. Experimental APP depletion or γ-secretase
(but not α- or β-secretase) inhibition ablated the detrimental effect of UVA on cell viability. In
contrast, α-secretase, and possibly γ-secretase but not β-secretase activity, appeared to promote the
longer-term proliferation of ARPE-19 cells in the absence of UVA irradiation.
Conclusions:
There are clear but differential links between APP expression/proteolysis and the
proliferation and UVA resistance of ARPE-19 cells indicating that the protein should be
investigated further in relation to the identification of possible drug targets for the treatment of
AMD.
Collapse
Affiliation(s)
- Fatima Sultan
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United
Kingdom
| | - Edward T. Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United
Kingdom
| |
Collapse
|
8
|
Owens L, Bracewell J, Benedetto A, Dawson N, Gaffney C, Parkin E. BACE1 Overexpression Reduces SH-SY5Y Cell Viability Through a Mechanism Distinct from Amyloid-β Peptide Accumulation: Beta Prime-Mediated Competitive Depletion of sAβPPα. J Alzheimers Dis 2022; 86:1201-1220. [PMID: 35180123 DOI: 10.3233/jad-215457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The Alzheimer's disease (AD)-associated amyloid-beta protein precursor (AβPP) can be cleaved by β-site AβPP cleaving enzyme 1 (BACE1) and the γ-secretase complex to yield neurotoxic amyloid-β (Aβ) peptides. However, AβPP can also be cleaved in a 'non-amyloidogenic' manner either by α-secretase to produce soluble AβPP alpha (sAβPPα) (a fragment with neuroprotective/neurogenic functions) or through alternative BACE1-mediated 'beta prime' activity yielding soluble AβPP beta prime (sAβPPβ'). OBJECTIVE To determine whether sAβPPα depletion, as opposed to Aβ peptide accumulation, contributes to cytotoxicity in AD-relevant SH-SY5Y neuroblastoma cell models. METHODS AβPP proteolysis was characterized by immunoblotting in mock-, wild-type AβPP (wtAβPP)-, BACE1-, and Swedish mutant AβPP (SweAβPP)-transfected cells. AβPP beta prime cleavage was confirmed through secretase inhibitor studies and C-terminal fragment analysis. The roles of sAβPPα and sAβPPβ' in cell viability were confirmed by overexpression studies. RESULTS Despite producing enhanced Aβ peptide levels, wtAβPP- and SweAβPP-transfected cells did not exhibit reduced viability whereas BACE1-transfected cells did. sAβPPα generation in SH-SY5Y-BACE1 cells was virtually ablated in lieu of BACE1-mediated sAβPPβ' production. sAβPPα overexpression in SH-SY5Y-BACE1 cells restored viability whereas sAβPPβ' overexpression decreased viability further. The anti-AβPP 6E10 antibody was shown to cross-react with sAβPPβ'. CONCLUSION sAβPPα depletion and/or sAβPPβ' accumulation, but not elevated Aβ peptide levels, represent the cytotoxic mechanism following BACE1 overexpression in SH-SY5Y cells. These data support the novel concept that competitive sAβPPα depletion by BACE1 beta prime activity might contribute to AD. The cross-reactivity of 6E10 with AβPPβ'also questions whether previous studies assessing sAβPPα as a biomarker using this antibody should be revisited.
Collapse
Affiliation(s)
- Lauren Owens
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Joshua Bracewell
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Alexandre Benedetto
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christopher Gaffney
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Edward Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
9
|
Parkin ET, Hammond JE, Owens L, Hodges MD. The orphan drug dichloroacetate reduces amyloid beta-peptide production whilst promoting non-amyloidogenic proteolysis of the amyloid precursor protein. PLoS One 2022; 17:e0255715. [PMID: 35025874 PMCID: PMC8757967 DOI: 10.1371/journal.pone.0255715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
The amyloid cascade hypothesis proposes that excessive accumulation of amyloid beta-peptides is the initiating event in Alzheimer’s disease. These neurotoxic peptides are generated from the amyloid precursor protein via sequential cleavage by β- and γ-secretases in the ’amyloidogenic’ proteolytic pathway. Alternatively, the amyloid precursor protein can be processed via the ’non-amyloidogenic’ pathway which, through the action of the α-secretase a disintegrin and metalloproteinase (ADAM) 10, both precludes amyloid beta-peptide formation and has the additional benefit of generating a neuroprotective soluble amyloid precursor protein fragment, sAPPα. In the current study, we investigated whether the orphan drug, dichloroacetate, could alter amyloid precursor protein proteolysis. In SH-SY5Y neuroblastoma cells, dichloroacetate enhanced sAPPα generation whilst inhibiting β–secretase processing of endogenous amyloid precursor protein and the subsequent generation of amyloid beta-peptides. Over-expression of the amyloid precursor protein partly ablated the effect of dichloroacetate on amyloidogenic and non-amyloidogenic processing whilst over-expression of the β-secretase only ablated the effect on amyloidogenic processing. Similar enhancement of ADAM-mediated amyloid precursor protein processing by dichloroacetate was observed in unrelated cell lines and the effect was not exclusive to the amyloid precursor protein as an ADAM substrate, as indicated by dichloroacetate-enhanced proteolysis of the Notch ligand, Jagged1. Despite altering proteolysis of the amyloid precursor protein, dichloroacetate did not significantly affect the expression/activity of α-, β- or γ-secretases. In conclusion, dichloroacetate can inhibit amyloidogenic and promote non-amyloidogenic proteolysis of the amyloid precursor protein. Given the small size and blood-brain-barrier permeability of the drug, further research into its mechanism of action with respect to APP proteolysis may lead to the development of therapies for slowing the progression of Alzheimer’s disease.
Collapse
Affiliation(s)
- Edward T. Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | - Jessica E. Hammond
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Lauren Owens
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Matthew D. Hodges
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
10
|
Bas Z. Inhibition effect of nicotinamide (vitamin B 3) and reduced glutathione (GSH) peptide on angiotensin-converting enzyme activity purified from sheep kidney. Int J Biol Macromol 2021; 189:65-71. [PMID: 34419538 DOI: 10.1016/j.ijbiomac.2021.08.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/11/2022]
Abstract
Angiotensin-converting enzyme (ACE, EC 3.4.15.1) plays a significant role in blood pressure regulation and inhibition of this enzyme is one of the significant drug targets for the treatment of hypertension. In this work, ACE was purified from sheep kidneys with the affinity chromatography method in one step. The purity and molecular weight of ACE were designated using the SDS-PAGE method and observed two bands at around 60 kDa and 70 kDa on the gel. The effects of nicotinamide (vitamin B3) and reduced glutathione (GSH) peptide on purified ACE were researched. Nicotinamide and GSH peptide on purified ACE showed an inhibition effect. IC50 values for nicotinamide and GSH were calculated as 14.3 μM and 7.3 μM, respectively. Type of inhibition and Ki values for nicotinamide and GSH from the Lineweaver-Burk graph were determined. The type of inhibition for nicotinamide and GSH was determined as non-competitive inhibition. Ki value was calculated as 15.4 μM for nicotinamide and 6.7 μM for GSH. Also, GSH peptide showed higher inhibitory activity on ACE activity than nicotinamide. In this study, it was concluded that nicotinamide and GSH peptide compounds, which show an inhibition effect on ACE activity, may have both protective and therapeutic effects against hypertension.
Collapse
Affiliation(s)
- Zehra Bas
- Van Yüzüncü Yıl University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Van, Turkey.
| |
Collapse
|
11
|
Aydin F, Turkoglu V, Bas Z. Purification and characterization of angiotensin-converting enzyme (ACE) from sheep lung. Mol Biol Rep 2021; 48:4191-4199. [PMID: 34086160 PMCID: PMC8176444 DOI: 10.1007/s11033-021-06432-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/21/2021] [Indexed: 01/11/2023]
Abstract
Angiotensin-converting enzyme (ACE, EC 3.4.15.1) in the renin-angiotensin system regulates blood pressure by catalyzing angiotensin I to the vasoconstrictor angiotensin II. In this study, the ACE was purified and characterized from sheep lung. The kinetic properties of the ACE were designated. The inhibition effect of captopril, a specific ACE inhibitor, was determined. ACE was purified from sheep lung using the affinity chromatography method in one step. NHS-activated Sepharose 4 Fast Flow as column filler and lisinopril as a ligand in this method used. The molecular weight and purity of ACE were designated using the SDS-PAGE method. Optimum temperature and optimum pH were found for purified ACE. KM and Vmax values from Lineweaver–Burk charts determined. The inhibition type, IC50, and Ki values of captopril on purified ACE were identified. ACE was 6405-fold purified from sheep lung by affinity chromatography in one step and specific activity was 16871 EU/mg protein. The purity and molecular weight of ACE were found with SDS-PAGE and observed two bands at around 60 kDa and 70 kDa on the gel. Optimum temperature and optimum pH were designated for purified ACE. Optimum temperature and pH were found as 40 °C and pH 7.4, respectively. Vmax and KM values were calculated to be 35.59 (µmol/min).mL−1 and 0.18 mM, respectively. IC50 value of captopril was found as 0.51 nM. The inhibition type of captopril was determined as non-competitive from the Lineweaver–Burk graph and the Ki value was 0.39 nM. As a result, it was observed in this study that the ACE enzyme can be successfully purified from sheep lungs in one step. Also, it was determined that captopril, which is a specific ACE inhibitor, has a significant inhibitory effect with a very low IC50 value of 0.51 nM.
Collapse
Affiliation(s)
- Fatih Aydin
- Department of Chemistry, Faculty of Science, Van YüzüncüYıl University, Van, Turkey
| | - Vedat Turkoglu
- Department of Chemistry, Faculty of Science, Van YüzüncüYıl University, Van, Turkey
| | - Zehra Bas
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Van Yüzüncü Yıl University, 65080, Van, Turkey.
| |
Collapse
|
12
|
Bas Z, Turkoglu V, Goz Y. Investigation of inhibition effect of butanol and water extracts of Matricaria chamomilla L. on angiotensin-converting enzyme purified from human plasma. Biotechnol Appl Biochem 2021; 69:273-280. [PMID: 33438805 DOI: 10.1002/bab.2106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Angiotensin-converting enzyme (ACE) liable for the regulation of blood pressure was purified from human plasma by affinity chromatography. Impact of water and butanol extracts of Matricaria chamomilla L. on purity ACE was examined. ACE was purified using the affinity chromatography method. The enzyme activity was evaluated at 345 nm by a spectrophotometer. Extracts of M. chamomilla plant with butanol and water were prepared. Lisinopril was utilized as a specific inhibitor. ACE was purified 3,659-fold from human plasma and the specific activity was 1,350 EU/mg protein. The molecular weight and purity of ACE were found by SDS-PAGE and two bands of 60 and 70 kDa on the gel were detected. Water and butanol extracts of M. chamomilla demonstrated inhibitor impact on ACE activity. IC50 constants for water and butanol extracts of M. chamomilla were computed to be 1.292 and 0.353 mg/mL, respectively. The type of inhibition for whole inhibitors was identified as noncompetitive. IC50 and Ki constants for lisinopril were calculated to be 0.781 and 0.662 nM, respectively. These results indicate that butanol and water extracts of M. chamomilla may have an ACE inhibitor potential.
Collapse
Affiliation(s)
- Zehra Bas
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Van Yüzüncü Yıl University, Van, Turkey
| | - Vedat Turkoglu
- Department of Chemistry, Faculty of Science, Van YüzüncüYıl University, Van, Turkey
| | - Yasar Goz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
13
|
Discovery and characterization of ACE2 - a 20-year journey of surprises from vasopeptidase to COVID-19. Clin Sci (Lond) 2020; 134:2489-2501. [PMID: 32990314 DOI: 10.1042/cs20200476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Angiotensin-converting enzyme (ACE) is a zinc membrane metallopeptidase that plays a key role in regulating vasoactive peptide levels and hence cardiovascular activity through its conversion of angiotensin I (Ang I) to Ang II and its metabolism of bradykinin. The discovery of its homologue, ACE2, 20 years ago has led to intensive comparisons of these two enzymes revealing surprising structural, catalytic and functional distinctions between them. ACE2 plays multiple roles not only as a vasopeptidase but also as a regulator of amino acid transport and serendipitously as a viral receptor, mediating the cellular entry of the coronaviruses causing severe acute respiratory syndrome (SARS) and, very recently, COVID-19. Catalytically, ACE2 functions as a monocarboxypeptidase principally converting the vasoconstrictor angiotensin II to the vasodilatory peptide Ang-(1-7) thereby counterbalancing the action of ACE on the renin-angiotensin system (RAS) and providing a cardioprotective role. Unlike ACE, ACE2 does not metabolise bradykinin nor is it inhibited by classical ACE inhibitors. However, it does convert a number of other regulatory peptides in vitro and in vivo. Interest in ACE2 biology and its potential as a possible therapeutic target has surged in recent months as the COVID-19 pandemic rages worldwide. This review highlights the surprising discoveries of ACE2 biology during the last 20 years, its distinctions from classical ACE and the therapeutic opportunities arising from its multiple biological roles.
Collapse
|
14
|
Abstract
Background Pulmonary vascular endothelium is the main metabolic site for Angiotensin I-Converting Enzyme (ACE)-mediated degradation of several biologically-active peptides (angiotensin I, bradykinin, hemo-regulatory peptide Ac-SDKP). Primary lung cancer growth and lung cancer metastases decrease lung vascularity reflected by dramatic decreases in both lung and serum ACE activity. We performed precise ACE phenotyping in tissues from subjects with lung cancer. Methodology ACE phenotyping included: 1) ACE immunohistochemistry with specific and well-characterized monoclonal antibodies (mAbs) to ACE; 2) ACE activity measurement with two ACE substrates (HHL, ZPHL); 3) calculation of ACE substrates hydrolysis ratio (ZPHL/HHL ratio); 4) the pattern of mAbs binding to 17 different ACE epitopes to detect changes in ACE conformation induced by tumor growth (conformational ACE fingerprint). Results ACE immunostaining was dramatically decreased in lung cancer tissues confirmed by a 3-fold decrease in ACE activity. The conformational fingerprint of ACE from tumor lung tissues differed from normal lung (6/17 mAbs) and reflected primarily higher ACE sialylation. The increase in ZPHL/HHL ratio in lung cancer tissues was consistent with greater conformational changes of ACE. Limited analysis of the conformational ACE fingerprint in normal lung tissue and lung cancer tissue form the same patient suggested a remote effect of tumor tissue on ACE conformation and/or on “field cancerization” in a morphologically-normal lung tissues. Conclusions/Significance Local conformation of ACE is significantly altered in tumor lung tissues and may be detected by conformational fingerprinting of human ACE.
Collapse
|
15
|
Basi Z, Turkoglu N, Turkoglu V, Karahan F. In vitro effect of ethyl acetate, butanol and water extracts of Juniperus excelsa Bieb. on angiotensin-converting enzyme purified from human plasma. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00806-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Basi Z, Turkoglu V. In vitro effect of oxidized and reduced glutathione peptides on angiotensin converting enzyme purified from human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:190-195. [PMID: 30508739 DOI: 10.1016/j.jchromb.2018.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Abstract
Angiotensin converting enzyme (ACE, peptidyldipeptidase A, EC 3.4.15.1) plays an important role in the regulation of blood pressure. In this study, ACE was purified from human plasma by affinity chromatography in single step. The enzyme purified in 5367-fold from human plasma and specific activity was found to be 1208 EU/mg protein. The purity and molecular weight of ACE were determined by SDS-PAGE, which indicated two bands at around 60 kDa and 70 kDa on the gel. Effect of oxidized glutathione (GSSG) peptide and reduced glutathione (GSH) peptide on purified ACE activity were also investigated in which lisinopril was used as reference inhibitor. GSSG showed activation effect on ACE activity whereas GSH provided inhibition effect. In the lights of activity (%) versus activator graph for GSSG and activity (%) versus inhibitor graphs for GSH and lisinopril; IC50 values for GSH and lisinopril were determined to be 16.2 μM and 0.781 nM, respectively. Type of inhibition for GSH and lisinopril from graph Lineweaver-Burk was found to be reversible non-competitive inhibition and Ki constants for GSH and lisinopril were calculated as 11.7 μM and 0.662 nM, respectively.
Collapse
Affiliation(s)
- Zehra Basi
- Van Yüzüncü Yıl University, School of Health, Department of Nutrition and Dietetics, Van, Turkey.
| | - Vedat Turkoglu
- Van YüzüncüYıl University, Faculty of Science, Department of Chemistry, Van, Turkey
| |
Collapse
|
17
|
Danilov SM, Tikhomirova VE, Metzger R, Naperova IA, Bukina TM, Goker-Alpan O, Tayebi N, Gayfullin NM, Schwartz DE, Samokhodskaya LM, Kost OA, Sidransky E. ACE phenotyping in Gaucher disease. Mol Genet Metab 2018; 123:501-510. [PMID: 29478818 PMCID: PMC5891352 DOI: 10.1016/j.ymgme.2018.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Gaucher disease is characterized by the activation of splenic and hepatic macrophages, accompanied by dramatically increased levels of angiotensin-converting enzyme (ACE). To evaluate the source of the elevated blood ACE, we performed complete ACE phenotyping using blood, spleen and liver samples from patients with Gaucher disease and controls. METHODS ACE phenotyping included 1) immunohistochemical staining for ACE; 2) measuring ACE activity with two substrates (HHL and ZPHL); 3) calculating the ratio of the rates of substrate hydrolysis (ZPHL/HHL ratio); 4) assessing the conformational fingerprint of ACE by evaluating the pattern of binding of monoclonal antibodies to 16 different ACE epitopes. RESULTS We show that in patients with Gaucher disease, the dramatically increased levels of ACE originate from activated splenic and/or hepatic macrophages (Gaucher cells), and that both its conformational fingerprint and kinetic characteristics (ZPHL/HHL ratio) differ from controls and from patients with sarcoid granulomas. Furthermore, normal spleen was found to produce high levels of endogenous ACE inhibitors and a novel, tightly-bound 10-30 kDa ACE effector which is deficient in Gaucher spleen. CONCLUSIONS The conformation of ACE is tissue-specific. In Gaucher disease, ACE produced by activated splenic macrophages differs from that in hepatic macrophages, as well as from macrophages and dendritic cells in sarcoid granulomas. The observed differences are likely due to altered ACE glycosylation or sialylation in these diseased organs. The conformational differences in ACE may serve as a specific biomarker for Gaucher disease.
Collapse
Affiliation(s)
- Sergei M Danilov
- Department of Anesthesiology, University of Illinois at Chicago, IL, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA.
| | | | - Roman Metzger
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Irina A Naperova
- Department of Chemistry, Lomonosov Moscow State University, Russia
| | | | - Ozlem Goker-Alpan
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nahid Tayebi
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nurshat M Gayfullin
- Medical Center, Lomonosov Moscow State University, Russia; Department of Fundamental Medicine, Lomonosov Moscow State University, Russia
| | - David E Schwartz
- Department of Anesthesiology, University of Illinois at Chicago, IL, USA
| | | | - Olga A Kost
- Department of Chemistry, Lomonosov Moscow State University, Russia
| | - Ellen Sidransky
- Section of Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Stewart AK, Ravindra R, Van Wagoner RM, Wright JLC. Metabolomics-Guided Discovery of Microginin Peptides from Cultures of the Cyanobacterium Microcystis aeruginosa. JOURNAL OF NATURAL PRODUCTS 2018; 81:349-355. [PMID: 29405714 DOI: 10.1021/acs.jnatprod.7b00829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a mass-spectrometry-based metabolomics study of a laboratory-cultured strain of Microcystis aeruginosa (UTEX LB2385), which has led to the discovery of five peptides (1-5) belonging to the microginin class of linear cyanopeptides. The structures and configurations of these peptides were determined by spectroscopic analyses and chemical derivitization. The microginin peptides described herein are the first reported derivatives containing N-methyl methionine (1, 5) and N-methyl methionine sulfoxide (2-4). The two tripeptide microginin analogues (4, 5) identified represent the smallest members of this peptide family. Their angiotensin-converting enzyme (ACE) inhibitory activity was also investigated. Microginin 527 (4) was the most potent of the group, with an IC50 of 31 μM.
Collapse
Affiliation(s)
- Allison K Stewart
- Center for Marine Science, Department of Chemistry and Biochemistry, University of North Carolina Wilmington , 5600 Marvin K. Moss Lane, Wilmington, North Carolina 28409, United States
| | - Rudravajhala Ravindra
- Center for Marine Science, Department of Chemistry and Biochemistry, University of North Carolina Wilmington , 5600 Marvin K. Moss Lane, Wilmington, North Carolina 28409, United States
| | - Ryan M Van Wagoner
- Center for Marine Science, Department of Chemistry and Biochemistry, University of North Carolina Wilmington , 5600 Marvin K. Moss Lane, Wilmington, North Carolina 28409, United States
| | - Jeffrey L C Wright
- Center for Marine Science, Department of Chemistry and Biochemistry, University of North Carolina Wilmington , 5600 Marvin K. Moss Lane, Wilmington, North Carolina 28409, United States
| |
Collapse
|
19
|
Vink R, Gabrielian L, Thornton E. The Role of Substance P in Secondary Pathophysiology after Traumatic Brain Injury. Front Neurol 2017; 8:304. [PMID: 28701994 PMCID: PMC5487380 DOI: 10.3389/fneur.2017.00304] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022] Open
Abstract
It has recently been shown that substance P (SP) plays a major role in the secondary injury process following traumatic brain injury (TBI), particularly with respect to neuroinflammation, increased blood–brain barrier (BBB) permeability, and edema formation. Edema formation is associated with the development of increased intracranial pressure (ICP) that has been widely associated with increased mortality and morbidity after neurotrauma. However, a pharmacological intervention to specifically reduce ICP is yet to be developed, with current interventions limited to osmotic therapy rather than addressing the cause of increased ICP. Given that previous publications have shown that SP, NK1 receptor antagonists reduce edema after TBI, more recent studies have examined whether these compounds might also reduce ICP and improve brain oxygenation after TBI. We discuss the results of these studies, which demonstrate that NK1 antagonists reduce posttraumatic ICP to near normal levels within 4 h of drug administration, as well as restoring brain oxygenation to near normal levels in the same time frame. The improvements in these parameters occurred in association with an improvement in BBB integrity to serum proteins, suggesting that SP-mediated increases in vascular permeability significantly contribute to the development of increased ICP after acute brain injury. NK1 antagonists may therefore provide a novel, mechanistically targeted approach to the management of increased ICP.
Collapse
Affiliation(s)
- Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Levon Gabrielian
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Emma Thornton
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
20
|
Caminhotto RDO, Sertié RAL, Andreotti S, Campaãa AB, Lima FB. Renin-angiotensin system blockers regulate the metabolism of isolated fat cells in vitro. ACTA ACUST UNITED AC 2017; 49:S0100-879X2016000800608. [PMID: 27487419 PMCID: PMC4974019 DOI: 10.1590/1414-431x20165409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2025]
Abstract
Due to the presence of the renin-angiotensin system (RAS) in tissues and its specific
influence on white adipose tissue, fat cells are possible targets of pharmacological
RAS blockers commonly used as anti-hypertensive drugs. In the present study, we
investigated the effects of different RAS blockers on fat cell metabolism, more
specifically on lipolysis, lipogenesis and oxidation of energy substrates. Isolated
primary adipocytes were incubated with different RAS blockers (aliskiren, captopril
and losartan) in vitro for 24 h and lipolysis, lipogenesis and
glucose oxidation capacities were determined in dose-response assays to a
β-adrenergic agonist and to insulin. Although no change was found in lipolytic
capacity, the RAS blockers modulated lipogenesis and glucose oxidation in a different
way. While captopril decreased insulin-stimulated lipogenesis (−19% of maximal
response and −60% of insulin responsiveness) due to reduced glucose derived glycerol
synthesis (−19% of maximal response and 64% of insulin responsiveness), aliskiren
increased insulin-stimulated glucose oxidation (+49% of maximal response and +292% of
insulin responsiveness) in fat cells. Our experiments demonstrate that RAS blockers
can differentially induce metabolic alterations in adipocyte metabolism,
characterized by a reduction in lipogenic responsiveness or an increase in glucose
oxidation. The impact of RAS blockers on adipocyte metabolism may have beneficial
implications on metabolic disorders during their therapeutic use in hypertensive
patients.
Collapse
Affiliation(s)
- R de O Caminhotto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R A L Sertié
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - S Andreotti
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A B Campaãa
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F B Lima
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
21
|
Hilger C, Fischer J, Swiontek K, Hentges F, Lehners C, Eberlein B, Morisset M, Biedermann T, Ollert M. Two galactose-α-1,3-galactose carrying peptidases from pork kidney mediate anaphylactogenic responses in delayed meat allergy. Allergy 2016; 71:711-9. [PMID: 26728983 DOI: 10.1111/all.12835] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Serum IgE antibodies directed at galactose-α-1,3-galactose (α-Gal) are associated with a novel form of delayed anaphylaxis occurring upon consumption of red meat or innards. Pork kidney is known as the most potent trigger of this syndrome, but the culprit allergens have not yet been identified. The aim of this study was the identification and characterization of pork kidney proteins mediating delayed anaphylactic reactions through specific IgE to α-Gal. METHODS A cohort of 59 patients with specific IgE to α-Gal was screened by immunoblot for IgE-reactive proteins in pork kidney. Proteins were identified by peptide mass fingerprinting. Isolated proteins were assayed in ELISA and ELISA inhibition, basophil activation and skin prick test. RESULTS Several IgE-binding proteins of high molecular weight (100- >200 kDa) were detected in pork kidney extracts by immunoblot using patient sera and an anti-α-Gal antibody. Two major IgE-binding proteins were identified as porcine angiotensin-I-converting enzyme (ACE I) and aminopeptidase N (AP-N). Reactivity of patient sera and anti-α-Gal antibody to both proteins was abolished by carbohydrate oxidation. The α-Gal IgE epitopes were resistant to heat denaturation. Pork kidney extract, isolated ACE I, and AP-N were able to activate patient basophils and elicit positive responses in skin prick tests. CONCLUSION Two cell-membrane proteins carrying α-Gal epitopes were identified in pork kidney. For the first time, isolated meat proteins were shown to induce basophil activation in patients with delayed anaphylaxis to red meat providing further confirmation for the clinical relevance of these α-Gal-carrying proteins.
Collapse
Affiliation(s)
- C. Hilger
- Department of Infection and Immunity; Luxembourg Institute of Health (LIH); Esch-sur-Alzette Luxembourg
| | - J. Fischer
- Department of Dermatology; Eberhard Karls University; Tuebingen Germany
| | - K. Swiontek
- Department of Infection and Immunity; Luxembourg Institute of Health (LIH); Esch-sur-Alzette Luxembourg
| | - F. Hentges
- Immunology Allergology Unit; Centre Hospitalier; Luxembourg Luxembourg
| | - C. Lehners
- Immunology Allergology Unit; Centre Hospitalier; Luxembourg Luxembourg
| | - B. Eberlein
- Department of Dermatology and Allergology; Technical University Munich; Munich Germany
| | - M. Morisset
- Immunology Allergology Unit; Centre Hospitalier; Luxembourg Luxembourg
| | - T. Biedermann
- Department of Dermatology and Allergology; Technical University Munich; Munich Germany
| | - M. Ollert
- Department of Infection and Immunity; Luxembourg Institute of Health (LIH); Esch-sur-Alzette Luxembourg
- Department of Dermatology and Allergy Center; Odense Research Center for Anaphylaxis; University of Southern Denmark; Odense Denmark
| |
Collapse
|
22
|
Stroma-induced Jagged1 expression drives PC3 prostate cancer cell migration; disparate effects of RIP-generated proteolytic fragments on cell behaviour and Notch signaling. Biochem Biophys Res Commun 2016; 472:255-61. [DOI: 10.1016/j.bbrc.2016.02.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 12/17/2022]
|
23
|
Mohammad FU, Faisel MA. Inhibition of angiotensin converting enzyme by Rhazya stricta, Moringa peregrina and Achillea fragrantissima, used in traditional system of medicine in Arabian Peninsula: Implication in the management of hypertension. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jmpr2015.6043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Kumar H, Devaraji V, Joshi R, Jadhao M, Ahirkar P, Prasath R, Bhavana P, Ghosh SK. Antihypertensive activity of a quinoline appended chalcone derivative and its site specific binding interaction with a relevant target carrier protein. RSC Adv 2015. [DOI: 10.1039/c5ra08778c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The usefulness of heterocyclic chalcone derivative as a therapeutic target in controlling hypertension and its site specific binding interaction with model transport protein to get a clear picture about its delivery mechanism.
Collapse
Affiliation(s)
- Himank Kumar
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Vinod Devaraji
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- Madras Medical College
- Chennai
- India
| | - Ritika Joshi
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Manojkumar Jadhao
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Piyush Ahirkar
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - R. Prasath
- Department of Chemistry
- BITS-Pilani
- Zuarinagar
- India
| | - P. Bhavana
- Department of Chemistry
- BITS-Pilani
- Zuarinagar
- India
| | - Sujit Kumar Ghosh
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| |
Collapse
|
25
|
Gough M, Blanthorn-Hazell S, Delury C, Parkin E. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells. Biochem Biophys Res Commun 2014; 453:741-7. [PMID: 25305487 PMCID: PMC4256156 DOI: 10.1016/j.bbrc.2014.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 02/04/2023]
Abstract
Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.
Collapse
Affiliation(s)
- Mallory Gough
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Sophee Blanthorn-Hazell
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Craig Delury
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Edward Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
26
|
Harrison C, Acharya KR. ACE for all - a molecular perspective. J Cell Commun Signal 2014; 8:195-210. [PMID: 25027949 PMCID: PMC4165820 DOI: 10.1007/s12079-014-0236-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/12/2014] [Indexed: 11/30/2022] Open
Abstract
Angiotensin-I converting enzyme (ACE, EC 3.4.15.1) is a zinc dependent dipeptidyl carboxypeptidase with an essential role in mammalian blood pressure regulation as part of the renin-angiotensin aldosterone system (RAAS). As such, it has long been targeted in the treatment of hypertension through the use of ACE inhibitors. Although ACE has been studied since the 1950s, only recently have the full range of functions of this enzyme begun to truly be appreciated. ACE homologues have been found in a host of other organisms, and are now known to be conserved in insects. Insect ACE homologues typically share over 30 % amino acid sequence identity with human ACE. Given that insects lack a mammalian type circulatory system, they must have crucial roles in other physiological processes. The first ACE crystal structures were reported during the last decade and have enabled these enzymes to be studied from an entirely different perspective. Here we review many of these key developments and the implications that they have had on our understanding of the diverse functions of these enzymes. Specifically, we consider how structural information is being used in the design of a new generation of ACE inhibitors with increased specificity, and how the structures of ACE homologues are related to their functions. The Anopheles gambiae genome is predicted to code for ten ACE homologues, more than any genome studied so far. We have modelled the active sites of some of these as yet uncharacterised enzymes to try and infer more about their potential roles at the molecular level.
Collapse
Affiliation(s)
- Charlotte Harrison
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| |
Collapse
|
27
|
Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and neurosteriods in the CNS. Pflugers Arch 2014; 467:1481-1493. [DOI: 10.1007/s00424-014-1596-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 02/07/2023]
|
28
|
Gonzalez-Villalobos RA, Shen XZ, Bernstein EA, Janjulia T, Taylor B, Giani JF, Blackwell WLB, Shah KH, Shi PD, Fuchs S, Bernstein KE. Rediscovering ACE: novel insights into the many roles of the angiotensin-converting enzyme. J Mol Med (Berl) 2013; 91:1143-54. [PMID: 23686164 PMCID: PMC3779503 DOI: 10.1007/s00109-013-1051-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/09/2013] [Accepted: 05/02/2013] [Indexed: 01/13/2023]
Abstract
Angiotensin-converting enzyme (ACE) is best known for the catalytic conversion of angiotensin I to angiotensin II. However, the use of gene-targeting techniques has led to mouse models highlighting many other biochemical properties and actions of this enzyme. This review discusses recent studies examining the functional significance of ACE tissue-specific expression and the presence in ACE of two independent catalytic sites with distinct substrates and biological effects. It is these features which explain why ACE makes important contributions to many different physiological processes including renal development, blood pressure control, inflammation, and immunity.
Collapse
|
29
|
Blocking neurogenic inflammation for the treatment of acute disorders of the central nervous system. Int J Inflam 2013; 2013:578480. [PMID: 23819099 PMCID: PMC3681302 DOI: 10.1155/2013/578480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/11/2023] Open
Abstract
Classical inflammation is a well-characterized secondary response to many acute disorders of the central nervous system. However, in recent years, the role of neurogenic inflammation in the pathogenesis of neurological diseases has gained increasing attention, with a particular focus on its effects on modulation of the blood-brain barrier BBB. The neuropeptide substance P has been shown to increase blood-brain barrier permeability following acute injury to the brain and is associated with marked cerebral edema. Its release has also been shown to modulate classical inflammation. Accordingly, blocking substance P NK1 receptors may provide a novel alternative treatment to ameliorate the deleterious effects of neurogenic inflammation in the central nervous system. The purpose of this paper is to provide an overview of the role of substance P and neurogenic inflammation in acute injury to the central nervous system following traumatic brain injury, spinal cord injury, stroke, and meningitis.
Collapse
|
30
|
|
31
|
The role of substance p in ischaemic brain injury. Brain Sci 2013; 3:123-42. [PMID: 24961310 PMCID: PMC4061838 DOI: 10.3390/brainsci3010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 12/27/2022] Open
Abstract
Stroke is a leading cause of death, disability and dementia worldwide. Despite extensive pre-clinical investigation, few therapeutic treatment options are available to patients, meaning that death, severe disability and the requirement for long-term rehabilitation are common outcomes. Cell loss and tissue injury following stroke occurs through a number of diverse secondary injury pathways, whose delayed nature provides an opportunity for pharmacological intervention. Amongst these secondary injury factors, increased blood-brain barrier permeability and cerebral oedema are well-documented complications of cerebral ischaemia, whose severity has been shown to be associated with final outcome. Whilst the mechanisms of increased blood-brain barrier permeability and cerebral oedema are largely unknown, recent evidence suggests that the neuropeptide substance P (SP) plays a central role. The aim of this review is to examine the role of SP in ischaemic stroke and report on the potential utility of NK1 tachykinin receptor antagonists as therapeutic agents.
Collapse
|
32
|
Bernstein KE, Ong FS, Blackwell WLB, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 2013; 65:1-46. [PMID: 23257181 PMCID: PMC3565918 DOI: 10.1124/pr.112.006809] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis 2021, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Petrov MN, Shilo VY, Tarasov AV, Schwartz DE, Garcia JGN, Kost OA, Danilov SM. Conformational changes of blood ACE in chronic uremia. PLoS One 2012; 7:e49290. [PMID: 23166630 PMCID: PMC3500299 DOI: 10.1371/journal.pone.0049290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022] Open
Abstract
Background The pattern of binding of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) comprise a conformational ACE fingerprint and is a sensitive marker of subtle protein conformational changes. Hypothesis Toxic substances in the blood of patients with uremia due to End Stage Renal Disease (ESRD) can induce local conformational changes in the ACE protein globule and alter the efficacy of ACE inhibitors. Methodology/Principal Findings The recognition of ACE by 16 mAbs to the epitopes on the N and C domains of ACE was estimated using an immune-capture enzymatic plate precipitation assay. The precipitation pattern of blood ACE by a set of mAbs was substantially influenced by the presence of ACE inhibitors with the most dramatic local conformational change noted in the N-domain region recognized by mAb 1G12. The “short” ACE inhibitor enalaprilat (tripeptide analog) and “long” inhibitor teprotide (nonapeptide) produced strikingly different mAb 1G12 binding with enalaprilat strongly increasing mAb 1G12 binding and teprotide decreasing binding. Reduction in S-S bonds via glutathione and dithiothreitol treatment increased 1G12 binding to blood ACE in a manner comparable to enalaprilat. Some patients with uremia due to ESRD exhibited significantly increased mAb 1G12 binding to blood ACE and increased ACE activity towards angiotensin I accompanied by reduced ACE inhibition by inhibitory mAbs and ACE inhibitors. Conclusions/Significance The estimation of relative mAb 1G12 binding to blood ACE detects a subpopulation of ESRD patients with conformationally changed ACE, which activity is less suppressible by ACE inhibitors. This parameter may potentially serve as a biomarker for those patients who may need higher concentrations of ACE inhibitors upon anti-hypertensive therapy.
Collapse
Affiliation(s)
- Maxim N. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Valery Y. Shilo
- Department of Nephrology, Moscow University for Medicine and Dentistry, Moscow, Russia
| | | | - David E. Schwartz
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joe G. N. Garcia
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Olga A. Kost
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei M. Danilov
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- National Cardiology Research Center, Moscow, Russia
- * E-mail:
| |
Collapse
|
34
|
Parr-Sturgess CA, Tinker CL, Hart CA, Brown MD, Clarke NW, Parkin ET. Copper Modulates Zinc Metalloproteinase-Dependent Ectodomain Shedding of Key Signaling and Adhesion Proteins and Promotes the Invasion of Prostate Cancer Epithelial Cells. Mol Cancer Res 2012; 10:1282-93. [DOI: 10.1158/1541-7786.mcr-12-0312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Won HS. NMR Studies of Metal-binding Luteinizing Hormone Releasing Hormone. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.11.4021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
An angiotensin I-converting enzyme mutation (Y465D) causes a dramatic increase in blood ACE via accelerated ACE shedding. PLoS One 2011; 6:e25952. [PMID: 21998728 PMCID: PMC3187827 DOI: 10.1371/journal.pone.0025952] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/14/2011] [Indexed: 11/23/2022] Open
Abstract
Background Angiotensin I-converting enzyme (ACE) metabolizes a range of peptidic substrates and plays a key role in blood pressure regulation and vascular remodeling. Thus, elevated ACE levels may be associated with an increased risk for different cardiovascular or respiratory diseases. Previously, a striking familial elevation in blood ACE was explained by mutations in the ACE juxtamembrane region that enhanced the cleavage-secretion process. Recently, we found a family whose affected members had a 6-fold increase in blood ACE and a Tyr465Asp (Y465D) substitution, distal to the stalk region, in the N domain of ACE. Methodology/Principal Findings HEK and CHO cells expressing mutant (Tyr465Asp) ACE demonstrate a 3- and 8-fold increase, respectively, in the rate of ACE shedding compared to wild-type ACE. Conformational fingerprinting of mutant ACE demonstrated dramatic changes in ACE conformation in several different epitopes of ACE. Cell ELISA carried out on CHO-ACE cells also demonstrated significant changes in local ACE conformation, particularly proximal to the stalk region. However, the cleavage site of the mutant ACE - between Arg1203 and Ser1204 - was the same as that of WT ACE. The Y465D substitution is localized in the interface of the N-domain dimer (from the crystal structure) and abolishes a hydrogen bond between Tyr465 in one monomer and Asp462 in another. Conclusions/Significance The Y465D substitution results in dramatic increase in the rate of ACE shedding and is associated with significant local conformational changes in ACE. These changes could result in increased ACE dimerization and accessibility of the stalk region or the entire sACE, thus increasing the rate of cleavage by the putative ACE secretase (sheddase).
Collapse
|
37
|
Ectodomain shedding of the Notch ligand Jagged1 is mediated by ADAM17, but is not a lipid-raft-associated event. Biochem J 2010; 432:283-94. [PMID: 20819075 DOI: 10.1042/bj20100321] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Notch signalling is an evolutionarily conserved pathway involved in cell-fate specification. The initiating event in this pathway is the binding of a Notch receptor to a DSL (Delta/Serrate/Lag-2) ligand on neighbouring cells triggering the proteolytic cleavage of Notch within its extracellular juxtamembrane region; a process known as proteolytic 'shedding' and catalysed by members of the ADAM (a disintegrin and metalloproteinase) family of enzymes. Jagged1 is a Notch-binding DSL ligand which is also shed by an ADAM-like activity raising the possibility of bi-directional cell-cell Notch signalling. In the present study we have unequivocally identified the sheddase responsible for shedding Jagged1 as ADAM17, the activity of which has previously been shown to be localized within specialized microdomains of the cell membrane known as 'lipid rafts'. However, we have shown that replacing the transmembrane and cytosolic regions of Jagged1 with a GPI (glycosylphosphatidylinositol) anchor, thereby targeting the protein to lipid rafts, did not enhance its shedding. Furthermore, the Jagged1 holoprotein, its ADAM-cleaved C-terminal fragment and ADAM17 were not enriched in raft preparations devoid of contaminating non-raft proteins. We have also demonstrated that wild-type Jagged1 and a truncated polypeptide-anchored variant lacking the cytosolic domain were subject to similar constitutive and phorbol ester-regulated shedding. Collectively these data demonstrate that Jagged1 is shed by ADAM17 in a lipid-raft-independent manner, and that the cytosolic domain of the former protein is not a pre-requisite for either constitutive or regulated shedding.
Collapse
|
38
|
Angiotensin I-converting enzyme Gln1069Arg mutation impairs trafficking to the cell surface resulting in selective denaturation of the C-domain. PLoS One 2010; 5:e10438. [PMID: 20454656 PMCID: PMC2862704 DOI: 10.1371/journal.pone.0010438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/20/2010] [Indexed: 11/29/2022] Open
Abstract
Background Angiotensin-converting enzyme (ACE; Kininase II; CD143) hydrolyzes small peptides such as angiotensin I, bradykinin, substance P, LH-RH and several others and thus plays a key role in blood pressure regulation and vascular remodeling. Complete absence of ACE in humans leads to renal tubular dysgenesis (RTD), a severe disorder of renal tubule development characterized by persistent fetal anuria and perinatal death. Methodology/Principal Findings Patient with RTD in Lisbon, Portugal, maintained by peritoneal dialysis since birth, was found to have a homozygous substitution of Arg for Glu at position 1069 in the C-terminal domain of ACE (Q1069R) resulting in absence of plasma ACE activity; both parents and a brother who are heterozygous carriers of this mutation had exactly half-normal plasma ACE activity compared to healthy individuals. We hypothesized that the Q1069R substitution impaired ACE trafficking to the cell surface and led to accumulation of catalytically inactive ACE in the cell cytoplasm. CHO cells expressing wild-type (WT) vs. Q1069R-ACE demonstrated the mutant accumulates intracellularly and also that it is significantly degraded by intracellular proteases. Q1069R-ACE retained catalytic and immunological characteristics of WT-ACE N domain whereas it had 10–20% of the nativity of the WT-ACE C domain. A combination of chemical (sodium butyrate) or pharmacological (ACE inhibitor) chaperones with proteasome inhibitors (MG 132 or bortezomib) significantly restored trafficking of Q1069R-ACE to the cell surface and increased ACE activity in the cell culture media 4-fold. Conclusions/Significance Homozygous Q1069R substitution results in an ACE trafficking and processing defect which can be rescued, at least in cell culture, by a combination of chaperones and proteasome inhibitors. Further studies are required to determine whether similar treatment of individuals with this ACE mutation would provide therapeutic benefits such as concentration of primary urine.
Collapse
|
39
|
Chen HL, Lünsdorf H, Hecht HJ, Tsai H. Porcine pulmonary angiotensin I-converting enzyme--biochemical characterization and spatial arrangement of the N- and C-domains by three-dimensional electron microscopic reconstruction. Micron 2010; 41:674-85. [PMID: 20427191 DOI: 10.1016/j.micron.2010.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The somatic angiotensin I-converting enzyme (sACE; peptidyl-dipeptidase A; EC 3.4.15.1) was isolated from pig lung and purified to homogeneity. The purified enzyme has a molecular mass of about 180 kDa. Upon proteolytic cleavage, two approximately 90 kDa fragments were obtained and identified by amino-terminal sequence analysis as the N- and C-domains of sACE. Both purified domains were shown to be catalytically active. A 2.3 nm resolution model of sACE was obtained by three-dimensional electron microscopic reconstruction of negatively stained sACE particles, based on atomic X-ray data fitting. Our model shows for the first time the relative orientation of the sACE catalytically active domains and their spatial distance.
Collapse
Affiliation(s)
- Hui-Ling Chen
- Development Center for Biotechnology, Taipei County 221, Taiwan, ROC
| | | | | | | |
Collapse
|
40
|
Kim J, Won HS. NMR Studies of Ni-binding Luteinizing Hormone Releasing Hormone. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2009. [DOI: 10.6564/jkmrs.2009.13.2.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Lucero HA, Kintsurashvili E, Marketou ME, Gavras H. Cell signaling, internalization, and nuclear localization of the angiotensin converting enzyme in smooth muscle and endothelial cells. J Biol Chem 2009; 285:5555-68. [PMID: 20022959 DOI: 10.1074/jbc.m109.074740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The angiotensin converting enzyme (ACE) catalyzes the extracellular formation of angiotensin II, and degradation of bradykinin, thus regulating blood pressure and renal handling of electrolytes. We have previously shown that exogenously added ACE elicited transcriptional regulation independent of its enzymatic activity. Because transcriptional regulation generates from protein-DNA interactions within the cell nucleus we have investigated the initial cellular response to exogenous ACE and the putative internalization of the enzyme in smooth muscle cells (SMC) and endothelial cells (EC). The following phenomena were observed when ACE was added to cells in culture: 1) it bound to SMC and EC with high affinity (K(d) = 361.5 +/- 60.5 pM) and with a low binding occupancy (B(max) = 335.0 +/- 14.0 molecules/cell); 2) it triggered cellular signaling resulting in late activation of focal adhesion kinase and SHP2; 3) it modulated platelet-derived growth factor receptor-beta signaling; 4) it was endocytosed by SMC and EC; and 5) it transited through the early endosome, partially occupied the late endosome and the lysosome, and was localized to the nuclei. The incorporation of ACE or a fragment of it into the nuclei reached saturation at 120 min, and was preceded by a lag time of 40 min. Internalized ACE was partially cleaved into small fragments. These results revealed that extracellular ACE modulated cell signaling properties, and that SMC and EC have a pathway for delivery of extracellular ACE to the nucleus, most likely involving cell surface receptor(s) and requiring transit through late endosome/lysosome compartments.
Collapse
Affiliation(s)
- Héctor A Lucero
- Alapis Research Laboratories, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
42
|
Nesterovitch AB, Hogarth KD, Adarichev VA, Vinokour EI, Schwartz DE, Solway J, Danilov SM. Angiotensin I-converting enzyme mutation (Trp1197Stop) causes a dramatic increase in blood ACE. PLoS One 2009; 4:e8282. [PMID: 20011602 PMCID: PMC2788243 DOI: 10.1371/journal.pone.0008282] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 11/18/2009] [Indexed: 11/29/2022] Open
Abstract
Background Angiotensin-converting enzyme (ACE) metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling. Elevated ACE levels may be associated with an increased risk for different cardiovascular or respiratory diseases, including asthma. Previously, a molecular mechanism underlying a 5-fold familial increase of blood ACE was discovered: Pro1199Leu substitution enhanced the cleavage-secretion process. Carriers of this mutation were Caucasians from Europe (mostly Dutch) or had European roots. Methodology/Principal Findings We have found a family of African-American descent whose affected members' blood ACE level was increased 13-fold over normal. In affected family members, codon TGG coding for Trp1197 was substituted in one allele by TGA (stop codon). As a result, half of ACE expressed in these individuals had a length of 1196 amino acids and lacked a transmembrane anchor. This ACE mutant is not trafficked to the cell membrane and is directly secreted out of cells; this mechanism apparently accounts for the high serum ACE level seen in affected individuals. A haplotype of the mutant ACE allele was determined based on 12 polymorphisms, which may help to identify other carriers of this mutation. Some but not all carriers of this mutation demonstrated airflow obstruction, and some but not all have hypertension. Conclusions/Significance We have identified a novel Trp1197Stop mutation that results in dramatic elevation of serum ACE. Since blood ACE elevation is often taken as a marker of disease activity (sarcoidosis and Gaucher diseases), it is important for clinicians and medical scientists to be aware of alternative genetic causes of elevated blood ACE that are not apparently linked to disease.
Collapse
Affiliation(s)
- Andrew B. Nesterovitch
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Kyle D. Hogarth
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Vyacheslav A. Adarichev
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Elena I. Vinokour
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - David E. Schwartz
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Sergei M. Danilov
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- National Cardiology Research Center, Moscow, Russia
- * E-mail:
| |
Collapse
|
43
|
Gordon K, Balyasnikova IV, Nesterovitch AB, Schwartz DE, Sturrock ED, Danilov SM. Fine epitope mapping of monoclonal antibodies 9B9 and 3G8 to the N domain of angiotensin-converting enzyme (CD143) defines a region involved in regulating angiotensin-converting enzyme dimerization and shedding. ACTA ACUST UNITED AC 2009; 75:136-50. [PMID: 20003136 DOI: 10.1111/j.1399-0039.2009.01416.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A panel of monoclonal antibodies (mAbs) raised against both the N and C domains of angiotensin-I-converting enzyme (ACE, peptidyl dipeptidase, EC 3.4.15.2) have been extensively mapped and have facilitated the study of various aspects of ACE structure and biology. In this study, we characterize two mAbs, 9B9 and 3G8, that recognize the N domain of ACE and that influence shedding and dimerization. Fine epitope mapping was performed, which mapped the epitopes for these mAbs to the N terminal region of the N domain where they overlap to a large extent, despite having different effects on ACE processing. The mAb 3G8 epitope appears to be shielded by the C domain and to be carbohydrate dependent as binding increased significantly as a result of underglycosylation, whereas these factors did not influence mAb 9B9 recognition. Three mutations within the overlapping region of these two epitopes, Q18H, L19E, and Q22A, which decreased mAb 3G8 binding to the soluble N domain, were introduced into full-length somatic ACE (sACE) to determine their influence on ACE expression and processing. Increased ACE expression, cell surface expression, and basal shedding were observed with all three mutations. Furthermore, cross-linking and western blotting of Chinese hamster ovary (CHO) cell lysates detected two distinct ACE dimers, a native and cross-linked dimer. Increasing amounts of the cross-linked dimer were observed for the mutant sACEQ22A, further implicating the overlapping region of the mAb 9B9 and 3G8 epitopes in ACE processing.
Collapse
Affiliation(s)
- K Gordon
- Division of Medical Biochemistry, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
44
|
Targeting ADAM10 to lipid rafts in neuroblastoma SH-SY5Y cells impairs amyloidogenic processing of the amyloid precursor protein. Brain Res 2009; 1296:203-15. [DOI: 10.1016/j.brainres.2009.07.105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/18/2022]
|
45
|
Garner AE, Smith DA, Hooper NM. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Mol Membr Biol 2009; 24:233-42. [PMID: 17520480 DOI: 10.1080/09687860601127770] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycosyl-phosphatidylinositol (GPI)-anchored proteins are enriched in cholesterol- and sphingolipid-rich lipid rafts within the membrane. Rafts are known to have roles in cellular organization and function, but little is understood about the factors controlling the distribution of proteins in rafts. We have used atomic force microscopy to directly visualize proteins in supported lipid bilayers composed of equimolar sphingomyelin, dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The transmembrane anchored angiotensin converting enzyme (TM-ACE) was excluded from the liquid ordered raft domains. Replacement of the transmembrane and cytoplasmic domains of TM-ACE with a GPI anchor (GPI-ACE) promoted the association of the protein with rafts in the bilayers formed with brain sphingomyelin (mainly C18:0). Association with the rafts did not occur if the shorter chain egg sphingomyelin (mainly C16:0) was used. The distribution of GPI-anchored proteins in supported lipid bilayers was investigated further using membrane dipeptidase (MDP) whose GPI anchor contains distearoyl phosphatidylinositol. MDP was also excluded from rafts when egg sphingomyelin was used but associated with raft domains formed using brain sphingomyelin. The effect of sphingomyelin chain length on the distribution of GPI-anchored proteins in rafts was verified using synthetic palmitoyl or stearoyl sphingomyelin. Both GPI-ACE and MDP only associated with the longer chain stearoyl sphingomyelin rafts. These data obtained using supported lipid bilayers provide the first direct evidence that the nature of the membrane-anchoring domain influences the association of a protein with lipid rafts and that acyl chain length hydrophobic mismatch influences the distribution of GPI-anchored proteins in rafts.
Collapse
Affiliation(s)
- Ashley E Garner
- Proteolysis Research Group, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
46
|
Taylor DR, Parkin ET, Cocklin SL, Ault JR, Ashcroft AE, Turner AJ, Hooper NM. Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J Biol Chem 2009; 284:22590-600. [PMID: 19564338 PMCID: PMC2755666 DOI: 10.1074/jbc.m109.032599] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The cellular prion protein (PrPC) is essential for the pathogenesis and transmission of prion diseases. PrPC is bound to the plasma membrane via a glycosylphosphatidylinositol anchor, although a secreted, soluble form has also been identified. Previously we reported that PrPC is subject to ectodomain shedding from the membrane by zinc metalloproteinases with a similar inhibition profile to those involved in shedding the amyloid precursor protein. Here we have used gain-of-function (overexpression) and loss-of-function (small interfering RNA knockdown) experiments in cells to identify the ADAMs (adisintegrin and metalloproteinases) involved in the ectodomain shedding of PrPC. These experiments revealed that ADAM9 and ADAM10, but not ADAM17, are involved in the shedding of PrPC and that ADAM9 exerts its effect on PrPC shedding via ADAM10. Using dominant negative, catalytically inactive mutants, we show that the catalytic activity of ADAM9 is required for its effect on ADAM10. Mass spectrometric analysis revealed that ADAM10, but not ADAM9, cleaved PrP between Gly228 and Arg229, three residues away from the site of glycosylphosphatidylinositol anchor attachment. The shedding of another membrane protein, the amyloid precursor protein β-secretase BACE1, by ADAM9 is also mediated via ADAM10. Furthermore, we show that pharmacological inhibition of PrPC shedding or activation of both PrPC and PrPSc shedding by ADAM10 overexpression in scrapie-infected neuroblastoma N2a cells does not alter the formation of proteinase K-resistant PrPSc. Collectively, these data indicate that although PrPC can be shed through the action of ADAM family members, modulation of PrPC or PrPSc ectodomain shedding does not regulate prion conversion.
Collapse
Affiliation(s)
- David R Taylor
- Proteolysis Research Group, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Isaac RE, Bland ND, Shirras AD. Neuropeptidases and the metabolic inactivation of insect neuropeptides. Gen Comp Endocrinol 2009; 162:8-17. [PMID: 19135055 DOI: 10.1016/j.ygcen.2008.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 11/24/2008] [Accepted: 12/10/2008] [Indexed: 11/26/2022]
Abstract
Neuropeptidases play a key role in regulating neuropeptide signalling activity in the central nervous system of animals. They are oligopeptidases that are generally found on the surface of neuronal cells facing the synaptic and peri-synaptic space and therefore are ideally placed for the metabolic inactivation of neuropeptide transmitters/modulators. This review discusses the structure of insect neuropeptides in relation to their susceptibility to hydrolysis by peptidases and the need for specialist enzymes to degrade many neuropeptides. It focuses on five neuropeptidase families (neprilysin, dipeptidyl-peptidase IV, angiotensin-converting enzyme, aminopeptidase and dipeptidyl aminopeptidase III) that have been implicated in the metabolic inactivation of neuropeptides in the central nervous system of insects. Experimental evidence for the involvement of these peptidases in neuropeptide metabolism is reviewed and their properties are compared to similar neuropeptide inactivating peptidases of the mammalian brain. We also discuss how the sequencing of insect genomes has led to the molecular identification of candidate neuropeptidase genes.
Collapse
Affiliation(s)
- R Elwyn Isaac
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
48
|
Quassinti L, Pellegrino D, Garofalo F, Maccari E, Bramucci M. Comparison of angiotensin converting enzyme-like activity in the Antarctic teleosts Trematomus bernacchii and Chionodraco hamatus. Polar Biol 2009. [DOI: 10.1007/s00300-008-0571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Parkin E, Harris B. A disintegrin and metalloproteinase (ADAM)-mediated ectodomain shedding of ADAM10. J Neurochem 2009; 108:1464-79. [DOI: 10.1111/j.1471-4159.2009.05907.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Simultaneous determination of ACE activity with 2 substrates provides information on the status of somatic ACE and allows detection of inhibitors in human blood. J Cardiovasc Pharmacol 2008; 52:90-103. [PMID: 18645413 DOI: 10.1097/fjc.0b013e31817fd3bc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, consists of 2 homologous domains, each bearing a Zn-dependent active site. The ratio of the rates of hydrolysis of 2 synthetic substrates, Z-Phe-His-Leu (ZPHL) and Hip-His-Leu (HHL), is characteristic for each type of ACE: somatic 2-domain 1, N-domain 4.5, and C-domain 0.7 (Williams et al, 1996). We hypothesized that inactivation or selective inhibition of the C-domain within the somatic ACE should increase the ratio from 1 toward higher values, whereas inactivation or inhibition of the N-domain should decrease the ratio to lower values. Temperatures in the 40-60 degrees C range cause preferential inactivation of the C-domain in somatic ACE and an increase in the ZPHL/HHL ratio. Determination of the ZPHL/HHL ratio in freshly 100-fold concentrated urine ruled out the existence of the N-domain fragment in human urine, which appears only as a result of long storage. Inhibition of ACE by common inhibitors also increases the ZPHL/HHL ratio for 2-domain ACE, thus providing a sensitive method for the detection of ACE inhibitors in biological fluids. Therefore, simultaneous measurements of ACE activity with 2 substrates (ZPHL and HHL) and calculation of their ratio allow us to monitor the status of the ACE molecule and detect ACE inhibitors (endogenous and exogenous) in human blood and other biological fluids. This method should find wide application in monitoring clinical trials with ACE inhibitors and in the development of the approach for personalized medicine by these effective drugs.
Collapse
|