1
|
Kim HJ, Yang D, Hong JH. Various Cellular Components and Its Signaling Cascades Through the Involvement of Signaling Messengers in Keratinocyte Differentiation. Antioxidants (Basel) 2025; 14:426. [PMID: 40298779 PMCID: PMC12023943 DOI: 10.3390/antiox14040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Skin is a highly differentiated tissue, in which various signaling molecules play critical roles in the differentiation and proliferation of keratinocytes. Among these, the second messenger calcium and its gradient across skin layers are pivotal in regulating keratinocyte differentiation. Additionally, a diverse array of cellular signaling molecules has been identified as essential for promoting keratinocyte differentiation, thereby maintaining skin integrity and barrier function. The barrier function of the skin provides essential protection against exogenous stimuli and pathogens while maintaining structural stability. The homeostatic processes of skin differentiation are modulated by these second messengers and various signaling molecules. Thus, this review highlights the components associated with keratinocyte differentiation and their biological and pathophysiological roles, as well as redox-sensitive differentiation factors in the modulation of skin homeostasis. This review aims to enhance our understanding of skin physiology and provide insights that may facilitate the development of novel therapeutic strategies for skin diseases.
Collapse
Affiliation(s)
| | - Dongki Yang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
2
|
Sakuma R, Minato Y, Maeda S, Yagi H. Nrf2 phosphorylation contributes to acquisition of pericyte reprogramming via the PKCδ pathway. Neurobiol Dis 2025; 206:106824. [PMID: 39900301 DOI: 10.1016/j.nbd.2025.106824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Pericytes (PCs) are vascular mural cells embedded in the basement membrane of micro blood vessels. It has been proposed using a C.B-17 mouse model of stroke that normal brain PCs are converted to ischemic PCs (iPCs), some of which express various stem cell markers. We previously reported that nuclear factor erythroid-2-related factor 2 (Nrf2) protected against oxidative stress following ischemia and promoted the PC reprogramming process. The present study examined the molecular mechanisms underlying the induction of Nrf2. We revealed that oxidative stress and pNrf2 induced by stroke proceeded the expression of nestin in meningeal cells and reactive PCs within the post-stroke area. PKCδ inhibitor treatment suppressed pNrf2 activation and restored the down-regulated expression of stem cell markers in iPCs in vitro. The PKCδ inhibitor treatment also suppressed the production of iPCs. These results suggest the potential of Nrf2 phosphorylation via PKCδ as a novel strategy for the treatment of ischemic injury.
Collapse
Affiliation(s)
- Rika Sakuma
- Department of Anatomy and Cell Biology, Faculty of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan.
| | - Yusuke Minato
- Department of Anatomy and Cell Biology, Faculty of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Hideshi Yagi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| |
Collapse
|
3
|
Durmaz B, Oktay Çelebi LM, Çekin A, Ahadova A, Günel NS, Yıldırım HK, Özgönül AM, Yıldırım Sözmen E. Effect of Propolis on PPP2R1A and Apoptosis in Cancer Cells. Biochem Res Int 2025; 2025:5538068. [PMID: 39850502 PMCID: PMC11756940 DOI: 10.1155/bri/5538068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/25/2025] Open
Abstract
Recently, it has been shown that protein phosphatase 2A (PP2A) dysfunction was common in many cancer types and was mediated by various inactivation mechanisms. Although many research studies observed antitumor effect of propolis extracts in various types of cancer, the mechanism of effect are still obscure. In this study, we investigated the effect of propolis on PPP2R1A expression and its relationship with apoptosis in the SW-620 (colorectal cancer), DU-145 and PC-3 (prostate cancer), and MCF-7 (breast cancer) cell lines, with WI-38 (healthy fibroblast) cells serving as the control. Moreover, we aimed to investigate the impact of propolis on apoptosis by analyzing apoptosis markers such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), APAF-1, and caspases-3, -8, and -9. Propolis samples were extracted, and their phenolic compounds were quantified using LC-MS/MS. The RealTime Cell Analysis System-xCELLigence (RTCA-SP) device and software were employed to assess cell viability and cytotoxicity of the propolis samples. The IC50 values for propolis were determined (298 μg/mL for SW-620, 185.6 μg/mL for DU-145, 250.7 μg/mL for PC - 3, 292.9 μg/mL for MCF-7, and 311.2 μg/mL for WI-38). Subsequently, the effects of propolis on PPP2R1A expression and apoptosis markers (TRAIL, Apaf-1, and caspases-3, -8, and -9) were analyzed. When we compared the healthy cell lines to cancer cell lines, a statistically significant increase in caspase-3 (3.62-fold) and in TRAIL (4.38-fold) was observed in the SW-620 cell line after the application of propolis. In addition, in the PC-3 cell line, a 1.4-fold increase in caspase-8 was observed compared with the healthy cell line, which is also statistically significant. Our findings indicated that propolis increased the PPP2R1A levels and apoptosis markers in cancer cell lines. It has been suggested that high PPP2R1A levels induced by propolis treatment might activate the apoptosis pathway. In this study, the inducible effect of propolis on PPP2R1A levels, identified as a new target for cancer treatment, was demonstrated for the first time. The findings suggest that propolis holds promise as a potential cancer therapy by increasing PPP2R1A levels, a key molecule in cancer treatment.
Collapse
Affiliation(s)
- Burak Durmaz
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Cyprus
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye
| | | | - Ayşe Çekin
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Ayshan Ahadova
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Nur Selvi Günel
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir, Türkiye
| | | | - Ali Mert Özgönül
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Eser Yıldırım Sözmen
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye
- Department of Medical Biochemistry, Faculty of Medicine, Tınaztepe University, İzmir, Türkiye
| |
Collapse
|
4
|
Kelemen A, Garda T, Kónya Z, Erdődi F, Ujlaky-Nagy L, Juhász GP, Freytag C, M-Hamvas M, Máthé C. Treatments with Diquat Reveal the Relationship between Protein Phosphatases (PP2A) and Oxidative Stress during Mitosis in Arabidopsis thaliana Root Meristems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1896. [PMID: 39065423 PMCID: PMC11279869 DOI: 10.3390/plants13141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Reversible protein phosphorylation regulates various cellular mechanisms in eukaryotes by altering the conformation, activity, localization, and stability of substrate proteins. In Arabidopsis thaliana root meristems, histone post-translational modifications are crucial for proper cell division, and they are also involved in oxidative stress signaling. To investigate the link between reactive oxygen species (ROS) and mitosis, we treated various Arabidopsis genotypes, including wild-types and mutants showing dysfunctional PP2A, with the ROS-inducing herbicide diquat (DQ). Studying the c3c4 double catalytic subunit mutant and fass regulatory subunit mutants of PP2A provided insights into phosphorylation-dependent mitotic processes. DQ treatment reduced mitotic activity in all genotypes and caused early mitotic arrest in PP2A mutants, likely due to oxidative stress-induced damage to essential mitotic processes. DQ had a minimal effect on reversible histone H3 phosphorylation in wild-type plants but significantly decreased phospho-histone H3 levels in PP2A mutants. Following drug treatment, the phosphatase activity decreased only in the stronger phenotype mutant plants (fass-5 and c3c4). Our findings demonstrate that (i) the studied PP2A loss-of-function mutants are more sensitive to increased intracellular ROS and (ii) DQ has indirect altering effects of mitotic activities and histone H3 phosphorylation. All these findings underscore the importance of PP2A in stress responses.
Collapse
Affiliation(s)
- Adrienn Kelemen
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Tamás Garda
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (Z.K.); (F.E.)
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (Z.K.); (F.E.)
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary;
| | - Gabriella Petra Juhász
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Csongor Freytag
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
- “One Health” Institute, Faculty of Health Science, University of Debrecen, Nagyerdei Blvd. 98, 4032 Debrecen, Hungary
| | - Márta M-Hamvas
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Csaba Máthé
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| |
Collapse
|
5
|
Steinbuch SC, Lüß AM, Eltrop S, Götte M, Kiesel L. Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies to Clinical Relevance. Int J Mol Sci 2024; 25:4306. [PMID: 38673891 PMCID: PMC11050613 DOI: 10.3390/ijms25084306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endometriosis is a chronic condition affecting reproductive-aged women, characterized by the growth of ectopic endometrial tissue. Despite being benign, endometriosis is associated with an increased risk of certain cancers, including endometriosis-associated ovarian cancer (EAOC). Ovarian cancer is rare, but more common in women with endometriosis, particularly endometrioid and clear-cell carcinomas. Factors such as hormonal imbalance, reproductive history, environmental exposures, and genetic predisposition contribute to the malignant transformation of endometriosis. Thus, understanding potential risk factors causing malignancy is crucial. Over the past few decades, various genetic mutations, microRNAs, as well as tumor microenvironmental factors have been identified, impacting pathways like PI3K/AKT/mTOR, DNA repair mechanisms, oxidative stress, and inflammation. Thus, this review aims to summarize molecular studies involved in EAOC pathogenesis as potential therapeutic targets. However, further research is needed to better understand the molecular and environmental factors driving EAOC development, to target the susceptibility of endometriotic lesions to malignant progression, and to identify effective therapeutic strategies.
Collapse
Affiliation(s)
- Sophie Charlotte Steinbuch
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Anne-Marie Lüß
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Stephanie Eltrop
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Martin Götte
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
6
|
Zhang W, Wang S, Jiang B, Guo M. MoRts1, a regulatory subunit of PP2A, is required for fungal development and pathogenicity of Magnaporthe oryzae. Microbiol Res 2023; 269:127313. [PMID: 36696866 DOI: 10.1016/j.micres.2023.127313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Protein phosphatase 2 A (PP2A) is a major heterotrimeric serine/threonine protein phosphatase comprised of three subunits, including structural subunits (A), regulatory subunits (B), and catalytic subunits (C). PP2A has been widely shown to involve in a series of cell signal transduction processes such as cell metabolism, cell cycle regulation, DNA replication, gene transcription and protein translation in yeast and mammalian. However, the roles of PP2A in pathogenic fungi Magnaporthe oryzae still remain unclear. We here found that MoRts1, a gene encoding B regulatory subunit of PP2A homologous to Saccharomyces cerevisiae Rts1, showed up-regulated transcription during conidia and initially infectious stage. Subcellular localization revealed that MoRts1-eGFP was localized to the cytoplasm and septum. Targeted disruption of MoRts1 leads to a reduction of mycelial growth and sporulation, as well as the defects of hydrophobicity, melanin pigmentation and cell wall integrity (CWI). The MoRts1 mutants were less pathogenic to the host plants, compared to the Ku80 strain, and the transcriptional levels of several pathogenicity-related Rho GTPase genes, including MoCdc42, MoRho2, MoRho3, MoRho4, MoRhoX and MoRac1, were significantly decreased in the MoRts1 mutants. Besides, two splicing variants of MoRts1 with unique functions of regulating the growth and pathogenicity were identified, and the B56 domain is vital for determining the sporulation and pathogenicity of M. oryzae. Furthermore, MoRts1 was identified to interact with PP2A catalytic subunit MoPPG1 in vivo in M. oryzae. In summary, our results showed that MoRts1 is an important regulator contributing to the fungal development, and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Weiwei Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingxin Jiang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Wan X, Yao G, Wang K, Bao S, Han P, Wang F, Song T, Jiang H. Transcriptomic analysis of polyketide synthesis in dinoflagellate, Prorocentrum lima. HARMFUL ALGAE 2023; 123:102391. [PMID: 36894212 DOI: 10.1016/j.hal.2023.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/31/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The benthic dinoflagellate Prorocentrum lima is among the most common toxic morphospecies with a cosmopolitan distribution. P. lima can produce polyketide compounds, such as okadaic acid (OA), dinophysistoxin (DTX) and their analogues, which are responsible for diarrhetic shellfish poisoning (DSP). Studying the molecular mechanism of DSP toxin biosynthesis is crucial for understanding the environmental driver influencing toxin biosynthesis as well as for better monitoring of marine ecosystems. Commonly, polyketides are produced by polyketide synthases (PKS). However, no gene has been confirmatively assigned to DSP toxin production. Here, we assembled a transcriptome from 94,730,858 Illumina RNAseq reads using Trinity, resulting in 147,527 unigenes with average sequence length of 1035 nt. Using bioinformatics analysis methods, we found 210 unigenes encoding single-domain PKS with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 15 transcripts encoding multi-domain PKS (forming typical type I PKSs modules) and 5 transcripts encoding hybrid nonribosomal peptide synthetase (NRPS)/PKS were found. Using comparative transcriptome and differential expression analysis, a total of 16 PKS genes were identified to be up-regulated in phosphorus-limited cultures, which was related to the up regulation of toxin expression. In concert with other recent transcriptome analyses, this study contributes to the building consensus that dinoflagellates may utilize a combination of Type I multi-domain and single-domain PKS proteins, in an as yet undefined manner, to synthesize polyketides. Our study provides valuable genomic resource for future research in order to understand the complex mechanism of toxin production in this dinoflagellate.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Kang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Tianyu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
8
|
Buchko GW, Zhou M, Vesely CH, Tao J, Shaw WJ, Mehl RA, Cooley RB. High-yield recombinant bacterial expression of 13 C-, 15 N-labeled, serine-16 phosphorylated, murine amelogenin using a modified third generation genetic code expansion protocol. Protein Sci 2023; 32:e4560. [PMID: 36585836 PMCID: PMC9850436 DOI: 10.1002/pro.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Amelogenin constitutes ~90% of the enamel matrix in the secretory stage of amelogenesis, a still poorly understood process that results in the formation of the hardest and most mineralized tissue in vertebrates-enamel. Most biophysical research with amelogenin uses recombinant protein expressed in Escherichia coli. In addition to providing copious amounts of protein, recombinant expression allows 13 C- and 15 N-labeling for detailed structural studies using NMR spectroscopy. However, native amelogenin is phosphorylated at one position, Ser-16 in murine amelogenin, and there is mounting evidence that Ser-16 phosphorylation is important. Using a modified genetic code expansion protocol we have expressed and purified uniformly 13 C-, 15 N-labeled murine amelogenin (pS16M179) with ~95% of the protein being correctly phosphorylated. Homogeneous phosphorylation was achieved using commercially available, enriched, 13 C-, 15 N-labeled media, and protein expression was induced with isopropyl β-D-1-thiogalactopyranoside at 310 K. Phosphoserine incorporation was verified from one-dimensional 31 P NMR spectra, comparison of 1 H-15 N HSQC spectra, Phos-tag SDS PAGE, and mass spectrometry. Phosphorus-31 NMR spectra for pS16M179 under conditions known to trigger amelogenin self-assembly into nanospheres confirm nanosphere models with buried N-termini. Lambda phosphatase treatment of these nanospheres results in the dephosphorylation of pS16M179, confirming that smaller oligomers and monomers with exposed N-termini are in equilibrium with nanospheres. Such 13 C-, 15 N-labeling of amelogenin with accurately encoded phosphoserine incorporation will accelerate biomineralization research to understand amelogenesis and stimulate the expanded use of genetic code expansion protocols to introduce phosphorylated amino acids into proteins.
Collapse
Affiliation(s)
- Garry W. Buchko
- Earth and Biological Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA,School of Molecular BiosciencesWashington State UniversityPullmanWashingtonUSA
| | - Mowei Zhou
- Earth and Biological Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Cat Hoang Vesely
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| | - Jinhui Tao
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Wendy J. Shaw
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Ryan A. Mehl
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| | - Richard B. Cooley
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
9
|
Carrasco D, Zhou-Tsang A, Rodriguez-Izquierdo A, Ocete R, Revilla MA, Arroyo-García R. Coastal Wild Grapevine Accession ( Vitis vinifera L. ssp. sylvestris) Shows Distinct Late and Early Transcriptome Changes under Salt Stress in Comparison to Commercial Rootstock Richter 110. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202688. [PMID: 36297712 PMCID: PMC9610063 DOI: 10.3390/plants11202688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/01/2023]
Abstract
Increase in soil salinity, driven by climate change, is a widespread constrain for viticulture across several regions, including the Mediterranean basin. The implementation of salt-tolerant varieties is sought after to reduce the negative impact of salinity in grape production. An accession of wild grapevine (Vitis vinifera L. ssp. sylvestris), named AS1B, found on the coastline of Asturias (Spain), could be of interest toward the achievement of salt-tolerant varieties, as it demonstrated the ability to survive and grow under high levels of salinity. In the present study, AS1B is compared against widely cultivated commercial rootstock Richter 110, regarding their survival capabilities, and transcriptomic profiles analysis allowed us to identify the genes by employing RNA-seq and gene ontology analyses under increasing salinity and validate (via RT-qPCR) seven salinity-stress-induced genes. The results suggest contrasting transcriptomic responses between AS1B and Richter 110. AS1B is more responsive to a milder increase in salinity and builds up specific mechanisms of tolerance over a sustained salt stress, while Richter 110 maintains a constitutive expression until high and prolonged saline inputs, when it mainly shows responses to osmotic stress. The genetic basis of AS1B's strategy to confront salinity could be valuable in cultivar breeding programs, to expand the current range of salt-tolerant rootstocks, aiming to improve the adaptation of viticulture against climate change.
Collapse
Affiliation(s)
- David Carrasco
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Andres Zhou-Tsang
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
- Waite Research Institute, The School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Glen Osmond, SA 5064, Australia
- ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, Glen Osmond, SA 5064, Australia
| | - Alberto Rodriguez-Izquierdo
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Rafael Ocete
- Laboratorio Entomología Aplicada, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| | - María Angeles Revilla
- Departamento Biología de Organismos y Sistemas, Facultad de Biología, Universidad de Oviedo, 33071 Oviedo, Spain
| | - Rosa Arroyo-García
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
10
|
Zabielska-Kaczorowska MA, Bogucka AE, Macur K, Czaplewska P, Watson SA, Perbellini F, Terracciano CM, Smolenski RT. Label-free quantitative SWATH-MS proteomic analysis of adult myocardial slices in vitro after biomimetic electromechanical stimulation. Sci Rep 2022; 12:16533. [PMID: 36192624 PMCID: PMC9529937 DOI: 10.1038/s41598-022-20494-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
A special in vitro model maintained with ultrathin cardiac slices with a preserved architecture, multi-cellularity, and physiology of the heart tissue was used. In our experiments, we performed label-free quantitative SWATH-MS proteomic analysis of the adult myocardial slices in vitro after biomimetic electromechanical stimulation. Rat myocardial slices were stretched to sarcomere lengths (SL) within the physiological range of 1.8–2.2 μm. Electromechanically stimulated slices were compared with slices cultured without electromechanical stimulation (unloaded and nonstimulated-TW) on a liquid–air interface and with fresh myocardial slices (0 h-C). Quantitative (relative) proteomic analyses were performed using a label-free SWATH-MS technique on a high-resolution microLC-MS/MS TripleTOF 5600+ system (SCIEX). The acquired MS/MS spectra from the DDA LC–MS/MS analyses of the rat heart samples were searched against the UniProt Rattus norvegicus database (version of 15.05.2018) using the Paragon algorithm incorporated into ProteinPilot 4.5 (SCIEX) software. The highest number of differential proteins was observed in the TW group—121 when compared to the C group. In the 1.8 and 2.2 groups, 79 and 52 proteins present at a significantly different concentration from the control samples were found, respectively. A substantial fraction of these proteins were common for two or more comparisons, resulting in a list of 169 significant proteins for at least one of the comparisons. This study found the most prominent changes in the proteomic pattern related to mitochondrial respiration, energy metabolism, and muscle contraction in the slices that were stretched and fresh myocardial slices cultured without electromechanical stimulation.
Collapse
Affiliation(s)
- M A Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland. .,Department of Physiology, Medical University of Gdansk, Gdansk, Poland.
| | - A E Bogucka
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.,Institute of Biochemistry, Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany
| | - K Macur
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - P Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - S A Watson
- National Heart & Lung Institute, Imperial College London, London, UK
| | - F Perbellini
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - C M Terracciano
- National Heart & Lung Institute, Imperial College London, London, UK
| | - R T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
11
|
Jean N, Perié L, Dumont E, Bertheau L, Balliau T, Caruana AMN, Amzil Z, Laabir M, Masseret E. Metal stresses modify soluble proteomes and toxin profiles in two Mediterranean strains of the distributed dinoflagellate Alexandrium pacificum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151680. [PMID: 34793790 DOI: 10.1016/j.scitotenv.2021.151680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
HABs involving Alexandrium pacificum have been reported in metal-contaminated ecosystems, suggesting that this distributed species adapts to and/or can tolerate the effects of metals. Modifications in soluble proteomes and PST contents were characterized in two Mediterranean A. pacificum strains exposed to mono- or polymetallic stresses (zinc, lead, copper, cadmium). These strains were isolated from two anthropized locations: Santa Giusta Lagoon (Italy, SG C10-3) and the Tarragona seaport (Spain, TAR C5-4F). In both strains, metals primarily downregulated key photosynthesis proteins. Metals also upregulated other proteins involved in photosynthesis (PCP in both strains), the oxidative stress response (HSP 60, proteasome and SOD in SG C10-3; HSP 70 in TAR C5-4F), energy metabolism (AdK in TAR C5-4F), neoglucogenesis/glycolysis (GAPDH and PEP synthase in SG C10-3) and protein modification (PP in TAR C5-4F). These proteins, possibly involved in adaptive proteomic responses, may explain the development of these A. pacificum strains in metal-contaminated ecosystems. The two strains showed different proteomic responses to metals, with SG C10-3 upregulating more proteins, particularly PCP. Among the PSTs, regardless of the metal and the strain studied, C2 and GTX4 predominated, followed by GTX5. Under the polymetallic cocktail, (i) total PSTs, C2 and GTX4 reached the highest levels in SG C10-3 only, and (ii) total PSTs, C2, GTX5 and neoSTX were higher in SG C10-3 than in TAR C5-4F, whereas in SG C10-3 under copper stress, total PSTs, GTX5, GTX1 and C1 were higher than in the controls, revealing variability in PST biosynthesis between the two strains. Total PSTs, C2, GTX4 and GTX1 showed significant positive correlations with PCP, indicating that PST production may be positively related to photosynthesis. Our results showed that the A. pacificum strains adapt their proteomic and physiological responses to metals, which may contribute to their ecological success in highly anthropized areas.
Collapse
Affiliation(s)
- Natacha Jean
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France.
| | - Luce Perié
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University, 30(th) St., New York, NY 10016, USA
| | - Estelle Dumont
- UMR_MD1, Aix-Marseille Univ, U-1261-INSERM, SSA, IRBA, MCT, Marseille, France
| | - Lucie Bertheau
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté, AgroSup Dijon, esplanade Erasme, 21 000 Dijon, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91 190 Gif-sur-Yvette, France
| | - Amandine M N Caruana
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| | - Zouher Amzil
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| | - Mohamed Laabir
- Marbec, Univ Montpellier, IRD, Ifremer, CNRS, Montpellier, France
| | - Estelle Masseret
- Marbec, Univ Montpellier, IRD, Ifremer, CNRS, Montpellier, France
| |
Collapse
|
12
|
Alzheimer’s Disease and Toxins Produced by Marine Dinoflagellates: An Issue to Explore. Mar Drugs 2022; 20:md20040253. [PMID: 35447926 PMCID: PMC9029327 DOI: 10.3390/md20040253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
This paper examined the toxins naturally produced by marine dinoflagellates and their effects on increases in β-amyloid plaques along with tau protein hyperphosphorylation, both major drivers of Alzheimer’s disease (AD). This approach is in line with the demand for certain natural compounds, namely those produced by marine invertebrates that have the potential to be used in the treatment of AD. Current advances in AD treatment are discussed as well as the main factors that potentially affect the puzzling global AD pattern. This study focused on yessotoxins (YTXs), gymnodimine (GYM), spirolides (SPXs), and gambierol, all toxins that have been shown to reduce β-amyloid plaques and tau hyperphosphorylation, thus preventing the neuronal or synaptic dysfunction that ultimately causes the cell death associated with AD (or other neurodegenerative diseases). Another group of toxins described, okadaic acid (OA) and its derivatives, inhibit protein phosphatase activity, which facilitates the presence of phosphorylated tau proteins. A few studies have used OA to trigger AD in zebrafish, providing an opportunity to test in vivo the effectiveness of new drugs in treating or attenuating AD. Constraints on the production of marine toxins for use in these tests have been considered. Different lines of research are anticipated regarding the action of the two groups of toxins.
Collapse
|
13
|
Verdugo-Sivianes EM, Carnero A. SPINOPHILIN: a multiplayer tumor suppressor. Genes Dis 2022; 10:187-198. [PMID: 37013033 PMCID: PMC10066247 DOI: 10.1016/j.gendis.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
SPINOPHILIN (SPN, PPP1R9B or NEURABIN-2) is a multifunctional protein that regulates protein-protein interactions in different cell signaling pathways. SPN is also one of the regulatory subunits of protein phosphatase 1 (PP1), implicated in the dephosphorylation of retinoblastoma protein (pRB) during cell cycle. The SPN gene has been described as a tumor suppressor in different human tumor contexts, in which low levels of SPN are correlated with a higher grade and worse prognosis. In addition, mutations of the SPN protein have been reported in human tumors. Recently, an oncogenic mutation of SPN, A566V, was described, which affects both the SPN-PP1 interaction and the phosphatase activity of the holoenzyme, and promotes p53-dependent tumorigenesis by increasing the cancer stem cell (CSC) pool in breast tumors. Thus, the loss or mutation of SPN could be late events that promotes tumor progression by increasing the CSC pool and, eventually, the malignant behavior of the tumor.
Collapse
|
14
|
Trense D, Hoffmann AA, Fischer K. Large- and small-scale geographic structures affecting genetic patterns across populations of an Alpine butterfly. Ecol Evol 2021; 11:14697-14714. [PMID: 34765135 PMCID: PMC8571576 DOI: 10.1002/ece3.8157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding factors influencing patterns of genetic diversity and the population genetic structure of species is of particular importance in the current era of global climate change and habitat loss. These factors include the evolutionary history of a species as well as heterogeneity in the environment it occupies, which in turn can change across time. Most studies investigating spatio-temporal genetic patterns have focused on patterns across wide geographic areas rather than local variation, but the latter can nevertheless be important particularly in topographically complex areas. Here, we consider these issues in the Sooty Copper butterfly (Lycaena tityrus) from the European Alps, using genome-wide SNPs identified through RADseq. We found strong genetic differentiation within the Alps with four genetic clusters, indicating western, central, and eastern refuges, and a strong reduction of genetic diversity from west to east. This reduction in diversity may suggest that the southwestern refuge was the largest one in comparison to other refuges. Also, the high genetic diversity in the west may result from (a) admixture of different western refuges, (b) more recent demographic changes, or (c) introgression of lowland L. tityrus populations. At small spatial scales, populations were structured by several landscape features and especially by high mountain ridges and large river valleys. We detected 36 outlier loci likely under altitudinal selection, including several loci related to membranes and cellular processes. We suggest that efforts to preserve alpine L. tityrus should focus on the genetically diverse populations in the western Alps, and that the dolomite populations should be treated as genetically distinct management units, since they appear to be currently more threatened than others. This study demonstrates the usefulness of SNP-based approaches for understanding patterns of genetic diversity, gene flow, and selection in a region that is expected to be particularly vulnerable to climate change.
Collapse
Affiliation(s)
- Daronja Trense
- Institute for Integrated Natural Sciences, ZoologyUniversity Koblenz‐LandauKoblenzGermany
| | - Ary A. Hoffmann
- Pest & Environmental Adaptation Research GroupSchool of BiosciencesBio21 InstituteParkvilleVic.Australia
| | - Klaus Fischer
- Institute for Integrated Natural Sciences, ZoologyUniversity Koblenz‐LandauKoblenzGermany
| |
Collapse
|
15
|
Gęgotek A, Atalay S, Skrzydlewska E. UV induced changes in proteome of rats plasma are reversed by dermally applied cannabidiol. Sci Rep 2021; 11:20666. [PMID: 34667212 PMCID: PMC8526570 DOI: 10.1038/s41598-021-00134-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
UV radiation is known to induce a multiple changes in the metabolism of skin-building cells, what can affect the functioning not only neighboring cells, but also, following signal transduction releasing into the blood vessels, the entire body. Therefore, the aim of this study was to analyze the proteomic disturbances occurred in plasma of chronically UVA/UVB irradiated rats and define the effect on these changes of skin topically applied cannabidiol (CBD). Obtained results showed significant changes in the expression of numerous anti-inflammatory and signaling proteins including: NFκB inhibitor, 14-3-3 protein, protein kinase C, keratin, and protein S100 after UV irradiation and CBD treatment. Moreover, the effects of UVA and UVB were manifested by increased level of lipid peroxidation products-protein adducts formation. CBD partially prevented all of these changes, but in a various degree depending on the UV radiation type. Moreover, topical treatment with CBD resulted in the penetration of CBD into the blood and, as a consequence, in direct modifications to the plasma protein structure by creating CBD adducts with molecules, such as proline-rich protein 30, transcription factor 19, or N-acetylglucosamine-6-sulfatase, what significantly changed the activity of these proteins. In conclusion, it may be suggested that CBD applied topically may be an effective compound against systemic UV-induced oxidative stress, but its effectiveness requires careful analysis of CBD's effects on other tissues of the living organism.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
16
|
Verdugo-Sivianes EM, Carnero A. Role of the Holoenzyme PP1-SPN in the Dephosphorylation of the RB Family of Tumor Suppressors During Cell Cycle. Cancers (Basel) 2021; 13:cancers13092226. [PMID: 34066428 PMCID: PMC8124259 DOI: 10.3390/cancers13092226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cell cycle progression is highly regulated by modulating the phosphorylation status of retinoblastoma (RB) family proteins. This process is controlled by a balance in the action of kinases, such as the complexes formed by cyclin-dependent kinases (CDKs) and cyclins, and phosphatases, mainly the protein phosphatase 1 (PP1). However, while the phosphorylation of the RB family has been largely studied, its dephosphorylation is less known. Recently, the PP1-Spinophilin (SPN) holoenzyme has been described as the main phosphatase responsible for the dephosphorylation of RB proteins during the G0/G1 transition and at the end of G1. Here, we describe the regulation of the phosphorylation status of RB family proteins, giving importance not only to their inactivation by phosphorylation but also to their dephosphorylation to restore the cell cycle. Abstract Cell cycle progression is highly regulated by modulating the phosphorylation status of the retinoblastoma protein (pRB) and the other two members of the RB family, p107 and p130. This process is controlled by a balance in the action of kinases, such as the complexes formed by cyclin-dependent kinases (CDKs) and cyclins, and phosphatases, mainly the protein phosphatase 1 (PP1). However, while the phosphorylation of the RB family has been largely studied, its dephosphorylation is less known. Phosphatases are holoenzymes formed by a catalytic subunit and a regulatory protein with substrate specificity. Recently, the PP1-Spinophilin (SPN) holoenzyme has been described as the main phosphatase responsible for the dephosphorylation of RB proteins during the G0/G1 transition and at the end of G1. Moreover, SPN has been described as a tumor suppressor dependent on PP1 in lung and breast tumors, where it promotes tumorigenesis by increasing the cancer stem cell pool. Therefore, a connection between the cell cycle and stem cell biology has also been proposed via SPN/PP1/RB proteins.
Collapse
Affiliation(s)
- Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-955-92-31-11
| |
Collapse
|
17
|
Tadjalli A, Seven YB, Perim RR, Mitchell GS. Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity. J Neuroinflammation 2021; 18:28. [PMID: 33468163 PMCID: PMC7816383 DOI: 10.1186/s12974-021-02074-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation undermines multiple forms of neuroplasticity. Although inflammation and its influence on plasticity in multiple neural systems has been extensively studied, its effects on plasticity of neural networks controlling vital life functions, such as breathing, are less understood. In this study, we investigated the signaling mechanisms whereby lipopolysaccharide (LPS)-induced systemic inflammation impairs plasticity within the phrenic motor system—a major spinal respiratory motor pool that drives contractions of the diaphragm muscle. Here, we tested the hypotheses that lipopolysaccharide-induced systemic inflammation (1) blocks phrenic motor plasticity by a mechanism that requires cervical spinal okadaic acid-sensitive serine/threonine protein phosphatase (PP) 1/2A activity and (2) prevents phosphorylation/activation of extracellular signal-regulated kinase 1/2 mitogen activated protein kinase (ERK1/2 MAPK)—a key enzyme necessary for the expression of phrenic motor plasticity. Methods To study phrenic motor plasticity, we utilized a well-characterized model for spinal respiratory plasticity called phrenic long-term facilitation (pLTF). pLTF is characterized by a long-lasting, progressive enhancement of inspiratory phrenic nerve motor drive following exposures to moderate acute intermittent hypoxia (mAIH). In anesthetized, vagotomized and mechanically ventilated adult Sprague Dawley rats, we examined the effect of inhibiting cervical spinal serine/threonine PP 1/2A activity on pLTF expression in sham-vehicle and LPS-treated rats. Using immunofluorescence optical density analysis, we compared mAIH-induced phosphorylation/activation of ERK 1/2 MAPK with and without LPS-induced inflammation in identified phrenic motor neurons. Results We confirmed that mAIH-induced pLTF is abolished 24 h following low-dose systemic LPS (100 μg/kg, i.p.). Cervical spinal delivery of the PP 1/2A inhibitor, okadaic acid, restored pLTF in LPS-treated rats. LPS also prevented mAIH-induced enhancement in phrenic motor neuron ERK1/2 MAPK phosphorylation. Thus, a likely target for the relevant okadaic acid-sensitive protein phosphatases is ERK1/2 MAPK or its upstream activators. Conclusions This study increases our understanding of fundamental mechanisms whereby inflammation disrupts neuroplasticity in a critical population of motor neurons necessary for breathing, and highlights key roles for serine/threonine protein phosphatases and ERK1/2 MAPK kinase in the plasticity of mammalian spinal respiratory motor circuits.
Collapse
Affiliation(s)
- Arash Tadjalli
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Raphael R Perim
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA.
| |
Collapse
|
18
|
Schramm K, Iskar M, Statz B, Jäger N, Haag D, Słabicki M, Pfister SM, Zapatka M, Gronych J, Jones DTW, Lichter P. DECIPHER pooled shRNA library screen identifies PP2A and FGFR signaling as potential therapeutic targets for diffuse intrinsic pontine gliomas. Neuro Oncol 2020; 21:867-877. [PMID: 30943283 DOI: 10.1093/neuonc/noz057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive pediatric brain tumors that are characterized by a recurrent mutation (K27M) within the histone H3 encoding genes H3F3A and HIST1H3A/B/C. These mutations have been shown to induce a global reduction in the repressive histone modification H3K27me3, which together with widespread changes in DNA methylation patterns results in an extensive transcriptional reprogramming hampering the identification of single therapeutic targets based on a molecular rationale. METHODS We applied a large-scale gene knockdown approach using a pooled short hairpin (sh)RNA library in combination with next-generation sequencing in order to identify DIPG-specific vulnerabilities. The therapeutic potential of specific inhibitors of candidate targets was validated in a secondary drug screen. RESULTS We identified fibroblast growth factor receptor (FGFR) signaling and the serine/threonine protein phosphatase 2A (PP2A) as top depleted hits in patient-derived DIPG cell cultures and validated their lethal potential by FGF ligand depletion and genetic knockdown of the PP2A structural subunit PPP2R1A. Further, pharmacological inhibition of FGFR and PP2A signaling through ponatinib and LB-100 treatment, respectively, exhibited strong tumor-specific anti-proliferative and apoptotic activity in cultured DIPG cells. CONCLUSIONS Our findings suggest FGFR and PP2A signaling as potential new therapeutic targets for the treatment of DIPGs.
Collapse
Affiliation(s)
- Kathrin Schramm
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Murat Iskar
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Britta Statz
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalie Jäger
- Division of Pediatric Neurooncology, DKFZ, and Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany
| | - Daniel Haag
- Division of Pediatric Neurooncology, DKFZ, and Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany
| | - Mikołaj Słabicki
- Molecular Therapy in Hematology and Oncology, Department of Translational Oncology, National Center for Tumor Diseases and DKFZ, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, DKFZ, and Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Gronych
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Pediatric Glioma Research Group, Hopp Children's Cancer Center Heidelberg and DKFZ, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
19
|
Small molecule H89 renders the phosphorylation of S6K1 and AKT resistant to mTOR inhibitors. Biochem J 2020; 477:1847-1863. [PMID: 32347294 PMCID: PMC7261416 DOI: 10.1042/bcj20190958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved Ser/Thr kinase that comprises two complexes, termed mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 phosphorylates S6K1 at Thr 389, whereas mTORC2 phosphorylates AKT at Ser 473 to promote cell growth. As the mTOR name implies it is the target of natural product called rapamycin, a clinically approved drug used to treat human disease. Short-term rapamycin treatment inhibits the kinase activity of mTORC1 but not mTORC2. However, the ATP-competitive catalytic mTOR inhibitor Torin1 was identified to inhibit the kinase activity of both mTORC1 and mTORC2. Here, we report that H89 (N-(2-(4-bromocinnamylamino) ethyl)-5-isoquinolinesulfonamide), a well-characterized ATP-mimetic kinase inhibitor, renders the phosphorylation of S6K1 and AKT resistant to mTOR inhibitors across multiple cell lines. Moreover, H89 prevented the dephosphorylation of AKT and S6K1 under nutrient depleted conditions. PKA and other known H89-targeted kinases do not alter the phosphorylation status of S6K1 and AKT. Pharmacological inhibition of some phosphatases also enhanced S6K1 and AKT phosphorylation. These findings suggest a new target for H89 by which it sustains the phosphorylation status of S6K1 and AKT, resulting in mTOR signaling.
Collapse
|
20
|
Yu Y, Zhao Q, Zhu S, Dong H, Huang B, Liang S, Wang Q, Wang H, Yu S, Han H. Molecular characterization of serine/threonine protein phosphatase of Eimeria tenella. J Eukaryot Microbiol 2020; 67:510-520. [PMID: 32358794 DOI: 10.1111/jeu.12798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Avian coccidiosis is a widespread and economically significant poultry disease caused by several Eimeria species, including Eimeria tenella. Previously, E. tenella serine/threonine protein phosphatase (EtSTP) was found to be differentially expressed in drug-sensitive (DS) and drug-resistant strains using RNA-seq. In the present study, we found that transcription and translation levels of EtSTP were higher in diclazuril-resistant (DZR) strains and maduramicin-resistant (MRR) strains than in DS strains using quantitative real-time PCR (qPCR) and Western blotting. Enzyme activity results indicated that the catalytic activity of EtSTP was higher in the two drug-resistant strains than in DS strains. Western blot and qPCR analysis also showed that expression levels of EtSTP were higher in unsporulated oocysts (UO) and second-generation merozoites (SM). Indirect immunofluorescence localization showed that EtSTP was located in most areas of the parasite with the exception of refractile bodies, and fluorescence intensity was enhanced during development. In vitro inhibition experiments showed that the ability of sporozoites (SZ) to invade cells was significantly decreased after treatment with anti-rEtSTP antibody. These results indicated that EtSTP acted mainly during the developmental and reproductive stages of the parasite and may be related to the resistance of coccidia to external drug pressure.
Collapse
Affiliation(s)
- Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| |
Collapse
|
21
|
Agonist-induced phosphorylation bar code and differential post-activation signaling of the delta opioid receptor revealed by phosphosite-specific antibodies. Sci Rep 2020; 10:8585. [PMID: 32444688 PMCID: PMC7244497 DOI: 10.1038/s41598-020-65589-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/05/2020] [Indexed: 01/08/2023] Open
Abstract
The δ-opioid receptor (DOP) is an attractive pharmacological target due to its potent analgesic, anxiolytic and anti-depressant activity in chronic pain models. However, some but not all selective DOP agonists also produce severe adverse effects such as seizures. Thus, the development of novel agonists requires a profound understanding of their effects on DOP phosphorylation, post-activation signaling and dephosphorylation. Here we show that agonist-induced DOP phosphorylation at threonine 361 (T361) and serine 363 (S363) proceeds with a temporal hierarchy, with S363 as primary site of phosphorylation. This phosphorylation is mediated by G protein-coupled receptor kinases 2 and 3 (GRK2/3) followed by DOP endocytosis and desensitization. DOP dephosphorylation occurs within minutes and is predominantly mediated by protein phosphatases (PP) 1α and 1β. A comparison of structurally diverse DOP agonists and clinically used opioids demonstrated high correlation between G protein-dependent signaling efficacies and receptor internalization. In vivo, DOP agonists induce receptor phosphorylation in a dose-dependent and agonist-selective manner that could be blocked by naltrexone in DOP-eGFP mice. Together, our studies provide novel tools and insights for ligand-activated DOP signaling in vitro and in vivo and suggest that DOP agonist efficacies may determine receptor post-activation signaling.
Collapse
|
22
|
Kobayashi Y, Kanda A, Yun Y, Bui DV, Suzuki K, Sawada S, Asako M, Iwai H. Reduced Local Response to Corticosteroids in Eosinophilic Chronic Rhinosinusitis with Asthma. Biomolecules 2020; 10:biom10020326. [PMID: 32085629 PMCID: PMC7072408 DOI: 10.3390/biom10020326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS), a subgroup of chronic rhinosinusitis with nasal polyps, is recognized as a refractory eosinophilic disorder characterized by both upper and lower airway inflammation. In some severe cases, disease control is poor, likely due to local steroid insensitivity. In this study, we focused on protein phosphatase 2A (PP2A), a key factor regulating glucocorticoid receptor (GR) nuclear translocation, and examined its association with local responses to corticosteroids in eosinophilic airway inflammation. Our results indicated reduced responses to corticosteroids in nasal epithelial cells from ECRS patients with asthma, which were also associated with decreased PP2A mRNA expression. Eosinophil peroxidase stimulates elevated PP2A phosphorylation levels, reducing PP2A protein expression and activity. In addition, mRNA levels of inflammatory mediators (TSLP, IL-25, IL-33, CCL4, CCL5, CCL11, and CCL26) associated with eosinophilic airway inflammation in epithelial cells were increased in nasal polyps (eosinophil-rich areas) compared with those in uncinate process tissues (eosinophil-poor areas) from the same patients. PP2A reduction by siRNA reduced GR nuclear translocation, whereas PP2A overexpression by plasmid transfection, or PP2A activation by formoterol, enhanced GR nuclear translocation. Collectively, our findings indicate that PP2A may represent a promising therapeutic target in refractory eosinophilic airway inflammation characterized by local steroid insensitivity.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
- Allergic Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2463
| | - Akira Kanda
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
- Allergic Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Yasutaka Yun
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Dan Van Bui
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Kensuke Suzuki
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Shunsuke Sawada
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| | - Mikiya Asako
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
- Allergic Center, Kansai Medical University Hospital, Hirakata, Osaka 573-1010, Japan
| | - Hiroshi Iwai
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan (Y.Y.)
| |
Collapse
|
23
|
Hintermayer MA, Volkening K, Moszczynski AJ, Donison N, Strong MJ. Tau protein phosphorylation at Thr 175 initiates fibril formation via accessibility of the N-terminal phosphatase-activating domain. J Neurochem 2019; 155:313-326. [PMID: 31853971 DOI: 10.1111/jnc.14942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023]
Abstract
One of the neuropathological hallmarks of the tauopathies is the formation of neuronal cytoplasmic inclusions and fibrils of microtubule-associated tau protein (tau). The phosphorylation of Thr175 of tau (pThr175 tau) appears to be sufficient for fibril formation in vitro and in vivo, but the mechanism by which this initiates fibril formation is unknown. Using transient transfections of tau mutants into HEK293T cells, we determined that the phosphorylation of Thr175 leads to exposure of the tau N-terminal phosphatase-activating domain (PAD). The exposed PAD is known to interact with protein phosphatase-1 (PP1) resulting in glycogen synthase kinase 3β (GSK3β) activation. In vivo, a single traumatic controlled cortical injury in rats also resulted in the phosphorylation of Thr175 and increased exposure of tau PAD followed by pathological tau fibril formation. Taken together, these data suggest that neurotoxicity may be precipitated by phosphorylation at Thr175 and subsequent tau PAD exposure, GSK3β activation and tau fibril formation. Cover Image for this issue: doi: 10.1111/jnc.14767.
Collapse
Affiliation(s)
- Matthew A Hintermayer
- Molecular Brain Research Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Kathryn Volkening
- Molecular Brain Research Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Alexander J Moszczynski
- Molecular Brain Research Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Neil Donison
- Molecular Brain Research Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Michael J Strong
- Molecular Brain Research Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
24
|
Saewanee N, Praputpittaya T, Malaiwong N, Chalorak P, Meemon K. Neuroprotective effect of metformin on dopaminergic neurodegeneration and α-synuclein aggregation in C. elegans model of Parkinson's disease. Neurosci Res 2019; 162:13-21. [PMID: 31881233 DOI: 10.1016/j.neures.2019.12.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Nada Saewanee
- Mahidol University International College, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Theethawat Praputpittaya
- Mahidol University International College, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nawaphat Malaiwong
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| |
Collapse
|
25
|
Causey DR, Kim JH, Stead DA, Martin SAM, Devlin RH, Macqueen DJ. Proteomic comparison of selective breeding and growth hormone transgenesis in fish: Unique pathways to enhanced growth. J Proteomics 2018; 192:114-124. [PMID: 30153513 PMCID: PMC7086150 DOI: 10.1016/j.jprot.2018.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
In fish used for food production and scientific research, fast growth can be achieved via selective breeding or induced instantaneously via growth hormone (GH) transgenesis (GHT). The proteomic basis for these distinct routes towards a similar higher phenotype remains uncharacterized, as are associated implications for health parameters. We addressed this knowledge gap using skeletal muscle proteomics in coho salmon (Oncorhynchus kisutch), hypothesising that i) selective breeding and GHT are underpinned by both parallel and unique changes in growth systems, and ii) rapidly-growing fish strains have lowered scope to allocate resources towards immune function. Quantitative profiling of GHT and growth-selected strains was done in comparison to wild-type after injection with PBS (control) or Poly I:C (to mimic infection). We identified remodelling of the muscle proteome in each growth-enhanced strain that was strikingly non-overlapping. GHT was characterized by focal upregulation of systems driving protein synthesis, while the growth-selected fish presented a larger and more diverse set of changes, consistent with complex alterations to many metabolic and cellular pathways. Poly I:C had little detectable effect on the muscle proteome. This study demonstrates that distinct proteome profiles can explain outwardly similar enhanced growth phenotypes, improving our understanding of growth mechanisms in anthropogenic animal strains. Significance This work provides the first proteomic insights into mechanisms underpinning different anthropogenic routes to rapid growth in salmon. High-throughput proteomic profiling was used to reveal changes supporting enhanced growth, comparing skeletal muscle of growth hormone transgenic (GHT) and selectively-bred salmon strains with their wild-type counterparts. Contrasting past mRNA-level comparisons of the same fish strains, our data reveals a surprisingly substantial proteomic divergence between the GHT and selectively bred strains. The findings demonstrate that many unique molecular mechanisms underlie growth-enhanced phenotypes in different types of fish strain used for food production and scientific research. Mechanistic basis for rapid growth poorly understood in fish. Comparative proteomic profiling done in fish strains showing highly enhanced growth. Distinct basis for enhanced growth comparing transgenic and domesticated fish strains. Highly distinct proteome profiles may explain outwardly similar growth phenotypes. Study enhances understanding of how rapid growth is achieved in anthropogenic animal strains.
Collapse
Affiliation(s)
- Dwight R Causey
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, West Vancouver, British Columbia V7V 1N6, Canada; Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
| | - David A Stead
- Aberdeen Proteomics, University of Aberdeen, Rowett Institute, Aberdeen, UK
| | | | - Robert H Devlin
- Fisheries and Oceans Canada, West Vancouver, British Columbia V7V 1N6, Canada
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
26
|
Cen-Pacheco F, Pérez Manríquez C, Luisa Souto M, Norte M, Fernández JJ, Hernández Daranas A. Marine Longilenes, Oxasqualenoids with Ser-Thr Protein Phosphatase 2A Inhibition Activity. Mar Drugs 2018; 16:md16040131. [PMID: 29673138 PMCID: PMC5923418 DOI: 10.3390/md16040131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 11/16/2022] Open
Abstract
The red seaweed Laurencia viridis is a rich source of oxygenated secondary metabolites that were derived from squalene. We report here the structures of three novel compounds, (+)-longilene peroxide (1), longilene (2), and (+)-prelongilene (3) that were isolated from this alga, in addition to other substances, 4 and 5, resulting from their acid-mediated degradation. The effect of compounds 1 and 3 against Ser-Thr protein phosphatase type 2A (PP2A) was evaluated, showing that (+)-longilene peroxide (1) inhibited PP2A (IC50 11.3 μM). In order to explain the interaction between PP2A and compounds 1 and 3, molecular docking simulations onto the PP2A enzyme-binding region were used.
Collapse
Affiliation(s)
- Francisco Cen-Pacheco
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 Tenerife, Spain.
- Facultad de Bioanálisis, Campus-Veracruz, Universidad Veracruzana, Veracruz 91700, Mexico.
| | - Claudia Pérez Manríquez
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 Tenerife, Spain.
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario, Concepción, Región del Biobío 4030000, Chile.
| | - María Luisa Souto
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 Tenerife, Spain.
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 Tenerife, Spain.
| | - Manuel Norte
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 Tenerife, Spain.
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 Tenerife, Spain.
| | - José Javier Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 Tenerife, Spain.
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 Tenerife, Spain.
| | - Antonio Hernández Daranas
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 Tenerife, Spain.
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Astrofísico Francisco Sánchez 2, 38206 Tenerife, Spain.
| |
Collapse
|
27
|
Wang X, Wang R, Luo M, Li C, Wang HX, Huan CC, Qu YR, Liao Y, Mao X. (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget 2018; 8:33197-33213. [PMID: 28402257 PMCID: PMC5464861 DOI: 10.18632/oncotarget.16593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/17/2017] [Indexed: 01/29/2023] Open
Abstract
Asp-Glu-Ala-Asp (DEAD)-box RNA helicase 3 (DDX3), an ATP-dependent RNA helicase, is associated with RNA splicing, mRNA export, transcription, translation, and RNA decay. Recent studies revealed that DDX3 participates in innate immune response during virus infection by interacting with TBK1 and regulating the production of IFN-β. In our studies, we demonstrated that DDX3 regulated NF-κB signal pathway. We found that DDX3 knockdown reduced the phosphorylation of p65 and IKK-β and ultimately attenuated the production of inflammatory cytokines induced by poly(I:C) or TNF-α stimulation. The regulatory effect of DDX3 on NF-κB signal pathway was not affected by the loss of its ATPase or helicase activity. We further identified PP2A C subunit (PP2A-C) as an interaction partner of DDX3 by co-immunoprecipitation and mass spectrum analysis. We confirmed that DDX3 formed the complex with PP2A-C/IKK-β and regulated the interaction between IKK-β and PP2A-C. Furthermore, we demonstrated that DDX3 modulated the activity of PP2A by controlling the phosphorylation of PP2A-C, which might enable PP2A-C to regulate NF-κB signal pathway by dephosphorylating IKK-β. All these findings suggested DDX3 plays multiple roles in modulating innate immune system.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Rui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Miao Luo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Chen Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Chang-Chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yu-Rong Qu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| |
Collapse
|
28
|
Lee KP, Kim HJ, Yang D. Functional identification of protein phosphatase 1-binding consensus residues in NBCe1-B. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 22:91-99. [PMID: 29302216 PMCID: PMC5746516 DOI: 10.4196/kjpp.2018.22.1.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 12/03/2022]
Abstract
Protein phosphatase 1 (PP1) is involved in various signal transduction mechanisms as an extensive regulator. The PP1 catalytic subunit (PP1c) recognizes and binds to PP1-binding consensus residues (FxxR/KxR/K) in NBCe1-B. Consequently, we focused on identifying the function of the PP1-binding consensus residue, 922FMDRLK927, in NBCe1-B. Using site-directed mutagenesis and co-immunoprecipitation assays, we revealed that in cases where the residues were substituted (F922A, R925A, and K927A) or deleted (deletion of amino acids 922–927), NBCe1-B mutants inhibited PP1 binding to NBCe1-B. Additionally, by recording the intracellular pH, we found that PP1-binding consensus residues in NBCe1-B were not only critical for NBCe1-B activity, but also relevant to its surface expression level. Therefore, we reported that NBCe1-B, as a substrate of PP1, contains these residues in the C-terminal region and that the direct interaction between NBCe1-B and PP1 is functionally critical in controlling the regulation of the HCO3− transport. These results suggested that like IRBIT, PP1 was another novel regulator of HCO3− secretion in several types of epithelia.
Collapse
Affiliation(s)
- Kyu Pil Lee
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Hyun Jin Kim
- Department of Physiology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
29
|
Assunção J, Guedes AC, Malcata FX. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates. Mar Drugs 2017; 15:E393. [PMID: 29261163 PMCID: PMC5742853 DOI: 10.3390/md15120393] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
The long-lasting interest in bioactive molecules (namely toxins) produced by (microalga) dinoflagellates has risen in recent years. Exhibiting wide diversity and complexity, said compounds are well-recognized for their biological features, with great potential for use as pharmaceutical therapies and biological research probes. Unfortunately, provision of those compounds is still far from sufficient, especially in view of an increasing demand for preclinical testing. Despite the difficulties to establish dinoflagellate cultures and obtain reasonable productivities of such compounds, intensive research has permitted a number of advances in the field. This paper accordingly reviews the characteristics of some of the most important biotoxins (and other bioactive substances) produced by dinoflagellates. It also presents and discusses (to some length) the main advances pertaining to dinoflagellate production, from bench to large scale-with an emphasis on material published since the latest review available on the subject. Such advances encompass improvements in nutrient formulation and light supply as major operational conditions; they have permitted adaptation of classical designs, and aided the development of novel configurations for dinoflagellate growth-even though shearing-related issues remain a major challenge.
Collapse
Affiliation(s)
- Joana Assunção
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| | - A Catarina Guedes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, P-4450-208 Matosinhos, Portugal.
| | - F Xavier Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal.
| |
Collapse
|
30
|
Visochek L, Castiel A, Mittelman L, Elkin M, Atias D, Golan T, Izraeli S, Peretz T, Cohen-Armon M. Exclusive destruction of mitotic spindles in human cancer cells. Oncotarget 2017; 8:20813-20824. [PMID: 28209915 PMCID: PMC5400547 DOI: 10.18632/oncotarget.15343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 01/31/2017] [Indexed: 12/15/2022] Open
Abstract
We identified target proteins modified by phenanthrenes that cause exclusive eradication of human cancer cells. The cytotoxic activity of the phenanthrenes in a variety of human cancer cells is attributed by these findings to post translational modifications of NuMA and kinesins HSET/kifC1 and kif18A. Their activity prevented the binding of NuMA to α-tubulin and kinesins in human cancer cells, and caused aberrant spindles. The most efficient cytotoxic activity of the phenanthridine PJ34, caused significantly smaller aberrant spindles with disrupted spindle poles and scattered extra-centrosomes and chromosomes. Concomitantly, PJ34 induced tumor growth arrest of human malignant tumors developed in athymic nude mice, indicating the relevance of its activity for cancer therapy.
Collapse
Affiliation(s)
- Leonid Visochek
- The Neufeld Cardiac Research Institute, Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Asher Castiel
- Cancer Research Center, Sheba Medical Center, Ramat Gan 53621, Israel
| | - Leonid Mittelman
- The Imaging Unit, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah Medical Center, Ein-Kerem, Jerusalem 91120, Israel
| | - Dikla Atias
- Cancer Research Center, Sheba Medical Center, Ramat Gan 53621, Israel
| | - Talia Golan
- Cancer Research Center, Sheba Medical Center, Ramat Gan 53621, Israel
| | - Shai Izraeli
- Cancer Research Center, Sheba Medical Center, Ramat Gan 53621, Israel.,The Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tamar Peretz
- Sharett Oncology Institute, Hadassah Medical Center, Ein-Kerem, Jerusalem 91120, Israel
| | - Malka Cohen-Armon
- The Neufeld Cardiac Research Institute, Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
31
|
Huang T, He K, Mao Y, Zhu M, Yan C, Yu F, Qi Q, Wang T, Wang Y, Du J, Liu L. Genetic variants in PPP2CA are associated with gastric cancer risk in a Chinese population. Sci Rep 2017; 7:11499. [PMID: 28904398 PMCID: PMC5597632 DOI: 10.1038/s41598-017-12040-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase 2A (PP2A), a tumor suppressor protein, has been implicated in cell cycle and apoptosis. Additionally, studies have illustrated its crucial roles in transformation of normal human cells to tumorigenic status. PPP2CA, which encodes the alpha isoform of the catalytic subunit of PP2A, has been recently reported to be associated with several types of cancers. Therefore, we hypothesized that genetic variants in PPP2CA might influence susceptibility of gastric cancer. To test this hypothesis, three tagging single nucleotide polymorphisms (SNPs) in PPP2CA were genotyped in a case-control study including 1,113 cases and 1,848 controls in a Chinese population. Three tagging SNPs in PPP2CA were genotyped using Illumina Human Exome BeadChip. We observed that the A allele of rs13187105 was associated with an increased risk of gastric cancer (adjusted odds ratio (OR) = 1.14, 95% confidence interval (CI): 1.02-1.28, P = 0.017). Further analyses showed that rs13187105 [A] was associated with decreased expression of PPP2CA mRNA (P = 5.1 × 10-6), and PPP2CA mRNA was significantly lower in gastric tumor tissues when comparing that in their adjacent normal tissues (P = 0.037). These findings support our hypothesis that genetic variants in PPP2CA may be implicated in gastric cancer susceptibility in Chinese population.
Collapse
Affiliation(s)
- Tongtong Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Kexin He
- Digestive Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Yingying Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Digestive Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Li Liu
- Digestive Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
32
|
Sato T, Shiba-Ishii A, Kim Y, Dai T, Husni RE, Hong J, Kano J, Sakashita S, Iijima T, Noguchi M. miR-3941: A novel microRNA that controls IGBP1 expression and is associated with malignant progression of lung adenocarcinoma. Cancer Sci 2017; 108:536-542. [PMID: 28012229 PMCID: PMC5378261 DOI: 10.1111/cas.13148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/25/2016] [Accepted: 12/18/2016] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin (CD79a) binding protein 1 (IGBP1) is universally overexpressed in lung adenocarcinoma and exerts an anti‐apoptotic effect by binding to PP2Ac. However, the molecular mechanism of IGBP1 overexpression is still unclear. In the present study, we used a microRNA (miRNA) array and TargetScan Human software to detect IGBP1‐related miRNAs that regulate IGBP1 expression. The miRNA array analysis revealed more than 100 miRNAs that are dysregulated in early invasive adenocarcinoma. On the other hand, in silico analysis using TargetScan Human revealed 79 miRNAs that are associated with IGBP1 protein expression. Among the miRNAs selected by miRNA array analysis, six (miR‐34b, miR‐138, miR‐374a, miR‐374b, miR‐1909, miR‐3941) were also included among those selected by TargetScan analysis. Real‐time reverse transcription PCR (real‐time RT‐PCR) showed that the six microRNAs were downregulated in invasive adenocarcinoma (IGBP1+) relative to adjacent normal lung tissue (IGBP1−). Among these microRNAs, only miR‐34b and miR‐3941 depressed luciferase activity by targeting 3′UTR‐IGBP1 in the luciferase vector. We transfected miR‐34b and miR‐3941 into lung adenocarcinoma cell lines (A549, PC‐9), and both of them suppressed IGBP1 expression and cell proliferation. Moreover, the transfected miR‐34b and miR‐3941 induced apoptosis of a lung adenocarcinoma cell line, similarly to the effect of siIGBP1 RNA. As well as miR‐34b, we found that miR‐3941 targeted IGBP1 specifically and was able to exclusively downregulate IGBP1 expression. These findings indicate that suppression of miR‐3941 has an important role in the progression of lung adenocarcinoma at an early stage.
Collapse
Affiliation(s)
- Taiki Sato
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Aya Shiba-Ishii
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Yunjung Kim
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Tomoko Dai
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Ryan Edbert Husni
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - JeongMin Hong
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Junko Kano
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Shingo Sakashita
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Tatsuo Iijima
- Department of Pathology, Ibaraki Prefectural Central Hospital, Kasama-shi, Ibaraki, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
33
|
Ikehara T, Nakashima S, Nakashima J, Kinoshita T, Yasumoto T. Efficient production of recombinant PP2A at a low temperature using a baculovirus expression system. ACTA ACUST UNITED AC 2016; 11:86-89. [PMID: 28352544 PMCID: PMC5042294 DOI: 10.1016/j.btre.2016.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 11/29/2022]
Abstract
The recombinant human PP2A catalytic subunit (rhPP2Ac) was produced in the baculovirus expression system with High Five insect cells. The expression at 19 °C can produce the rhPP2Ac with a higher activity and in a larger quantity than in the incubation conducted at 27 °C. To examine the effects of the low temperature expression on other phosphatases, we expressed human PP2B and PP2C in High Five insect cells. Optimizing the expression temperature in a baculovirus system is effective for producing a recombinant protein.
Protein phosphatase 2A (PP2A) is an enzyme useful for detecting several natural toxins represented by okadaic acid and microcystins. We found that the production of the recombinant human PP2A catalytic subunit (rhPP2Ac) in High Five insect cells could markedly increase when the cells were cultured at 19 °C instead of 27 °C used under conventional conditions. The yield and purity of the enzyme increased four- and three-folds, respectively. The benefit of the altered culturing temperature was observed with the recombinant human protein phosphatase 2B but not 2Cα. The different responses among the enzymes suggest the involvement of an enzyme-specific mechanism that leads to the catalytic subunit overexpression. This is the first report to produce rhPP2Ac at a temperature lower than that used under conventional culture conditions (27 °C) used in the baculovirus expression system with High Five insect cells.
Collapse
Affiliation(s)
- Tsuyoshi Ikehara
- Department of Food Science and Technology, National Fisheries University, 2-7-1 Nagata-honmachi, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Shihoko Nakashima
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Junichi Nakashima
- Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu, Fukuoka, 818-0135, Japan
| | - Tsubasa Kinoshita
- Department of Food Science and Technology, National Fisheries University, 2-7-1 Nagata-honmachi, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Takeshi Yasumoto
- Japan Food Research Laboratories, 6-11-10 Nagayama, Tama, Tokyo, 206-0025, Japan
| |
Collapse
|
34
|
Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3062765. [PMID: 27340655 PMCID: PMC4909930 DOI: 10.1155/2016/3062765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1α is recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1α and the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1α activation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1α and induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1α activation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1α complex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1α complex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation.
Collapse
|
35
|
Marchisella F, Coffey ET, Hollos P. Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton (Hoboken) 2016; 73:596-611. [DOI: 10.1002/cm.21300] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/03/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Francesca Marchisella
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Eleanor T. Coffey
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Patrik Hollos
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| |
Collapse
|
36
|
Hu D, Luo W, Fan LF, Liu FL, Gu J, Deng HM, Zhang C, Huang LH, Feng QL. Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis. INSECT MOLECULAR BIOLOGY 2016; 25:153-162. [PMID: 26683413 DOI: 10.1111/imb.12208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis.
Collapse
Affiliation(s)
- D Hu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - W Luo
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - L F Fan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - F L Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - J Gu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - H M Deng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - C Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - L H Huang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Q L Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
37
|
Kobayashi Y, Ito K, Kanda A, Tomoda K, Miller-Larsson A, Barnes PJ, Mercado N. Protein tyrosine phosphatase PTP-RR regulates corticosteroid sensitivity. Respir Res 2016; 17:30. [PMID: 27013170 PMCID: PMC4806463 DOI: 10.1186/s12931-016-0349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
Background We have recently reported that protein phosphate 2A (PP2A) inactivation resulted in increased phosphorylation of the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase 1 (JNK1) and glucocorticoid receptors (GR) at Ser226, thereby reducing GR nuclear translocation and causing corticosteroid insensitivity in severe asthmatics. Protein tyrosine phosphatases (PTPs) are also known to be critically involved in the regulation of MAPKs, such as JNK and therefore potentially associated with GR function. The aim of study was to elucidate the involvement of MAPK-PTPs (PTP-RR, PTP-N5 and PTP-N7), which can dephosphorylate MAPKs, in the regulation of corticosteroid sensitivity. Methods Corticosteroid sensitivity, GR nuclear translocation, phosphorylation levels of GR-Ser226, JNK1 and PP2A catalytic subunit (PP2AC)-Tyr307 and protein expression levels and activities of PTP-RR and PP2AC were evaluated in U937 cells and/or peripheral blood mononuclear cells (PBMCs). Knock-down effects of MAPK-PTPs using siRNA were also evaluated. Results Knock-down of PTP-RR, but not of PTP-N5 or PTP-N7 impaired corticosteroid sensitivity, induced GR-Ser226 phosphorylation and reduced GR nuclear translocation. Under IL-2/IL-4-induced corticosteroid insensitivity, PTP-RR expression, activity and associations with JNK1 and GR were reduced but PTP-RR activity was restored by formoterol. Also in PBMCs from severe asthmatic patients, PTP-RR and JNK1 expression were reduced and GR-Ser226 phosphorylation increased. Furthermore, PTP-RR was associated with PP2A. PTP-RR reduction enhanced PP2AC-Tyr307 phosphorylation leading to impairment of PP2A expression and activity. Conclusions We demonstrated that with corticosteroid insensitivity PTP-RR fails to reduce phosphorylation of JNK1 and GR-Ser226, resulting in down-regulation of GR nuclear translocation. Reduced PTP-RR may represent a novel cause of corticosteroid insensitivity in severe asthmatics. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0349-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK. .,Airway Medicine, Department of Otolaryngology, Kansai Medical University, Osaka, Japan.
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK
| | - Akira Kanda
- Airway Medicine, Department of Otolaryngology, Kansai Medical University, Osaka, Japan
| | - Koich Tomoda
- Airway Medicine, Department of Otolaryngology, Kansai Medical University, Osaka, Japan
| | | | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK
| | - Nicolas Mercado
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK
| |
Collapse
|
38
|
Song Q, Chen H, Li Y, Zhou H, Han Q, Diao X. Toxicological effects of benzo(a)pyrene, DDT and their mixture on the green mussel Perna viridis revealed by proteomic and metabolomic approaches. CHEMOSPHERE 2016; 144:214-224. [PMID: 26363323 DOI: 10.1016/j.chemosphere.2015.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
Benzo(a)pyrene (BaP) and dichlorodiphenyltrichloroethane (DDT) are persistent organic pollutants and environmental estrogens (EEs) with known toxicity towards the green mussel, Perna viridis. In this study, the toxic effects of BaP (10 µg/L) and DDT (10 µg/L) and their mixture were assessed in green mussel gills with proteomic and metabolomic approaches. Metabolic responses indicated that BaP mainly caused disturbance in osmotic regulation by significantly decrease in branched chain amino acids, dimethylamine and dimethylglycine in gills of male green mussels after exposure for 7 days. DDT mainly caused disturbance in osmotic regulation and energy metabolism by differential alteration of betaine, dimethylamine, dimethylglycine, amino acids, and succinate in gills of male green mussels. However, the mixture of BaP and DDT didn't show obvious metabolite changes. Proteomic analysis showed different protein expression profiles between different treatment groups, which demonstrated that BaP, DDT and their mixture may have different modes of action. Proteomic responses revealed that BaP induced cell apoptosis, disturbance in protein digestion and energy metabolism in gills of green mussels, whereas DDT exposure altered proteins that were associated with oxidative stress, cytoskeleton and cell structure, protein digestion and energy metabolism. However, the mixture of BaP and DDT affected proteins related to the oxidative stress, cytoskeleton and cell structure, protein biosynthesis and modification, energy metabolism, growth and apoptosis.
Collapse
Affiliation(s)
- Qinqin Song
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Hao Chen
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuhu Li
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| | - Qian Han
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| |
Collapse
|
39
|
Zhang N, Wang S, Zhang X, Dong Z, Chen F, Cui D. Transcriptome analysis of the Chinese bread wheat cultivar Yunong 201 and its ethyl methanesulfonate mutant line. Gene 2016; 575:285-93. [PMID: 26342963 DOI: 10.1016/j.gene.2015.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022]
Abstract
Roche 454 next-generation sequencing was applied to obtain extensive information about the transcriptomes of the bread wheat cultivar Yunong 201 and its EMS mutant line Yunong 3114. Totals of 1.43 million and 1.44 million raw reads were generated, 14,432, 17,845 and 27,867 isotigs were constructed using the reads in Yunong 201, Yunong 3114 and their combination, respectively. Moreover, 29,042, 34,722, and 48,486 unigenes were generated in Yunong 201, Yunong 3114, and combined cultivars, respectively. A total of 50,382 and 59,891 unigenes from the Yunong 201 and Yunong 3114 were mapped on different chromosomes. Of all unigenes, 1363 DEGs were identified in Yunong 201 and Yunong 3114. qRT-PCR analysis confirmed the expression profiles of 40 candidate unigenes possibly related to abiotic stresses. The expression patterns of four annotated DEGs were also verified in the two wheat cultivars under abiotic stresses. This study provided useful information for further analysis of wheat functional genomics.
Collapse
Affiliation(s)
- Ning Zhang
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Corn Crop, Henan Agricultural University, Zhengzhou 450002, China.
| | - Shasha Wang
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Corn Crop, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiangfen Zhang
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Corn Crop, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhongdong Dong
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Corn Crop, Henan Agricultural University, Zhengzhou 450002, China.
| | - Feng Chen
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Corn Crop, Henan Agricultural University, Zhengzhou 450002, China.
| | - Dangqun Cui
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Corn Crop, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
40
|
Wang J, Li Z, Liu B, Chen G, Shao N, Ying X, Wang Y. Systematic study of cis-antisense miRNAs in animal species reveals miR-3661 to target PPP2CA in human cells. RNA (NEW YORK, N.Y.) 2016; 22:87-95. [PMID: 26577378 PMCID: PMC4691837 DOI: 10.1261/rna.052894.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/03/2015] [Indexed: 05/13/2023]
Abstract
MicroRNAs (miRNAs) suppress targeting gene expression through blocking translation or triggering mRNA degradation and, in general, act in trans, through a partially complementary interaction with the 3' untranslated region (3' UTR) or coding regions of a target gene. Although it has been reported previously that some miRNAs suppress their target genes on the opposite strand with a fully complementary sequence (i.e., natural antisense miRNAs that act in cis), there is no report to systematically study such cis-antisense miRNAs in different animal species. Here we report that cis-antisense miRNAs do exist in different animal species: 48 in Caenorhabditis elegans, 17 in Drosophila, 36 in Mus musculus, and 52 in Homo sapiens using a systematical bioinformatics approach. We show that most of these cis-antisense miRNAs can efficiently reduce the expression levels of their target genes in human cells. We further investigate hsa-miR-3661, one of the predicted cis-antisense miRNAs, in detail and demonstrate that this miRNA directly targets the coding sequence of PPP2CA located on the opposite DNA strand and inhibits the PPP2CA expression. Taken together, these results indicate that cis-antisense miRNAs are conservative and functional in animal species including humans.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Zongcheng Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Bailong Liu
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA The First Norman Bethune Hospital of Jilin University, Changchun 130012, China
| | - Guangnan Chen
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaomin Ying
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
41
|
Olivares Rubio HF, Martínez-Torres ML, Nájera-Martínez M, Dzul-Caamal R, Domínguez-López ML, García-Latorre E, Vega-López A. Biomarkers involved in energy metabolism and oxidative stress response in the liver of Goodea gracilis Hubbs and Turner, 1939 exposed to the microcystin-producing Microcystis aeruginosa LB85 strain. ENVIRONMENTAL TOXICOLOGY 2015; 30:1113-1124. [PMID: 24639371 DOI: 10.1002/tox.21984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/24/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
Goodea gracilis is an endemic fish that only habitats in some water bodies of Central Mexico that are contaminated with cyanobacteria-producing microcystins (MC); however, a lack of information on this topic prevails. With the aim to generate the first approximation about the physiological changes elicited by cyanobacterium that produce MC congeners in this fish species, specimens born in the laboratory was exposed for 96 h to cell densities of 572.5, 1145, 2290, 4580, and 9160 × 10(6) cells of Microcystis aeruginosa strain LB85/L, and a set of novel endpoint related to hepatic gluconeogenesis (ADH/LDH) and pro-oxidant forces O2., H2 O2 ) in addition to biomarkers of oxidative damage and antioxidant response was evaluated in the liver. Results suggest that high inhibition of protein serine/threonine phosphatase (PP) may trigger many metabolic processes, such as those related to hepatic gluconeogenesis (ADH/LDH) and pro-oxidant O2⋅, H2 O2 , TBARS, ROOH, RC=O) as well as antioxidant (SOD, CAT, GPx) response to oxidative stress. Particularly, we observed that inhibition of LDH and PP, and H2 O2 increase and TBARS production were the key damages induced by high densities of M. aeruginosa. However, changes between aerobic and anaerobic metabolism related with ROS metabolism and ADH/LDH balance are apparently an acclimation of this fish species to exposure to cyanobacteria or their MCs. Fish species living in environments potentially contaminated with cyanobacteria or their MCs possess mechanisms of acclimation that allow them to offset the damage induced, even in the case of fish that have never been exposed to MCs.
Collapse
Affiliation(s)
- Hugo F Olivares Rubio
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México, DF, México
| | - M Lysset Martínez-Torres
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México, DF, México
| | - Minerva Nájera-Martínez
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México, DF, México
| | - Ricardo Dzul-Caamal
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México, DF, México
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala s/n, Casco de Santo Tomás, CP 11340, México, DF, México
| | - Ethel García-Latorre
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala s/n, Casco de Santo Tomás, CP 11340, México, DF, México
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México, DF, México
| |
Collapse
|
42
|
Study of Protein Phosphatase 2A (PP2A) Activity in LPS-Induced Tolerance Using Fluorescence-Based and Immunoprecipitation-Aided Methodology. Biomolecules 2015; 5:1284-301. [PMID: 26131975 PMCID: PMC4598752 DOI: 10.3390/biom5031284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is one of the most abundant intracellular serine/threonine (Ser/Thr) phosphatases accounting for 1% of the total cellular protein content. PP2A is comprised of a heterodimeric core enzyme and a substrate-specific regulatory subunit. Potentially, at least seventy different compositions of PP2A exist because of variable regulatory subunit binding that accounts for various activity modulating numerous cell functions. Due to the constitutive phosphatase activity present inside cells, a sensitive assay is required to detect the changes of PP2A activity under various experimental conditions. We optimized a fluorescence assay (DIFMU assay) by combining it with prior anti-PP2A immunoprecipitation to quantify PP2A-specific phosphatase activity. It is also known that prior exposure to lipopolysaccharides (LPS) induces “immune tolerance” of the cells to subsequent stimulation. Herein we report that PP2A activity is upregulated in tolerized peritoneal macrophages, corresponding to decreased TNF-α secretion upon second LPS stimulation. We further examined the role of PP2A in the tolerance effect by using PP2ACαlox/lox;lyM-Cre conditional knockout macrophages. We found that PP2A phosphatase activity cannot be further increased by tolerance. TNF-α secretion from tolerized PP2ACαlox/lox;lyM-Cre macrophages is higher than tolerized control macrophages. Furthermore, we showed that the increased TNF-α secretion may be due to an epigenetic transcriptionally active signature on the promoter of TNF-α gene rather than regulation of the NFκB/IκB signaling pathway. These results suggest a role for increased PP2A activity in the regulation of immune tolerance.
Collapse
|
43
|
Ma J, Feng Y, Xie W, Li X. PP2A (PR65) in Silver Carp: cDNA Cloning and Expression Analysis. J Biochem Mol Toxicol 2015; 29:399-409. [DOI: 10.1002/jbt.21706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/07/2015] [Accepted: 03/01/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Junguo Ma
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 China
| | - Yiyi Feng
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 China
| | - Wenjie Xie
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 China
| | - Xiaoyu Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 China
| |
Collapse
|
44
|
Zhao Y, Zeng C, Massiah MA. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain. PLoS One 2015; 10:e0124377. [PMID: 25874572 PMCID: PMC4395243 DOI: 10.1371/journal.pone.0124377] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/01/2015] [Indexed: 11/25/2022] Open
Abstract
The zinc-binding Bbox1 domain in protein MID1, a member of the TRIM family of proteins, facilitates the ubiquitination of the catalytic subunit of protein phosphatase 2A and alpha4, a protein regulator of PP2A. The natural mutation of residue A130 to a valine or threonine disrupts substrate recognition and catalysis. While NMR data revealed the A130T mutant Bbox1 domain failed to coordinate both structurally essential zinc ions and resulted in an unfolded structure, the unfolding mechanism is unknown. Principle component analysis revealed that residue A130 served as a hinge point between the structured β-strand-turn-β-strand (β-turn-β) and the lasso-like loop sub-structures that constitute loop1 of the ββα-RING fold that the Bbox1 domain adopts. Backbone RMSD data indicate significant flexibility and departure from the native structure within the first 5 ns of the molecular dynamics (MD) simulation for the A130V mutant (>6 Å) and after 30 ns for A130T mutant (>6 Å). Overall RMSF values were higher for the mutant structures and showed increased flexibility around residues 125 and 155, regions with zinc-coordinating residues. Simulated pKa values of the sulfhydryl group of C142 located near A130 suggested an increased in value to ~9.0, paralleling the increase in the apparent dielectric constants for the small cavity near residue A130. Protonation of the sulfhydryl group would disrupt zinc-coordination, directly contributing to unfolding of the Bbox1. Together, the increased motion of residues of loop 1, which contains four of the six zinc-binding cysteine residues, and the increased pKa of C142 could destabilize the structure of the zinc-coordinating residues and contribute to the unfolding.
Collapse
Affiliation(s)
- Yunjie Zhao
- Department of Physics, The George Washington University, Washington, District of Columbia, United States of America
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, District of Columbia, United States of America
- Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Michael A. Massiah
- Department of Chemistry, The George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
45
|
Svirčev Z, Lujić J, Marinović Z, Drobac D, Tokodi N, Stojiljković B, Meriluoto J. Toxicopathology induced by microcystins and nodularin: a histopathological review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:125-167. [PMID: 26023756 DOI: 10.1080/10590501.2015.1003000] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cyanobacteria are present in all aquatic ecosystems throughout the world. They are able to produce toxic secondary metabolites, and microcystins are those most frequently found. Research has displayed a negative influence of microcystins and closely related nodularin on fish, and various histopathological alterations have been observed in many organs of the exposed fish. The aim of this article is to summarize the present knowledge of the impact of microcystins and nodularin on the histology of fish. The observed negative effects of cyanotoxins indicate that cyanobacteria and their toxins are a relevant medical (due to irritation, acute poisoning, tumor promotion, and carcinogenesis), ecotoxicological, and economic problem that may affect both fish and fish consumers including humans.
Collapse
Affiliation(s)
- Zorica Svirčev
- a Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad , Novi Sad , Serbia
| | | | | | | | | | | | | |
Collapse
|
46
|
Pandey R, Mohmmed A, Pierrot C, Khalife J, Malhotra P, Gupta D. Genome wide in silico analysis of Plasmodium falciparum phosphatome. BMC Genomics 2014; 15:1024. [PMID: 25425018 PMCID: PMC4256932 DOI: 10.1186/1471-2164-15-1024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/12/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Eukaryotic cellular machineries are intricately regulated by several molecular mechanisms involving transcriptional control, post-translational control and post-translational modifications of proteins (PTMs). Reversible protein phosphorylation/dephosphorylation process, which involves kinases as well as phosphatases, represents an important regulatory mechanism for diverse pathways and systems in all organisms including human malaria parasite, Plasmodium falciparum. Earlier analysis on P. falciparum protein-phosphatome revealed presence of 34 phosphatases in Plasmodium genome. Recently, we re-analysed P. falciparum phosphatome aimed at identifying parasite specific phosphatases. RESULTS Plasmodium database (PlasmoDB 9.2) search, combined with PFAM and CDD searches, revealed 67 candidate phosphatases in P. falciparum. While this number is far less than the number of phosphatases present in Homo sapiens, it is almost the same as in other Plasmodium species. These Plasmodium phosphatase proteins were classified into 13 super families based on NCBI CDD search. Analysis of proteins expression profiles of the 67 phosphatases revealed that 44 phosphatases are expressed in both schizont as well as gametocytes stages. Fourteen phosphatases are common in schizont, ring and trophozoite stages, four phosphatases are restricted to gametocytes, whereas another three restricted to schizont stage. The phylogenetic trees for each of the known phosphatase super families reveal a considerable phylogenetic closeness amongst apicomplexan organisms and a considerable phylogenetic distance with other eukaryotic model organisms included in the study. The GO assignments and predicted interaction partners of the parasite phosphatases indicate its important role in diverse cellular processes. CONCLUSION In the study presented here, we reviewed the P. falciparum phosphatome to show presence of 67 candidate phosphatases in P. falciparum genomes/proteomes. Intriguingly, amongst these phosphatases, we could identify six Plasmodium specific phosphatases and 33 putative phosphatases that do not have human orthologs, thereby suggesting that these phosphatases have the potential to be explored as novel antimalarial drug targets.
Collapse
Affiliation(s)
| | | | | | - Jamal Khalife
- Structural and Computational Biology group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | |
Collapse
|
47
|
Wright KM, Wu K, Babatunde O, Du H, Massiah MA. XLOS-observed mutations of MID1 Bbox1 domain cause domain unfolding. PLoS One 2014; 9:e107537. [PMID: 25216264 PMCID: PMC4162623 DOI: 10.1371/journal.pone.0107537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
MID1 catalyzes the ubiquitination of the protein alpha4 and the catalytic subunit of protein phosphatase 2A. Mutations within the MID1 Bbox1 domain are associated with X-linked Opitz G syndrome (XLOS). Our functional assays have shown that mutations of Ala130 to Val or Thr, Cys142 to Ser and Cys145 to Thr completely disrupt the polyubiquitination of alpha4. Using NMR spectroscopy, we characterize the effect of these mutations on the tertiary structure of the Bbox1 domain by itself and in tandem with the Bbox2 domain. The mutation of either Cys142 or Cys145, each of which is involved in coordinating one of the two zinc ions, results in the collapse of signal dispersion in the HSQC spectrum of the Bbox1 domain indicating that the mutant protein structure is unfolded. Each mutation caused the coordination of both zinc ions, which are ∼ 13 Å apart, to be lost. Although Ala130 is not involved in the coordination of a zinc ion, the Ala130Thr mutant Bbox1 domain yields a poorly dispersed HSQC spectrum similar to those of the Cys142Ser and Cys145Thr mutants. Interestingly, neither cysteine mutation affects the structure of the adjacent Bbox2 domain when the two Bbox domains are engineered in their native tandem Bbox1-Bbox2 protein construct. Dynamic light scattering measurements suggest that the mutant Bbox1 domain has an increased propensity to form aggregates compared to the wild type Bbox1 domain. These studies provide insight into the mechanism by which mutations observed in XLOS affect the structure and function of the MID1 Bbox1 domain.
Collapse
Affiliation(s)
- Katharine M. Wright
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Kuanlin Wu
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Omotolani Babatunde
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Haijuan Du
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Michael A. Massiah
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
48
|
Du H, Wu K, Didoronkute A, Levy MVA, Todi N, Shchelokova A, Massiah MA. MID1 catalyzes the ubiquitination of protein phosphatase 2A and mutations within its Bbox1 domain disrupt polyubiquitination of alpha4 but not of PP2Ac. PLoS One 2014; 9:e107428. [PMID: 25207814 PMCID: PMC4160256 DOI: 10.1371/journal.pone.0107428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/14/2014] [Indexed: 01/05/2023] Open
Abstract
MID1 is a microtubule-associated protein that belongs to the TRIM family. MID1 functions as an ubiquitin E3 ligase, and recently was shown to catalyze the polyubiquitination of, alpha4, a protein regulator of protein phosphatase 2A (PP2A). It has been hypothesized that MID1 regulates PP2A, requiring the intermediary interaction with alpha4. Here we report that MID1 catalyzes the in vitro ubiquitination of the catalytic subunit of PP2A (PP2Ac) in the absence of alpha4. In the presence of alpha4, the level of PP2Ac ubiquitination is reduced. Using the MID1 RING-Bbox1-Bbox2 (RB1B2) construct containing the E3 ligase domains, we investigate the functional effects of mutations within the Bbox domains that are identified in patients with X-linked Opitz G syndrome (XLOS). The RB1B2 proteins harboring the C142S, C145T, A130V/T mutations within the Bbox1 domain and C195F mutation within the Bbox2 domain maintain auto-polyubiquitination activity. Qualitatively, the RB1B2 proteins containing these mutations are able to catalyze the ubiquitination of PP2Ac. In contrast, the RB1B2 proteins with mutations within the Bbox1 domain are unable to catalyze the polyubiquitination of alpha4. These results suggest that unregulated alpha4 may be the direct consequence of these natural mutations in the Bbox1 domain of MID1, and hence alpha4 could play a greater role to account for the increased amount of PP2A observed in XLOS-derived fibroblasts.
Collapse
Affiliation(s)
- Haijuan Du
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Kuanlin Wu
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Alma Didoronkute
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Marcus V. A. Levy
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Nimish Todi
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Anna Shchelokova
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Michael A. Massiah
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
49
|
Danielsen EM, Hansen GH, Severinsen MC. Okadaic acid: A rapid inducer of lamellar bodies in small intestinal enterocytes. Toxicon 2014; 88:77-87. [DOI: 10.1016/j.toxicon.2014.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/02/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
|
50
|
Luo DJ, Feng Q, Wang ZH, Sun DS, Wang Q, Wang JZ, Liu GP. Knockdown of phosphotyrosyl phosphatase activator induces apoptosis via mitochondrial pathway and the attenuation by simultaneous tau hyperphosphorylation. J Neurochem 2014; 130:816-25. [PMID: 24821282 DOI: 10.1111/jnc.12761] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 01/01/2023]
Abstract
Phosphotyrosyl phosphatase activator (PTPA) is decreased in the brains of Alzheimer's disease (AD) and the AD transgenic mouse models. Here, we investigated whether down-regulation of PTPA affects cell viability and the underlying mechanisms. We found that PTPA was located in the integral membrane of mitochondria, and knockdown of PTPA induced cell apoptosis in HEK293 and N2a cell lines. PTPA knockdown decreased mitochondrial membrane potential and induced Bax translocation into the mitochondria with a simultaneous release of Cyt C, activation of caspase-3, cleavage of poly (DNA ribose) polymerase (PARP), and decrease in Bcl-xl and Bcl-2 protein levels. Over-expression of Protein phosphatase 2A (PP2A) catalytic subunit (PP2AC ) did not rescue the apoptosis induced by PTPA knockdown, and PTPA knockdown did not affect the level of and their phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that PP2A and MAPKs were not involved in the apoptosis induced by PTPA knockdown. In the cells with over-expression of tau, PTPA knockdown induced PP2A inhibition and tau hyperphosphorylation but did not cause significant cell death. These data suggest that PTPA deficit causes apoptotic cell death through mitochondrial pathway and simultaneous tau hyperphosphorylation attenuates the PTPA-induced cell death. Phosphotyrosyl phosphatase activator (PTPA) is decreased in the brains of Alzheimer's disease (AD) and AD transgenic mouse models. Here, we investigated whether down-regulation of PTPA affects cell viability. We found that PTPA located in the integral membrane of mitochondria, and knockdown of PTPA induced cell apoptosis in HEK293 and N2a cell lines by decreasing mitochondrial membrane potential, which leads to translocation of Bax and a simultaneous release of Cyt C. In the cells with tau over-expression, PTPA knockdown inactivated PP2A to phosphorylate tau to avoid cell apoptosis which induced by PTPA knockdown.
Collapse
Affiliation(s)
- Dan-Ju Luo
- Department of Pathophysiology, Key Laboratory of Chinese Ministry of Education for Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|