1
|
Lish AM, Grogan EFL, Benoit CR, Pearse RV, Heuer SE, Luquez T, Orme GA, Galle PC, Milinkeviciute G, Green KN, Alexander KD, Fancher SB, Stern AM, Fujita M, Bennett DA, Seyfried NT, De Jager PL, Menon V, Young-Pearse TL. CLU alleviates Alzheimer's disease-relevant processes by modulating astrocyte reactivity and microglia-dependent synaptic density. Neuron 2025:S0896-6273(25)00254-5. [PMID: 40311610 DOI: 10.1016/j.neuron.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Genetic studies implicate clusterin (CLU) in the pathogenesis of Alzheimer's disease (AD), yet its precise molecular impact remains unclear. Through unbiased proteomic profiling and functional validation in CLU-deficient astrocytes, we identify increased nuclear factor κB (NF-κB)-dependent signaling and complement C3 secretion. Reduction of astrocyte CLU induced microglia-dependent modulation of extracellular apolipoprotein E (APOE) and phosphorylated tau, as well as increased microglial phagocytosis and reduced synapse numbers. By integrating mouse and human cellular models with comprehensive analyses of human plasma and brain tissue, we demonstrate that CLU AD-risk alleles are associated with reduced CLU protein and heightened inflammatory profiles. These findings establish a mechanistic link between AD genetic risk factors, astrocyte reactivity, and microglia-mediated effects on synaptic integrity. Collectively, these results support a model in which CLU upregulation in response to neuropathology is associated with maintenance of cognitive function, while diminished astrocyte CLU levels heighten disease susceptibility.
Collapse
Affiliation(s)
- Alexandra M Lish
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elyssa F L Grogan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Courtney R Benoit
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah E Heuer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tain Luquez
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Gwendolyn A Orme
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paige C Galle
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Giedre Milinkeviciute
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Kim N Green
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kellianne D Alexander
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Seeley B Fancher
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew M Stern
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | | | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Zhang R, Ohshima M, Brodin D, Wang Y, Morancé A, Schultzberg M, Chen G, Johansson J. Intravenous chaperone treatment of late-stage Alzheimer´s disease (AD) mouse model affects amyloid plaque load, reactive gliosis and AD-related genes. Transl Psychiatry 2024; 14:453. [PMID: 39448576 PMCID: PMC11502864 DOI: 10.1038/s41398-024-03161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Treatment strategies that are efficient against established Alzheimer's disease (AD) are needed. BRICHOS is a molecular chaperone domain that prevents amyloid fibril formation and associated cellular toxicity. In this study, we treated an AD mouse model seven months after pathology onset, using intravenous administration of recombinant human (rh) Bri2 BRICHOS R221E. Two injections of rh Bri2 BRICHOS R221E per week for three months in AD mice reduced amyloid β (Aβ) burden, and mitigated astro- and microgliosis, as determined by glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba1) immunohistochemistry. Sequencing of RNA from cortical microglia cells showed that BRICHOS treatment normalized the expression of identified plaque-induced genes in mice and humans, including clusterin and GFAP. Rh Bri2 BRICHOS R221E passed the blood-brain barrier (BBB) in age-matched wild-type mice as efficiently as in the AD mice, but then had no effect on measures of AD-like pathology, and mainly affected the expression of genes that affect cellular shape and movement. These results indicate a potential of rh Bri2 BRICHOS against advanced AD and underscore the ability of BRICHOS to target amyloid-induced pathology.
Collapse
Affiliation(s)
- Ruixin Zhang
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Makiko Ohshima
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Solna, Sweden
| | - David Brodin
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Yu Wang
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Antonin Morancé
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Solna, Sweden
- Department of Neuroscience, University of Mons (UMONS), Mons, Belgium
| | - Marianne Schultzberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Solna, Sweden.
| | - Gefei Chen
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Jan Johansson
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
3
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
4
|
Tang Y, Park HJ, Li S, Fitzgerald MC. Analysis of Brain Protein Stability Changes in a Mouse Model of Alzheimer's Disease. J Proteome Res 2024; 23:4443-4456. [PMID: 39292827 DOI: 10.1021/acs.jproteome.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The stability of proteins from rates of oxidation (SPROX), thermal proteome profiling (TPP), and limited proteolysis (LiP) techniques were used to profile the stability of ∼2500 proteins in hippocampus tissue cell lysates from 2- and 8-months-old wild-type (C57BL/6J; n = 7) and transgenic (5XFAD; n = 7) mice with five Alzheimer's disease (AD)-linked mutations. Approximately 200-500 protein hits with AD-related stability changes were detected by each technique at each age point. The hit overlap from technique to technique was low, and all of the techniques generated protein hits that were more numerous and largely different from those identified in protein expression level analyses, which were also performed here. The hit proteins identified by each technique were enriched in a number of the same pathways and biological processes, many with known connections to AD. The protein stability hits included 25 high-value conformation biomarkers with AD-related stability changes detected using at least 2 techniques at both age points. Also discovered were subunit- and age-specific AD-related stability changes in the proteasome, which had reduced function at both age points. The different folding stability profiles of the proteasome at the two age points are consistent with a different mechanism for proteasome dysfunction at the early and late stages of AD.
Collapse
Affiliation(s)
- Yun Tang
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Hye-Jin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Shengyu Li
- Department of Computational Biology & Bioinformatics, Duke University, Durham, North Carolina 27708, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
5
|
Laslo A, Laslo L, Arbănași EM, Ujlaki-Nagi AA, Chinezu L, Ivănescu AD, Arbănași EM, Cărare RO, Cordoș BA, Popa IA, Brînzaniuc K. Pathways to Alzheimer's Disease: The Intersecting Roles of Clusterin and Apolipoprotein E in Amyloid-β Regulation and Neuronal Health. PATHOPHYSIOLOGY 2024; 31:545-558. [PMID: 39449522 PMCID: PMC11503414 DOI: 10.3390/pathophysiology31040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) within the extracellular spaces of the brain as plaques and along the blood vessels in the brain, a condition also known as cerebral amyloid angiopathy (CAA). Clusterin (CLU), or apolipoprotein J (APOJ), is a multifunctional glycoprotein that has a role in many physiological and neurological conditions, including AD. The apolipoprotein E (APOE) is a significant genetic factor in AD, and while the primary physiological role of APOE in the brain and peripheral tissues is to regulate lipid transport, it also participates in various other biological processes, having three basic human forms: APOE2, APOE3, and APOE4. Notably, the APOE4 allele substantially increases the risk of developing late-onset AD. The main purpose of this review is to examine the roles of CLU and APOE in AD pathogenesis in order to acquire a better understanding of AD pathogenesis from which to develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alexandru Laslo
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Laura Laslo
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
| | - Eliza-Mihaela Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | | | - Laura Chinezu
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Adrian Dumitru Ivănescu
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| | - Emil-Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | | | - Bogdan Andrei Cordoș
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
- Centre for Experimental Medical and Imaging Studies, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ioana Adriana Popa
- Clinic of Radiology, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Klara Brînzaniuc
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| |
Collapse
|
6
|
Sultana P, Novotny J. Clusterin: a double-edged sword in cancer and neurological disorders. EXCLI JOURNAL 2024; 23:912-936. [PMID: 39253532 PMCID: PMC11382300 DOI: 10.17179/excli2024-7369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 09/11/2024]
Abstract
Clusterin is a ubiquitously expressed glycoprotein that is involved in a whole range of biological processes. This protein is known to promote tumor survival and resistance to therapy in cancer, which contrasts sharply with its neuroprotective functions in various neurological diseases. This duality has led to recent investigations into the potential therapeutic applications of clusterin inhibition, particularly in cancer treatment. Inhibition of clusterin has been shown to be able to induce cancer cell senescence, suppress their growth and increase their sensitivity to therapy. The involvement of clusterin in the aging process makes its biological effects even more complex and offers a broad perspective for research and therapeutic exploration of various pathological conditions. This review critically examines the multiple functions of clusterin in cancer and neurological disorders and addresses the controversies surrounding its role in these areas. The assessment includes an in-depth analysis of the existing literature and examining the relationship of clusterin to fundamental aspects of cancer progression, including cell proliferation, apoptosis, metastasis, and drug resistance. In addition, the review addresses the neurobiological implications of clusterin and examines its controversial role in neuroprotection, neurodegeneration, and synaptic plasticity. Attention is also paid to the epigenetic regulation of clusterin expression. By clarifying conflicting findings and discrepancies in the literature, this review aims to provide a nuanced understanding of the molecular mechanisms underlying clusterin functions and its potential clinical implications in both cancer and neurodisorders. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Pinky Sultana
- Department of Physiology, Faculty of Science, Charles University, Prague 128 00, Czechia
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 20, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague 128 00, Czechia
| |
Collapse
|
7
|
Palihati N, Tang Y, Yin Y, Yu D, Liu G, Quan Z, Ni J, Yan Y, Qing H. Clusterin is a Potential Therapeutic Target in Alzheimer's Disease. Mol Neurobiol 2024; 61:3836-3850. [PMID: 38017342 DOI: 10.1007/s12035-023-03801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
In recent years, Clusterin, a glycosylated protein with multiple biological functions, has attracted extensive research attention. It is closely associated with the physiological and pathological states within the organism. Particularly in Alzheimer's disease (AD) research, Clusterin plays a significant role in the disease's occurrence and progression. Numerous studies have demonstrated a close association between Clusterin and AD. Firstly, the expression level of Clusterin in the brain tissue of AD patients is closely related to pathological progression. Secondly, Clusterin is involved in the deposition and formation of β-amyloid, which is a crucial process in AD development. Furthermore, Clusterin may affect the pathogenesis of AD through mechanisms such as regulating inflammation, controlling cell apoptosis, and clearing pathological proteins. Therefore, further research on the relationship between Clusterin and AD will contribute to a deeper understanding of the etiology of this neurodegenerative disease and provide a theoretical basis for developing early diagnostic and therapeutic strategies for AD. This also makes Clusterin one of the research focuses as a potential biomarker for AD diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Nazhakaiti Palihati
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Ding Yu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China.
| |
Collapse
|
8
|
Ramirez S, Koerich S, Astudillo N, De Gregorio N, Al-Lahham R, Allison T, Rocha NP, Wang F, Soto C. Plasma Exchange Reduces Aβ Levels in Plasma and Decreases Amyloid Plaques in the Brain in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:17087. [PMID: 38069410 PMCID: PMC10706894 DOI: 10.3390/ijms242317087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, characterized by the abnormal accumulation of protein aggregates in the brain, known as neurofibrillary tangles and amyloid-β (Aβ) plaques. It is believed that an imbalance between cerebral and peripheral pools of Aβ may play a relevant role in the deposition of Aβ aggregates. Therefore, in this study, we aimed to evaluate the effect of the removal of Aβ from blood plasma on the accumulation of amyloid plaques in the brain. We performed monthly plasma exchange with a 5% mouse albumin solution in the APP/PS1 mouse model from 3 to 7 months old. At the endpoint, total Aβ levels were measured in the plasma, and soluble and insoluble brain fractions were analyzed using ELISA. Brains were also analyzed histologically for amyloid plaque burden, plaque size distributions, and gliosis. Our results showed a reduction in the levels of Aβ in the plasma and insoluble brain fractions. Interestingly, histological analysis showed a reduction in thioflavin-S (ThS) and amyloid immunoreactivity in the cortex and hippocampus, accompanied by a change in the size distribution of amyloid plaques, and a reduction in Iba1-positive cells. Our results provide preclinical evidence supporting the relevance of targeting Aβ in the periphery and reinforcing the potential use of plasma exchange as an alternative non-pharmacological strategy for slowing down AD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (S.R.); (S.K.); (N.A.); (N.D.G.); (R.A.-L.); (T.A.); (N.P.R.); (F.W.)
| |
Collapse
|
9
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Huntoon K, Anderson SK, Ballman KV, Twohy E, Dooley K, Jiang W, An Y, Li J, von Roemeling C, Qie Y, Ross OA, Cerhan JH, Whitton AC, Greenspoon JN, Parney IF, Ashman JB, Bahary JP, Hadjipanayis C, Urbanic JJ, Farace E, Khuntia D, Laack NN, Brown PD, Roberge D, Kim BYS. Association of circulating markers with cognitive decline after radiation therapy for brain metastasis. Neuro Oncol 2023; 25:1123-1131. [PMID: 36472389 PMCID: PMC10237411 DOI: 10.1093/neuonc/noac262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A recent phase III trial (NCT01372774) comparing use of stereotactic radiosurgery [SRS] versus whole-brain radiation therapy [WBRT] after surgical resection of a single brain metastasis revealed that declines in cognitive function were more common with WBRT than with SRS. A secondary endpoint in that trial, and the primary objective in this secondary analysis, was to identify baseline biomarkers associated with cognitive impairment after either form of radiotherapy for brain metastasis. Here we report our findings on APOE genotype and serum levels of associated proteins and their association with radiation-induced neurocognitive decline. METHODS In this retrospective analysis of prospectively collected samples from a completed randomized clinical trial, patients provided blood samples every 3 months that were tested by genotyping and enzyme-linked immunosorbent assay, and results were analyzed in association with cognitive impairment. RESULTS The APOE genotype was not associated with neurocognitive impairment at 3 months. However, low serum levels of ApoJ, ApoE, or ApoA protein (all P < .01) and higher amyloid beta (Aβ 1-42) levels (P = .048) at baseline indicated a greater likelihood of neurocognitive decline at 3 months after SRS, whereas lower ApoJ levels were associated with decline after WBRT (P = .014). CONCLUSIONS Patients with these pretreatment serum markers should be counseled about radiation-related neurocognitive decline.
Collapse
Affiliation(s)
- Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - S Keith Anderson
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Karla V Ballman
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biostatistics and Epidemiology, Weill Medical College of Cornell University, New York, New York, USA
| | - Erin Twohy
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Katharine Dooley
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas,USA
| | - Yi An
- Department of Therapeutic Radiology, Yale-New Haven Hospital, North Haven, Connecticut, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas,USA
| | | | - Yaqing Qie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jane H Cerhan
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| | - Anthony C Whitton
- Department of Radiation Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey N Greenspoon
- Department of Radiation Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathan B Ashman
- Department of Radiation Oncology, Mayo Clinic, Phoenix/Scottsdale, Arizona, USA
| | - Jean-Paul Bahary
- Department of Radiation Oncology, CHUM, Montreal, Quebec, Canada
| | | | - James J Urbanic
- Department of Radiation Oncology, University of California San Diego, Moores Cancer Center, La Jolla, California, USA
| | - Elana Farace
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Deepak Khuntia
- Department of Radiation Oncology, Precision Cancer Specialists and Varian Medical Systems, Palo Alto, California, USA
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - David Roberge
- Department of Radiation Oncology, CHUM, Montreal, Quebec, Canada
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
Zhou J, Singh N, Galske J, Hudobenko J, Hu X, Yan R. BACE1 regulates expression of Clusterin in astrocytes for enhancing clearance of β-amyloid peptides. Mol Neurodegener 2023; 18:31. [PMID: 37143090 PMCID: PMC10161466 DOI: 10.1186/s13024-023-00611-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Abnormal accumulation of amyloid beta peptide (Aβ) in the brain induces a cascade of pathological changes in Alzheimer's disease (AD), and inhibiting BACE1, which is required for Aβ generation, is therefore being explored for the treatment of AD by reducing Aβ accumulation. As Bace1 knockout mice exhibit increased number of reactive astrocytes and AD brains have reactive astrocytes that surround amyloid plaques, we investigated the role of BACE1 in astrocytes and determined whether BACE1 regulates astrocytic functions. METHODS We conducted unbiased single cell RNA-seq (scRNA-seq) using purified astrocytes from Bace1 KO mice and wild type control littermates. Similar scRNA-seq was also conducted using AD mice with conditional deletion of Bace1 in the adult stage (5xFAD;Bace1fl/fl;UBC-creER compared to 5xFAD;Bace1fl/fl controls). We compared the transcriptomes of astrocyte and reactive astrocyte clusters and identified several differentially expressed genes, which were further validated using Bace1 KO astrocyte cultures. Mice with astrocyte-specific Bace1 knockout in 5xFAD background were used to compare amyloid deposition. Mechanistic studies using cultured astrocytes were used to identify BACE1 substrates for changes in gene expression and signaling activity. RESULTS Among altered genes, Clusterin (Clu) and Cxcl14 were significantly upregulated and validated by measuring protein levels. Moreover, BACE1 deficiency enhanced both astrocytic Aβ uptake and degradation, and this effect was significantly attenuated by siRNA knockdown of Clu. Mechanistic study suggests that BACE1 deficiency abolishes cleavage of astrocytic insulin receptors (IR), and this may enhance expression of Clu and Cxcl14. Acutely isolated astrocytes from astrocyte-specific knockout of Bace1 mice (Bace1 fl/fl;Gfap-cre) show similar increases in CLU and IR. Furthermore, astrocyte-specific knockout of Bace1 in a 5xFAD background resulted in a significant attenuation in cortical Aβ plaque load through enhanced clearance. CONCLUSION Together, our study suggests that BACE1 in astrocytes regulates expression of Clu and Cxcl14, likely via the control of insulin receptor pathway, and inhibition of astrocytic BACE1 is a potential alternative strategy for enhancing Aβ clearance.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, United States
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, United States
| | - Neeraj Singh
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - James Galske
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Jacob Hudobenko
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
12
|
The Extracellular Molecular Chaperone Clusterin Inhibits Amyloid Fibril Formation and Suppresses Cytotoxicity Associated with Semen-Derived Enhancer of Virus Infection (SEVI). Cells 2022; 11:cells11203259. [PMID: 36291126 PMCID: PMC9600718 DOI: 10.3390/cells11203259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Clusterin is a glycoprotein present at high concentrations in many extracellular fluids, including semen. Its increased expression accompanies disorders associated with extracellular amyloid fibril accumulation such as Alzheimer’s disease. Clusterin is an extracellular molecular chaperone which prevents the misfolding and amorphous and amyloid fibrillar aggregation of a wide variety of unfolding proteins. In semen, amyloid fibrils formed from a 39-amino acid fragment of prostatic acid phosphatase, termed Semen-derived Enhancer of Virus Infection (SEVI), potentiate HIV infectivity. In this study, clusterin potently inhibited the in vitro formation of SEVI fibrils, along with dissociating them. Furthermore, clusterin reduced the toxicity of SEVI to pheochromocytoma-12 cells. In semen, clusterin may play an important role in preventing SEVI amyloid fibril formation, in dissociating SEVI fibrils and in mitigating their enhancement of HIV infection.
Collapse
|
13
|
Kim YM, Park S, Choi SY, Oh SB, Jung M, Pack CG, Hwang JJ, Tak E, Lee JY. Clusterin Binding Modulates the Aggregation and Neurotoxicity of Amyloid-β(1-42). Mol Neurobiol 2022; 59:6228-6244. [PMID: 35904715 DOI: 10.1007/s12035-022-02973-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) aggregates in the brain. Clusterin (CLU), also known as apolipoprotein J, is a potent risk factor associated with AD pathogenesis, in which Aβ aggregation is essentially involved. We observed close colocalization of CLU and Aβ(1-42) (Aβ42) in parenchymal amyloid plaques or vascular amyloid deposits in the brains of human amyloid precursor protein (hAPP)-transgenic Tg2576 mice. Therefore, to elucidate the binding interaction between CLU and Aβ42 and its impact on amyloid aggregation and toxicity, the two synthetic proteins were incubated together under physiological conditions, and their structural and morphological variations were investigated using biochemical, biophysical, and microscopic analyses. Synthetic CLU spontaneously bound to different possible variants of Aβ42 aggregates with very high affinity (Kd = 2.647 nM) in vitro to form solid CLU-Aβ42 complexes. This CLU binding prevented further aggregation of Aβ42 into larger oligomers or fibrils, enriching the population of smaller Aβ42 oligomers and protofibrils and monomers. CLU either alleviated or augmented Aβ42-induced cytotoxicity and apoptosis in the neuroblastoma-derived SH-SY5Y and N2a cells, depending on the incubation period and the molar ratio of CLU:Aβ42 involved in the reaction before addition to the cells. Thus, the effects of CLU on Aβ42-induced cytotoxicity were likely determined by the extent to which it bound and sequestered toxic Aβ42 oligomers or protofibrils. These findings suggest that CLU could influence amyloid neurotoxicity and pathogenesis by modulating Aβ aggregation.
Collapse
Affiliation(s)
- Yun-Mi Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - SuJi Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Su Yeon Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Shin Bi Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - MinKyo Jung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jung Jin Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Eunyoung Tak
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea. .,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
14
|
Zhu S, Bäckström D, Forsgren L, Trupp M. Alterations in Self-Aggregating Neuropeptides in Cerebrospinal Fluid of Patients with Parkinsonian Disorders. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1169-1189. [PMID: 35253777 PMCID: PMC9198747 DOI: 10.3233/jpd-213031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Parkinson’s disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) present with similar movement disorder symptoms but distinct protein aggregates upon pathological examination. Objective: Discovery and validation of candidate biomarkers in parkinsonian disorders for differential diagnosis of subgroup molecular etiologies. Methods: Untargeted liquid chromatography (LC)-mass spectrometry (MS) proteomics was used for discovery profiling in cerebral spinal fluid (CSF) followed by LC-MS/MS based multiple reaction monitoring for validation of candidates. We compared clinical variation within the parkinsonian cohort including PD subgroups exhibiting tremor dominance (TD) or postural instability gait disturbance and those with detectable leukocytes in CSF. Results: We have identified candidate peptide biomarkers and validated related proteins with targeted quantitative multiplexed assays. Dopamine-drug naïve patients at first diagnosis exhibit reduced levels of signaling neuropeptides, chaperones, and processing proteases for packaging of self-aggregating peptides into dense core vesicles. Distinct patterns of biomarkers were detected in the parkinsonian disorders but were not robust enough to offer a differential diagnosis. Different biomarker changes were detected in male and female patients with PD. Subgroup specific candidate biomarkers were identified for TD PD and PD patients with leukocytes detected in CSF. Conclusion: PD, MSA, and PSP exhibit overlapping as well as distinct protein biomarkers that suggest specific molecular etiologies. This indicates common sensitivity of certain populations of selectively vulnerable neurons in the brain, and distinct therapeutic targets for PD subgroups. Our report validates a decrease in CSF levels of self-aggregating neuropeptides in parkinsonian disorders and supports the role of native amyloidogenic proteins in etiologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shaochun Zhu
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - David Bäckström
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Spatharas PM, Nasi GI, Tsiolaki PL, Theodoropoulou MK, Papandreou NC, Hoenger A, Trougakos IP, Iconomidou VA. Clusterin in Alzheimer's disease: An amyloidogenic inhibitor of amyloid formation? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166384. [DOI: 10.1016/j.bbadis.2022.166384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
16
|
Ferrer I. Alzheimer's disease is an inherent, natural part of human brain aging: an integrated perspective. FREE NEUROPATHOLOGY 2022; 3:17. [PMID: 37284149 PMCID: PMC10209894 DOI: 10.17879/freeneuropathology-2022-3806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 06/08/2023]
Abstract
Alzheimer disease is one of the most challenging demons in our society due to its very high prevalence and its clinical manifestations which cause deterioration of cognition, intelligence, and emotions - the very capacities that distinguish Homo sapiens from other animal species. Besides the personal, social, and economical costs, late stages of AD are vivid experiences for the family, relatives, friends, and general observers of the progressive ruin of an individual who turns into a being with lower mental and physical capacities than less evolved species. A human brain with healthy cognition, conscience, and emotions can succeed in dealing with most difficulties that life may pose. Without these capacities, the same person probably cannot. Due, in part, to this emotional impact, the absorbing study of AD has generated, over the years, a fascinating and complex story of theories, hypotheses, controversies, fashion swings, and passionate clashes, together with tremendous efforts and achievements geared to improve understanding of the pathogenesis and treatment of the disorder. Familal AD is rare and linked to altered genetic information associated with three genes. Sporadic AD (sAD) is much more common and multifactorial. A major point of clinical discussion has been, and still is, establishing the differences between brain aging and sAD. This is not a trivial question, as the neuropathological and molecular characteristics of normal brain aging and the first appearance of early stages of sAD-related pathology are not easily distinguishable in most individuals. Another important point is confidence in assigning responsibility for the beginning of sAD to a few triggering molecules, without considering the wide number of alterations that converge in the pathogenesis of aging and sAD. Genetic risk factors covering multiple molecular signals are increasing in number. In the same line, molecular pathways are altered at early stages of sAD pathology, currently grouped under the aegis of normal brain aging, only to increase massively at advanced stages of the process. Sporadic AD is here considered an inherent, natural part of human brain aging, which is prevalent in all humans, and variably present or not in a few individuals in other species. The progression of the process has devastating effects in a relatively low percentage of human beings eventually evolving to dementia. The continuum of brain aging and sAD implies the search for a different approach in the study of human brain aging at the first stages of the biological process, and advances in the use of new technologies aimed at slowing down the molecular defects underlying human brain aging and sAD at the outset, and transfering information and tasks to AI and coordinated devices.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL); Biomedical Research Network of Neurodegenerative Diseases (CIBERNED); Institute of Neurosciences, University of Barcelona; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
17
|
Uddin MS, Kabir MT, Begum MM, Islam MS, Behl T, Ashraf GM. Exploring the Role of CLU in the Pathogenesis of Alzheimer's Disease. Neurotox Res 2021; 39:2108-2119. [PMID: 32820456 DOI: 10.1007/s12640-020-00271-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a chronic and devastating neurodegenerative disorder that is affecting elderly people at an increasing rate. Clusterin (CLU), an extracellular chaperone, is an ubiquitously expressed protein that can be identified in various body fluids and tissues. Expression of CLU can lead to various processes including suppression of complement system, lipid transport, chaperone function, and also controlling neuronal cell death and cell survival mechanisms. Studies have confirmed that the level of CLU expression is increased in AD. Furthermore, CLU also decreased the toxicity and aggregation of amyloid beta (Aβ). However when the Aβ level was far greater than CLU, then the amyloid generation was increased. CLU was also found to incorporate in the amyloid aggregates, which were more harmful as compared with the Aβ42 aggregates alone. Growing evidence indicates that CLU plays roles in AD pathogenesis via various processes, including aggregation and clearance of Aβ, neuroinflammation, lipid metabolism, Wnt signaling, copper homeostasis, and regulation of neuronal cell cycle and apoptosis. In this article, we represent the critical interaction of CLU and AD based on recent advances. Furthermore, we have also focused on the Aβ-dependent and Aβ-independent mechanisms by which CLU plays a role in AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Structural basis of soluble membrane attack complex packaging for clearance. Nat Commun 2021; 12:6086. [PMID: 34667172 PMCID: PMC8526713 DOI: 10.1038/s41467-021-26366-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Unregulated complement activation causes inflammatory and immunological pathologies with consequences for human disease. To prevent bystander damage during an immune response, extracellular chaperones (clusterin and vitronectin) capture and clear soluble precursors to the membrane attack complex (sMAC). However, how these chaperones block further polymerization of MAC and prevent the complex from binding target membranes remains unclear. Here, we address that question by combining cryo electron microscopy (cryoEM) and cross-linking mass spectrometry (XL-MS) to solve the structure of sMAC. Together our data reveal how clusterin recognizes and inhibits polymerizing complement proteins by binding a negatively charged surface of sMAC. Furthermore, we show that the pore-forming C9 protein is trapped in an intermediate conformation whereby only one of its two transmembrane β-hairpins has unfurled. This structure provides molecular details for immune pore formation and helps explain a complement control mechanism that has potential implications for how cell clearance pathways mediate immune homeostasis. To prevent unregulated complement activation, extracellular chaperones capture soluble precursors to the membrane attack complex (sMAC). Here, structural analysis of sMAC reveals how clusterin recognizes heterogeneous sMAC complexes and inhibits polymerization of complement protein C9.
Collapse
|
19
|
Rostagno A, Calero M, Holton JL, Revesz T, Lashley T, Ghiso J. Association of clusterin with the BRI2-derived amyloid molecules ABri and ADan. Neurobiol Dis 2021; 158:105452. [PMID: 34298087 PMCID: PMC8440498 DOI: 10.1016/j.nbd.2021.105452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022] Open
Abstract
Familial British and Danish dementias (FBD and FDD) share striking neuropathological similarities with Alzheimer's disease (AD), including intraneuronal neurofibrillary tangles as well as parenchymal and vascular amyloid deposits. Multiple amyloid associated proteins with still controversial role in amyloidogenesis colocalize with the structurally different amyloid peptides ABri in FBD, ADan in FDD, and Aβ in AD. Genetic variants and plasma levels of one of these associated proteins, clusterin, have been identified as risk factors for AD. Clusterin is known to bind soluble Aβ in biological fluids, facilitate its brain clearance, and prevent its aggregation. The current work identifies clusterin as the major ABri- and ADan-binding protein and provides insight into the biochemical mechanisms leading to the association of clusterin with ABri and ADan deposits. Mirroring findings in AD, the studies corroborate clusterin co-localization with cerebral parenchymal and vascular amyloid deposits in both disorders. Ligand affinity chromatography with downstream Western blot and amino acid sequence analyses unequivocally identified clusterin as the major ABri- and ADan-binding plasma protein. ELISA highlighted a specific saturable binding of clusterin to ABri and ADan with low nanomolar Kd values within the same range as those previously demonstrated for the clusterin-Aβ interaction. Consistent with its chaperone activity, thioflavin T binding assays clearly showed a modulatory effect of clusterin on ABri and ADan aggregation/fibrillization properties. Our findings, together with the known multifunctional activity of clusterin and its modulatory activity on the complex cellular pathways leading to oxidative stress, mitochondrial dysfunction, and the induction of cell death mechanisms - all known pathogenic features of these protein folding disorders - suggests the likelihood of a more complex role and a translational potential for the apolipoprotein in the amelioration/prevention of these pathogenic mechanisms.
Collapse
Affiliation(s)
- Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Miguel Calero
- Instituto de Salud Carlos III, 28029 Madrid, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; Alzheimer's Center Reina Sofia Foundation - CIEN Foundation, 28031 Madrid, Spain
| | - Janice L Holton
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tamas Revesz
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
21
|
Romagnoli T, Ortolani B, Sanz JM, Trentini A, Seripa D, Nora ED, Capatti E, Cervellati C, Passaro A, Zuliani G, Brombo G. Serum Apo J as a potential marker of conversion from mild cognitive impairment to dementia. J Neurol Sci 2021; 427:117537. [PMID: 34147956 DOI: 10.1016/j.jns.2021.117537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Apolipoprotein J (ApoJ) is present in both plasma and tissues, including brain. Growing evidence suggest that this protein may play an early role on the development of the two most common forms of dementia, Alzheimer's disease (AD) and vascular dementia (VD). OBJECTIVE To evaluate whether serum ApoJ levels might be able to predict the progression to AD, VD, or mixed dementia (AD&VD) in individuals with mild cognitive impairment (MCI). METHODS Serum ApoJ was measured in 196 MCI subjects (aged ≥60 years) with a median follow up of 2.9 years. RESULTS One hundred thirty-two of the enrolled MCI subjects converted to dementia. Among these, 45% developed AD, 33% mixed dementia, 13% VD (VD), and 9% other forms of dementia. A significant trend toward a progressive reduction in the incidence of dementia, regardless of the type, from tertile I (83.1%), to tertile II (63.1%), to tertile III (56.1%) was observed (p = 0.003). After adjustment for potential confounders, a twofold increase in the risk of conversion to dementia was found in subjects belonging to tertile I of Apo J compared with tertile III; the risk increased after two years of follow up, while no differences emerged within the first 2 years. CONCLUSIONS Our results suggest that in MCI subjects, low APOJ levels may be associated with increased risk of developing dementia.
Collapse
Affiliation(s)
- Tommaso Romagnoli
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Beatrice Ortolani
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Juana Maria Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; Department of ROMAGNA, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Trentini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; Department of ROMAGNA, University of Ferrara, 44121 Ferrara, Italy.
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Edoardo Dalla Nora
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Eleonora Capatti
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Gloria Brombo
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
22
|
Xu L, Tian S, Peng X, Hua Y, Yang W, Chen L, Liu S, Wu W, Zhao J, He J, Wu L, Yang J, Zheng Y. Clusterin inhibits Aβ 42 aggregation through a "strawberry model" as detected by FRET-FCS. J Neurochem 2021; 158:444-454. [PMID: 33694231 DOI: 10.1111/jnc.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 11/28/2022]
Abstract
Extracellular plaque deposits of β-amyloid peptide (Aβ) are one of the main pathological features of Alzheimer's disease (AD). The aggregation of Aβ42 species, especially Aβ42 oligomers, is still an active research field in AD pathogenesis. Secretory clusterin protein (sCLU), an extracellular chaperone, plays an important role in AD pathogenesis. Although sCLU interacts directly with Aβ42 in vitro and in vivo, the mechanism is not clear. In this paper, His-tagged sCLU (sCLU-His) was cloned, expressed and purified, and we applied florescence resonance energy transfer-fluorescence correlation spectroscopy (FRET-FCS) to investigate the direct interaction of sCLU-His and Aβ42 at the single-molecule fluorescence level in vitro. Here, we chose four different fluorescently labeled Aβ42 oligomers to form two different groups of aggregation models, easy or difficult to aggregate. The results showed that sCLU-His could form complexes with both aggregation models, and sCLU-His inhibited the aggregation of Aβ42/RB ~ Aβ42/Atto647 (easy to aggregate model). The complexes were produced as the Aβ42/Label adhered to the sCLU-His, which is similar to a "strawberry model," as strawberry seeds are dotted on the outer surface of strawberries. This work provided additional insight into the interaction mechanism of sCLU and Aβ42 .
Collapse
Affiliation(s)
- Lingwan Xu
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Shijun Tian
- Hebei Agriculture University, Baoding, China
| | - Xianglei Peng
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Ying Hua
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Wenxuan Yang
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Longwei Chen
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Shilei Liu
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Wenzheng Wu
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Jiang Zhao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jinsheng He
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Liqing Wu
- National Institute of Metrology, Beijing, China
| | - Jingfa Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanpeng Zheng
- School of Sciences, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
23
|
Bungon T, Haslam C, Damiati S, O'Driscoll B, Whitley T, Davey P, Siligardi G, Charmet J, Awan SA. Graphene FET Sensors for Alzheimer's Disease Protein Biomarker Clusterin Detection. Front Mol Biosci 2021; 8:651232. [PMID: 33869287 PMCID: PMC8044944 DOI: 10.3389/fmolb.2021.651232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/04/2021] [Indexed: 01/02/2023] Open
Abstract
We report on the fabrication and characterisation of graphene field-effect transistor (GFET) biosensors for the detection of Clusterin, a prominent protein biomarker of Alzheimer’s disease (AD). The GFET sensors were fabricated on Si/SiO2 substrate using photolithographic patterning and metal lift-off techniques with evaporated chromium and sputtered gold contacts. Raman Spectroscopy was performed on the devices to determine the quality of the graphene. The GFETs were annealed to improve their performance before the channels were functionalized by immobilising the graphene surface with linker molecules and anti-Clusterin antibodies. Concentration of linker molecules was also independently verified by absorption spectroscopy using the highly collimated micro-beam light of Diamond B23 beamline. The detection was achieved through the binding reaction between the antibody and varying concentrations of Clusterin antigen from 1 to 100 pg/mL, as well as specificity tests using human chorionic gonadotropin (hCG), a glycoprotein risk biomarker of certain cancers. The GFETs were characterized using direct current (DC) 4-probe electrical resistance (4-PER) measurements, which demonstrated a limit of detection of the biosensors to be ∼ 300 fg/mL (4 fM). Comparison with back-gated Dirac voltage shifts with varying concentration of Clusterin show 4-PER measurements to be more accurate, at present, and point to a requirement for further optimisation of the fabrication processes for our next generation of GFET sensors. Thus, we have successfully fabricated a promising set of GFET biosensors for the detection of Clusterin protein biomarker. The developed GFET biosensors are entirely generic and also have the potential to be applied to a variety of other disease detection applications such as Parkinson’s, cancer, and cardiovascular.
Collapse
Affiliation(s)
- Theodore Bungon
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Carrie Haslam
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Samar Damiati
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Benjamin O'Driscoll
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Toby Whitley
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Paul Davey
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Giuliano Siligardi
- Diamond Light Source, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
| | - Jerome Charmet
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, United Kingdom
| | - Shakil A Awan
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
24
|
Bezerra F, Saraiva MJ, Almeida MR. Modulation of the Mechanisms Driving Transthyretin Amyloidosis. Front Mol Neurosci 2020; 13:592644. [PMID: 33362465 PMCID: PMC7759661 DOI: 10.3389/fnmol.2020.592644] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Transthyretin (TTR) amyloidoses are systemic diseases associated with TTR aggregation and extracellular deposition in tissues as amyloid. The most frequent and severe forms of the disease are hereditary and associated with amino acid substitutions in the protein due to single point mutations in the TTR gene (ATTRv amyloidosis). However, the wild type TTR (TTR wt) has an intrinsic amyloidogenic potential that, in particular altered physiologic conditions and aging, leads to TTR aggregation in people over 80 years old being responsible for the non-hereditary ATTRwt amyloidosis. In normal physiologic conditions TTR wt occurs as a tetramer of identical subunits forming a central hydrophobic channel where small molecules can bind as is the case of the natural ligand thyroxine (T4). However, the TTR amyloidogenic variants present decreased stability, and in particular conditions, dissociate into partially misfolded monomers that aggregate and polymerize as amyloid fibrils. Therefore, therapeutic strategies for these amyloidoses may target different steps in the disease process such as decrease of variant TTR (TTRv) in plasma, stabilization of TTR, inhibition of TTR aggregation and polymerization or disruption of the preformed fibrils. While strategies aiming decrease of the mutated TTR involve mainly genetic approaches, either by liver transplant or the more recent technologies using specific oligonucleotides or silencing RNA, the other steps of the amyloidogenic cascade might be impaired by pharmacologic compounds, namely, TTR stabilizers, inhibitors of aggregation and amyloid disruptors. Modulation of different steps involved in the mechanism of ATTR amyloidosis and compounds proposed as pharmacologic agents to treat TTR amyloidosis will be reviewed and discussed.
Collapse
Affiliation(s)
- Filipa Bezerra
- Molecular Neurobiology Group, IBMC-Instituto de Biologia Molecular e Celular, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria João Saraiva
- Molecular Neurobiology Group, IBMC-Instituto de Biologia Molecular e Celular, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, IBMC-Instituto de Biologia Molecular e Celular, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Wojtas AM, Sens JP, Kang SS, Baker KE, Berry TJ, Kurti A, Daughrity L, Jansen-West KR, Dickson DW, Petrucelli L, Bu G, Liu CC, Fryer JD. Astrocyte-derived clusterin suppresses amyloid formation in vivo. Mol Neurodegener 2020; 15:71. [PMID: 33246484 PMCID: PMC7694353 DOI: 10.1186/s13024-020-00416-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). The clusterin (CLU) gene confers a risk for AD and CLU is highly upregulated in AD patients, with the common non-coding, protective CLU variants associated with increased expression. Although there is strong evidence implicating CLU in amyloid metabolism, the exact mechanism underlying the CLU involvement in AD is not fully understood or whether physiologic alterations of CLU levels in the brain would be protective. RESULTS We used a gene delivery approach to overexpress CLU in astrocytes, the major source of CLU expression in the brain. We found that CLU overexpression resulted in a significant reduction of total and fibrillar amyloid in both cortex and hippocampus in the APP/PS1 mouse model of AD amyloidosis. CLU overexpression also ameliorated amyloid-associated neurotoxicity and gliosis. To complement these overexpression studies, we also analyzed the effects of haploinsufficiency of Clu using heterozygous (Clu+/-) mice and control littermates in the APP/PS1 model. CLU reduction led to a substantial increase in the amyloid plaque load in both cortex and hippocampus in APP/PS1; Clu+/- mice compared to wild-type (APP/PS1; Clu+/+) littermate controls, with a concomitant increase in neuritic dystrophy and gliosis. CONCLUSIONS Thus, both physiologic ~ 30% overexpression or ~ 50% reduction in CLU have substantial impacts on amyloid load and associated pathologies. Our results demonstrate that CLU plays a major role in Aβ accumulation in the brain and suggest that efforts aimed at CLU upregulation via pharmacological or gene delivery approaches offer a promising therapeutic strategy to regulate amyloid pathology.
Collapse
Affiliation(s)
- Aleksandra M. Wojtas
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| | - Silvia S. Kang
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Kelsey E. Baker
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
| | - Taylor J. Berry
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
| | - Lillian Daughrity
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Karen R. Jansen-West
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| |
Collapse
|
26
|
Torres-Arancivia CM, Chang D, Hackett WE, Zaia J, Connors LH. Glycosylation of Serum Clusterin in Wild-Type Transthyretin-Associated (ATTRwt) Amyloidosis: A Study of Disease-Associated Compositional Features Using Mass Spectrometry Analyses. Biochemistry 2020; 59:4367-4378. [PMID: 33141553 PMCID: PMC8082438 DOI: 10.1021/acs.biochem.0c00590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Wild-type transthyretin-associated (ATTRwt) amyloidosis is an age-related disease that causes heart failure in older adults. This disease frequently features cardiac amyloid fibril deposits that originate from dissociation of the tetrameric protein, transthyretin (TTR). Unlike hereditary TTR (ATTRm) amyloidosis, where amino acid replacements destabilize the native protein, in ATTRwt amyloidosis, amyloid-forming TTR lacks protein sequence alterations. The initiating cause of fibril formation in ATTRwt amyloidosis is unclear, and thus, it seems plausible that other factors are involved in TTR misfolding and unregulated accumulation of wild-type TTR fibrils. We believe that clusterin (CLU, UniProtKB P10909), a plasma circulating glycoprotein, plays a role in the pathobiology of ATTRwt amyloidosis. Previously, we have suggested a role for CLU in ATTRwt amyloidosis based on our studies showing that (1) CLU codeposits with non-native TTR in amyloid fibrils from ATTRwt cardiac tissue, (2) CLU interacts only with non-native (monomeric and aggregated) forms of TTR, and (3) CLU serum levels in patients with ATTRwt are significantly lower compared to healthy controls. In the present study, we provide comprehensive detail of compositional findings from mass spectrometry analyses of amino acid and glycan content of CLU purified from ATTRwt and control sera. The characterization of oligosaccharide content in serum CLU derived from patients with ATTRwt amyloidosis is novel data. Moreover, results comparing CLU oligosaccharide variations between patient and healthy controls are original and provide further evidence for the role of CLU in ATTRwt pathobiology, possibly linked to disease-specific structural features that limit the chaperoning capacity of CLU.
Collapse
|
27
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
28
|
Itakura E, Chiba M, Murata T, Matsuura A. Heparan sulfate is a clearance receptor for aberrant extracellular proteins. J Cell Biol 2020; 219:133807. [PMID: 32211892 PMCID: PMC7054991 DOI: 10.1083/jcb.201911126] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/13/2023] Open
Abstract
The accumulation of aberrant proteins leads to various neurodegenerative disorders. Mammalian cells contain several intracellular protein degradation systems, including autophagy and proteasomal systems, that selectively remove aberrant intracellular proteins. Although mammals contain not only intracellular but also extracellular proteins, the mechanism underlying the quality control of aberrant extracellular proteins is poorly understood. Here, using a novel quantitative fluorescence assay and genome-wide CRISPR screening, we identified the receptor-mediated degradation pathway by which misfolded extracellular proteins are selectively captured by the extracellular chaperone Clusterin and undergo endocytosis via the cell surface heparan sulfate (HS) receptor. Biochemical analyses revealed that positively charged residues on Clusterin electrostatically interact with negatively charged HS. Furthermore, the Clusterin-HS pathway facilitates the degradation of amyloid β peptide and diverse leaked cytosolic proteins in extracellular space. Our results identify a novel protein quality control system for preserving extracellular proteostasis and highlight its role in preventing diseases associated with aberrant extracellular proteins.
Collapse
Affiliation(s)
- Eisuke Itakura
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Momoka Chiba
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
29
|
Chen W, Wang M, Zhu M, Xiong W, Qin X, Zhu X. 14,15-Epoxyeicosatrienoic Acid Alleviates Pathology in a Mouse Model of Alzheimer's Disease. J Neurosci 2020; 40:8188-8203. [PMID: 32973044 PMCID: PMC7574654 DOI: 10.1523/jneurosci.1246-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of late-onset dementia, and there exists an unmet medical need for effective treatments for AD. The accumulation of neurotoxic amyloid-β (Aβ) plaques contributes to the pathophysiology of AD. EPHX2 encoding soluble epoxide hydrolase (sEH)-a key enzyme for epoxyeicosatrienoic acid (EET) signaling that is mainly expressed in lysosomes of astrocytes in the adult brain-is cosited at a locus associated with AD, but it is unclear whether and how it contributes to the pathophysiology of AD. In this report, we show that the pharmacologic inhibition of sEH with 1-trifluoromethoxyphenyl- 3-(1-propionylpiperidin-4-yl) urea (TPPU) or the genetic deletion of Ephx2 reduces Aβ deposition in the brains of both male and female familial Alzheimer's disease (5×FAD) model mice. The inhibition of sEH with TPPU or the genetic deletion of Ephx2 alleviated cognitive deficits and prevented astrocyte reactivation in the brains of 6-month-old male 5×FAD mice. 14,15-EET levels in the brains of these mice were also increased by sEH inhibition. In cultured adult astrocytes treated with TPPU or 14,15-EET, astrocyte Aβ clearance was increased through enhanced lysosomal biogenesis. Infusion of 14,15-EET into the hippocampus of 5×FAD mice prevented the aggregation of Aβ. Notably, a higher concentration of 14,15-EET (200 ng/ml) infusion into the hippocampus reversed Aβ deposition in the brains of 6-month-old male 5×FAD mice. These results indicate that EET signaling, especially 14,15-EET, plays a key role in the pathophysiology of AD, and that targeting this pathway is a potential therapeutic strategy for the treatment of AD.SIGNIFICANCE STATEMENT There are limited treatment options for Alzheimer's disease (AD). EPHX2 encoding soluble epoxide hydrolase (sEH) is located at a locus that is linked to late-onset AD, but its contribution to the pathophysiology of AD is unclear. Here, we demonstrate that sEH inhibition or Ephx2 deletion alleviates pathology in familial Alzheimer's disease (5×FAD) mice. Inhibiting sEH or increasing 14,15-epoxyeicosatrienoic acid (EET) enhanced lysosomal biogenesis and amyloid-β (Aβ) clearance in cultured adult astrocytes. Moreover, the infusion of 14,15-EET into the hippocampus of 5×FAD mice not only prevented the aggregation of Aβ, but also reversed the deposition of Aβ. Thus, 14,15-EET plays a key role in the pathophysiology of AD and therapeutic strategies that target this pathway may be an effective treatment.
Collapse
Affiliation(s)
- Wenjun Chen
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Mengyao Wang
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Minzhen Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Wenchao Xiong
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Xihe Qin
- Eusyn Medical Technology Company, Guangzhou 510663, People's Republic of China
| | - Xinhong Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
- School of Psychology, Shenzhen University, Shenzhen 518060, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, People's Republic of China
| |
Collapse
|
30
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
31
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
32
|
Shepherd CE, Affleck AJ, Bahar AY, Carew-Jones F, Halliday GM. Intracellular and secreted forms of clusterin are elevated early in Alzheimer's disease and associate with both Aβ and tau pathology. Neurobiol Aging 2019; 89:129-131. [PMID: 31813628 DOI: 10.1016/j.neurobiolaging.2019.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023]
Abstract
Clusterin (CLU) is a pleiotropic glycoprotein that exists as a secreted, neuroprotective or intracellular, neurotoxic form, both of which increase in Alzheimer's disease (AD) causing increased Aβ42 deposition. No studies have assessed the association between functionally distinct alloforms of CLU and tau protein or neuronal loss, despite its intracellular toxicity. We confirm previous reports of significant increases in both intracellular CLU and secreted CLU in the brain tissue of individuals with AD (p < 0.01) and show no association with neuronal loss. The increase in CLU alloforms was most closely associated with increases in both insoluble Aβ42 and tau protein (p = 0.001), supporting its role in AD pathogenesis. Further research should investigate whether altering human CLU levels may have viability as a therapeutic option for AD.
Collapse
Affiliation(s)
- Claire E Shepherd
- Ageing and Neurodegeneration, Neuroscience Research Australia, Randwick, Sydney, Australia; University of New South Wales, Sydney, Australia.
| | - Andrew J Affleck
- Ageing and Neurodegeneration, Neuroscience Research Australia, Randwick, Sydney, Australia; University of New South Wales, Sydney, Australia
| | - Anita Y Bahar
- Ageing and Neurodegeneration, Neuroscience Research Australia, Randwick, Sydney, Australia
| | - Francine Carew-Jones
- Ageing and Neurodegeneration, Neuroscience Research Australia, Randwick, Sydney, Australia; University of New South Wales, Sydney, Australia
| | - Glenda M Halliday
- Ageing and Neurodegeneration, Neuroscience Research Australia, Randwick, Sydney, Australia; University of New South Wales, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
33
|
Picón-Pagès P, Bonet J, García-García J, Garcia-Buendia J, Gutierrez D, Valle J, Gómez-Casuso CE, Sidelkivska V, Alvarez A, Perálvarez-Marín A, Suades A, Fernàndez-Busquets X, Andreu D, Vicente R, Oliva B, Muñoz FJ. Human Albumin Impairs Amyloid β-peptide Fibrillation Through its C-terminus: From docking Modeling to Protection Against Neurotoxicity in Alzheimer's disease. Comput Struct Biotechnol J 2019; 17:963-971. [PMID: 31360335 PMCID: PMC6639691 DOI: 10.1016/j.csbj.2019.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/01/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative process characterized by the accumulation of extracellular deposits of amyloid β-peptide (Aβ), which induces neuronal death. Monomeric Aβ is not toxic but tends to aggregate into β-sheets that are neurotoxic. Therefore to prevent or delay AD onset and progression one of the main therapeutic approaches would be to impair Aβ assembly into oligomers and fibrils and to promote disaggregation of the preformed aggregate. Albumin is the most abundant protein in the cerebrospinal fluid and it was reported to bind Aβ impeding its aggregation. In a previous work we identified a 35-residue sequence of clusterin, a well-known protein that binds Aβ, that is highly similar to the C-terminus (CTerm) of albumin. In this work, the docking experiments show that the average binding free energy of the CTerm-Aβ1-42 simulations was significantly lower than that of the clusterin-Aβ1-42 binding, highlighting the possibility that the CTerm retains albumin's binding properties. To validate this observation, we performed in vitro structural analysis of soluble and aggregated 1 μM Aβ1-42 incubated with 5 μM CTerm, equimolar to the albumin concentration in the CSF. Reversed-phase chromatography and electron microscopy analysis demonstrated a reduction of Aβ1-42 aggregates when the CTerm was present. Furthermore, we treated a human neuroblastoma cell line with soluble and aggregated Aβ1-42 incubated with CTerm obtaining a significant protection against Aβ-induced neurotoxicity. These in silico and in vitro data suggest that the albumin CTerm is able to impair Aβ aggregation and to promote disassemble of Aβ aggregates protecting neurons.
Collapse
Key Words
- AD, Alzheimer's disease
- APP, amyloid precursor protein
- Albumin
- Alzheimer's disease
- Amyloid
- Aß, Amyloid-ß peptide
- CD, Circular dichroism
- CSF, cerebrospinal fluid
- CTerm, albumin C-terminus
- Docking
- HPLC, high performance liquid chromatography
- LC-MS, Liquid chromatography-mass spectrometry
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NMR, nuclear magnetic resonance
- PBS, phosphate-buffered saline
- PDB, Protein Data Bank
- PPI, protein-protein interactions
- SDS, sodium dodecyl sulfate
- TEM, transmission electron microscopy
- TFA, trifluoroacetic acid
- UV, ultraviolet
- fAβ1–42, HiLyte Fluor488 labelled human Aβ1–42
- β-Sheet
Collapse
Affiliation(s)
- Pol Picón-Pagès
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Bonet
- Laboratory of Structural Bioinformatics (GRIB), Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier García-García
- Laboratory of Structural Bioinformatics (GRIB), Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Garcia-Buendia
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniela Gutierrez
- Cell Signaling Laboratory, Centro UC de Envejecimiento y Regeneración (CARE), Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Valle
- Laboratory of Proteomics and Protein Chemistry, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carmen E.S. Gómez-Casuso
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Valeriya Sidelkivska
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alejandra Alvarez
- Cell Signaling Laboratory, Centro UC de Envejecimiento y Regeneración (CARE), Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alex Perálvarez-Marín
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Suades
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Laboratory of Structural Bioinformatics (GRIB), Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
34
|
Dhiman K, Blennow K, Zetterberg H, Martins RN, Gupta VB. Cerebrospinal fluid biomarkers for understanding multiple aspects of Alzheimer's disease pathogenesis. Cell Mol Life Sci 2019; 76:1833-1863. [PMID: 30770953 PMCID: PMC11105672 DOI: 10.1007/s00018-019-03040-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial age-related brain disease. Numerous pathological events run forth in the brain leading to AD. There is an initial long, dormant phase before the clinical symptoms become evident. There is a need to diagnose the disease at the preclinical stage since therapeutic interventions are most likely to be effective if initiated early. Undoubtedly, the core cerebrospinal fluid (CSF) biomarkers have a good diagnostic accuracy and have been used in clinical trials as end point measures. However, looking into the multifactorial nature of AD and the overlapping pathology with other forms of dementia, it is important to integrate the core CSF biomarkers with a broader panel of other biomarkers reflecting different aspects of pathology. The review is focused upon a panel of biomarkers that relate to different aspects of AD pathology, as well as various studies that have evaluated their diagnostic potential. The panel includes markers of neurodegeneration: neurofilament light chain and visinin-like protein (VILIP-1); markers of amyloidogenesis and brain amyloidosis: apolipoproteins; markers of inflammation: YKL-40 and monocyte chemoattractant protein 1; marker of synaptic dysfunction: neurogranin. These markers can highlight on the state and stage-associated changes that occur in AD brain with disease progression. A combination of these biomarkers would not only aid in preclinical diagnosis, but would also help in identifying early brain changes during the onset of disease. Successful treatment strategies can be devised by understanding the contribution of these markers in different aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Kunal Dhiman
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, London, UK
| | - Ralph N Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, Australia
- Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, 8 Verdun Street, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia
- KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| | - Veer Bala Gupta
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, Australia.
- School of Medicine, Deakin University, Geelong, 3220, VIC, Australia.
| |
Collapse
|
35
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Oh SB, Kim MS, Park S, Son H, Kim SY, Kim MS, Jo DG, Tak E, Lee JY. Clusterin contributes to early stage of Alzheimer's disease pathogenesis. Brain Pathol 2018; 29:217-231. [PMID: 30295351 DOI: 10.1111/bpa.12660] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/28/2018] [Indexed: 01/27/2023] Open
Abstract
While clusterin is reportedly involved in Alzheimer's disease (AD) pathogenesis, how clusterin interacts with amyloid-β (Aß) to cause Aß neurotoxicity remains unclear in vivo. Using 5×FAD transgenic mice, which develop robust AD pathology and memory deficits when very young, we detected interactions between clusterin and Aß in the mouse brains. The two proteins were concurrently upregulated and bound or colocalized with each other in the same complexes or in amyloid plaques. Neuropathology and cognitive performance were assessed in the progeny of clusterin-null mice crossed with 5×FAD mice, yielding clu-/- ;5×FAD and clu+/+ ;5×FAD. We found far less of the various pools of Aß proteins, most strikingly soluble Aß oligomers and amyloid plaques in clu-/- ;5×FAD mice at 5 months of age. At that age, those mice also had higher levels of neuronal and synaptic proteins and better motor coordination, spatial learning and memory than age-matched clu+/+ ;5×FAD mice. However, at 10 months of age, these differences disappeared, with Aß and plaque deposition, neuronal and synaptic proteins and impairment of behavioral and cognitive performance similar in both groups. These findings demonstrate that clusterin is necessarily involved in early stages of AD pathogenesis by enhancing toxic Aß pools to cause Aß-directed neurodegeneration and behavioral and cognitive impairments, but not in late stage.
Collapse
Affiliation(s)
- Shin-Bi Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Min Sun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - SuJi Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - HyunJu Son
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seog-Young Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Seon Kim
- Department of Endocrinology and Metabolism, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Gyu Jo
- The School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunyoung Tak
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Merino-Zamorano C, Fernández-de Retana S, Montañola A, Batlle A, Saint-Pol J, Mysiorek C, Gosselet F, Montaner J, Hernández-Guillamon M. Modulation of Amyloid-β1-40 Transport by ApoA1 and ApoJ Across an in vitro Model of the Blood-Brain Barrier. J Alzheimers Dis 2018; 53:677-91. [PMID: 27232214 DOI: 10.3233/jad-150976] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-β (Aβ) accumulation in Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) is likely caused by the impairment of its brain clearance that partly occurs through the blood-brain barrier (BBB). In this context, an in vitro BBB model is a valuable tool for studying the molecular mechanisms that regulate this process. This study assessed brain Aβ elimination across the BBB and its modulation by the natural chaperones Apolipoprotein A1 (ApoA1) and Apolipoprotein J/Clusterin (ApoJ). The model was based on primary cerebral endothelial cells that were cultured on Matrigel-coated Transwells and treated with fluorescently labeled-Aβ1-40 to track its efflux across the BBB, which corresponds to trafficking from the basolateral (brain) to apical (blood) compartments. We observed that the transport of basolateral Aβ1-40 was enhanced when it was complexed to rApoJ, whereas the complex formed with rApoA1 did not influence Aβ1-40 efflux. However, the presence of rApoA1 in the apical compartment was able to mobilize Aβ1-40 from the basolateral side. We also observed that both rApoA1 and rApoJ moderately crossed the monolayer (from blood to brain) through a mechanism involving the LDL receptor-related protein family. In contrast to the increased rApoJ efflux when complexed to Aβ1-40, rApoA1 trafficking was restricted when it was bound to the Aβ peptide. In summary, the present study highlights the role of ApoJ and ApoA1 in the in vitro modulation of Aβ elimination across the BBB.
Collapse
Affiliation(s)
- Cristina Merino-Zamorano
- Neurovascular Research Laboratory, Vall d'Hebron Research Insitute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sofía Fernández-de Retana
- Neurovascular Research Laboratory, Vall d'Hebron Research Insitute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alex Montañola
- Neurovascular Research Laboratory, Vall d'Hebron Research Insitute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aina Batlle
- Neurovascular Research Laboratory, Vall d'Hebron Research Insitute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Saint-Pol
- Univ. Artois, EA2465, Laboratoire de la Barrière Hémato-Encéphalique, LBHE, Lens, F-62300, France
| | - Caroline Mysiorek
- Univ. Artois, EA2465, Laboratoire de la Barrière Hémato-Encéphalique, LBHE, Lens, F-62300, France
| | - Fabien Gosselet
- Univ. Artois, EA2465, Laboratoire de la Barrière Hémato-Encéphalique, LBHE, Lens, F-62300, France
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Insitute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neurology, Neurovascular Unit, Vall d'Hebron Hospital, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Insitute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Zandl-Lang M, Fanaee-Danesh E, Sun Y, Albrecher NM, Gali CC, Čančar I, Kober A, Tam-Amersdorfer C, Stracke A, Storck SM, Saeed A, Stefulj J, Pietrzik CU, Wilson MR, Björkhem I, Panzenboeck U. Regulatory effects of simvastatin and apoJ on APP processing and amyloid-β clearance in blood-brain barrier endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:40-60. [DOI: 10.1016/j.bbalip.2017.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
|
39
|
Fernández-de-Retana S, Cano-Sarabia M, Marazuela P, Sánchez-Quesada JL, Garcia-Leon A, Montañola A, Montaner J, Maspoch D, Hernández-Guillamon M. Characterization of ApoJ-reconstituted high-density lipoprotein (rHDL) nanodisc for the potential treatment of cerebral β-amyloidosis. Sci Rep 2017; 7:14637. [PMID: 29116115 PMCID: PMC5677083 DOI: 10.1038/s41598-017-15215-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023] Open
Abstract
Cerebral β-amyloidosis is a major feature of Alzheimer’s disease (AD), characterized by the accumulation of β-amyloid protein (Aβ) in the brain. Several studies have implicated lipid/lipoprotein metabolism in the regulation of β-amyloidosis. In this regard, HDL (High Density Lipoprotein)-based therapies could ameliorate pathological features associated with AD. As apolipoprotein J (ApoJ) is a natural chaperone that interacts with Aβ, avoiding its aggregation and toxicity, in this study we propose to prepare reconstituted rHDL-rApoJ nanoparticles by assembling phospholipids with recombinant human ApoJ (rApoJ). Hence, rHDL particles were prepared using the cholate dialysis method and characterized by N-PAGE, dynamic light scattering, circular dichroism and electron transmission microscopy. The preparation of rHDL particles showed two-sized populations with discoidal shape. Functionally, rHDL-rApoJ maintained the ability to prevent the Aβ fibrillization and mediated a higher cholesterol efflux from cultured macrophages. Fluorescently-labelled rHDL-rApoJ nanoparticles were intravenously administrated in mice and their distribution over time was determined using an IVIS Xenogen® imager. It was confirmed that rHDL-rApoJ accumulated in the cranial region, especially in old transgenic mice presenting a high cerebral Aβ load. In conclusion, we have standardized a reproducible protocol to produce rHDL-rApoJ nanoparticles, which may be potentially considered as a therapeutic option for β-amyloid-related pathologies.
Collapse
Affiliation(s)
- Sofía Fernández-de-Retana
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Annabel Garcia-Leon
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Alex Montañola
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
40
|
Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc Natl Acad Sci U S A 2017; 114:E6962-E6971. [PMID: 28701379 DOI: 10.1073/pnas.1701137114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) peptide deposition in brain parenchyma as plaques and in cerebral blood vessels as cerebral amyloid angiopathy (CAA). CAA deposition leads to several clinical complications, including intracerebral hemorrhage. The underlying molecular mechanisms that regulate plaque and CAA deposition in the vast majority of sporadic AD patients remain unclear. The clusterin (CLU) gene is genetically associated with AD and CLU has been shown to alter aggregation, toxicity, and blood-brain barrier transport of Aβ, suggesting it might play a key role in regulating the balance between Aβ deposition and clearance in both brain and blood vessels. Here, we investigated the effect of CLU on Aβ pathology using the amyloid precursor protein/presenilin 1 (APP/PS1) mouse model of AD amyloidosis on a Clu+/+ or Clu-/- background. We found a marked decrease in plaque deposition in the brain parenchyma but an equally striking increase in CAA within the cerebrovasculature of APP/PS1;Clu-/- mice. Surprisingly, despite the several-fold increase in CAA levels, APP/PS1;Clu-/- mice had significantly less hemorrhage and inflammation. Mice lacking CLU had impaired clearance of Aβ in vivo and exogenously added CLU significantly prevented Aβ binding to isolated vessels ex vivo. These findings suggest that in the absence of CLU, Aβ clearance shifts to perivascular drainage pathways, resulting in fewer parenchymal plaques but more CAA because of loss of CLU chaperone activity, complicating the potential therapeutic targeting of CLU for AD.
Collapse
|
41
|
Rahman MR, Tajmim A, Ali M, Sharif M. Overview and Current Status of Alzheimer's Disease in Bangladesh. J Alzheimers Dis Rep 2017; 1:27-42. [PMID: 30480227 PMCID: PMC6159651 DOI: 10.3233/adr-170012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurological disorder with economic, social, and medical burdens which is acknowledged as leading cause of dementia marked by the accumulation and aggregation of amyloid-β peptide and phosphorylated tau (p-tau) protein and concomitant dementia, neuron loss and brain atrophy. AD is the most prevalent neurodegenerative brain disorder with sporadic etiology, except for a small fraction of cases with familial inheritance where familial forms of AD are correlated to mutations in three functionally related genes: the amyloid-β protein precursor and presenilins 1 and 2, two key γ-secretase components. The common clinical features of AD are memory impairment that interrupts daily life, difficulty in accomplishing usual tasks, confusion with time or place, trouble understanding visual images and spatial relationships. Age is the most significant risk factor for AD, whereas other risk factors correlated with AD are hypercholesterolemia, hypertension, atherosclerosis, coronary heart disease, smoking, obesity, and diabetes. Despite decades of research, there is no satisfying therapy which will terminate the advancement of AD by acting on the origin of the disease process, whereas currently available therapeutics only provide symptomatic relief but fail to attain a definite cure and prevention. This review also represents the current status of AD in Bangladesh.
Collapse
Affiliation(s)
- Md Rashidur Rahman
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Afsana Tajmim
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mohammad Ali
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mostakim Sharif
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| |
Collapse
|
42
|
Zhang C, Huang X, Li J. Light chain amyloidosis: Where are the light chains from and how they play their pathogenic role? Blood Rev 2017; 31:261-270. [PMID: 28336182 DOI: 10.1016/j.blre.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
Amyloid light-chain (AL) amyloidosis is a plasma-cell dyscrasia, as well as the most common type of systematic amyloidosis. Pathogenic plasma cells that have distinct cytogenetic and molecular properties secrete an excess amount of amyloidogenic light chains. Assisted by post-translational modifications, matrix components, and other environmental factors, these light chains undergo a conformational change that triggers the formation of amyloid fibrils that overrides the extracellular protein quality control system. Moreover, the amyloidogenic light-chain itself is cytotoxic. As a consequence, organ dysfunction is caused by both organ architecture disruption and the direct cytotoxic effect of amyloidogenic light chains. Here, we reviewed the molecular mechanisms underlying this sequence of events that ultimately leads to AL amyloidosis and also discuss current in vitro and in vivo models, as well as relevant novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xufei Huang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
43
|
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Aβ in Alzheimer's disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci 2017; 74:2167-2201. [PMID: 28197669 PMCID: PMC5425508 DOI: 10.1007/s00018-017-2463-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 01/03/2023]
Abstract
Deficiency in cerebral amyloid β-protein (Aβ) clearance is implicated in the pathogenesis of the common late-onset forms of Alzheimer’s disease (AD). Accumulation of misfolded Aβ in the brain is believed to be a net result of imbalance between its production and removal. This in turn may trigger neuroinflammation, progressive synaptic loss, and ultimately cognitive decline. Clearance of cerebral Aβ is a complex process mediated by various systems and cell types, including vascular transport across the blood–brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Recent studies have highlighted a new, unexpected role for peripheral monocytes and macrophages in restricting cerebral Aβ fibrils, and possibly soluble oligomers. In AD transgenic (ADtg) mice, monocyte ablation or inhibition of their migration into the brain exacerbated Aβ pathology, while blood enrichment with monocytes and their increased recruitment to plaque lesion sites greatly diminished Aβ burden. Profound neuroprotective effects in ADtg mice were further achieved through increased cerebral recruitment of myelomonocytes overexpressing Aβ-degrading enzymes. This review summarizes the literature on cellular and molecular mechanisms of cerebral Aβ clearance with an emphasis on the role of peripheral monocytes and macrophages in Aβ removal.
Collapse
Affiliation(s)
- Leah Zuroff
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Daley
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
44
|
Weinstein G, Beiser AS, Preis SR, Courchesne P, Chouraki V, Levy D, Seshadri S. Plasma clusterin levels and risk of dementia, Alzheimer's disease, and stroke. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2016; 3:103-9. [PMID: 27453932 PMCID: PMC4949604 DOI: 10.1016/j.dadm.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Genetic variation in the clusterin gene has been associated with Alzheimer Disease (AD), and the clusterin protein is thought to play a mechanistic role. We explored the associations of clusterin plasma levels with incident dementia, AD, and stroke. METHODS Plasma clusterin was assessed in 1532 nondemented participants from the Framingham Study Offspring cohort between 1998 and 2001 (mean age, 69 ± 6; 53% women). We related clusterin levels to risk of incident dementia, AD, and stroke using Cox-proportional hazards models and examined potential interactions. RESULTS A significant interaction of plasma clusterin levels with age was observed. Clusterin was significantly associated with increased risk of dementia among elderly persons (>80 years; hazard ratio [HR], 95% confidence interval = 6.25, 1.64-23.89; P = .007) and with decreased risk of dementia (HR = 0.53, 0.32-0.88; P = .013) and stroke (HR = 0.78, 0.63-0.97; P = .029) among younger participants. DISCUSSION The association between plasma clusterin levels and risk of dementia and stroke may be modified by age or an age-related factor.
Collapse
Affiliation(s)
| | - Alexa S Beiser
- Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sarah R Preis
- Framingham Heart Study, Framingham, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | - Vincent Chouraki
- Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA; The Population Sciences Branch of the National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
45
|
Miners JS, Clarke P, Love S. Clusterin levels are increased in Alzheimer's disease and influence the regional distribution of Aβ. Brain Pathol 2016; 27:305-313. [PMID: 27248362 DOI: 10.1111/bpa.12392] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Clusterin, also known as apoJ, is a lipoprotein abundantly expressed within the CNS. It regulates Aβ fibril formation and toxicity and facilitates amyloid-β (Aβ) transport across the blood-brain barrier. Genome-wide association studies have shown variations in the clusterin gene (CLU) to influence the risk of developing sporadic Alzheimer's disease (AD). To explore whether clusterin modulates the regional deposition of Aβ, we measured levels of soluble (NP40-extracted) and insoluble (guanidine-HCl-extracted) clusterin, Aβ40 and Aβ42 by sandwich ELISA in brain regions with a predilection for amyloid pathology-mid-frontal cortex (MF), cingulate cortex (CC), parahippocampal cortex (PH), and regions with little or no pathology-thalamus (TH) and white matter (WM). Clusterin level was highest in regions with plaque pathology (MF, CC, PH and PC), approximately mirroring the regional distribution of Aβ. It was significantly higher in AD than controls, and correlated positively with Aβ42 and insoluble Aβ40. Soluble clusterin level rose significantly with severity of cerebral amyloid angiopathy, and in MF and PC regions was highest in APOE ɛ4 homozygotes. In the TH and WM (areas with little amyloid pathology) clusterin was unaltered in AD and did not correlate with Aβ level. There was a significant positive correlation between the concentration of clusterin and the regional levels of insoluble Aβ42; however, the molar ratio of clusterin : Aβ42 declined with insoluble Aβ42 level in a region-dependent manner, being lowest in regions with predilection for Aβ plaque pathology. Under physiological conditions, clusterin reduces aggregation and promotes clearance of Aβ. Our findings indicate that in AD, clusterin increases, particularly in regions with most abundant Aβ, but because the increase does not match the rising level of Aβ42, the molar ratio of clusterin : Aβ42 in those regions falls, probably contributing to Aβ deposition within the tissue.
Collapse
Affiliation(s)
- J Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Polly Clarke
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| |
Collapse
|
46
|
Yoon SY, Kim DH. Alzheimer's disease genes and autophagy. Brain Res 2016; 1649:201-209. [PMID: 27016058 DOI: 10.1016/j.brainres.2016.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 11/15/2022]
Abstract
Autophagy is a process to degrade and recycle cellular constituents via the lysosome for regulating cellular homeostasis. Its dysfunction is now considered to be involved in many diseases, including neurodegenerative diseases. Many features reflecting autophagy impairment, such as autophagosome accumulation and lysosomal dysfunction, have been also revealed to be involved in Alzheimer's disease (AD). Recent genetic studies such as genome-wide association studies in AD have identified a number of novel genes associated with AD. Some of the identified genes have demonstrated dysfunction in autophagic processes in AD, while others remain under investigation. Since autophagy is strongly regarded to be one of the major pathogenic mechanisms of AD, it is necessary to review how the AD-associated genes are related to autophagy. We anticipate our current review to be a starting point for future studies regarding AD-associated genes and autophagy. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Seung-Yong Yoon
- Alzheimer's Disease Experts Lab (ADEL), Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Brain Science, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Dong-Hou Kim
- Alzheimer's Disease Experts Lab (ADEL), Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Brain Science, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Beeg M, Stravalaci M, Romeo M, Carrá AD, Cagnotto A, Rossi A, Diomede L, Salmona M, Gobbi M. Clusterin Binds to Aβ1-42 Oligomers with High Affinity and Interferes with Peptide Aggregation by Inhibiting Primary and Secondary Nucleation. J Biol Chem 2016; 291:6958-66. [PMID: 26884339 DOI: 10.1074/jbc.m115.689539] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 11/06/2022] Open
Abstract
The aggregation of amyloid β protein (Aβ) is a fundamental pathogenic mechanism leading to the neuronal damage present in Alzheimer disease, and soluble Aβ oligomers are thought to be a major toxic culprit. Thus, better knowledge and specific targeting of the pathways that lead to these noxious species may result in valuable therapeutic strategies. We characterized some effects of the molecular chaperone clusterin, providing new and more detailed evidence of its potential neuroprotective effects. Using a classical thioflavin T assay, we observed a dose-dependent inhibition of the aggregation process. The global analysis of time courses under different conditions demonstrated that clusterin has no effect on the elongation rate but mainly interferes with the nucleation processes (both primary and secondary), reducing the number of nuclei available for further fibril growth. Then, using a recently developed immunoassay based on surface plasmon resonance, we obtained direct evidence of a high-affinity (KD= 1 nm) interaction of clusterin with biologically relevant Aβ1-42oligomers, selectively captured on the sensor chip. Moreover, with the same technology, we observed that substoichiometric concentrations of clusterin prevent oligomer interaction with the antibody 4G8, suggesting that the chaperone shields hydrophobic residues exposed on the oligomeric assemblies. Finally, we found that preincubation with clusterin antagonizes the toxic effects of Aβ1-42oligomers, as evaluated in a recently developedin vivomodel inCaenorhabditis elegans.These data substantiate the interaction of clusterin with biologically active regions exposed on nuclei/oligomers of Aβ1-42, providing a molecular basis for the neuroprotective effects of the chaperone.
Collapse
Affiliation(s)
- Marten Beeg
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Matteo Stravalaci
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Margherita Romeo
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Arianna Dorotea Carrá
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Alfredo Cagnotto
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Alessandro Rossi
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Luisa Diomede
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Mario Salmona
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Marco Gobbi
- From the Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| |
Collapse
|
48
|
Montañola A, de Retana SF, López-Rueda A, Merino-Zamorano C, Penalba A, Fernández-Álvarez P, Rodríguez-Luna D, Malagelada A, Pujadas F, Montaner J, Hernández-Guillamon M. ApoA1, ApoJ and ApoE Plasma Levels and Genotype Frequencies in Cerebral Amyloid Angiopathy. Neuromolecular Med 2015; 18:99-108. [PMID: 26661731 DOI: 10.1007/s12017-015-8381-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/17/2015] [Indexed: 01/26/2023]
Abstract
The involvement of apolipoproteins, such as the ApoE4 isoform, in Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) highlights the fact that certain lipid carriers may participate in soluble β-amyloid (Aβ) transport. Our general aim was to characterize the soluble levels of the apolipoproteins apoE, apoA1 and apoJ/clusterin and their genotype status in patients with CAA. We analyzed the genotypes frequency of APOA1 (rs5069, rs670), CLU (rs11136000, rs1532278, rs7012010, rs9331888) and APOE (rs429358, rs7412) in a cohort of patients with CAA-associated intracerebral hemorrhage (ICH) (n = 59) and compared the results with those from hypertension-associated ICH (n = 42), AD patients (n = 73) and controls (n = 88). In a subgroup of patients, we also determined the plasma concentrations of apoE, apoA1 and apoJ/clusterin. We found increased plasma apoJ/clusterin levels in CAA patients compared to AD patients or controls after adjusting for sex and age (CAA vs. controls, p = 0.033; CAA vs. AD, p = 0.013). ApoA1 levels were not altered between groups, although a strong correlation was observed between plasma Aβ(1-40) and apoA1 among CAA patients (r = 0.583, p = 0.007). Regarding plasma apoE concentration, a robust association between circulating levels and genotype status was confirmed (p < 0.001). Whereas the APOE4 frequency was higher in AD (p < 0.001) and CAA (p = 0.013), the APOA1 and CLU genotypes were not different among groups. In the CAA cohort, the risk-linked CLU variant (C) rs11136000 was associated with white matter hyperintensities (p = 0.045) and the presence of lobar microbleeds (p = 0.023) on MRI. In summary, our findings suggest that apoA1 may act as a physiological transporter of Aβ(1-40) and that apoJ/clusterin appears to be a chaperone related to distinctive lesions in CAA brains.
Collapse
Affiliation(s)
- Alex Montañola
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Sofía Fernández de Retana
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Antonio López-Rueda
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Cristina Merino-Zamorano
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - David Rodríguez-Luna
- Neurovascular Unit, Neurology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Ana Malagelada
- Dementia Unit, Neurology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Francesc Pujadas
- Dementia Unit, Neurology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Neurovascular Unit, Neurology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
49
|
Helmfors L, Boman A, Civitelli L, Nath S, Sandin L, Janefjord C, McCann H, Zetterberg H, Blennow K, Halliday G, Brorsson AC, Kågedal K. Protective properties of lysozyme on β-amyloid pathology: implications for Alzheimer disease. Neurobiol Dis 2015; 83:122-33. [PMID: 26334479 DOI: 10.1016/j.nbd.2015.08.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/03/2015] [Accepted: 08/21/2015] [Indexed: 01/24/2023] Open
Abstract
The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease.
Collapse
Affiliation(s)
- Linda Helmfors
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Andrea Boman
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Livia Civitelli
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Sangeeta Nath
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Linnea Sandin
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Camilla Janefjord
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Heather McCann
- Neuroscience Research Australia and University of New South Wales, Randwick New South Wales 2031, Australia
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden
| | - Glenda Halliday
- Neuroscience Research Australia and University of New South Wales, Randwick New South Wales 2031, Australia
| | - Ann-Christin Brorsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Katarina Kågedal
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden.
| |
Collapse
|
50
|
Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77:43-51. [PMID: 24951455 PMCID: PMC4234692 DOI: 10.1016/j.biopsych.2014.05.006] [Citation(s) in RCA: 928] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023]
Abstract
We review the genetic risk factors for late-onset Alzheimer's disease (AD) and their role in AD pathogenesis. More recent advances in understanding of the human genome-technologic advances in methods to analyze millions of polymorphisms in thousands of subjects-have revealed new genes associated with AD risk, including ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B, SLC24H4-RIN3, SORL1, and ZCWPW1. Emerging technologies to analyze the entire genome in large data sets have also revealed coding variants that increase AD risk: PLD3 and TREM2. We review the relationship between these AD risk genes and the cellular and neuropathologic features of AD. Understanding the mechanisms underlying the association of these genes with risk for disease will provide the most meaningful targets for therapeutic development to date.
Collapse
Affiliation(s)
| | - Alison M. Goate
- Corresponding author Contact information: Department of Psychiatry, Washington University School of Medicine, 425 S. Euclid Ave, Campus Box 8134, St. Louis, MO 63110, phone: 314-362-8691, fax: 314-747-2983,
| |
Collapse
|