1
|
Tamarit-Rodriguez J. Stimulus-Secretion Coupling Mechanisms of Glucose-Induced Insulin Secretion: Biochemical Discrepancies Among the Canonical, ADP Privation, and GABA-Shunt Models. Int J Mol Sci 2025; 26:2947. [PMID: 40243540 PMCID: PMC11989153 DOI: 10.3390/ijms26072947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Integration of old and recent experimental data consequences is needed to correct and help improve the hypothetical mechanism responsible for the stimulus-secretion coupling mechanism of glucose-induced insulin secretion. The main purpose of this review is to supply biochemical considerations about some of the metabolic pathways implicated in the process of insulin secretion. It is emphasized that glucose β-cells' threshold to activate secretion (5 mM) might depend on the predominance of anaerobic glycolysis at this basal glucose concentration. This argues against the predominance of phosphoenolpyruvate (PEP) over mitochondrial pyruvate oxidation for the initiation of insulin secretion. Full quantitative and qualitative reproduction, except the threshold effect, of glucose-induced insulin release by a permeable methylated analog of succinic acid indicates that mitochondrial metabolism is enough for sustained insulin secretion. Mitochondrial PEP generation is skipped if the GABA-shunt pathway is exclusively coupled to the citric acid cycle, as proposed in the "GABA-shunt" model of stimulus-secretion coupling. Strong or maintained depolarization by KCl or sulfonylureas might induce the opening of β-cells Cx36 hemichannels, allowing the loss of adenine nucleotides and other metabolites, mimicking the effect of an excessive mitochondrial ATP demand. A few alterations of OxPhos (Oxidative Phosphorylation) regulation in human T2D islets have been described, but the responsible mechanism(s) is (are) not yet known. Finally, some experimental data arguing as proof of the relative irrelevance of the mitochondrial function in the insulin secretion coupling mechanism for the initiation and/or sustained stimulation of hormone release are discussed.
Collapse
|
2
|
de Siqueira DVF, Boaretto N, Leão RM. Decreases in metabolic ATP open K ATP channels and reduce firing in an auditory brainstem neuron: A dynamic mechanism of firing control during intense activity. Neuroscience 2025; 564:171-178. [PMID: 39579854 DOI: 10.1016/j.neuroscience.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Cartwheel (CW) neurons are glycinergic interneurons in the dorsal cochlear nucleus (DCN) that exhibit spontaneous firing, resulting in potent tonic inhibition of fusiform neurons. CW neurons expressing open ATP-sensitive potassium (KATP) channels do not fire spontaneously, and activation of KATP channels halts spontaneous firing in these neurons. However, the conditions that regulate KATP channel opening in CW neurons remain unknown. Here, we tested the hypothesis that fluctuations in metabolic ATP levels modulate KATP channels in CW neurons. Using whole-cell patch-clamp recordings in CW neurons from young rat brain slices (p17-22) with an ATP-free internal solution, we observed that the mitochondrial uncoupler CCCP hyperpolarized the membrane potential, reduced spontaneous firing, and generated an outward current, which was inhibited by the KATP channel antagonist tolbutamide. Additionally, a glucose-free external solution quickly activated KATP channels and ceased spontaneous firing. We hypothesized that intense membrane ion ATPase activity during strong depolarization would deplete intracellular ATP, leading to KATP channel opening. Consistent with this, depolarizing CW neurons with a 250 pA DC did not increase spontaneous firing because the depolarization activated KATP channels; however, the same depolarization after tolbutamide administration increased firing, suggesting that ATP depletion triggered KATP channel opening to limit action potential firing. These results indicate that KATP channels in the DCN provide dynamic control over action potential firing, preventing excessive excitation during high-firing activity.
Collapse
Affiliation(s)
- Daniela Vanessa F de Siqueira
- Laboratory of Neurophysiology and Synapse, Department of Physiology, School of Medicine of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Natalia Boaretto
- Laboratory of Neurophysiology and Synapse, Department of Physiology, School of Medicine of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Ricardo Maurício Leão
- Laboratory of Neurophysiology and Synapse, Department of Physiology, School of Medicine of Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Maglov J, Feng MY, Lin D, Barkhouse K, Alexander A, Grbic M, Zhurov V, Grbic V, Tudzarova S. A link between energy metabolism and plant host adaptation states in the two-spotted spider mite, Tetranychus urticae (Koch). Sci Rep 2023; 13:19343. [PMID: 37935795 PMCID: PMC10630510 DOI: 10.1038/s41598-023-46589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Energy metabolism is a highly conserved process that balances generation of cellular energy and maintenance of redox homeostasis. It consists of five interconnected pathways: glycolysis, tricarboxylic acid cycle, pentose phosphate, trans-sulfuration, and NAD+ biosynthesis pathways. Environmental stress rewires cellular energy metabolism. Type-2 diabetes is a well-studied energy metabolism rewiring state in human pancreatic β-cells where glucose metabolism is uncoupled from insulin secretion. The two-spotted spider mite, Tetranychus urticae (Koch), exhibits a remarkable ability to adapt to environmental stress. Upon transfer to unfavourable plant hosts, mites experience extreme xenobiotic stress that dramatically affects their survivorship and fecundity. However, within 25 generations, mites adapt to the xenobiotic stress and restore their fitness. Mites' ability to withstand long-term xenobiotic stress raises a question of their energy metabolism states during host adaptation. Here, we compared the transcriptional responses of five energy metabolism pathways between host-adapted and non-adapted mites while using responses in human pancreatic islet donors to model these pathways under stress. We found that non-adapted mites and human pancreatic β-cells responded in a similar manner to host plant transfer and diabetogenic stress respectively, where redox homeostasis maintenance was favoured over energy generation. Remarkably, we found that upon host-adaptation, mite energy metabolic states were restored to normal. These findings suggest that genes involved in energy metabolism can serve as molecular markers for mite host-adaptation.
Collapse
Affiliation(s)
- Jorden Maglov
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Min Yi Feng
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Dorothy Lin
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Kennedy Barkhouse
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Anton Alexander
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada.
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, N6A 5B7, Canada.
| | - Slavica Tudzarova
- Larry L. Hillblom Islet Research Center, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Bertram R, Marinelli I, Fletcher PA, Satin LS, Sherman AS. Deconstructing the integrated oscillator model for pancreatic β-cells. Math Biosci 2023; 365:109085. [PMID: 37802364 PMCID: PMC10991200 DOI: 10.1016/j.mbs.2023.109085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Electrical bursting oscillations in the β-cells of pancreatic islets have been a focus of investigation for more than fifty years. This has been aided by mathematical models, which are descendants of the pioneering Chay-Keizer model. This article describes the key biophysical and mathematical elements of this model, and then describes the path forward from there to the Integrated Oscillator Model (IOM). It is both a history and a deconstruction of the IOM that describes the various elements that have been added to the model over time, and the motivation for adding them. Finally, the article is a celebration of the 40th anniversary of the publication of the Chay-Keizer model.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, United States.
| | - Isabella Marinelli
- Centre for Systems Modeling and Quantitative Biomedicine, University of Birmingham, United Kingdom
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Fletcher PA, Thompson B, Liu C, Bertram R, Satin LS, Sherman AS. Ca 2+ release or Ca 2+ entry, that is the question: what governs Ca 2+ oscillations in pancreatic β cells? Am J Physiol Endocrinol Metab 2023; 324:E477-E487. [PMID: 37074988 PMCID: PMC10228667 DOI: 10.1152/ajpendo.00030.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
The standard model for Ca2+ oscillations in insulin-secreting pancreatic β cells centers on Ca2+ entry through voltage-activated Ca2+ channels. These work in combination with ATP-dependent K+ channels, which are the bridge between the metabolic state of the cells and plasma membrane potential. This partnership underlies the ability of the β cells to secrete insulin appropriately on a minute-to-minute time scale to control whole body plasma glucose. Though this model, developed over more than 40 years through many cycles of experimentation and mathematical modeling, has been very successful, it has been challenged by a hypothesis that calcium-induced calcium release from the endoplasmic reticulum through ryanodine or inositol trisphosphate (IP3) receptors is instead the key driver of islet oscillations. We show here that the alternative model is in fact incompatible with a large body of established experimental data and that the new observations offered in support of it can be better explained by the standard model.
Collapse
Affiliation(s)
- Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland, United States
| | - Ben Thompson
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Chanté Liu
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
6
|
Dali R, Estrada-Meza J, Langlet F. Tanycyte, the neuron whisperer. Physiol Behav 2023; 263:114108. [PMID: 36740135 DOI: 10.1016/j.physbeh.2023.114108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Reciprocal communication between neurons and glia is essential for normal brain functioning and adequate physiological functions, including energy balance. In vertebrates, the homeostatic process that adjusts food intake and energy expenditure in line with physiological requirements is tightly controlled by numerous neural cell types located within the hypothalamus and the brainstem and organized in complex networks. Within these neural networks, peculiar ependymoglial cells called tanycytes are nowadays recognized as multifunctional players in the physiological mechanisms of appetite control, partly by modulating orexigenic and anorexigenic neurons. Here, we review recent advances in tanycytes' impact on hypothalamic neuronal activity, emphasizing on arcuate neurons.
Collapse
Affiliation(s)
- Rafik Dali
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Judith Estrada-Meza
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Fanny Langlet
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
7
|
Noguera Hurtado H, Gresch A, Düfer M. NMDA receptors - regulatory function and pathophysiological significance for pancreatic beta cells. Biol Chem 2023; 404:311-324. [PMID: 36626848 DOI: 10.1515/hsz-2022-0236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
Due to its unique features amongst ionotropic glutamate receptors, the NMDA receptor is of special interest in the physiological context but even more as a drug target. In the pathophysiology of metabolic disorders, particularly type 2 diabetes mellitus, there is evidence that NMDA receptor activation contributes to disease progression by impairing beta cell function. Consequently, channel inhibitors are suggested for treatment, but up to now there are many unanswered questions about the signaling pathways NMDA receptors are interfering with in the islets of Langerhans. In this review we give an overview about channel structure and function with special regard to the pancreatic beta cells and the regulation of insulin secretion. We sum up which signaling pathways from brain research have already been transferred to the beta cell, and what still needs to be proven. The main focus is on the relationship between an over-stimulated NMDA receptor and the production of reactive oxygen species, the amount of which is crucial for beta cell function. Finally, pilot studies using NMDA receptor blockers to protect the islet from dysfunction are reviewed and future perspectives for the use of such compounds in the context of impaired glucose homeostasis are discussed.
Collapse
Affiliation(s)
- Héctor Noguera Hurtado
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Anne Gresch
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
8
|
Duan K, Zhou M, Wang Y, Oberholzer J, Lo JF. Visualizing hypoxic modulation of beta cell secretions via a sensor augmented oxygen gradient. MICROSYSTEMS & NANOENGINEERING 2023; 9:14. [PMID: 36760229 PMCID: PMC9902275 DOI: 10.1038/s41378-022-00482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
One distinct advantage of microfluidic-based cell assays is their scalability for multiple concentrations or gradients. Microfluidic scaling can be extremely powerful when combining multiple parameters and modalities. Moreover, in situ stimulation and detection eliminates variability between individual bioassays. However, conventional microfluidics must combat diffusion, which limits the spatial distance and time for molecules traveling through microchannels. Here, we leveraged a multilayered microfluidic approach to integrate a novel oxygen gradient (0-20%) with an enhanced hydrogel sensor to study pancreatic beta cells. This enabled our microfluidics to achieve spatiotemporal detection that is difficult to achieve with traditional microfluidics. Using this device, we demonstrated the in situ detection of calcium, insulin, and ATP (adenosine triphosphate) in response to glucose and oxygen stimulation. Specifically, insulin was quantified at levels as low as 25 pg/mL using our imaging technique. Furthermore, by analyzing the spatial detection data dynamically over time, we uncovered a new relationship between oxygen and beta cell oscillations. We observed an optimum oxygen level between 10 and 12%, which is neither hypoxic nor normoxic in the conventional cell culture sense. These results provide evidence to support the current islet oscillator model. In future applications, this spatial microfluidic technique can be adapted for discrete protein detection in a robust platform to study numerous oxygen-dependent tissue dysfunctions.
Collapse
Affiliation(s)
- Kai Duan
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| | - Mengyang Zhou
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| | - Yong Wang
- Department of Surgery/Transplant, University of Virginia, Charlottesville, VA 22908 USA
| | - Jose Oberholzer
- Department of Surgery/Transplant, University of Virginia, Charlottesville, VA 22908 USA
| | - Joe F. Lo
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| |
Collapse
|
9
|
Hao H, Jia X, Ren T, Du Y, Wang J. Novel insight into the mechanism underlying synergistic cytotoxicity from two components in 5-Fluorouracil-phenylalanine co-crystal based on cell metabolomics. Eur J Pharm Biopharm 2022; 180:181-189. [DOI: 10.1016/j.ejpb.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
|
10
|
Merrins MJ, Corkey BE, Kibbey RG, Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metab 2022; 34:947-968. [PMID: 35728586 PMCID: PMC9262871 DOI: 10.1016/j.cmet.2022.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/03/2023]
Abstract
In this review, we focus on recent developments in our understanding of nutrient-induced insulin secretion that challenge a key aspect of the "canonical" model, in which an oxidative phosphorylation-driven rise in ATP production closes KATP channels. We discuss the importance of intrinsic β cell metabolic oscillations; the phasic alignment of relevant metabolic cycles, shuttles, and shunts; and how their temporal and compartmental relationships align with the triggering phase or the secretory phase of pulsatile insulin secretion. Metabolic signaling components are assigned regulatory, effectory, and/or homeostatic roles vis-à-vis their contribution to glucose sensing, signal transmission, and resetting the system. Taken together, these functions provide a framework for understanding how allostery, anaplerosis, and oxidative metabolism are integrated into the oscillatory behavior of the secretory pathway. By incorporating these temporal as well as newly discovered spatial aspects of β cell metabolism, we propose a much-refined MitoCat-MitoOx model of the signaling process for the field to evaluate.
Collapse
Affiliation(s)
- Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| | - Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Richard G Kibbey
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA.
| | - Marc Prentki
- Molecular Nutrition Unit and Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montréal, ON, Canada.
| |
Collapse
|
11
|
Fletcher PA, Marinelli I, Bertram R, Satin LS, Sherman AS. Pulsatile Basal Insulin Secretion Is Driven by Glycolytic Oscillations. Physiology (Bethesda) 2022; 37:0. [PMID: 35378996 PMCID: PMC9191171 DOI: 10.1152/physiol.00044.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In fasted and fed states, blood insulin levels are oscillatory. While this phenomenon is well studied at high glucose levels, comparatively little is known about its origin under basal conditions. We propose a possible mechanism for basal insulin oscillations based on oscillations in glycolysis, demonstrated using an established mathematical model. At high glucose, this is superseded by a calcium-dependent mechanism.
Collapse
Affiliation(s)
- P. A. Fletcher
- 1Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| | - I. Marinelli
- 2Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, United Kingdom
| | - R. Bertram
- 3Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - L. S. Satin
- 4Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - A. S. Sherman
- 1Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Marinelli I, Thompson BM, Parekh VS, Fletcher PA, Gerardo-Giorda L, Sherman AS, Satin LS, Bertram R. Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells. Biophys J 2022; 121:1449-1464. [PMID: 35300967 PMCID: PMC9072586 DOI: 10.1016/j.bpj.2022.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
ATP-sensitive K+ (K(ATP)) channels were first reported in the β-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet β-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in β-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion.
Collapse
Affiliation(s)
- Isabella Marinelli
- Centre for Systems Modelling & Quantitative Biomedicine (SMQB), University of Birmingham, Birmingham, UK
| | - Benjamin M Thompson
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - Vishal S Parekh
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, Massachusetts
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| | - Luca Gerardo-Giorda
- Institute for Mathematical Methods in Medicine and Data Based Modeling, Johannes Kepler University, Linz, Austria; Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida.
| |
Collapse
|
13
|
Komati A, Anand A, Nagendla NK, Madhusudana K, Mudiam MKR, Babu KS, Tiwari AK. Bombax ceiba
calyx displays antihyperglycemic activity via improving insulin secretion and sensitivity: Identification of bioactive phytometabolomes by UPLC‐QTof‐MS/MS. J Food Sci 2022; 87:1865-1881. [DOI: 10.1111/1750-3841.16093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Anusha Komati
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Ajay Anand
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
- Carver College of Medicine, Department of Pathology, University Of Iowa Iowa City USA
| | - Narendra Kumar Nagendla
- Analytical & Structural Chemistry Department CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Kuncha Madhusudana
- Applied Biology Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Mohana Krishna Reddy Mudiam
- Analytical & Structural Chemistry Department CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Katragadda Suresh Babu
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Ashok Kumar Tiwari
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
14
|
Marinelli I, Parekh V, Fletcher P, Thompson B, Ren J, Tang X, Saunders TL, Ha J, Sherman A, Bertram R, Satin LS. Slow oscillations persist in pancreatic beta cells lacking phosphofructokinase M. Biophys J 2022; 121:692-704. [PMID: 35131294 PMCID: PMC8948000 DOI: 10.1016/j.bpj.2022.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 11/22/2022] Open
Abstract
Pulsatile insulin secretion by pancreatic beta cells is necessary for tight glucose control in the body. Glycolytic oscillations have been proposed as the mechanism for generating the electrical oscillations underlying pulsatile insulin secretion. The glycolytic enzyme 6-phosphofructokinase-1 (PFK) synthesizes fructose-1,6-bisphosphate (FBP) from fructose-6-phosphate. It has been proposed that the slow electrical and Ca2+ oscillations (periods of 3-5 min) observed in islets result from allosteric feedback activation of PFKM by FBP. Pancreatic beta cells express three PFK isozymes: PFKL, PFKM, and PFKP. A prior study of mice that were engineered to lack PFKM using a gene-trap strategy to delete Pfkm produced a mosaic reduction in global Pfkm expression, but the islets isolated from the mice still exhibited slow Ca2+ oscillations. However, these islets still expressed residual PFKM protein. Thus, to more fully test the hypothesis that beta cell PFKM is responsible for slow islet oscillations, we made a beta-cell-specific knockout mouse that completely lacked PFKM. While PFKM deletion resulted in subtle metabolic changes in vivo, islets that were isolated from these mice continued to exhibit slow oscillations in electrical activity, beta cell Ca2+ concentrations, and glycolysis, as measured using PKAR, an FBP reporter/biosensor. Furthermore, simulations obtained with a mathematical model of beta cell activity shows that slow oscillations can persist despite PFKM loss provided that one of the other PFK isoforms, such as PFKP, is present, even if its level of expression is unchanged. Thus, while we believe that PFKM may be the main regulator of slow oscillations in wild-type islets, PFKP can provide functional redundancy. Our model also suggests that PFKM likely dominates, in vivo, because it outcompetes PFKP with its higher FBP affinity and lower ATP affinity. We thus propose that isoform redundancy may rescue key physiological processes of the beta cell in the absence of certain critical genes.
Collapse
Affiliation(s)
- Isabella Marinelli
- Centre for Systems Modelling & Quantitative Biomedicine (SMQB), University of Birmingham, Birmingham, UK
| | - Vishal Parekh
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - Patrick Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Bethesda
| | - Benjamin Thompson
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jinhua Ren
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - Xiaoqing Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Thomas L Saunders
- Division of Medical Medicine and Genetics, Department of Internal Medicine, Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joon Ha
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Bethesda
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Bethesda
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
15
|
Adnan M, Jeon BB, Chowdhury MHU, Oh KK, Das T, Chy MNU, Cho DH. Network Pharmacology Study to Reveal the Potentiality of a Methanol Extract of Caesalpinia sappan L. Wood against Type-2 Diabetes Mellitus. Life (Basel) 2022; 12:277. [PMID: 35207564 PMCID: PMC8880704 DOI: 10.3390/life12020277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
Caesalpinia sappan L. (CS) is widely used to treat diabetic complications in south-east Asia, specifically in traditional Chinese medicine. This study intends to explain the molecular mechanism of how chemical constituents of CS interrelate with different signaling pathways and receptors involved in T2DM. GC-MS was employed to identify the chemical compounds from the methanol extract of CS wood (MECSW). Lipinski's rule of five was applied, and 33 bioactive constituents have been screened from the CS extract. After that, 124 common targets and 26 compounds associated with T2DM were identified by mining several public databases. Protein-protein interactions and compound-target network were constructed using the STRING database and Cytoscape tool. Protein-protein interactions were identified in 121 interconnected nodes active in T2DM and peroxisome proliferator-activated receptor gamma (PPARG) as key target receptors. Furthermore, pathway compound target (PCT) analysis using the merger algorithm plugin of Cytoscape revealed 121 nodes from common T2DM targets, 33 nodes from MECSW compounds and 9 nodes of the KEGG pathway. Moreover, network topology analysis determined "Fisetin tetramethyl ether" as the key chemical compound. The DAVID online tool determined seven signaling receptors, among which PPARG was found most significant in T2DM progression. Gene ontology and KEGG pathway analysis implied the involvement of nine pathways, and the peroxisome proliferator-activated receptor (PPAR) pathway was selected as the hub signaling pathway. Finally, molecular docking and quantum chemistry analysis confirmed the strong binding affinity and reactive chemical nature of fisetin tetramethyl ether with target receptors exceeding that of the conventional drug (metformin), PPARs agonist (rosiglitazone) and co-crystallized ligands, indicating that fisetin could be a potential drug of choice in T2DM management. This study depicts the interrelationship of the bioactive compounds of MECSW with the T2DM-associated signaling pathways and target receptors. It also proposes a more pharmaceutically effective substance, fisetin tetramethyl ether, over the standard drug that activates PPARG protein in the PPAR signaling pathway of T2DM.
Collapse
Affiliation(s)
- Md. Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| | - Byeong-Bae Jeon
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| | - Md. Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram 4331, Bangladesh;
| | - Ki-Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| | - Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh;
| | - Md. Nazim Uddin Chy
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| |
Collapse
|
16
|
Marinelli I, Fletcher PA, Sherman AS, Satin LS, Bertram R. Symbiosis of Electrical and Metabolic Oscillations in Pancreatic β-Cells. Front Physiol 2021; 12:781581. [PMID: 34925070 PMCID: PMC8682964 DOI: 10.3389/fphys.2021.781581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Insulin is secreted in a pulsatile pattern, with important physiological ramifications. In pancreatic β-cells, which are the cells that synthesize insulin, insulin exocytosis is elicited by pulses of elevated intracellular Ca2+ initiated by bursts of electrical activity. In parallel with these electrical and Ca2+ oscillations are oscillations in metabolism, and the periods of all of these oscillatory processes are similar. A key question that remains unresolved is whether the electrical oscillations are responsible for the metabolic oscillations via the effects of Ca2+, or whether the metabolic oscillations are responsible for the electrical oscillations due to the effects of ATP on ATP-sensitive ion channels? Mathematical modeling is a useful tool for addressing this and related questions as modeling can aid in the design of well-focused experiments that can test the predictions of particular models and subsequently be used to improve the models in an iterative fashion. In this article, we discuss a recent mathematical model, the Integrated Oscillator Model (IOM), that was the product of many years of development. We use the model to demonstrate that the relationship between calcium and metabolism in beta cells is symbiotic: in some contexts, the electrical oscillations drive the metabolic oscillations, while in other contexts it is the opposite. We provide new insights regarding these results and illustrate that what might at first appear to be contradictory data are actually compatible when viewed holistically with the IOM.
Collapse
Affiliation(s)
- Isabella Marinelli
- Centre for Systems Modelling and Quantitative Biomedicine (SMQB), University of Birmingham, Birmingham, United Kingdom
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| | - Leslie S Satin
- Department of Pharmacology, Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Richard Bertram
- Programs in Neuroscience and Molecular Biophysics, Department of Mathematics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
17
|
Abstract
Beta cells of the pancreatic islet express many different types of ion channels. These channels reside in the β-cell plasma membrane as well as subcellular organelles and their coordinated activity and sensitivity to metabolism regulate glucose-dependent insulin secretion. Here, we review the molecular nature, expression patterns, and functional roles of many β-cell channels, with an eye toward explaining the ionic basis of glucose-induced insulin secretion. Our primary focus is on KATP and voltage-gated Ca2+ channels as these primarily regulate insulin secretion; other channels in our view primarily help to sculpt the electrical patterns generated by activated β-cells or indirectly regulate metabolism. Lastly, we discuss why understanding the physiological roles played by ion channels is important for understanding the secretory defects that occur in type 2 diabetes. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
- Benjamin Thompson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
18
|
Bisphenols and the Development of Type 2 Diabetes: The Role of the Skeletal Muscle and Adipose Tissue. ENVIRONMENTS 2021. [DOI: 10.3390/environments8040035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) are environmental contaminants that have been associated with the development of insulin resistance and type 2 diabetes (T2D). Two organs that are often implicated in the development of insulin resistance are the skeletal muscle and the adipose tissue, however, seldom studies have investigated the effects of bisphenols on their metabolism. In this review we discuss metabolic perturbations that occur in both the skeletal muscle and adipose tissue affected with insulin resistance, and how exposure to BPA or BPS has been linked to these changes. Furthermore, we highlight the possible effects of BPA on the cross-talk between the skeletal muscle and adipose tissue.
Collapse
|
19
|
Gil-Rivera M, Medina-Gali RM, Martínez-Pinna J, Soriano S. Physiology of pancreatic β-cells: Ion channels and molecular mechanisms implicated in stimulus-secretion coupling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:287-323. [PMID: 33832651 DOI: 10.1016/bs.ircmb.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The human and mouse islet of Langerhans is an endocrine organ composed of five different cells types; insulin-secreting β-cells, glucagon-producing α-cells, somatostatin-producing δ-cells, pancreatic polypeptide-secreting PP cells and ɛ-cells that secretes ghrelin. The most important cells are the pancreatic β-cells that comprise around 45-50% of human islets and 75-80% in the mouse. Pancreatic β-cells secrete insulin at high glucose concentration, thereby finely regulating glycaemia by the hypoglycaemic effects of this hormone. Different ion channels are implicated in the stimulus-secretion coupling of insulin. An increase in the intracellular ATP concentration leads to closure KATP channels, depolarizing the cell and opening voltage-gated calcium channels. The increase of intracellular calcium concentration induced by calcium entry through voltage-gated calcium channels promotes insulin secretion. Here, we briefly describe the diversity of ion channels present in pancreatic β-cells and the different mechanisms that are responsible to induce insulin secretion in human and mouse cells. Moreover, we described the pathophysiology due to alterations in the physiology of the main ion channels present in pancreatic β-cell and its implication to predispose metabolic disorders as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Minerva Gil-Rivera
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
| | - Regla M Medina-Gali
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Juan Martínez-Pinna
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Sergi Soriano
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain.
| |
Collapse
|
20
|
Pina AF, Borges DO, Meneses MJ, Branco P, Birne R, Vilasi A, Macedo MP. Insulin: Trigger and Target of Renal Functions. Front Cell Dev Biol 2020; 8:519. [PMID: 32850773 PMCID: PMC7403206 DOI: 10.3389/fcell.2020.00519] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Kidney function in metabolism is often underestimated. Although the word “clearance” is associated to “degradation”, at nephron level, proper balance between what is truly degraded and what is redirected to de novo utilization is crucial for the maintenance of electrolytic and acid–basic balance and energy conservation. Insulin is probably one of the best examples of how diverse and heterogeneous kidney response can be. Kidney has a primary role in the degradation of insulin released in the bloodstream, but it is also incredibly susceptible to insulin action throughout the nephron. Fluctuations in insulin levels during fast and fed state add another layer of complexity in the understanding of kidney fine-tuning. This review aims at revisiting renal insulin actions and clearance and to address the association of kidney dysmetabolism with hyperinsulinemia and insulin resistance, both highly prevalent phenomena in modern society.
Collapse
Affiliation(s)
- Ana F Pina
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ProRegeM Ph.D. Programme, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Diego O Borges
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Molecular Biosciences Ph.D. Programme, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria João Meneses
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ProRegeM Ph.D. Programme, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Patrícia Branco
- Department of Nephrology, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal.,Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Rita Birne
- Department of Nephrology, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal.,Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Antonio Vilasi
- Institute of Clinical Physiology - National Research Council, Reggio Calabria Unit1, Reggio Calabria, Italy
| | - Maria Paula Macedo
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| |
Collapse
|
21
|
Law NC, Marinelli I, Bertram R, Corbin KL, Schildmeyer C, Nunemaker CS. Chronic stimulation induces adaptive potassium channel activity that restores calcium oscillations in pancreatic islets in vitro. Am J Physiol Endocrinol Metab 2020; 318:E554-E563. [PMID: 32069073 PMCID: PMC7191410 DOI: 10.1152/ajpendo.00482.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin pulsatility is important to hepatic response in regulating blood glucose. Growing evidence suggests that insulin-secreting pancreatic β-cells can adapt to chronic disruptions of pulsatility to rescue this physiologically important behavior. We determined the time scale for adaptation and examined potential ion channels underlying it. We induced the adaptation both by chronic application of the ATP-sensitive K+ [K(ATP)] channel blocker tolbutamide and by application of the depolarizing agent potassium chloride (KCl). Acute application of tolbutamide without pretreatment results in elevated Ca2+ as measured by fura-2AM and the loss of endogenous pulsatility. We show that after chronic exposure to tolbutamide (12-24 h), Ca2+ oscillations occur with subsequent acute tolbutamide application. The same experiment was conducted with potassium chloride (KCl) to directly depolarize the β-cells. Once again, following chronic exposure to the cell stimulator, the islets produced Ca2+ oscillations when subsequently exposed to tolbutamide. These experiments suggest that it is the chronic stimulation, and not tolbutamide desensitization, that is responsible for the adaptation that rescues oscillatory β-cell activity. This compensatory response also causes islet glucose sensitivity to shift rightward following chronic tolbutamide treatment. Mathematical modeling shows that a small increase in the number of K(ATP) channels in the membrane is one adaptation mechanism that is compatible with the data. To examine other compensatory mechanisms, pharmacological studies provide support that Kir2.1 and TEA-sensitive channels play some role. Overall, this investigation demonstrates β-cell adaptability to overstimulation, which is likely an important mechanism for maintaining glucose homeostasis in the face of chronic stimulation.
Collapse
Affiliation(s)
- Nathan C Law
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | | | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Kathryn L Corbin
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Cara Schildmeyer
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Craig S Nunemaker
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| |
Collapse
|
22
|
Idevall-Hagren O, Tengholm A. Metabolic regulation of calcium signaling in beta cells. Semin Cell Dev Biol 2020; 103:20-30. [PMID: 32085965 DOI: 10.1016/j.semcdb.2020.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) regulates a vast number of cellular functions, including insulin secretion from beta cells. The major physiological insulin secretagogue, glucose, triggers [Ca2+]cyt oscillations in beta cells. Synchronization of the oscillations among the beta cells within an islet underlies the generation of pulsatile insulin secretion. This review describes the mechanisms generating [Ca2+]cyt oscillations, the interactions between [Ca2+]cyt and cell metabolism, as well as the contribution of various organelles to the shaping of [Ca2+]cyt signals and insulin secretion. It also discusses how Ca2+ signals are coordinated and spread throughout the islets and data indicating that altered Ca2+ signaling is associated with beta cell dysfunction and development of type 2 diabetes.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
23
|
Chareyron I, Wall C, Thevenet J, Santo-Domingo J, Wiederkehr A. Cellular stress is a prerequisite for glucose-induced mitochondrial matrix alkalinization in pancreatic β-cells. Mol Cell Endocrinol 2019; 481:71-83. [PMID: 30476561 DOI: 10.1016/j.mce.2018.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 11/24/2022]
Abstract
Changes in mitochondrial and cytosolic pH alter the chemical gradient across the inner mitochondrial membrane. The proton chemical gradient contributes to mitochondrial ATP synthesis as well as the uptake and release of metabolites and ions from the organelle. Here mitochondrial pH and ΔpH were studied for the first time in human pancreatic β-cells. Adenoviruses were used for rat insulin promoter dependent expression of the pH sensor SypHer targeted to either the mitochondrial matrix or the cytosol. The matrix pH in resting human β-cells is low (pH = 7.50 ± SD 0.17) compared to published values in other cell types. Consequently, the ΔpH of β-cells mitochondria is small. Glucose stimulation consistently resulted in acidification of the matrix pH in INS-1E insulinoma cells and β-cells in intact human islets or islet monolayer cultures. We registered acidification with similar kinetics but of slightly smaller amplitude in the cytosol of β-cells, thus glucose stimulation further reduced the ΔpH. Infection of human islets with high levels of adenoviruses caused the mitochondrial pH to increase. The apoptosis inducer and broad-spectrum kinase inhibitor staurosporine had similar effects on pH homeostasis. Although staurosporine alone does not affect the mitochondrial pH, glucose slightly increases the matrix pH of staurosporine treated cells. These two cellular stressors alter the normal mitochondrial pH response to glucose in pancreatic β-cells.
Collapse
Affiliation(s)
- Isabelle Chareyron
- Mitochondrial Function, Nestlé Institute of Health Sciences, 1015, Lausanne, Switzerland
| | - Christopher Wall
- Mitochondrial Function, Nestlé Institute of Health Sciences, 1015, Lausanne, Switzerland
| | - Jonathan Thevenet
- Mitochondrial Function, Nestlé Institute of Health Sciences, 1015, Lausanne, Switzerland
| | - Jaime Santo-Domingo
- Mitochondrial Function, Nestlé Institute of Health Sciences, 1015, Lausanne, Switzerland
| | - Andreas Wiederkehr
- Mitochondrial Function, Nestlé Institute of Health Sciences, 1015, Lausanne, Switzerland.
| |
Collapse
|
24
|
Filadi R, Basso E, Lefkimmiatis K, Pozzan T. Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:279-322. [PMID: 29594866 DOI: 10.1007/978-3-319-55858-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emy Basso
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
| | - Konstantinos Lefkimmiatis
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy.
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
25
|
Bertram R, Satin LS, Sherman AS. Closing in on the Mechanisms of Pulsatile Insulin Secretion. Diabetes 2018; 67:351-359. [PMID: 29463575 PMCID: PMC5828455 DOI: 10.2337/dbi17-0004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023]
Abstract
Insulin secretion from pancreatic islet β-cells occurs in a pulsatile fashion, with a typical period of ∼5 min. The basis of this pulsatility in mouse islets has been investigated for more than four decades, and the various theories have been described as either qualitative or mathematical models. In many cases the models differ in their mechanisms for rhythmogenesis, as well as other less important details. In this Perspective, we describe two main classes of models: those in which oscillations in the intracellular Ca2+ concentration drive oscillations in metabolism, and those in which intrinsic metabolic oscillations drive oscillations in Ca2+ concentration and electrical activity. We then discuss nine canonical experimental findings that provide key insights into the mechanism of islet oscillations and list the models that can account for each finding. Finally, we describe a new model that integrates features from multiple earlier models and is thus called the Integrated Oscillator Model. In this model, intracellular Ca2+ acts on the glycolytic pathway in the generation of oscillations, and it is thus a hybrid of the two main classes of models. It alone among models proposed to date can explain all nine key experimental findings, and it serves as a good starting point for future studies of pulsatile insulin secretion from human islets.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
26
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Montemurro C, Vadrevu S, Gurlo T, Butler AE, Vongbunyong KE, Petcherski A, Shirihai OS, Satin LS, Braas D, Butler PC, Tudzarova S. Cell cycle-related metabolism and mitochondrial dynamics in a replication-competent pancreatic beta-cell line. Cell Cycle 2017; 16:2086-2099. [PMID: 28820316 DOI: 10.1080/15384101.2017.1361069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.
Collapse
Affiliation(s)
- Chiara Montemurro
- a Larry L. Hillblom Islet Research Center , University of California, Los Angeles, David Geffen School of Medicine , Los Angeles , CA , USA
| | - Suryakiran Vadrevu
- b Department of Pharmacology and Brehm Diabetes Research Center , University of Michigan , Ann Arbor , MI , USA
| | - Tatyana Gurlo
- a Larry L. Hillblom Islet Research Center , University of California, Los Angeles, David Geffen School of Medicine , Los Angeles , CA , USA
| | - Alexandra E Butler
- a Larry L. Hillblom Islet Research Center , University of California, Los Angeles, David Geffen School of Medicine , Los Angeles , CA , USA
| | - Kenny E Vongbunyong
- a Larry L. Hillblom Islet Research Center , University of California, Los Angeles, David Geffen School of Medicine , Los Angeles , CA , USA
| | - Anton Petcherski
- c Division of Endocrinology, Department of Medicine, David Geffen School of Medicine , University of California, Los Angeles , Los Angeles , CA , USA
| | - Orian S Shirihai
- c Division of Endocrinology, Department of Medicine, David Geffen School of Medicine , University of California, Los Angeles , Los Angeles , CA , USA
| | - Leslie S Satin
- b Department of Pharmacology and Brehm Diabetes Research Center , University of Michigan , Ann Arbor , MI , USA
| | - Daniel Braas
- d Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging , University of California, Los Angeles, David Geffen School of Medicine , Los Angeles , CA , USA ; UCLA Metabolomics Center , University of California, Los Angeles , Los Angeles , CA , USA
| | - Peter C Butler
- a Larry L. Hillblom Islet Research Center , University of California, Los Angeles, David Geffen School of Medicine , Los Angeles , CA , USA
| | - Slavica Tudzarova
- a Larry L. Hillblom Islet Research Center , University of California, Los Angeles, David Geffen School of Medicine , Los Angeles , CA , USA.,e Jonsson Comprehensive Cancer Center , University of California, Los Angeles, David Geffen School of Medicine , Los Angeles , CA , USA
| |
Collapse
|
29
|
Boland BB, Rhodes CJ, Grimsby JS. The dynamic plasticity of insulin production in β-cells. Mol Metab 2017; 6:958-973. [PMID: 28951821 PMCID: PMC5605729 DOI: 10.1016/j.molmet.2017.04.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although the insulin-producing pancreatic β-cells are quite capable of adapting to both acute and chronic changes in metabolic demand, persistently high demand for insulin will ultimately lead to their progressive dysfunction and eventual loss. Recent and historical studies highlight the importance of 'resting' the β-cell as a means of preserving functional β-cell mass. SCOPE OF REVIEW We provide experimental evidence to highlight the remarkable plasticity for insulin production and secretion by the pancreatic β-cell alongside some clinical evidence that supports leveraging this unique ability to preserve β-cell function. MAJOR CONCLUSIONS Treatment strategies for type 2 diabetes mellitus (T2DM) targeted towards reducing the systemic metabolic burden, rather than demanding greater insulin production from an already beleaguered β-cell, should be emphasized to maintain endogenous insulin secretory function and delay the progression of T2DM.
Collapse
Key Words
- ATF6, Activating Transcription Factor 6
- CHOP, CCAAT/Enhancer-Binding Homologous Protein
- EPAC, Exchange Factor Directly Activated by cAMP
- EROβ1, ER-resident oxidoreductase β1
- GIP, Gastric Inhibitory Polypeptide
- GLP-1, Glucagon-like Peptide 1
- GLUT2, Glucose Transporter 2
- GSIS, Glucose Stimulated Insulin Secretion
- IREα, Inositol Requiring Enzyme α
- Insulin production
- NEFA, Non-esterified Fatty Acid
- PERK, Protein Kinase RNA-like Endoplasmic Reticulum Kinase
- PKA, Protein Kinase A
- PKC, Protein Kinase C
- PLC, Phospholipase C
- ROS, Reactive Oxygen Species
- SNAP-25, Soluble NSF Attachment Protein 25
- SNARE, Soluble NSF Attachment Protein Receptor
- STZ, Streptozotocin
- T2DM
- T2DM, Type 2 Diabetes Mellitus
- TRP, Transient Receptor Potential
- VAMP-2, Vehicle Associated Membrane Protein 2
- VDCC, Voltage Dependent Calcium Channel
- mTORC1, Mammalian Target of Rapamycin 1
- nH, Hill coefficient
- β-cell rest
Collapse
Affiliation(s)
- Brandon B. Boland
- MedImmune, Cardiovascular and Metabolic Disease Research, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | | | | |
Collapse
|
30
|
Je HJ, Kim MG, Kwon HJ. Bioluminescence Assays for Monitoring Chondrogenic Differentiation and Cartilage Regeneration. SENSORS 2017; 17:s17061306. [PMID: 28587284 PMCID: PMC5492100 DOI: 10.3390/s17061306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 02/06/2023]
Abstract
Since articular cartilage has a limited regeneration potential, for developing biological therapies for cartilage regeneration it is important to study the mechanisms underlying chondrogenesis of stem cells. Bioluminescence assays can visualize a wide range of biological phenomena such as gene expression, signaling, metabolism, development, cellular movements, and molecular interactions by using visible light and thus contribute substantially to elucidation of their biological functions. This article gives a concise review to introduce basic principles of bioluminescence assays and applications of the technology to visualize the processes of chondrogenesis and cartilage regeneration. Applications of bioluminescence assays have been highlighted in the methods of real-time monitoring of gene expression and intracellular levels of biomolecules and noninvasive cell tracking within animal models. This review suggests that bioluminescence assays can be applied towards a visual understanding of chondrogenesis and cartilage regeneration.
Collapse
Affiliation(s)
- Hyeon Jeong Je
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| | - Min Gu Kim
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| | - Hyuck Joon Kwon
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| |
Collapse
|
31
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
32
|
Merrins MJ, Poudel C, McKenna JP, Ha J, Sherman A, Bertram R, Satin LS. Phase Analysis of Metabolic Oscillations and Membrane Potential in Pancreatic Islet β-Cells. Biophys J 2017; 110:691-699. [PMID: 26840733 DOI: 10.1016/j.bpj.2015.12.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023] Open
Abstract
Metabolism in islet β-cells displays oscillations that can trigger pulses of electrical activity and insulin secretion. There has been a decades-long debate among islet biologists about whether metabolic oscillations are intrinsic or occur in response to oscillations in intracellular Ca(2+) that result from bursting electrical activity. In this article, the dynamics of oscillatory metabolism were investigated using five different optical reporters. Reporter activity was measured simultaneously with membrane potential bursting to determine the phase relationships between the metabolic oscillations and electrical activity. Our experimental findings suggest that Ca(2+) entry into β-cells stimulates the rate of mitochondrial metabolism, accounting for the depletion of glycolytic intermediates during each oscillatory burst. We also performed Ca(2+) clamp tests in which we clamped membrane potential with the KATP channel-opener diazoxide and KCl to fix Ca(2+) at an elevated level. These tests confirm that metabolic oscillations do not require Ca(2+) oscillations, but show that Ca(2+) plays a larger role in shaping metabolic oscillations than previously suspected. A dynamical picture of the mechanisms of oscillations emerged that requires the restructuring of contemporary mathematical β-cell models, including our own dual oscillator model. In the companion article, we modified our model to account for these new data.
Collapse
Affiliation(s)
- Matthew J Merrins
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Chetan Poudel
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Joseph P McKenna
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Joon Ha
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
33
|
Neelankal John A, Morahan G, Jiang FX. Incomplete Re-Expression of Neuroendocrine Progenitor/Stem Cell Markers is a Key Feature of β-Cell Dedifferentiation. J Neuroendocrinol 2017; 29. [PMID: 27891681 DOI: 10.1111/jne.12450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/23/2023]
Abstract
There is increasing evidence to suggest that type 2 diabetes mellitus (T2D), a pandemic metabolic disease, may be caused by β-cell dedifferentiation (βCD). However, there is currently no universal definition of βCD, and the underlying mechanism is poorly understood. We hypothesise that a high-glucose in vitro environment mimics hyperglycaemia in vivo and that β cells grown in this milieu over a long period will undergo dedifferentiation. In the present study, we report that the pancreatic β cell line mouse insulinoma 6 (MIN6) grown under a high-glucose condition did not undergo massive cell death but exhibited a glucose-stimulated insulin-secreting profile similar to that of immature β cells. The expression of insulin and the glucose-sensing molecule glucose transporter 2 (Glut2) in late passage MIN6 cells was significantly lower than the early passage at both the RNA and protein levels. Mechanistically, these cells also expressed significantly less of the 'pancreatic and duodenal homebox1' (Pdx1) β-cell transcription factor. Finally, passaged MIN6 cells dedifferentiated to demonstrate some features of β-cell precursors, as well as neuroendocrine markers, in addition to expressing both glucagon and insulin. Thus, we concluded that high-glucose passaged MIN6 cells passaged MIN6 cells. provide a cellular model of β-cell dedifferentiation that can help researchers develop a better understanding of this process. These findings provide new insights that may enhance knowledge of the pathophysiology of T2D and facilitate the establishment of a novel strategy by which this disease can be treated.
Collapse
Affiliation(s)
- A Neelankal John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| | - G Morahan
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| | - F-X Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| |
Collapse
|
34
|
Kwon HJ, Lee GS, Chun H. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors. Sci Rep 2016; 6:39302. [PMID: 28004813 PMCID: PMC5177962 DOI: 10.1038/srep39302] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/21/2016] [Indexed: 11/22/2022] Open
Abstract
Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels of chondrogenic markers, such as type II collagen, aggrecan, and Sox9, and decreases type I collagen levels, thereby inducing differentiation of MSCs into hyaline chondrogenic cells without the addition of exogenous growth factors. ES also induced MSC condensation and subsequent chondrogenesis by driving Ca2+/ATP oscillations, which are known to be essential for prechondrogenic condensation. In subsequent experiments, the effects of ES on ATP oscillations and chondrogenesis were dependent on extracellular ATP signaling via P2X4 receptors, and ES induced significant increases in TGF-β1 and BMP2 expression. However, the inhibition of TGF-β signaling blocked ES-driven condensation, whereas the inhibition of BMP signaling did not, indicating that TGF-β signaling but not BMP signaling mediates ES-driven condensation. These findings may contribute to the development of electrotherapeutic strategies for cartilage repair using MSCs.
Collapse
Affiliation(s)
- Hyuck Joon Kwon
- Department of Physical Therapy and Rehabilitation, College of Health Science, Eulji University, Gyeonggi, Republic of Korea
| | - Gyu Seok Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Honggu Chun
- Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Gregg T, Poudel C, Schmidt BA, Dhillon RS, Sdao SM, Truchan NA, Baar EL, Fernandez LA, Denu JM, Eliceiri KW, Rogers JD, Kimple ME, Lamming DW, Merrins MJ. Pancreatic β-Cells From Mice Offset Age-Associated Mitochondrial Deficiency With Reduced KATP Channel Activity. Diabetes 2016; 65:2700-10. [PMID: 27284112 PMCID: PMC5001174 DOI: 10.2337/db16-0432] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022]
Abstract
Aging is accompanied by impaired glucose homeostasis and an increased risk of type 2 diabetes, culminating in the failure of insulin secretion from pancreatic β-cells. To investigate the effects of age on β-cell metabolism, we established a novel assay to directly image islet metabolism with NAD(P)H fluorescence lifetime imaging (FLIM). We determined that impaired mitochondrial activity underlies an age-dependent loss of insulin secretion in human islets. NAD(P)H FLIM revealed a comparable decline in mitochondrial function in the pancreatic islets of aged mice (≥24 months), the result of 52% and 57% defects in flux through complex I and II, respectively, of the electron transport chain. However, insulin secretion and glucose tolerance are preserved in aged mouse islets by the heightened metabolic sensitivity of the β-cell triggering pathway, an adaptation clearly encoded in the metabolic and Ca(2+) oscillations that trigger insulin release (Ca(2+) plateau fraction: young 0.211 ± 0.006, aged 0.380 ± 0.007, P < 0.0001). This enhanced sensitivity is driven by a reduction in KATP channel conductance (diazoxide: young 5.1 ± 0.2 nS; aged 3.5 ± 0.5 nS, P < 0.01), resulting in an ∼2.8 mmol/L left shift in the β-cell glucose threshold. The results demonstrate how mice but not humans are able to successfully compensate for age-associated metabolic dysfunction by adjusting β-cell glucose sensitivity and highlight an essential mechanism for ensuring the maintenance of insulin secretion.
Collapse
Affiliation(s)
- Trillian Gregg
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI Biophysics Graduate Training Program, University of Wisconsin-Madison, Madison, WI Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI
| | - Chetan Poudel
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI
| | - Brian A Schmidt
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Rashpal S Dhillon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Sophia M Sdao
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Nathan A Truchan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Emma L Baar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Luis A Fernandez
- Department of Surgery, Division of Transplantation, University of Wisconsin-Madison, Madison, WI
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Jeremy D Rogers
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Dudley W Lamming
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
36
|
Arkhammar P, Wahl P, Gerlach B, Fremming T, Hansen JB. Establishment and Application of in Vitro Membrane Potential Assays in Cell Lines with Endogenous or Recombinant Expression of ATP-Sensitive Potassium Channels (Kir6.2/SUR1) Using a Fluorescent Probe Kit. ACTA ACUST UNITED AC 2016; 9:382-90. [PMID: 15296637 DOI: 10.1177/1087057104263911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The flow of current through the adenosine triphosphate (ATP)-sensitive potassium channel (KATP) of the isoform Kir6.2/SUR1 regulates the resting membrane potential in the pancreatic β-cell. In combination with the cellular glucose metabolism, it is an important minute-to-minute regulator of insulin secretion and whole-body glucose homeostasis. The same KATPisoform is further reported to be present in glucagon-secreting α-cells, intestinal L-cells, and glucose-responsive neurons in the hypothalamus. All in all, this makes Kir6.2/SUR1 an interesting drug target. Using a commercially available fluorescent membrane potential probe kit and a conventional 96-well fluorescence plate reader, the authors have developed and established qualitative membrane potential assays used to screen for potassium channel closers (KCCs) and openers (KCOs) in insulin- and glucagon-secreting cell lines as well as in cells with recombinant expression of the human Kir6.2/SUR1 channel complex. Both glucose- and KCC-induced depolarization could be demonstrated. The magnitudes of these responses and KCO-induced repolarization at high glucose displayed some variation between the different cell lines but a similar rank order of test compounds. Some cell types required the presence of a KCC, such as tolbutamide, to display significant effects of KCOs. The authors find that robust and reliable functional in vitro assays compatible with medium-throughput screening and high-throughput screening can be developed as a base for finding new, more potent, and isoform-selective KCCs and KCOs.
Collapse
|
37
|
Modeling of glucose-induced cAMP oscillations in pancreatic β cells: cAMP rocks when metabolism rolls. Biophys J 2016. [PMID: 26200880 DOI: 10.1016/j.bpj.2015.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent advances in imaging technology have revealed oscillations of cyclic adenosine monophosphate (cAMP) in insulin-secreting cells. These oscillations may be in phase with cytosolic calcium oscillations or out of phase. cAMP oscillations have previously been modeled as driven by oscillations in calcium, based on the known dependence of the enzymes that generate cAMP (adenylyl cyclase) and degrade it (phosphodiesterase). However, cAMP oscillations have also been reported to occur in the absence of calcium oscillations. Motivated by similarities between the properties of cAMP and metabolic oscillations in pancreatic β cells, we propose here that in addition to direct control by calcium, cAMP is controlled by metabolism. Specifically, we hypothesize that AMP inhibits adenylyl cyclase. We incorporate this hypothesis into the dual oscillator model for β cells, in which metabolic (glycolytic) oscillations cooperate with modulation of ion channels and metabolism by calcium. We show that the combination of oscillations in AMP and calcium in the dual oscillator model can account for the diverse oscillatory patterns that have been observed, as well as for experimental perturbations of those patterns. Predictions to further test the model are provided.
Collapse
|
38
|
Gerencser AA. Bioenergetic Analysis of Single Pancreatic β-Cells Indicates an Impaired Metabolic Signature in Type 2 Diabetic Subjects. Endocrinology 2015. [PMID: 26204464 DOI: 10.1210/en.2015-1552] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Impaired activation of mitochondrial energy metabolism by glucose has been demonstrated in type 2 diabetic β-cells. The cause of this dysfunction is unknown. The aim of this study was to identify segments of energy metabolism with normal or with altered function in human type 2 diabetes mellitus. The mitochondrial membrane potential (ΔψM), and its response to glucose, is the main driver of mitochondrial ATP synthesis and is hence a central mediator of glucose-induced insulin secretion, but its quantitative determination in β-cells from human donors has not been attempted, due to limitations in assay technology. Here, novel fluorescence microscopic assays are exploited to quantify ΔψM and its response to glucose and other secretagogues in β-cells of dispersed pancreatic islet cells from 4 normal and 3 type 2 diabetic organ donors. Mitochondrial volume densities and the magnitude of ΔψM in low glucose were not consistently altered in diabetic β-cells. However, ΔψM was consistently less responsive to elevation of glucose concentration, whereas the decreased response was not observed with metabolizable secretagogue mixtures that feed directly into the tricarboxylic acid cycle. Single-cell analysis of the heterogeneous responses to metabolizable secretagogues indicated no dysfunction in relaying ΔψM hyperpolarization to plasma membrane potential depolarization in diabetic β-cells. ΔψM of diabetic β-cells was distinctly responsive to acute inhibition of ATP synthesis during glucose stimulation. It is concluded that the mechanistic deficit in glucose-induced insulin secretion and mitochondrial hyperpolarization of diabetic human β-cells is located upstream of the tricarboxylic acid cycle and manifests in dampening the control of ΔψM by glucose metabolism.
Collapse
Affiliation(s)
- Akos A Gerencser
- Buck Institute for Research on Aging and Image Analyst Software, Novato, California 94945; and College of Pharmacy, Touro University California, Vallejo, California 94592
| |
Collapse
|
39
|
Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J 2015; 466:203-18. [PMID: 25697093 DOI: 10.1042/bj20141384] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Insulin release from pancreatic β-cells is required to maintain normal glucose homoeostasis in man and many other animals. Defective insulin secretion underlies all forms of diabetes mellitus, a disease currently reaching epidemic proportions worldwide. Although the destruction of β-cells is responsible for Type 1 diabetes (T1D), both lowered β-cell mass and loss of secretory function are implicated in Type 2 diabetes (T2D). Emerging results suggest that a functional deficiency, involving de-differentiation of the mature β-cell towards a more progenitor-like state, may be an important driver for impaired secretion in T2D. Conversely, at least in rodents, reprogramming of islet non-β to β-cells appears to occur spontaneously in models of T1D, and may occur in man. In the present paper, we summarize the biochemical properties which define the 'identity' of the mature β-cell as a glucose sensor par excellence. In particular, we discuss the importance of suppressing a group of 11 'disallowed' housekeeping genes, including Ldha and the monocarboxylate transporter Mct1 (Slc16a1), for normal nutrient sensing. We then survey the changes in the expression and/or activity of β-cell-enriched transcription factors, including FOXO1, PDX1, NKX6.1, MAFA and RFX6, as well as non-coding RNAs, which may contribute to β-cell de-differentiation and functional impairment in T2D. The relevance of these observations for the development of new approaches to treat T1D and T2D is considered.
Collapse
|
40
|
Drews G, Bauer C, Edalat A, Düfer M, Krippeit-Drews P. Evidence against a Ca(2+)-induced potentiation of dehydrogenase activity in pancreatic beta-cells. Pflugers Arch 2015; 467:2389-97. [PMID: 25893711 DOI: 10.1007/s00424-015-1707-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023]
Abstract
Pancreatic beta-cells respond to an unchanging stimulatory glucose concentration with oscillations in membrane potential (Vm), cytosolic Ca(2+) concentration ([Ca(2+)]c), and insulin secretion. The underlying mechanisms are largely ascertained. Some particular details, however, are still in debate. Stimulus-secretion coupling (SSC) of beta-cells comprises glucose-induced Ca(2+) influx into the cytosol and thus into mitochondria. It is suggested that this activates (mitochondrial) dehydrogenases leading to an increase in reduction equivalents and ATP production. According to SSC, a glucose-induced increase in ATP production would thus further augment ATP production, i.e. induce a feed-forward loop that is hardly compatible with oscillations. Consistently, other studies favour a feedback mechanism that drives oscillatory mitochondrial ATP production. If Ca(2+) influx activates dehydrogenases, a change in [Ca(2+)]c should increase the concentration of reduction equivalents. We measured changes in flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) autofluorescence in response to changes in glucose concentration or glucose-independent changes in [Ca(2+)]c. The FAD signal was altered by glucose but not by alterations in [Ca(2+)]c. NAD(P)H was increased by glucose but even decreased by Ca(2+) influx evoked by tolbutamide. The mitochondrial membrane potential ΔΨ was hyperpolarized by 4 mM glucose. As adding tolbutamide then depolarized ΔΨ, we deduce that Ca(2+) does not activate mitochondrial activity but by contrast even inhibits it by reducing the driving force for ATP production. Inhibition of Ca(2+) influx reversed the Ca(2+)-induced changes in ΔΨ and NAD(P)H. The results are consistent with a feedback mechanism which transiently and repeatedly reduces ATP production and explain the oscillatory activity of pancreatic beta-cells at increased glucose concentrations.
Collapse
Affiliation(s)
- Gisela Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Cita Bauer
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Armin Edalat
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Peter Krippeit-Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
41
|
Watts M, Fendler B, Merrins MJ, Satin LS, Bertram R, Sherman A. Calcium and Metabolic Oscillations in Pancreatic Islets: Who's Driving the Bus? *. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 2015; 13:683-703. [PMID: 25698909 PMCID: PMC4331037 DOI: 10.1137/130920198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pancreatic islets exhibit bursting oscillations in response to elevated blood glucose. These oscillations are accompanied by oscillations in the free cytosolic Ca2+ concentration (Cac ), which drives pulses of insulin secretion. Both islet Ca2+ and metabolism oscillate, but there is some debate about their interrelationship. Recent experimental data show that metabolic oscillations in some cases persist after the addition of diazoxide (Dz), which opens K(ATP) channels, hyperpolarizing β-cells and preventing Ca2+ entry and Ca2+ oscillations. Further, in some islets in which metabolic oscillations were eliminated with Dz, increasing the cytosolic Ca2+ concentration by the addition of KCl could restart the metabolic oscillations. Here we address why metabolic oscillations persist in some islets but not others, and why raising Cac restarts oscillations in some islets but not others. We answer these questions using the dual oscillator model (DOM) for pancreatic islets. The DOM can reproduce the experimental data and shows that the model supports two different mechanisms for slow metabolic oscillations, one that requires calcium oscillations and one that does not.
Collapse
Affiliation(s)
- Margaret Watts
- National Institutes of Health, Bethesda, MD 20892. The first and sixth authors’ research was supported by the NIH/NIDDK Intramural Research Program
| | - Bernard Fendler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724. This author’s research was supported by the Simons Foundation and the Starr Cancer Consortium (I3-A123)
| | - Matthew J. Merrins
- University of Michigan, Ann Arbor, MI 48105. The third author’s research was supported by the National Institutes of Health (F32-DK085960), and the fourth author’s research was supported by the National Institutes of Health (R01-DK46409)
| | - Leslie S. Satin
- University of Michigan, Ann Arbor, MI 48105. The third author’s research was supported by the National Institutes of Health (F32-DK085960), and the fourth author’s research was supported by the National Institutes of Health (R01-DK46409)
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL 32306. This author’s research was supported by the National Institutes of Health (DK080714)
| | - Arthur Sherman
- National Institutes of Health, Bethesda, MD 20892. The first and sixth authors’ research was supported by the NIH/NIDDK Intramural Research Program
| |
Collapse
|
42
|
Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014; 56:340-61. [DOI: 10.1016/j.ceca.2014.09.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
43
|
Silencing of plasma membrane Ca2+-ATPase isoforms 2 and 3 impairs energy metabolism in differentiating PC12 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:735106. [PMID: 25276815 PMCID: PMC4170788 DOI: 10.1155/2014/735106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022]
Abstract
A close link between Ca(2+), ATP level, and neurogenesis is apparent; however, the molecular mechanisms of this relationship have not been completely elucidated. Transient elevations of cytosolic Ca(2+) may boost ATP synthesis, but ATP is also consumed by ion pumps to maintain a low Ca(2+) in cytosol. In differentiation process plasma membrane Ca(2+) ATPase (PMCA) is considered as one of the major players for Ca(2+) homeostasis. From four PMCA isoforms, the fastest PMCA2 and PMCA3 are expressed predominantly in excitable cells. In the present study we assessed whether PMCA isoform composition may affect energy balance in differentiating PC12 cells. We found that PMCA2-downregulated cells showed higher basal O2 consumption, lower NAD(P)H level, and increased activity of ETC. These changes associated with higher [Ca(2+)]c resulted in elevated ATP level. Since PMCA2-reduced cells demonstrated greatest sensitivity to ETC inhibition, we suppose that the main source of energy for PMCA isoforms 1, 3, and 4 was oxidative phosphorylation. Contrary, cells with unchanged PMCA2 expression exhibited prevalence of glycolysis in ATP generation. Our results with PMCA2- or PMCA3-downregulated lines provide an evidence of a novel role of PMCA isoforms in regulation of bioenergetic pathways, and mitochondrial activity and maintenance of ATP level during PC12 cells differentiation.
Collapse
|
44
|
Mizgier ML, Casas M, Contreras-Ferrat A, Llanos P, Galgani JE. Potential role of skeletal muscle glucose metabolism on the regulation of insulin secretion. Obes Rev 2014; 15:587-97. [PMID: 24618283 DOI: 10.1111/obr.12166] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 01/03/2023]
Abstract
Pancreatic beta cells sense glucose flux and release as much insulin as required in order to maintain glycaemia within a narrow range. Insulin secretion is regulated by many factors including glucose, incretins, and sympathetic and parasympathetic tones among other physiological factors. To identify the mechanisms linking obesity-related insulin resistance with impaired insulin secretion represents a central challenge. Recently, it has been argued that a crosstalk between skeletal muscle and the pancreas may regulate insulin secretion. Considering that skeletal muscle is the largest organ in non-obese subjects and a major site of insulin- and exercise-stimulated glucose disposal, it appears plausible that muscle might interact with the pancreas and modulate insulin secretion for appropriate peripheral intracellular glucose utilization. There is growing evidence that muscle can secrete so-called myokines that can have auto/para/endocrine actions. Although it is unclear in which direction they act, interleukin-6 seems to be a possible muscle-derived candidate protein mediating such inter-organ communication. We herein review some of the putative skeletal muscle-derived factors mediating this interaction. In addition, the evidence coming from in vitro, animal and human studies that support such inter-organ crosstalk is thoroughly discussed.
Collapse
Affiliation(s)
- M L Mizgier
- Departmento de Nutrición, Diabetes y Metabolismo, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
45
|
Patel MS, Srinivasan M, Strutt B, Mahmood S, Hill DJ. Featured Article: Beta cell specific pyruvate dehydrogenase alpha gene deletion results in a reduced islet number and β-cell mass postnatally. Exp Biol Med (Maywood) 2014; 239:975-985. [PMID: 24845368 DOI: 10.1177/1535370214531895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ability of pancreatic β-cells to undertake glucose-stimulated insulin secretion (GSIS) depends on the generation of adenosine triphosphate (ATP) within the mitochondria from pyruvate, a major rate-limiting enzyme being pyruvate dehydrogenase (PDH) complex (PDC). However, glucose metabolism also controls β-cell mass. To examine the role of PDC in the regulation of pancreatic β-cell development and maturation, we generated β-cell-targeted PDHα subunit knock-out male mice (β-PDHKO) and compared these with control males (β-PDHCT) from birth until 6-8 weeks age. Pancreas morphology, transcription factor expression, pancreatic insulin content, and circulating glucose and insulin values were compared. Compared to β-PDHCT male mice, β-PDHKO animals had significantly reduced pancreatic insulin content from birth, a lower serum insulin content from day 15, and relative hyperglycemia from day 30. Isolated islets from β-PDHKO mice demonstrated a reduced GSIS. The number of islets per pancreatic area, mean islet area, and the proportion of islet cells that were β-cells were all reduced in β-PDHKO animals. Similarly the number of insulin-immunopositive, extra-islet small endocrine cell clusters, a possible source of β-cell progenitors, was lower in β-PDHKO mice. Analysis of pancreatic expression of transcription factors responsible for β-cell lineage commitment, proliferation, and maturation, Pdx1, Neurogenin3, and NeuroD1 showed that mRNA abundance was reduced in the β-PDHKO. This demonstrates that PDC is not only required for insulin expression and glucose-stimulated secretion, but also directly influences β-cell growth and maturity, and positions glucose metabolism as a direct regulator of β-cell mass and plasticity.
Collapse
Affiliation(s)
- Mulchand S Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo 14214, NY
| | - Malathi Srinivasan
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo 14214, NY
| | - Brenda Strutt
- Lawson Research Institute, St. Joseph's Health Centre, London, Ontario N6A 4V2, Canada
| | - Saleh Mahmood
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo 14214, NY
| | - David J Hill
- Lawson Research Institute, St. Joseph's Health Centre, London, Ontario N6A 4V2, Canada Department of Medicine, Physiology, and Paediatrics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
46
|
De Marchi U, Thevenet J, Hermant A, Dioum E, Wiederkehr A. Calcium co-regulates oxidative metabolism and ATP synthase-dependent respiration in pancreatic beta cells. J Biol Chem 2014; 289:9182-94. [PMID: 24554722 PMCID: PMC3979381 DOI: 10.1074/jbc.m113.513184] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)(+) ratio.
Collapse
|
47
|
Abstract
Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CK, Chay-Keizer
- CRAC, calcium release-activated current
- Ca2+, calcium ions
- DOM, dual oscillator model
- ER, endoplasmic reticulum
- F6P, fructose-6-phosphate
- FBP, fructose-1,6-bisphosphate
- GLUT, glucose transporter
- GSIS, glucose-stimulated insulin secretion
- HERG, human eter à-go-go related gene
- IP3R, inositol-1,4,5-trisphosphate receptors
- KATP, ATP-sensitive K+ channels
- KCa, Ca2+-dependent K+ channels
- Kv, voltage-dependent K+ channels
- MCU, mitochondrial Ca2+ uniporter
- NCX, Na+/Ca2+ exchanger
- PFK, phosphofructokinase
- PMCA, plasma membrane Ca2+-ATPase
- ROS, reactive oxygen species
- RyR, ryanodine receptors
- SERCA, sarco-endoplasmic reticulum Ca2+-ATPase
- T2D, Type 2 Diabetes
- TCA, trycarboxylic acid cycle
- TRP, transient receptor potential
- VDCC, voltage-dependent Ca2+ channels
- Vm, membrane potential
- [ATP]i, cytosolic ATP
- [Ca2+]i, intracellular calcium concentration
- [Ca2+]m, mitochondrial calcium
- [Na+], Na+ concentration
- action potentials
- bursting
- cAMP, cyclic AMP
- calcium
- electrical activity
- ion channels
- mNCX, mitochondrial Na+/Ca2+ exchanger
- mathematical model
- β-cell
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering; Universidad
Autónoma Metropolitana-Iztapalapa; México, DF,
México
- Correspondence to: Gerardo J
Félix-Martínez;
| | | |
Collapse
|
48
|
Abstract
ATP-sensitive potassium channels (K(ATP) channels) link cell metabolism to electrical activity by controlling the cell membrane potential. They participate in many physiological processes but have a particularly important role in systemic glucose homeostasis by regulating hormone secretion from pancreatic islet cells. Glucose-induced closure of K(ATP) channels is crucial for insulin secretion. Emerging data suggest that K(ATP) channels also play a key part in glucagon secretion, although precisely how they do so remains controversial. This Review highlights the role of K(ATP) channels in insulin and glucagon secretion. We discuss how K(ATP) channels might contribute not only to the initiation of insulin release but also to the graded stimulation of insulin secretion that occurs with increasing glucose concentrations. The various hypotheses concerning the role of K(ATP) channels in glucagon release are also reviewed. Furthermore, we illustrate how mutations in K(ATP) channel genes can cause hyposecretion or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, and how defective metabolic regulation of the channel may underlie the hypoinsulinaemia and the hyperglucagonaemia that characterize type 2 diabetes mellitus. Finally, we outline how sulphonylureas, which inhibit K(ATP) channels, stimulate insulin secretion in patients with neonatal diabetes mellitus or type 2 diabetes mellitus, and suggest their potential use to target the glucagon secretory defects found in diabetes mellitus.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
49
|
Ren J, Sherman A, Bertram R, Goforth PB, Nunemaker CS, Waters CD, Satin LS. Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations. Am J Physiol Endocrinol Metab 2013; 305:E805-17. [PMID: 23921138 PMCID: PMC3798703 DOI: 10.1152/ajpendo.00046.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We used the patch clamp technique in situ to test the hypothesis that slow oscillations in metabolism mediate slow electrical oscillations in mouse pancreatic islets by causing oscillations in KATP channel activity. Total conductance was measured over the course of slow bursting oscillations in surface β-cells of islets exposed to 11.1 mM glucose by either switching from current clamp to voltage clamp at different phases of the bursting cycle or by clamping the cells to -60 mV and running two-second voltage ramps from -120 to -50 mV every 20 s. The membrane conductance, calculated from the slopes of the ramp current-voltage curves, oscillated and was larger during the silent phase than during the active phase of the burst. The ramp conductance was sensitive to diazoxide, and the oscillatory component was reduced by sulfonylureas or by lowering extracellular glucose to 2.8 mM, suggesting that the oscillatory total conductance is due to oscillatory KATP channel conductance. We demonstrate that these results are consistent with the Dual Oscillator model, in which glycolytic oscillations drive slow electrical bursting, but not with other models in which metabolic oscillations are secondary to calcium oscillations. The simulations also confirm that oscillations in membrane conductance can be well estimated from measurements of slope conductance and distinguished from gap junction conductance. Furthermore, the oscillatory conductance was blocked by tolbutamide in isolated β-cells. The data, combined with insights from mathematical models, support a mechanism of slow (∼5 min) bursting driven by oscillations in metabolism, rather than by oscillations in the intracellular free calcium concentration.
Collapse
Affiliation(s)
- Jianhua Ren
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|
50
|
Li J, Shuai HY, Gylfe E, Tengholm A. Oscillations of sub-membrane ATP in glucose-stimulated beta cells depend on negative feedback from Ca(2+). Diabetologia 2013; 56:1577-86. [PMID: 23536115 PMCID: PMC3671113 DOI: 10.1007/s00125-013-2894-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS ATP links changes in glucose metabolism to electrical activity, Ca(2+) signalling and insulin secretion in pancreatic beta cells. There is evidence that beta cell metabolism oscillates, but little is known about ATP dynamics at the plasma membrane, where regulation of ion channels and exocytosis occur. METHODS The sub-plasma-membrane ATP concentration ([ATP]pm) was recorded in beta cells in intact mouse and human islets using total internal reflection microscopy and the fluorescent reporter Perceval. RESULTS Glucose dose-dependently increased [ATP]pm with half-maximal and maximal effects at 5.2 and 9 mmol/l, respectively. Additional elevations of glucose to 11 to 20 mmol/l promoted pronounced [ATP]pm oscillations that were synchronised between neighbouring beta cells. [ATP]pm increased further and the oscillations disappeared when voltage-dependent Ca(2+) influx was prevented. In contrast, K(+)-depolarisation induced prompt lowering of [ATP]pm. Simultaneous recordings of [ATP]pm and the sub-plasma-membrane Ca(2+) concentration ([Ca(2+)]pm) during the early glucose-induced response revealed that the initial [ATP]pm elevation preceded, and was temporarily interrupted by the rise of [Ca(2+)]pm. During subsequent glucose-induced oscillations, the increases of [Ca(2+)]pm correlated with lowering of [ATP]pm. CONCLUSIONS/INTERPRETATION In beta cells, glucose promotes pronounced oscillations of [ATP]pm, which depend on negative feedback from Ca(2+) . The bidirectional interplay between these messengers in the sub-membrane space generates the metabolic and ionic oscillations that underlie pulsatile insulin secretion.
Collapse
Affiliation(s)
- J. Li
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - H. Y. Shuai
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - E. Gylfe
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - A. Tengholm
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, 75123 Uppsala, Sweden
| |
Collapse
|